Is country-system-based aid really better than project-based aid? Evidence from rural water supply management in Uganda

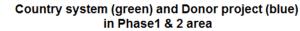
Satoru Mikami (JICA-RI)

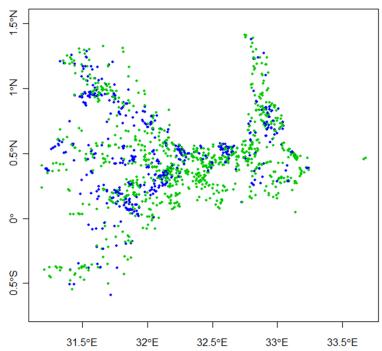
JICA-RI/DIE JOINT Workshop- the Politics and Impact of non-Coordination in International Aid

21 February 2014

Purpose

 Empirically test whether the financial management through the recipient's countrysystem, compared to donor's parallel system, results in better front-line service delivery


"Country system": usage of recipient government's procurement and financial management system

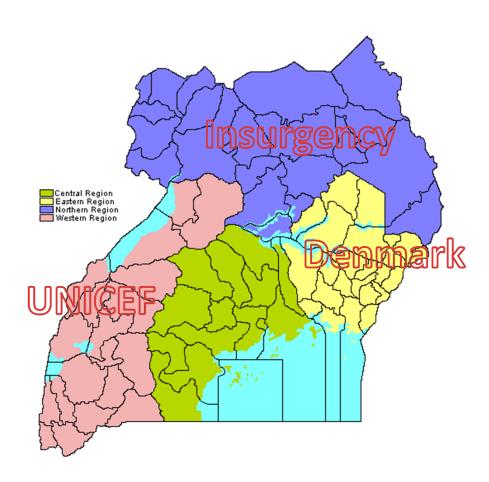

"Parallel system": usage of donor's procurement and financial management system

Xboth projects are aligned with recipient government policy

Method

- Compare sustainability of water supply systems (facility and its user organization) constructed through country-system and those through parallelsystem
 - Country: Uganda
 - Sector: Water and Sanitation
 - Area: Rural area in Central Region
 - Facility: Deep borehole
 - User organization: Water and Sanitation Committee

Why Uganda?

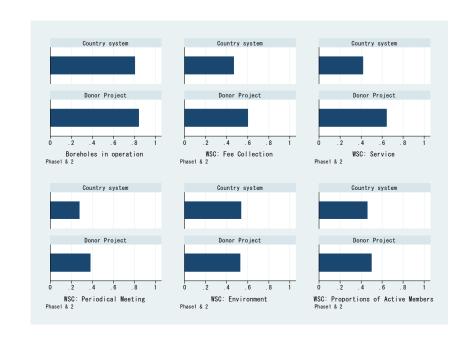

- Success case of development co-ordination
- Ownership:
 - Poverty Eradication Action Plan since 1997
- Alignment:
 - General Budget Support since 1998
- Harmonization:
 - Uganda Joint Assistance Strategy since 2005

Why Water and Sanitation Sector?

- Success case of sector coordination
- Ownership:
 - Uganda's request in June 2000: (1) direct transfer of funds to districts;
 (2) package approach; (3) sector coordination
- Harmonization:
 - Quarterly Water and Sanitation Sector Working Group
 - Annual Joint Water and Sanitation Sector Review since 2001
- Alignment:
 - Joint Partnership Fund, 2003-2007
 - Joint Water and Sanitation Sector Programme Support, 2008–2012
- Division of labor:
 - Large cities: support by Germany
 - Small towns: support by Austria, EU, AfDB,
 - Remaining rural areas: support by Sweden (-2010) and Denmark

Why deep boreholes in central region?

