

NACALA PORT DEVELOPMENT PROJECT PHASE I/II

LOAN AGREEMENT NO.MZ-P3 AND MZ-P6

Fourth Quarterly Progress Report of Environmental Monitoring

for

April to June 2019

October 2019

Prepared

by

Project Management Unit of Nacala Port Development

for

Japan International Cooperation Agency

Executive summary

This quarterly progress report ("Report") demonstrates the environmental monitoring results of the fourth quarter of the Nacala Port Development Project Phase I and II ("Project"). It covers a period from April to June 2019.

Monitoring Item	Monitoring Results during Report Period			
Fishing Resources Benthic Macrofauna Marine mammals with emphasis to dolphins	There was no monitoring activity for these three items during this report period as these items are monitored only twice per year. The next monitoring will be conducted in July 2019.			
4. Erosion and Sedimentation	There was no monitoring activity for this item during this report period. The next monitoring is scheduled right before the dredging activities, which are planned for 2020.			
5. Currents Circulation	There was no monitoring activity for this item during this report period. The next monitoring is scheduled after the expansion of the port, which is planned for 2021.			
6. Change in the prism tidal volume	There was no monitoring activity for this item during this report period. The change in the prism tidal volume will be calculated based on the average tidal range and the surface area of Nacala Bay before and after expansion of the port by using the data from the National Institute of Fisheries Research (IIP).			
7. Increased water turbidity in the Bay	The turbidity of the second, third and fourth monthly monitoring (M2, M3 and M4) at four monitoring locations (dredging area 1&2 (WQM1&2) and unaffected areas 1&2 (WQM3&4)) were compared with the results of the baseline survey (BL). High turbidities (e.g. double or triple of the BL results) were monitored at all the four monitoring points (i.e. both project and control areas) especially during M2. This issue was assumed to be caused by heavy rainfall which occurred before the monitoring activities.			
8. Water Pollution	At the afore-mentioned locations (WQM1, 2, 3 and 4), ten parameters, i.e. water temperature, pH, dissolved oxygen (DO), total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), total hydrocarbons (THH), chemical oxygen demand (COD), biological oxygen demand (BOD) and total and fecal coliforms) were monitored during M2, M3 and M4 at two depths (0.2m from the water surface and at the mid-depth of the water surface and sea bottom) and compared with the standards set by the "Technical Specifications, Part 1: General Requirements". All the parameters were within the said standards expect for DO, COD and total coliforms. - DO: During M2, it exceeded at both depths about 30-50% at all the four monitoring points, i.e. both project and control areas. Therefore, it was not assumed to be caused by the project activities. - COD: During M2, M3 and M4, high COD concentrations (double or triple of the BL or the said standard) were recorded at all the four monitoring points (i.e. both project and control areas). The reasons could not be identified or reasonably assumed. However, it was extremely high at both the project and control areas, so it was unlikely that the project works would have caused it. Moreover, the dredging works and the construction of the bypass access road have not started yet, so the project works can most likely not be the reason for this COD increase. - Total coliforms: It was detected at the water surface of WQM1 and 2 during M3 although it should be virtually absent. During the BL, it had already been detected at both depths of all four monitoring locations, except at the water surface of WQM4.			
9. Bottom sediments (Re-suspension of sediments)	There was no monitoring activity for this item during this report period. The next monitoring is scheduled after the completion of the dredging work, which is planned for 2020.			
10. Water pollution and impact on marine resources	There was no monitoring activity for this item during this report period. The next monitoring is scheduled during the dredging and reclamation operation, which is planned for 2020.			
11. Air quality	There was no monitoring activity for this item during this report period. This monitoring is subject to the operation phase only.			
12. Noise Levels	Noise was monitored at Nacala 1 (northeast from the port), Nacala 2 (adjacent to the eastern edge of the port) and Nacala 3 (southeast from the port) twice in the daytime (Daytime 1 and 2) and twice at nighttime (Nighttime 1 and 2). Nighttime monitoring was conducted for the first time as baseline data for future monitoring activity because no project work at night had started yet during this report period. - Nacala 1: The average equivalent noise level (Leq) of the second quarterly monitoring (Q2) during Daytime 1 and 2 exceeded the World Health Organization (WHO) standard for residential areas by 5 and 19 dBA (A-weighted decibel) while the average Leq at BL exceeded the said standard in the daytime by 6dBA. - Nacala 2: The average Leq of Q2 during the Daytime 1 and 2 were all below the said standard for industrial and commercial areas.			

	 Nacala 3: The average Leq of Q2 during the Daytime 1 and 2exceeded the said standard for residential areas by 12 and 13 dBA respectively while the average Leq during BL exceeded the said standard by 11dBA in the daytime. Based on the field notes of the monitoring staffs, the increased noise at Nacala 1 and 3 is unlikely from the port, but most likely due to the heavy traffic of motor vehicles, which were not observed during BL.
13. Road Accident	There took place 2 accidents involving vehicles within the Port, none of which resulted in injury or fatality. There was no traffic accident surrounding the Port during this reporting period.

Table of Contents

List of Acronyms

l		Background of this Environmental Monitoring	1
2		Responses / Actions to Comments and Guidance from MICOA (MITADER)	
3		Monitoring Results	3
	3.1	Fishing Resources	
	3.2	Benthic Macrofauna	
	3.3	Marine Mammals with Emphasis to Dolphins	
	3.4	Erosion and Sedimentation	
	3.5	Currents Circulation	6
	3.6	Change in the Prism Tidal Volume	
	3.7	Increased Water Turbidity in the Bay	8
	3.8	Water Pollution	11
	3.9	Bottom Sediments (Re-suspension o Sediments)	15
	3.10	Water Pollution and Impact on Marine Resources	15
	3.11	Air Quality (during the operation phase only)	16
	3.12		
	3.13	Road Accident	20

