No.	 該当 ページ	DFR	? 反映内容								
25	DFR 11-145 ページ	Tab	ole 11.1-98 抜粋								
			Item Plan-O			Plan-1		Plan-2		Pla	n-3 (Selected)
			Vegetation	<mark>No issues</mark>		There are	<mark>some trees</mark>	There	is no	Sam	<mark>e as Plan-1.</mark>
						<mark>and shurub</mark>	<mark>s in the</mark>	vegeta	<mark>tion in the</mark>		
						<mark>site.</mark>		<mark>site.</mark>			
26	DFR 11-149 ページ	Tab	ole 11.1-99 抜粋								
			Item	Plan-1	Р	lan-2	Plan-3 (Se	lected)	Plan-4		Plan-5
			Environmental &	Some adverse	Adverse effects		Same as Plan-2.		Adverse effects		Adverse effects
			social	impacts on	on surrounding				on environment	tal	on environmental
			consideration	subsidence of the	enviror	environment will			aspect will be	e	aspect will
				ground and	be the	smallest			bigger than Pl	lan-	bigger especially
				availability of	because	e the river			2, because the	9	for water quality
				groundwater	is larg	ge.			river is small	l.	because the lake
				around the							is closed water
				he concerned							area.
				De concerneu.							

-		F			T								1 1
				Adverse effects	Adverse	impact on	Adverse imp	pact on	Adverse	impact on	Adverse	impact on	
				on social aspect	social	aspect	social aspe	ect	social a	spect	social a	aspect	
				will be smallest	will be	the	will be sma	aller	will be [·]	the	will be	the third	
				because the	biggest	iggest because than Plan-2 due		2 due	second si	mallest,	smallest	t, due to	
				pipeline is only	the leng	gth of	to its leng	gth of	due to i	ts length	its leng	gth of	
				for discharge and	pipelin	e is the	pipeline an	nd	of pipel	ine.	pipeline	Э.	
				length is the	longest	and <mark>will</mark>	number of						
				shortest.	<mark>cross 6</mark> 4	4	irrigation						
					<mark>irrigat</mark>	ion	<mark>outlets to</mark>	be					
					<mark>outlets</mark> .	. Rural	<mark>crossed (25</mark>	<mark>5).</mark>					
					narrow	road	Road will n	not be					
					adjacen [.]	t to	closed to						
					pipelin	e will be	traffic.						
					closed [.]	to traffic							
					unavoida	ably							
					during								
					constru	ction.							
28	DFR 11-146	Tab	le 11.1-98 抜粋										_
			Item	Plan-0		Plan-1		Plan-2		Pla	n-3 (Sele	ected)	
			<mark>GHG</mark>	No emissions		It is unavo	<mark>bidable to</mark>	<mark>Same as</mark>	Plan-1.	Sam	<mark>e as Pla</mark> r	<mark>า−1.</mark>	
						<mark>emit GHG. I</mark>	lowever,						
						the emission amount							
						will be few	<mark>ver than</mark>						
						<mark>the facili</mark> t	<mark>ties which</mark>						
						have no cor	nbined						
						cycle syste	em.						

			Comparative	This plan can	not	Plan-1 has the	Plan-2	has the	This plan is		
			Conclusion	meet the incre	easing	second least	biggest		selected. Plan-1 and		
				electricity de	emand.	environmental and	environ	mental and	Plan-3 have less		
				Therefore eco	onomic	social adverse	social	adverse	environmental and		
				development w	ill be	impact and the plan	impact	and the plan	social adverse		
				obstructed.		is not economical	is not economical		impact. Plan-3 is		
				Moreover, the	re is a	compared to Plan-3.	compare	d to Plan-3.	better among them		
				risk that the	demand	The expected adverse	The exp	ected adverse	because Plan-1 has		
				will be met by	v the	impact is not	impact	is not	larger adverse		
				construction of	of	negligible.	negligi	ble, adequate	impact from		
				other power p	lants	appropriate	mitigat	ion measures	ancillary facilities		
				which have low	wer	mitigation measures	should	be taken.	improvement and		
				efficiency and	d	should be taken.			Plan-3 is the most		
				higher environ	mental				economical. However.		
				load.					the expected adverse		
									impact is not		
									negligible.		
									appropriate		
									mitigation measures		
									should be taken.		
29	DFR 11-153 ページ	Tab	le 11.1−102 抜粋								
		Ι	tem		Plan 1			Plan 2 (Selec	ted)	1	
		Т	echnical aspect		Approxi	mately 10 times water	will be	Facilities de	aling with water will		
					require	ed compared with Plan 2	. Due	become smalle	r, due to less usage of		
					to the	usage water volume,		water. Mainte	nance of these		
					facilit	ies dealing with water	become	facilities wi	ll be simpler than plan		
					bigger	and maintenance of the	se	1.			
					bigger	facilities including		Assumed wate	r intake: 1,500 m3/day		
					auxilia	ry machine will be mor	r discharge∶ 1,350				
					complex	ζ.					
					Assumed water intake: 15,000 m3/day						
					Assumed water discharge: 1,500						
					m3/day						
					The climate conditions of the site performance will be lower t						
					match f	or the water cooling m	iethod.	of Plan 1 bec	ause of low condenser		
								vacuum.			