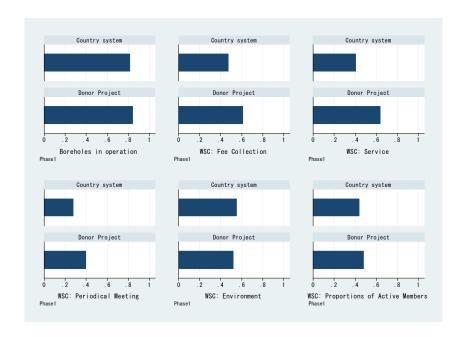
- Data availability
 - WATSUP http://www.watsup.ug/
- Identifiability
 - Limited number of donors:
 - Eastern Region: Project type support (Rural Water and Sanitation East Uganda Project, RUWASA1&2,) by Denmark (1991-2002)
 - Western Region: Project type support (South-West Integrated Health and Water Programme, SWIP) by UNICEF (funded by Sweden) (1990s)
 - Northern Region: Insurgency
 - Remaining area: district-based programme funded mainly by Sweden
 - late 1980s -1995: National Water and Environmental Sanitation Programme, WATSAN
 - 1995– 2000: Water and Sanitation Programme, WES
 - 2001-2002: bilateral budget support to districts by Sweden
 - Sector budget support:
 - 2003-2007: Joint Partnership Fund
 - 2008–2012: Joint Water and Sanitation Sector Programme Support
 - JICA Project (phase1: 1998–2002; phase2: 2004–2006) in the part of central region
 - cost and technology: beyond the control of NGOs

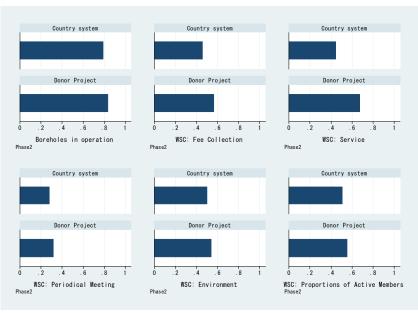

		Central region	Other regions	
Large cities		Germany, NGOs	Germany, NGOs	
Small towns		AfDB, NGOs	Austria, EU, AfDB,	
Rural areas	Deep borehole	Government of Uganda (DANIDA, Sida/UNICEF), JICA	Government of Uganda (DANIDA, Sida/UNICEF)	
	Shallow well, Protected spring, etc.	Government of Uganda (DANIDA, Sida/UNICEF), NGOs	Government of Uganda (DANIDA, Sida/UNICEF), NGOs	

Framework of Comparison

	Sector Budget Support (n= 1001)	JICA (n=625)
region	Central Region	Central Region
Urban/rural	Rural	Rural
facility	Deep borehole	Deep borehole
Construction year	after1998	after1998
initiative	Demand-base	Demand-base
contents	Hard & soft components	Hard & soft components
implementation	Local contractor	Local contractor
Financial management	Country system	Parallel system
outcome	?	?

Result1: bivariate analysis


- 84.3 percent of project-based boreholes are in operation as against 80.7 percent of country-system-based ones (p = .09);
- 60.2 percent of WSCs of project-based boreholes collect user fees as against 46.7 percent of country-system-based WSCs (p < .00);
- 64.5 percent of WSCs of project-based boreholes offer services as against 42 percent of country-system-based WSCs (p < .00);
- 38 percent of WSCs of project-based boreholes hold meetings as against 26.7 percent of country-system-based WSCs (p < .00);
- On average, the proportion for active membership of WSCs of project-based boreholes is 3.5 points higher than that for country-system-based boreholes (p = .06);
- Only in terms of environmental maintenance do we find no difference between project-based and country-system-based WSCs (52.6 vs. 53.6 percent; p = .38).