List of Acronyms

Acronym	Description	
BTEX	Benzene, Toluene, Ethylbenzene &Xylene	
BOD	Biochemical Oxygen Demand	
CDN	North Development Corridor	
CFU	Colony-forming Unit	
COD	Chemical Oxygen Demand	
CPUE	Catch Per Unit of Effort	
Cr	Chromium	
dBA	A-weighted Decibel	
DDT	Dichloro- diphenyl- trichloroethane	
DO WAR	Dissolved Oxygen	
EIS	Environmental Impact Study	
EMP	Environmental Management Plan	
IDEPA	National Institute for Fisheries Development and Aquaculture	
IIP:	National Institute of Fisheries Research	
INAHINA	National Institute for Hydrography and Navigation	
INAMAR :	National Maritime Institute	
INIP	National Institute for Fish Inspection and Quality Control	
ЛСА	Japan International Cooperation Agency	
Leq	Equivalent Noise Levels	
Lmax	Maximum Sound Pressure Level	
Lmin	Minimum Sound Pressure Level	
MD)	Minutes of Discussions	
MdP	Ministry of Fisheries	
MICOA	Ministry for the Coordination of Environmental Affairs of Mozambique (Former MITADER)	
MITADER *	Ministry of Land, Environment and Rural Development of Mozambique	
MTC	Ministry of Transports and Communications of Mozambique	
ND 44.	Not Detected	
Ni	Nickel	
NO2	Nitrogen Dioxide	
NTU.	Nephelometric Turbidity Unit	
PAH	Polycyclic Aromatic Hydrocarbons	
Pb	Lead	
PCB	Polychlorinated Biphenyl	
PM 10	Particulate matter 10 micrometers or less in diameter	
PTJV:	Penta-Ocean Construction Co., Ltd. & Toa Corporation Joint Venture	

SO2	Sulfur Dioxide	
THH	Total Hydrocarbons	
TN	Total Nitrogen	
TP	Total Phosphorus	
TechSpec	Technical Specifications.	
TS	Total Sulphur	
TSS	Total Suspended Solids	
UIPRPN	Unit for the Implementation of the Project for the Rehabilitation of the Port of Nacala	

1 Background of this Environmental Monitoring

This environmental monitoring is stipulated by environmental monitoring program stated in Volume 3: Environmental Management Plan (EMP) and Subsidiary Plans (Environmental Education Program, Port Emergency Management Plan, Waste Management Plan and Communication Plan) of Rehabilitation and Expansion of Nacala Port: Environmental Impact Study (EIS) from September 2012.

From the perspective of the bilateral government agreement, a consent for this monitoring was given by Minutes of Discussions on Nacala Port Development Project Phase II between Ministry of Transport and Communications of the Government of the Republic of Mozambique and Japan International Cooperation Agency (JICA) ("MD"). It was duly agreed between and signed by JICA and responsible authorities of Government of the Republic of Mozambique on 2 September 2014 in Maputo, Mozambique.

The attachment 11-1 of MD requires Project Management Unit of Nacala Port Development / Unit for the Implementation of the Project for the Rehabilitation of the Port of Nacala (UIPRPN: "Project Owner") to conduct environmental monitoring by collecting results from monitoring entities and report the results to JICA as a part of the Progress Report (quarterly basis). This attachment provides the monitoring form, which stipulates the following items to be reported for this environmental monitoring.

- (a) Description of general impact.
- (b) Objective.
- (c) Parameters to be monitored.
- (d) Frequency of monitoring.
- (e) Monitoring location.
- (f) Implementing institution.
- (g)Supervising / auditing institution.

This attachment also states that the above-mentioned reporting items (a) to (g) are due for each of the thirteen monitoring topics below.

- 1. Fishing Resources.
- 2. Benthic Macrofauna.
- 3. Marine mammals with emphasis to dolphins.
- 4. Erosion and sedimentation.
- 5. Currents Circulation.
- 6. Change in the prism tidal volume.
- 7. Increased water turbidity in the Bay.
- 8. Water Pollution.
- 9. Bottom sediments.
- 10. Water pollution and impact on marine resources.
- 11. Air quality.
- 12. Noise Levels.
- 13. Road Accident.

This attachment 11-1 also requires comments from Mozambican Ministry of Environment ("MITADER" standing for Ministério da Terra, Ambiente e Desenvolvimento Rural, which was formerly called Ministry for the Coordination of Environmental Affairs (MICOA) at the preparation phase of the Project) on the monitoring results.

The attachment 11-2 of MD is based on the attachment 11-1 and illustrates the actual monitoring activities, which reflects the monitoring program stated in the said EMP of EIS.

2 Responses / Actions to Comments and Guidance from MICOA (MITADER)

All the comments and guidance given by MITADER are to be summarized in the table below:

Monitoring Item / Comments from MITADER	Monitoring Results during Report Period
	A Landau

UIPRPN requested MITADER to provide the above-mentioned comments and guidance based on a prepared quarterly progress report of environmental monitoring covering a period from July to September 2018. However, it rejected the request and instead notified the Ministry of Transports and Communications of Mozambique (MTC) / UIPRPN that it is obliged to conduct an environmental audit first and complete an environmental license renewal process next following the revised environmental impact assessment regulations (Decree No. 54/2015 dated 31st December 2015). When all the steps of this environmental license renewal process should be completed, UIPRPN/MTC will obtain comments from MITADER on the quarterly progress reports of environmental monitoring.

Monitoring Results 3

Monitoring results for each of the 13 environmental monitoring programs are presented in the following sub chapters.

3.1 Fishing Resources3.1.1 Control of Chemical and Microbiological Fishery Products Program

	Implementing Agency		Monitoring Results during Report Period
None	I I	(a) Description of General Impact	This monitoring was not conducted in this reporting period. The next monitoring will be conducted in July 2019.
		(b) Objective	Reduction of the impact on fish stocks.
		(c) Monitored Parameters with Measurement Equipment & Procedure (d) Frequency of Monitoring	Monitoring parameters: - Chemical parameters (heavy metals (mercury, lead and cadmium), pH and total volatile nitrogen) in sampled fish bodies. - Biological parameters (Coliforms (total& fecal), Escherichia coli, Salmonella spp., Staphylococcus aureus, Vibrio cholera and Vibrio parahaemolyticus) in sampled fish bodies. Measurement equipment and procedure: This section will be described in details when the monitoring result is reported. Periodical surveillance (twice per year) based on the discussion with INIP.
		(e) Monitoring Location:	The monitoring locations will be described when the monitoring result is reported.
		(f) Implementing Institution	Consultant's Sub-consultant (BioGlobal Consultoria e Serviços Lda.) in collaboration with the National Institute of Fish Inspection (INIP) represented in Nacala
		(g) Supervision / Auditing Institution	CDN/MTC, MICOA (MITADER), INIP, INAMAR and MdP.