41	DFR 11-109 ページ~	Table	e 11.167 <mark>Lis</mark>	<mark>st of Recorded</mark>	Fish Species								
								Rainy S	Season		Dry Sea	ason	
		No	Scientific Name	Common Name	Family Name	Observati on Status	IUCN Stat us	Proje ct site	Intak e Stati on	Pipeli ne	Proje ct site	Intak e Stati on	Pipeli ne
		1	Notopterus notopterus	Grey feather back	Notopterida e	Interview	LC		\checkmark	\checkmark		\checkmark	\checkmark
		2	Gudusia variegata	Burmese River Shad	Clupeidae	Interview	LC		\checkmark	\checkmark		\checkmark	\checkmark
		3	Salmophasia sardinella	Sardinella razorbelly minnow	Cyprinidae	Interview	LC		$\overline{}$	\checkmark			
		4	Raiamas guttatus	Burmese trout	Cyprinidae	observed	LC		\checkmark			\checkmark	\checkmark
		5	Amblypharyn godon atkinsonii	Burmese carplet	Cyprinidae	Interview	LC		\checkmark			$\overline{\mathbf{A}}$	$\overline{\mathbf{A}}$
		6	Osteobrama belangeri	Manipur Osterobrama	Cyprinidae	observed	NT		\checkmark	\checkmark		\checkmark	
		7	Osteobrama cunma	Cunma osteobrma	Cyprinidae	observed	LC		\checkmark	\checkmark			\checkmark
		8	Puntius chola	Swamp barb, chola barb	Cyprinidae	observed	LC	\checkmark			\checkmark		\checkmark
		9	Puntius gonionotus	Silver barb	Cyprinidae	Interview	LC			\checkmark			
		10	Puntius sarana	Olive barb	Cyprinidae	Interview	LC		\checkmark	\checkmark			
		11	Cirrhinus mrigala	Mrigal	Cyprinidae	Interview	LC		\checkmark	\checkmark			
		12	Catla catla	Catla	Cyprinidae	Interview	LC						
		13	Labeo angra	Carplet	Cyprinidae	observed	LC						
		14	Labeo ca l abasu	Carp	Cyprinidae	Interview	NE		\checkmark	\checkmark			
		15	Labeo rohita	Rohu	Cyprinidae	observed	LC						\checkmark

16	Labeo stoliczkae	Minor Carp	Cyprinidae	Interview	NE	\checkmark			
17	Lepidocepha lichthys berdmorei	Burmese Ioach	Cobitidae	Interview	LC		$\overline{\mathbf{A}}$		
18	Mystus beekeri	Day's mystus	Bagridae	Interview	LC		\checkmark		
19	Mystus cavasius	Genetic mystus	Bagridae	Interview	LC				
20	Mystus Teucophasis	Sittang mystus	Bagridae	observed	LC	\checkmark			
21	Mystus pulcher	Striped dwarf catfish	Bagridae	Interview	LC		$\overline{\mathbf{A}}$		
22	Hemibagrus menoda	Menoda catfish	Bagridae	Interview	LC				
23	Hemibagrus microphthal mus	Long whisker catfish	Bagridae	Interview	LC		$\overline{\mathbf{A}}$		
24	Ompok bimaculatus	Indian butter catfish	Siluridae	Interview	NT		$\overline{\mathbf{A}}$		
25	Ompok pabo	Pabo catfish	Siluridae	Interview	NT		\checkmark		
26	Wallago attu	Boal	Siluridae	observed	NT			\checkmark	
27	Clupisoma prateri	Brumese garua	Schilbeidae	Interview	LC	\checkmark			
28	Eutropiicht hys vacha	Batchwa vacha	Schilbeidae	observed	LC			\checkmark	
29	Gagata cenia	Indian gagata	Sisoridae	Interview	LC	\checkmark			
30	Bagar ius bagar ius	Gangetic goonch	Sisoridae	Interview	NT		\checkmark		
31	Bagarius yarrellii	Goonch	Sisoridae	Interview	NE				

