

Ethiopia's Climate Resilient Green Economy

Source: GoE GTP; team analysis

Without action, this economic growth will lead to more than double the emissions

BAU emissions development Mt CO ₂ e per year			CAGR ¹ Percent	t CO ₂ e/capita Drivers and rationale	
Ť	3.0 400 185 Agricultur +167%		4.4%	 Livestock: Increase in cattle population and other species (doubling from 2010-30) Soil: Increase in cultivated land (crops production) and synthetic fertilizer 	
+167%				 Average growth of cropland (estimated to reach 3.9% per year) Increase in population leading to higher fuelwood consumption 	
1.8 150	90	Forestry	2.6%	 Switch of remaining fossil fuel capacity to 100% clean/renewable generation for on-grid (2014) 	
75	<mark>5</mark> 40	Power Transport	- 11.2%	 Increase in passenger-km traveled projected based on elasticity to real GDP Increase in ton-km of cargo transported based on elasticity to real GDP 	
55 5 5	70	Industry / Buildings	(15.7%) (3.9%)	 Cement production (steep increase in GTP, thereafter approach to MIC-level) Establishment and scale-up of industries in textile, steel, fertilizer, mining and others 	
2010 2030 – BAU				 Buildings and solid/liquid waste emissions 	

1 Compound average growth rate

More than 85% of GHG emissions in Ethiopia comes today from forestry and agriculture

ENVIRONMENTAL PROTECTION AUTHORITY BACKUP

Share of GHG emissions, 2010

Ethiopia following a typical development path would imply a number of national and global challenges and adverse effects

Characteristics of conventional growth path

- Fossil fuel dependent power supply
- Dependency on imports
- Increased pollution

- Deforestation/degradation of forests
- Land erosion
- Health issues from fuelwood smoke

Unsustainable agriculture

- Reduction in soil fertility
- Increased vulnerability to drought and floods

Rapid growth of conventional transportation

- Congested cities with polluting vehicles
- Dependent on oil import

Unsustainable practices in growing industry

- Increase of air and water pollution
- Exhaustion of resources

Challenges

- Increased poverty and reduced food security
- Reduction of quality of life and health
- Degradation of air and water quality
- Dependency on commodities and fuel imports
- Loss of natural assets and biodiversity

Source: CRGE

In response to this challenge, Ethiopia developed the Climate Resilient Green Economy (CRGE) Strategy

Developing a green economy combines economic development and abatement

ENVIRONMENTAL

PROTECTION AUTHORITY Ethiopia has shortlisted >60 green economy opportunities

The strategy for a green economy is based on four pillars

Middle income country in 2025

Green economy strategy

Agriculture – Improving crop and livestock practices

- Reduce deforestation by agricultural intensification and irrigation of degraded land
- Use lower-emitting techniques
- Improve animal value chain
- Shift animal mix
- Mechanize draft power

Forestry – Protecting and growing forests as carbon stocks

- Reduce demand for fuelwood via efficient stoves
- Increase sequestration by afforestation/reforestation and forest management

Power – Deploying renewable and clean power generation

- Build renewable power generation capacity and switch-off fossil fuel power generation
- Export renewable power to substitute for fossil fuel power generation abroad

Industry, transport and buildings – Using advanced technologies

- Improve industry energy efficiency
- Improve production processes
- Tighten fuel efficiency of cars
- Construct electric rail network
- Substitute fossil fuel by biofuels
- Improve waste management

Source: CRGE

Pillar 1: Agriculture – Improving crop and livestock practices can abate up to 85 Mt CO2e

Mt CO₂e abatement potential in 2030

Soil

Introduce lower emitting techniques

E.g. carbon- and nitrogen efficient crop variety, organic fertilizers

Reduce deforestation for agricultural land

- Agricultural intensification (yield & value), e.g. by improved inputs
- Create new agricultural land through irrigation of degraded areas

Livestock

Increase animal value chain efficiency

 Generate higher output per cattle, increase off-take rate, ensure better health, etc.

Change animal mix

Promote consumption of lower emitting protein sources, e.g. poultry

Mechanize draft power

Introduce mechanical equipment for plowing/tillage to substitute animal power

1 Accounted for in forestry

Source: STC analysis

Pillar 2: Forestry – Protecting and growing forests can reduce nearly 120 Mt CO2e

Mt CO_2 e abatement potential in 2030

1 Accounted for in forestry, but implemented in agriculture (soils)

Mt CO_2 e potential to avoid emission in 2030

1 Enabler for other sectors (e.g. electric rail network in transport)

E.g. transition to high-efficiency lightbulbs

Around two thirds of the economy would be affected by moving to a green growth path

Share of GDP affected (2025) and examples for economic impact/benefits from green economy

Agriculture and forestry

- Creating 1 bn yearly savings from fuelwood expenditure for rural population
- Increasing productivity of up to 40 million heads of livestock

Industry

- Total fuel cost savings of USD 1 bn p.a. in 2025
- Enabling renewable power generation of more than 67 TWh, opening high potential for power exports

Service

 Savings of nearly 1/3 of fuel imports for transportation

1 Rounded numbers

2 Currently estimated emissions form buildings and waste

Almost all abatement opportunities cost less than 10\$ per tCO2 to implement while some have a positive return

1 Represents total identified gross potential, some measures are not additive (total net potential is less than sum of all gross potentials)

2 Non-domestic potential (will arise only in importing countries)

3 Assuming full implementation of all levers where cost has been evaluated (excluding buildings/green cities and industry other than cement)

Preserve biodiversity of the planet

Assist green development of neighbouring countries by providing cheap clean electricity

Show to other countries that green growth is an achievable pathway

Contribute to global GHG emission reduction

Implementing the green economy requires USD 125 Billion over the next 20 years

1 Not including Buildings / Green Cities

2 Including agricultural intensification and large-scale / small-scale irrigation

3 Investment being largely already part of the broader economic development plan of Ethiopia

Both loan and grant-based funding would be required

Source: CRGE