3.1.2 Fisheries Resources Monitoring Program

Monitoring Date	Implementing Agency		Monitoring Results during Report Period
None	Consultant's Sub-consultant	(a) Description of General Impact	This monitoring was not conducted in this reporting period. The next monitoring will be conducted in July 2019.
		(b) Objective	Reduction of the impact on fish stocks.
		(c) Monitored Parameters with Measurement Equipment & Procedure	Monitoring parameters: Estimated catch (tons /year), mean fishing effort, and Catch per Unit Effort (CPUE) for four (4) types of representative fishers (trawling, surface gillnet, bottom gillnet and line fishing).
		ZAN TP	Measurement equipment and procedure: This section will be described in details when the monitoring result is reported.
		(d) Frequency of Monitoring	Twice per year based on the discussion with IIP while a desk review of publicly available data from IDEPA & IIP will be conducted monthly.
		(e) Monitoring Location	The monitoring locations will be described when the monitoring result is reported.
		(f) Implementing Institution	Consultant's Sub-consultant (BioGlobal Consultoria e Serviços Lda.) in collaboration with National Institute for Fisheries Research (IIP)
		(g) Supervision / Auditing Institution	CDN/MTC, MICOA (MITADER), MdP& IIP

3.2 Benthic Macrofauna

Monitoring Date	Implementing Agency		Monitoring Results during Report Period
		(a) Description of General Impact	This monitoring was not conducted in this reporting period. The next monitoring will be conducted in July 2019.
		(b) Objective	Control of benthic macro-fauna.
		(c) Monitored Parameters with Measurement Equipment & Procedure	Monitoring parameters: Abundance (density) and diversity of macro fauna.
		(d) Frequency of Monitoring	Measurement equipment and procedure: This section will be described in details when the monitoring result is reported. One before construction; twice per year during construction and once after construction.
		(e) Monitoring Location	The monitoring locations will be described when the monitoring result is reported.
		(f) Implementing Institution	Consultant's Sub-consultant (BioGlobal Consultoria e Serviços Lda.)
		(g) Supervision / Auditing Institution	CDN/MTC, MICOA (MITADER) & IIP.

3.3 Marine Mammals with Emphasis to Dolphins

Monitoring Date	Implementing Agency		Monitoring Results during Report Period
None	Consultant's Sub-consultant	(a) Description of General Impact	This monitoring was not conducted in this reporting period. The next monitoring will be conducted in July 2019.
		(b) Objective	Reduce impact on abundance of dolphin /whale population in the area.
		(c) Monitored Parameters with Measurement	Monitoring parameters: Distribution and abundance of marine mammals (especially whales & dolphins).
		Equipment & Procedure	Measurement equipment and procedure: This section will be described in details when the monitoring result is reported.
		(d) Frequency of Monitoring	Once before construction; twice per year during construction and once after construction.
	i	(e) Monitoring Location	The monitoring locations will be described when the monitoring result is reported.
	1 1	(f) Implementing Institution	Consultant's Sub-consultant (BioGlobal Consultoria e Serviços Lda.)
		(g) Supervision / Auditing Institution	CDN, MTC, MICOA (MITADER) & IIP.

3.4 Erosion and Sedimentation

Monitoring Date	Implementing Agency	Monitoring Results during Report Period		
	Contractor's subcontractor	(a) Description of General Impact	This monitoring was not conducted in this reporting period. Therefore, no impact can be described. The next monitoring is scheduled right before the dredging activities (see the item (d) below), which is planned for 2020.	
l '			Erosion and / or sedimentation control.	
		(c) Monitored Parameters	Monitoring parameter: Sea floor topography in the dredging area. Measurement equipment and procedure: This section will be described in details when the monitoring result is reported.	
		(d) Frequency of Monitoring	Five times: Before construction works, right before, during and after the dredging activities and also after the completion of construction works.	
 -		(e) Monitoring Location	The monitoring locations will be described when the monitoring result is reported.	
	1		Contractor's subcontractor (COWI Moçambique Lda.)	
	1 1	(g) Supervision/Auditing Institution	CDN, MTC, MICOA (MITADER), INAMAR and INAHINA.	

3.5 Currents Circulation

Monitoring Date	Implementing Agency		Monitoring Results during Report Period
li .	Contractor's subcontractor	(a) Description of General Impact	This monitoring was not conducted in this reporting period. Therefore, no impact can be described. The next monitoring is scheduled after the expansion of the port (see the item (d) below), which is planned for 2021.
	ļ	(b) Objective	Control of the circulation pattern of currents area.
		(c) Monitored Parameters with Measurement Equipment & Procedure	
		(d) Frequency of Monitoring	Before and after the expansion of the port.
		(e) Monitoring Location	The monitoring locations will be described when the monitoring result is reported.
		(1) Implementing Institution	Contractor's subcontractor (COWI Moçambique Lda.).
	P I	(g) Supervision/Auditing Institution	CDN, MTC, MICOA (MITADER), INAMAR and INAHINA.