Result2: split sample by phase

Phase 1 areas

Phase 2 areas

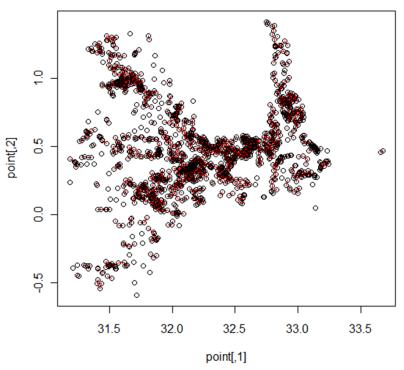
Result3: Multivariate regression controlling for elapsed years, district, and phase

n-value

↓ partial coefficient of JICA dummy variable

	Goet.	p value
Dependent variables	(Std. Err.)	
functionality	0.429	.000
	(0.113)	
fee collection	0.418	.000
	(0.097)	
service	0.516	.000
	(0.100)	
meeting	0.371	.000
	(0.101)	
environment	0.325	.001
	(0.099)	
activemember ratio	0.122	.000
	(0.029)	

Coef


		functionality	fee collection	service	meeting	environment	active member rat
Γotal		0.819	0.511	0.493	0.310	0.532	0.47
hase1 ar	ea	0.826	0.523	0.492	0.321	0.542	0.45
hase2 ar	ea	0.802	0.483	0.496	0.287	0.511	0.51
	BUIKWE	0.791	0.374	0.352	0.308	0.440	0.414
	BUKOMANSIMBI	0.833	0.417	0.583	0.250	0.333	0.39
	BUTAMBALA	0.698	0.488	0.442	0.349	0.535	0.58
	GOMBA	0.806	0.391	0.682	0.291	0.645	0.55
	KALUNGU	0.500	0.182	0.227	0.182	0.136	0.18
	KAYUNGA	0.858	0.697	0.748	0.387	0.761	0.75
	KIBOGA	0.839	0.586	0.402	0.345	0.299	0.53
district	KYANKWANZI	0.956	0.699	0.529	0.338	0.456	0.53
	LWENGO	0.816	0.316	0.395	0.263	0.342	0.33
	MASAKA	0.286	0.143	0.286	0.286	0.286	0.49
	MITYANA	0.761	0.413	0.222	0.209	0.461	0.49
	MPIGI	0.700	0.296	0.282	0.296	0.563	0.40
	MUBENDE	0.917	0.659	0.712	0.371	0.492	0.35
	MUKONO	0.815	0.430	0.378	0.185	0.407	0.42
	WAKISO	0.830	0.571	0.639	0.406	0.749	0.31
	0	0.949	0.608	0.430	0.481	0.696	0.63
	1	0.965	0.616	0.453	0.395	0.628	0.63
	2	0.915	0.581	0.316	0.239	0.735	0.60
	3	0.791	0.408	0.392	0.254	0.577	0.47
	4	0.809	0.489	0.436	0.266	0.500	0.51
	5	0.769	0.442	0.452	0.221	0.481	0.36
	6	0.798	0.482	0.518	0.307	0.500	0.48
elapsed years	7	0.786	0.439	0.508	0.250	0.470	0.45
	8	0.705	0.318	0.372	0.209	0.380	0.32
	9	0.786	0.517	0.621	0.379	0.586	0.40
	10	0.694	0.486	0.405	0.189	0.514	0.44
	11	0.817	0.615	0.673	0.317	0.394	0.43
	12	0.860	0.699	0.625	0.471	0.441	0.43
	13	0.798	0.445	0.630	0.311	0.630	0.47
	14	0.808	0.603	0.615	0.436	0.577	0.36

Result4: Multivariate regression controlling for elapsed years, district, phase and spatial autocorrelations

↓ partial coefficient of JICA dummy variable

	Coet.	<i>p</i> −value
Dependent variables	(Std. Err.)	
functionality	0.733	.000
	(0.202)	
fee collection	0.733	.000
	(0.166)	
service	0.926	.000
	(0.175)	
meeting	0.632	.000
	(0.176)	
environment	0.538	.001
	(0.167)	
activemember ratio	0.120	.000
	(0.029)	

Neigboring Boreholes within 5 km radius in Phase1 & 2 area

Why counter-intuitive result?

- Methodological limitations
 - Non-randomness of assignment
 - Insufficient control variables
 - Measurement errors in monitoring data
- Real problems in implementation
 - Proliferation of districts and resulting lack of human resources
 - Partial pocketing of fund at lower level (unobservable) and resulting low-quality construction (observable)

Thank you