		32	Claris batrachus	Walking Catfish	Clariida	ie	Interview	NE						
		33	Arius acutirostri s	Salweeen catfish	Ariidae		Interview	LC		\checkmark				
		34	Rhinomugil corsula	Corsula mullet	Mugilida	ie	Interview	LC						
		35	Xenentodon cancila	freshwater garfish	Belonida	ie	observed	LC		\checkmark			\checkmark	\checkmark
		36	Macrognathu s aral	One-stripe- spiny-Eel	Mastacem idae	ıbel	observed	LC					\checkmark	\checkmark
		37	Macrognathu s zebrinus	Spiny-eel	Mastacem idae	ıbel	Interview	LC	\checkmark	\checkmark		\checkmark		
		38	<i>Mastacembel us armatus</i>	Tire-track- spiny-eel	Mastacem idae	ıbel	Interview	LC						
		39	Parambassis anga	Glass fish	Ambassid	lae	observed	LC		\checkmark			\checkmark	\checkmark
		40	Pangas i us pangas i us	Nil	Pangasii	dae	Interview	LC		\checkmark				
		41	Silonia silondia	Silong Catfish	Schilbei	dae	Interview	LC		\checkmark				
		42	Sperata aor	Long- whiskered Catfish	Bagridae)	Interview	LC		~				
		43	Oreochromis mossambica	Talipa	Cichidae	;	observed	LC	\checkmark	\checkmark			\checkmark	
		44	Aspidoparia morar	Morar	Cyprini	dae	observed	LC					\checkmark	\checkmark
42	DFR 11-29 ページ	Table	11.1 21 Tai	<mark>rget Value for</mark>	Effluent	(Ther	<mark>mal Power)</mark>							
				Parameter			Unit		NEQG	WBG (Guideline	Target	: Value	
			Arsenic				mg/L		0.5		0.5	0.	. 5	1
			Cadmium				mg/L		0.1		0.1	0.	. 1	
			Iron				mg/L		1		1.0		1	1
			Lead				mg/L		0.5		0.5	0.	. 5]
			Mercury				mg/L		0. 005	(0. 005	0.	005]
			0il and	grease			mg/L		10		10	1	0	

рН	S. Uª	6–9	6-9	6–9
Temperature increase	°C	<3 b	-	<3 b
Total residual chlorine	mg/L	0. 2	0. 2	0. 2
Total suspended solids	mg/L	50	50	50
Chromium (total)	mg/L	0.5	0.5	0. 5
Copper	mg/L	0. 5	0. 5	0. 5
Zinc	mg/L	1	1.0	1

Table 11.1 22 Target Value for Wastewater, Storm Water Runoff, Effluent, and Sanitary Discharges

Parameter	Unit	NEQG	WBG Guideline	Target Value
5-day Biochemical oxygen demand	mg/L	50	30	30
Ammonia	mg/L	10	-	10
Arsenic	mg/L	0. 1	_	0. 1
Cadmium	mg/L	0. 1	-	0. 1
Chemical oxygen demand	mg/L	250	125	125
Chlorine (total residual)	mg/L	0. 2	-	0. 2
Chromium (hexavalent)	mg/L	0. 1	-	0. 1
Chromium (total)	mg/L	0.5	-	0.5
Copper	mg/L	0.5	-	0.5
Cyanide (free)	mg/L	0.1	-	0. 1
Cyanide (total)	mg/L	1	-	1
Fluoride	mg/L	20	-	20
Heavy metals (total)	mg/L	10	-	10
Iron (total)	mg/L	3.5	-	3.5
Lead	mg/L	0. 1	-	0. 1
Mercury	mg/L	0. 01	-	0. 01
Nickel	mg/L	0.5	-	0.5
Oil and grease	mg/L	10	10	10
На	S. U. a	6-9	6-9	6–9
Phenols	mg/L	0.5	-	0.5
Selenium	mg/L	0.1	-	0.1
Silver	mg/L	0.5	-	0.5
Sulphide	mg/L	1	-	1
Temperature increase	°C	<3 ^b	-	<3
Total coliform bacteria	MPN ^d /100mL	400	400 °	400

		Total Nitro	gen		mg/	L		_	10		10	
		Total phosp	horus		mg/	L		2	2		2	
		Total suspe	otal suspended solids		mg/	L	50		50		50	
		Zinc			mg/	L		2	-		2	
43	DFR 11-403 ページ	Table 11.2-5 Size of La	nd to b	e Used by the	Project 扨	ō粋						
			No.	Facility	Acqu	sition 1	Туре	Area t	o be acquir	red at		
								Ea	ach Land Use	е		
			1 <mark>Water Intake</mark>		e Permar	Permanent		Villag	e Land: 0.02	20ha		
				<mark>Facility</mark>	Acquis	ition						
63	DFR 11-400 ページ	Table 11.2 3 Gap Analys	is betw	een JICA Guid	lelines and	Myanmar	Regula	ations ‡	友粋			
		8. When consultat	ions are	e held, None		No law	/speci	fically	mentions A	consul	tation with P	APs is
		explanations m	ust be g	given		the requirement of holding a held with				h understanda	ble	
		in the form, ma	anner, a	and		consul	tation	in	<mark> ;</mark>	anguage	e, expression	<mark>and</mark>
		language that a	are			unders	tandab	le manne	er for ex	xplanat	ion methods <mark>f</mark>	<mark>or</mark>
		understandable	to the			PAPs.			tl	hem.		
		affected people	e. (JICA	AGL)								