3.6 Change in the Prism Tidal Volume

Monitoring Date	T	sm ridai volume	Monitoring Results during Report Period
None	Consultant's		Nacala Bay
	Sub-consultant	(a) Description of General Impact	The initial prism tidal volume has not yet been calculated. It will be undertaken after the expansion of the port based on the data from the National Institute of Fisheries Research (IIP).
		(b) Objective	Control of the tidal prism volume.
		(c) Monitored Parameters with	Monitored parameter was as follows: Bay topography.
		Measurement Equipment & Procedure	Measurement Equipment & Procedure: The assessment of the change in the prism tidal volume will be conducted as follows. 1. Calculation of the average tidal range: The heights for the average low and high spring tide of Nacala Bay will be obtained from publicly available data. Then, the average tidal range (the height difference between the low and high spring tide) will be calculated. 2. Calculation of the surface area of Nacala Bay: The remote sensing data of the coast line (high resolution coastline bathymetry) of Nacala Bay will be obtained from IIP. Then, the data will be imported into the GIS system by using a special software to define the water surface as a polygon. After that, another polygon defining the water surface will be generated by using recent satellite imagery which will take into considerations other aspects which were covered by the first polygon, such as erosion, land reclamation, etc. Finally, these two polygons will be combined, and the average surface area between the low and high tide height will be calculated. 3. Calculation of the prism tidal volume: The prism tidal volume (P) will be calculated by multiplying the average tidal range (ΔH) with the average surface area of the bay (A), and the equation will be indicated as follows. P=ΔH× A. 4. Assessment of the change in tidal prism volume: The calculation of the prism tidal volume will be conducted twice (once before and once after the expansion of the port), and the change in the tidal volume will be assessed by comparing the results from the first and
		(d) Frequency of Monitoring	Before and after the expansion of the port.
		(e) Monitoring Location	The entire Nacala Bay.
		(f) Implementing Institution	Consultant's Sub-consultant (BioGlobal Consultoria e Serviços Lda.)
		(g) Supervision / Auditing Institution	CDN, MTC, MICOA (MITADER), INAMAR & INAHINA.

3.7 Increased Water Turbidity in the Bay

	Implementing Agency	1 urbidity in the Ba			Monitoring Resu	ılts during R	eport Period		
	Contractor's	(a) Description of				Dredg	ging Area 1		
31/05/2019 and 28/06/2019	subcontractor	General Impact BL stands for baseline monitoring (average &maximum)	in the table below without major characters	v demonstrate the anges of pH and to hange. For M4, tu	turbidity increasemperature. For I	was about 11 e for M2 by M3, turbidity by 60% at mi	Im for BL, M2, about 160% and did not increase id-depth against	nd 30% at 0.2 e at both dept : BL without i	(see the explanation from left). The results 2m and mid-depth respectively against BI ths from BL while temperature and pH did major changes of pH and temperature. The is section.
	:	turbidity results and	Parameter	Depth	BL	M2	M3	M4	
		the range of pH and	Turbidity	0.2m	14.0 / 20.1	52.6	14.2	17.3	
		temperature); M2,	(NTU)	Mid-depth	12.2 / 12.8	17.1	1.3	21.1	
		M3 and M4 for		0.2m	7.4 ~ 7.8	8.2	8.2	7.5	
		second, third and	pН	Mid-depth	8.2	8.0	8.3	7.7	
1		fourth monthly	T (°C)	0.2m	29.2 ~ 29.3	26.6	26.8	24.8	
		monitoring; 0.2m	1 (-0)	Mid-depth	28.7 ~ 29.2	27.6	26.2	24.9	
		for 0.2 meters from the water surface;				Dredg	ging Area 2		
		sea bottom; and T for Temperature.	from the set stand	ard and BL data w	ill be discussed a	t the end of th	nis section.		nperature. The exceedance of the turbidity
1		- The turbidity result	Parameter	Depth	BL	M2	M3	M4	
		for each month is	Turbidity	0.2m	14.3 / 14.7	29.0	14.2	14.6	
		compared with the	(NTU)	Mid-depth =	14.0 / 15.3	17.5	12.9	16.6	
ľ		maximum turbidity	рH	0.2m	7.6 ~ 7.8	7.5	8.1	7.7	
		result recorded	F	Mid-depth	8.2	7.5	8.2	7.7	
		during the BL.	T (°C)	0.2m	27.8 ~ 29.1	27.3	25.6	25.2	
				Mid-depth	27.3 ~ 28.1	26.8	25.8	25.1	

Monitoring Date	Implementing Agency				Monitoring Resu	lts during Rep	port Period	Nacaia	rori Developmeni Projeci – Pnase I/I				
in Date many	are algoineym.				<u> </u>	Unaffec	ted Area 1		교육하는 이번에 불편하다는 경험 기계를 가장하는 것이다. 1980년 - 1985년 - 1980년 - 1985년				
			the turbidity included temperature. For	rease for M2 by at	oout 40% and 30% eased by about 20	was about 11r at 0.2m and 19% at mid-dept	n for BL, M mid-depth re h against BL	espectively againg without major	The results in the table below demonstrate nst BL without major changes of pH and changes of pH and temperature. For M4 figurety				
			Parameter	Depth	BL	M2	M3	M4	incumity.				
			Turbidity	0.2m	14.2 / 15.9	21.7	15.5	11.6					
			(NTU)	Mid-depth	14.7 / 16.4	21.2	20.3	12.0					
			рH	0.2m	7.6 ~ 7.8	7.4	7.5	7.5					
				Mid-depth	8.1 ~ 8.2	7.7	8.0	7.8					
			T (°C)	0.2m	29.2 ~ 29.6	28.3	25.2	24.2					
			3.0%	Mid-depth	28.8 ~ 29.0	27.2	25.7	24.5					
		A Switch William Committee	A LANGE	Asset Control			ed Area 2		results in the table below demonstrate th				
			Parameter Turbidity	Depth 0.2m	BL 14.4 / 16.8		M3 0 0	M4					
į			from the set stan	turbidity did not increase at both depths from BL while temperature and pH did not change significantly. The exceedance of the turbid from the set standard and BL data will be discussed at the end of this section.									
			W										
			the state of the s	Ret Y		60.0	9.9	13.5					
ľ			(NTU)	Mid-depth 0.2m	14.3 / 15.9	57.2	6.3	14.3					
			pH	Mid-depth	7.2 ~ 8.0 8.2	8.2 8.2	8.3	7.3					
				0.2m	27.8 ~ 29.0	26.6	8.2 25.6	7.1					
			T(°C)	Mid-depth	27.3 ~ 28.9	26.6	26.6	24.9					
						nsideration ab							
			issue was maybe	y (e.g. double or tra caused by heavy ra Weather Report for	iple of the baseling ainfall which occu	e result) was re trred before the	corded at all	the four monito	oring points especially during M2 and thin attached precipitation data for the relevan				
ŀ		(b) Objective	Monitoring the tu										
		(c) Monitored Parameters with Measurement Equipment &	Monitored para Measurement eq the water surface	meters: Turbidity v quipment and prod and sea bottom at t	cedures: Water sa	mples were col	o samples w	ere collected the	er surface and at the mid-depth between rough Niskin bottle. The				
		Procedure	above-mentioned	parameters were n	neasured in situ by	portable multi	-parameter n	neter (AP-800 A	(quaprobe) and recorded Before each				
			if the construction	ng bottles were pro n activity is causing	perly cleaned. The	ese results were chidity (temper	compared w	/ith the ones of i	the baseline monitoring in order to verify				
		(d) Frequency of.	Prior to construct	ion (once in four ea	ampling eitee - twe	nointe in the	voter column).	onstruction (monthly for four sampling				
		may 2 requestion of the	TITLE TO CONSULUCE	TOTI COHECE HI TOTI 28	mithing 211c2 - IM	pourts in the v	valer column), and during co	onstruction (monthly for four sampling				

Monitoring Date	Implementing Agency			Monito	oring Results during Report Perio	d
		Monitoring	sites - two points in the	he water column).		
		(e) Monitoring Location	All the four monitoring area 1 and unaffected WQM4 respectively of	ng locations (dredging area 2) are illustrated on the map at the right pordinates are summar	Water Quality Monitoring	
			Stations	Pos Latitude S	tition Longitude E	N NACAL A-VELHA 80
			WQM 1	14° 32' 20.32"	40° 40° 01.39"	
			WQM 2	14° 32' 21.29"	40° 39′ 53.61″	\$ s.az
			WQM 3	14° 33' 26.28"	40° 38′ 50.99″	H3
			WQM 4	14° 30' 56.61"	40° 39° 14.17"	Legend WQM_in WQM_out Intervantion Roads Nacala Bay Ports Airport Districts 40'39'0'E 40'39'30'E 40'40'0'E 40'40'0'E 40'40'30'E
		(f) Implementing Institution	Contractor's subcontr	actor (COWI Moçaml		
		(g) Supervision / Auditing Institution	CDN, MTC, MICOA	(MITADER) and INA	AMAR.	

3.8 Water Pollution

Monitoring	Implementing		, irr			Monitori	ing Resu	lts duri	ng Repo	rt Perio	d					
Date 06/05/2019	Agency						D'Est	27	2 171111	Janie	My all		i jila			
31/05/2019	Contractor's subcontractor	(a) Description of						D	redging	Area 1	1200	1-12			-115	
and	during	General Impact	Monitoring results 1: The seabed depth in this area was about 11m during BL, M2, M3 and M4 (see the explanation on the left side). The results in the table below demonstrate that DO exceeded the standards set in the Technical Specifications by about 50% and 30% at													
28/06/2019	construction	BL stands for baseline	0.2m a	and mid d	e table below dem	during M	nat DO e	xceeded	the stan	dards set	in the Te	chnical S	Specificat	ions by ab	out 50%	and 30% at
	phase only	monitoring; M2, M3,	during	0.2m and mid-depth respectively during M2 and by 2% at 0.2m during M3 and COD's exceedance was about 220%, 90% and 50% during M2, M3 and M4 respectively at 0.2m and 160%, 100% and 100% during M2, M3 and M4 respectively at mid-depth while the												
		and M4 for second,	M4 for second, total colifor was detected at 0.2m during M3 although it should be virtually absent. Out of these three, DO and COD already exceeded													
		third and fourth	during	uring BL. The set standard by 2% at 0.2m and by 3% and 30% at 0.2m and mid-depth respectively while coliform was already detected t 0.2m. The extra-ordinary exceedance of COD against the standard and BL will be discussed at the end of this section.												
		monthly monitoring; T	at 0.2n											,		
		for Temperature; DO for dissolved	or Temperature; DO			-11	DO	TSS	TN	TP	тнн	COD	BOD	Coliform	(CFU)	
		oxygen; TSS for total	Deptii		pН	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Total	Fecal		
		suspended solids; TN		BL	29.3	7.4	5.7	11.0	1.2	<0.04	0.8		<0.1	111	0	
		for total nitrogen; TP	0.0	M2	26.6	8.2	8.7	19.0		<0.04	ND		2.8		0	
		for total phosphorus; THH for total	0.2m	M3	26.8	8.2	6.1	12.0	<1.0	0.3	ND	283	< 0.1	2	0	
		hydrocarbons; COD		M4	24.8	7.5	5.2	15.0	1.1	0.1	ND	222	2.8	0	0	
		demand; BOD for	demand; BOD for	BL	28.7	8.2	5.9	7.0	1.0	0.1	0.3	104	<0.1	4	0	
				M2	27.6	8.0	7.6	26.0	C+1000	< 0.04	ND	SALWELL !	0.1	0	0	
	1	demand; 0.2m for 0.2	Depth		26.2	8.3	6.0	<1.0		0.3	ND		<0.1	0	0	
		meters from the water surface; mid-depth for		M4	24.9	7.7	5.3	15.0	1.0	0.1	ND	300	3.1	0	0	
		the mid-depth between														
		the water surface and														
		sea bottom; both /														
		two depths for 0.2m														
		and mid-depth; and ND for not detected as	li .													
		neither Gasoline nor														
		Diesel Range														1
		Organics which make														
		the THH results.														

Monitoring Date	Implementing Agency		Monitoring Results during Report Period Monitoring Results during Report Period												
Date	rigency							Dredgin	g Area 2	2			of the Carles		
		demoi exceed M4 re Out of	Monitoring results 2: The seabed depth in this area was about 24m during BL M1, M2, M3 and M4. The results in the table below demonstrate that DO exceeded the said standards by about 40% at both depths during M2 and by 2% at 0.2m during M3 and COD's exceedance was about 140%, 90% and 130% during M2, M3 and M4 respectively at 0.2m and 90%, 80% and 80% during M2, M3 and M4 respectively at mid-depth while the total colifor was detected at 0.2m during M3 although it should be virtually absent. Out of these three, COD already exceeded the set standard by about 10 % at both depths during BL while coliform was already detected at 0.2m. The extra-ordinary exceedance of COD will be discussed at the end of this section.											COD's [2, M3 and	
		Deptl	Month	T (°C) pH		DO (mg/l)	TSS (mg/l)		N TP	THH (mg/l)	COD (mg/l)	BOD (mg/l)	Coliform Total	(CFU) Fecal	
			BL	27.8	7.6	280 C 180 C		1.0	0.1	0.3	162	<0.1	>150	recal 24	
			M2	27.3	7.5	8.4		<1.0	0.1	ND	356	0.9		0	
		0.2m	M3	25.6	8.1	6.1	12.0	<1.0	0.3	ND	282	<0.1	1	0	
			M4	25.2	7.7		19.0	1.3	0.1	ND	343	2.1	0	0	
			BL	27.3	8.2	6.0	2.0	1.0	0.1	1.0	112	<0.1	109	15	
		Mid- Depti		26.8	7.5	8.4	23.0	<1.0	0.1	ND	282	0.1	0	0	0
			M4	25.8 25.1	8.2 7.7	5.9 5.3	23.0 10.0	<1.0	0.2	ND ND	263 274	<0.1	0	0	

Monitoring Date	Implementing Agency				Monito	ring Res	sults dur	ing Rep	ort Peri	od	rucura	Ton De	vetopmen	i i rojeci	-Phase I/I
2.550	, agone,					Nº KI	1	Unaffect	ted Area	1					
		demor exceed and M	Monitoring results 3: The seabed depth in this area was about 11m during BL, M2, M3 and M4. The results in the table below demonstrate that DO exceeded the said standards by about 30% and 40% at 0.2m and mid-depths respectively during M2 while COD's exceedance was about 130%, 90% and 90% during M2, M3 and M4 respectively at 0.2m and 190%, 100% and 100% during M2, M3 and M4 respectively at mid-depth. Out of these two, COD already exceeded the set standard by about 30% at mid-depth during BL. The extra-ordinary exceedance of COD will be discussed at the end of this section.												
			Month	T (°C)	pН	DO (mg/l)	TSS (mg/l)	TN (mg/l)	TP	тнн	COD (mg/l)	BOD (mg/l)	Coliforn Total	(CFU) Fecal	lo
	Į.		BL	29.2	7.6	5.9	9.0	1.0	0.2	0.3	148	<0.1	115	22	
		0.2m	M2	28.3	7.4	7.9	29.0	<1.0	< 0.04	ND	348	0.1	0	0	
		0.211	M3	25.2	7.5	5.8	1.0	<1.0	0.3	ND	285	<0.1	0	0	
			M4	24.2	7.5	5.3	21.0	1.3	0.1	ND	288	2.9	0	0	
			BL	28.8	8.2	5.9	10.0	1.1	<0.04	1.0	116	<0.1	>150	27	
	10	Mid-	M2	27.2	7.7	8.4	32.0	<1.0	0.1	ND	430	0.3	0	0	
	1	Deptl		25.7	8.0	5.9	8.0	<1.0	0.3	ND	297	<0.1	0	0	
	1		M4	24.5	7.8	5.1	23.0			ND	299	2.0	0	0	
			I family						ed Area						
		that D during two, C	O exceede M2, M3 : COD alrea	ults 4: The seabed the said standard M4 respectively exceeded the end of this section	ords by ab ely at 0.2 set stand	out 40% m and 1'	at both 6 70%, 100 about 109	depths d % and 1 % at mi	uring M2 120% dur d-depth	while CC ing M2, N luring BL	Do's exc 13 and N The ex	eedance v 14 respec tra-ordin	was about tively at m ary exceed	140%, 16 id-depth. ance of 0	0% and 609
		Deptl	Month	T (°C)	pН	(mg/l)	TSS (mg/l)	TN (mg/l)	TP (mg/l)	THH (mg/l)	COD (mg/l)	BOD (mg/l)	Coliform Total	Fecal	
	1		BL	27.8	7.2	6.0	2.0	1.0	< 0.04	0.5	132	<0.1	0	0	
		0.2m	M2	26.6	8.2	8.4	17.0	<1.0	<0.04	ND	360	0.4	0	0	
		0.211	M3	25.6	8.3	5.9	16.0	<1.0	0.3	ND	388	< 0.1	0	0	
	8		M4	24.9	7.3	5.1	30.0	1.1	0.04	ND	236	2.1	0	0	
			BL	27.3	8.2	5.8	17.0	1.1	< 0.04	0.5	134	< 0.1	3	0	
		Mid-	M3 M4 BL M2	26.6	8.2	8.5	24.0	<1.0	0.04	ND	402	0.2	0	0	
	l be	Depth		26.6	8.2	6.0	7.0			ND	299	< 0.1	0	0	
			M4	24.7	7.1	5.1	7.0	1.1	0.1	ND	335	2.5	0	0	

Monitoring	Implomenting		Maritaria - Paralta de imperente Project - Prase I/II
Date	Implementing Agency		Monitoring Results during Report Period
24.0	rigonej		Consideration about high COD concentrations
			The reasons for extremely high COD concentrations (double or triple of the BL or the said standard) during M2, M3 and M4 at all the monitoring locations could not be identified or reasonably assumed. However, it was extremely high at both the project and control areas, so it was unlikely that our project works would have caused it. Moreover, the dredging works and the construction of the bypass access road have not started yet, so our project works can most likely not be the reason for this COD increase.
		(b) Objective	Monitoring of water quality in Nacala Bay.
		(c) Monitored Parameters with Measurement Equipment & Procedure	Monitored parameters: - Physical-chemical parameters: Temperature (T), pH and dissolved oxygen (DO) Pollutants: Total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP), total hydrocarbons (THH), chemical oxygen demand (COD) and biological oxygen demand (BOD5) Microbiological parameters: Coliforms (total and fecal).
			Measurement equipment and procedures: For the parameters such as water temperature and pH, the measurement was conducted on site by using a portable multiparameter meter (AP-800 Aquaprobe) at 0.2m from the water surface and the mid-depth between the water surface and sea bottom at four locations. For the other parameters, it was first ensured that the sampling containers were not contaminated and also properly labeled. After that, water samples were taken from the same depths at the same locations as the ones for the on-site measurement through Niskin bottle. For each sample, spare samples were also taken. The regular and spare samples were put in cooler boxes with ice packs on boat, and then stored in the fridge at the end of the monitoring day. The regular samples were first transported to Bureau Veritas offices in Nacala Velha, and then re-packed in cooler boxes with ice packs to be sent to a laboratory, Bureau Veritas Laboratory, in South Africa for analysis. The laboratory analysis results were compared with the standards stipulated in the Clause "15.6.3 Marine Water Quality" of "Technical Specifications, Part 1: General Requirements" and also with the results of the baseline monitoring. Salinity and transparency monitoring will start in July 2019.
		(d) Frequency of Monitoring	Prior to construction (once for four sampling sites - two points in the water column) and during construction (monthly for four sampling sites - two points in the water column).
		(e) Monitoring Location	All the four monitoring locations (dredging area 1, dredging area 2, unaffected area 1 and unaffected area 2) are described under "(e) Monitoring Location" of "3.7 Increased water turbidity in the Bay" of this report.
		(f) Implementing Institution	Contractor's subcontractor, COWI Moçambique Lda. (during construction phase) and CDN (during operation phase).
		(g) Supervision / Auditing Institution	CDN, MTC and MICOA (MITADER).

3.9 Bottom Sediments (Re-suspension of Sediments)

Monitoring Date	Implementing Agency	Monitoring Results during Report Period								
None	Contractor's subcontractor	(a) Description of General Impact (b) Objective	This monitoring was not conducted in this reporting period. Therefore, no impact can be described. The next monitoring is scheduled after the completion of the dredging work (see the item (d) below), which is planned for 2020. Monitoring water quality in the Bay.							
			Once before and once after the dredging to be completed. The monitoring locations will be described when the monitoring result is reported.							
		(f) Implementing Institution	Contractor's subcontractor (COWI Moçambique Lda.). CDN, MTC and MICOA (MITADER).							

3.10 Water Pollution and Impact on Marine Resources

Monitoring Date	Implementing Agency		Monitoring Results during Report Period								
None	Contractor's subcontractor	(a) Description of General Impact	This monitoring was not conducted in this reporting period. Therefore, no impact can be described. The next monitoring is scheduled during the dredging and reclamation operation (see the item (d) below), which is planned for 2020.								
		(b) Objective	Monitoring of water quality in Nacala Bay and reduction of the impact on the marine environment.								
		(c) Monitored Parameters with Measurement Equipment & Procedure	Monitoring parameters: Monitoring parameters will be as follows: - Sealing of the dredger vessel, sediment transport and efficiency of the sediment curtain. Measurement equipment and procedure: This section will be described in details when the monitoring result is reported.								
		(d) Frequency of Monitoring	Daily during the dredging and reclamation phase.								
		(e) Monitoring Location	The monitoring locations will be described when the monitoring result is reported.								
			Contractor's subcontractor (COWI Moçambique Lda.).								
			CDN/MTC, MICOA (MITADER), MdP and IIP.								

3.11 Air Quality (during the operation phase only)

Monitoring Date	Implementing Agency	Monitoring Results during Report Period									
None	CDN		Main port gate	New access road gate							
		(a) Description of General Impact	This monitoring is subject to the operation phase of the Project only. See the cell left.								
		(b) Objective	b) Objective Monitoring of emissions from vessels at berth and from the handling of dry bulk products.								
		(c) Monitored Parameters with Measurement Equipment & Procedure	Monitoring parameters: - Meteorological data at Nacala Port. - Passive sampling data (sulfur dioxide (SO2), nitrogen dioxide (NO2) & benzene, toluene, ethylbenzene & xylene (BTEX)). - Active sampling data of PM 10 (Particulate matter 10 micrometers or less in diameter).								
			Measurement equipment and procedures: This will be described when the first monitoring result is reported.								
		(d) Frequency of Monitoring	This monitoring will be conducted during the operation phase on - Meteorological data: Hourly. - Other air quality data: The frequency should be determined by	ly and the frequency of each monitoring should be as follows.							
		(e) Monitoring Location	- Meteorological data: Meteorology monitoring station at Nacala	- Meteorological data: Meteorology monitoring station at Nacala Port Other air quality data: Two sites on the eastern boundary (e.g. main port gate and the gate at the new access road).							
		(f) Implementing Institution	CDN.								
		(g) Supervision / Auditing Institution	MTC & MICOA (MITADER).								

3.12 Noise Levels

Monitoring Date	Implementing Agency			-		Monitoria	g Results dur	ing Report Po	eriod				
	Contractor's	Nacala 1 (a) Posserintian of Manitesian weeks 1. The DL Claud CO (and a language) and the control of the contr											
	subcontractor	General Impact	are prese and nigh area for the ones	Monitoring results 1: The BL, Q1 and Q2 (see the explanation on the left side) results for the daytime and the Q2 results for nightties are presented in the table below. The average and maximum Leq results of Q2 during daytime (60&74 and 66&78 dBA respectives and nighttime (60&58 and 60&59 dBA respectively) were all above the standard of World Health Organization (WHO) for residen area for daytime (55 dBA) and nighttime (45 dBA) while all the average and maximum Leq and Lmax for the daytime are higher the ones of BL. The increased noise is unlikely from the port, but most likely due to the heavy traffic of motor vehicles, which were abserved during BL.									
		first and second			Daytime 1 (8	8-10am)	Daytime 2 (2	2-4pm)	Nighttime 1	(5-7am)	Nighttime 2	(10pm-12am)	
		quarterly monitoring; max for maximum; and ave for average.		i i	Average	Max	Average	Max	Average	Max	Average	Max	
			Leq	BL	55		61	1 63			-	_	
				Q1	65			67	7 -			_	
		- Leq stands for		Q2	60					60	58	59	
		equivalent noise levels; and Lmax for	Lmax	BL	61						-	<u> </u>	
		maximum sound		Q1	78						-	=	
		pressure level.	5	Q2	70	7	85	90	70	75	75	83	
		adjusted for human	respectiv	ely) we	ere all <mark>below t</mark> l 3A) though all	he standard o the average a	f World Healt ad maximum L	h Organization Leq and Lmax	n (WHO) for for the daytim	industrial and e are higher th	commercial a	256 and 63&58 rea for daytime BL.	
		- The cells with dash			Daytime 1 (8		Daytime 2 (2		Nighttime 1	1	Nighttime 2		
		(-) in the tables on the		Int	Average	Max	Average	Max	Average	Max	Average	Max	
		right side mean that no measurements were	Leq	BL	49						-	>=	
		conducted.		Q1 Q2	59					-	-	-	
			Lmax	BL	55			100		63	56	58	
			Lillax	Q1	65								
				Q2	69					71	64	68	
); - ;								33	

Ionitoring I Date	mplementing Agency	Maria Cara L				Monitorin	g Results dur	ing Report Pe			evelopmeni 1	rojeci	T nase
		Nacala 3											
			Monitoring results 3: The BL, Q1 and Q2 results for the daytime and the Q2 results for nighttime are illustrated in the table below. average and maximum Leq results of Q2 during daytime (67&68 and 70 dBA respectively) and nighttime (73&58 and 73&59dBA respectively) were all above the standard of World Health Organization (WHO) for residential area for daytime (55 dBA) and nightt (45 dBA) while all the average and maximum Leq and Lmax for the daytime are higher than the ones of BL. The loud noise (Lea unlikely from the port, but most likely due to the noise from the nearby community and the excessive movement of trucks entering leaving the port area.							dBA nighttin se (Lea)			
			icaving t	ic port				Nighttime 1	(5-7am)	Nighttime 2 (10pm-12am)			
		The second of			Average M		Average	Max	Average	Max	Average	Max	amy
		- * * * * * * * * * * * * * * * * * * *	Leq	BL	66	67			-	y -			_
				Q1	63	66				\$ X .			_
				Q2	67	70		70	73	73	58		59
			Lmax	BL Q1	73	74 74		80	-	-			-
				Q2	76	80				81	75		83
		(b) Objective	Noise co		d minimization.		,,,,		1 00		1 73		0.5
		Measurement Equipment & Procedure	Based on SANS 10103, 2008, the sound level meter was installed on a tripod at a height of 1.20 meters from the ground. After installation of equipment, a 10-minute measurement was conducted for sound pressure level in dBA three times each at Daytim (8-10am), Daytime 2 (2-4pm), Nighttime 1 (5-7am) and Nighttime 2 (10pm-12am) at each monitoring point. Nighttime monitor was conducted for the first time as baseline data for future monitoring activity because no project work at night had started yet dur this report period. After each measurement, the equipment was calibrated. During measurement, equivalent noise levels (Le maximum sound pressure levels (Lmax) and minimum sound pressure levels (Lmin) were recorded while accidental noise events (noise of large vehicles or pedestrians) were recorded manually. All measured values of the sound pressure level were approximated the nearest integer value. The Leq results were compared with the standards stipulated by WHO in 1999 which stipulate 45 and 55d for night and daytime respectively for residential area, and 70dBA for both night and daytime for industrial and commercial area. The is no such standard for Lmax nor Lmin, but the results of Leq and Lmax of Q2 was compared with the ones from BL. Once before the construction. - Once before the construction period.							After Daytim nonitor yet dur els (Le vents (e kimatec			
		(d) Frequency of Monitoring											
		(e) Monitoring Location											
			- Nacala2 area.	2 (14° 3	2.369'S & 40° 40.	304'E): Thi	s point is dista	anced from res	idential areas,	but located at	the boundary	of an indu	strial

N/	T14!				Nacala Fort Development Froject - Phase 1/11				
	Implementing	Monitoring Results during Report Period							
Date	Agency		- Nacala 3 (also called "extra point": 14°32'40.58"S and 40°40'22.27"E): This point is located about 100 meters from the main entrance of the Port of Nacala, in front of Total fuel station. It is a mixed zone for commercial and residential areas.	100m	Nacala 2 Nacala 1 Nacala 3				
		(f) Implementing Institution	Contractor's subcontractor (COWI Moçambique Lda.).		100 000 0000 00000				
		(g) Supervision / Auditing Institution	CDN, MTC and MICOA (MITADER).						

3.13 Road Accident

Monitoring Date	Implementing Agency	Monitoring Results during Report Period						
None			On-site highway network	External highway network				
		(a) Description of General Impact	There took place 2 traffic accidents involving vehicles within the Port, none of which resulted in injury or fatality.	No traffic accident was recorded surrounding the Port, according to the records of Nacala District Police.				
		(b) Objective	Reduction of the number of road traffic accidents.					
		(c) Monitored Parameters with Measurement Equipment & Procedure (d) Frequency of Monitoring	Monitored parameters: - Traffic accident data. Measurement equipment and procedures: On-site highway network: Daily accident records, including traffic accidents, of CDN External highway network: Report(s) on traffic accident, statistics etc., will be collected from relevant authorities/ regulators, such as police (Nacala District, Nampula Province, INATTER, etc.) Before construction, during construction and during operations. Data collected on daily basis.					
		(e) Monitoring Location	On-site highway and external highway network, including main access points to the port					
		(f) Implementing Institution	CDN.					
		(g) Supervision / Auditing Institution	MTC.					