12. エネルギー/送雷効率化

1. 典型的な案件の概要

- 既存の送電システムの効率を向上させる事業。
- 新規の高効率送電システムを導入する事業。

2. 適用条件

- ① 既存の送電システムにおいて、低効率の変電設備の更新、改修・改良により、従来の送変電設備に比べて送電ロスの低減を図ること。
- ② 送電システムの拡張に伴い、高効率変電設備・高圧変電所等の導入によって送電効率の向上を図ること。

3. 推計方法

当該事業による GHG 排出削減量は、ベースラインシナリオ(送電の効率改善前等)下の GHG 排出量(ベースライン排出量)と、効率改善後の GHG 排出量(プロジェクト排出量)の差分により求める。排出量は、送電による電力損失に排出係数を乗じて求める。事業実施前後のそれぞれの電力損失を求め、CO₂ 排出係数を乗じて算定する¹。

以下の各計算式のデータの入手方法の詳細は「4. 推計に必要なデータ」に示す。

 $ER_{\nu} = BE_{\nu} - PE_{\nu}$

ER_v : y 年の事業実施による GHG 排出削減量 (t-CO₂e/y)

 BE_v : y 年のベースラインシナリオにおける GHG 排出量 (t-CO₂e/y)

 PE_v : y 年のプロジェクトシナリオにおける GHG 排出量 (t-CO₂e/y)

(1) ベースライン排出量の算定

ベースライン排出量は、事業実施後と同量の電力量を、ベースラインシナリオ下の送電システムで送電する場合の GHG 排出量となる。ベースライン排出量は、送電システムの効率化が行われない場合の送電ロス率を把握し、事業実施 後と同じ電力量を送電する際に発生する電力損失に CO₂ 排出係数を乗じて求める。

 $BE_{\nu} = TE_{PI,\nu} \times TLR_{BL,\nu} \times EF_{elec}$

TE_{PJ,y} : 事業実施後の送電量 (MWh/y)

TLR_{BLv}:ベースラインシナリオ下の送電ロス率 (%)

EF_{elec} : 電力の CO₂排出係数 (t-CO₂/MWh)

(2) プロジェクト排出量の算定

プロジェクト排出量は、事業実施後の送変電設備が効率化された場合の送変電設備における電力損失に CO_2 排出係数を乗じて算定する。

 $PE_y = TL_{PJ,y} \times EF_{elec}$

TL_{PJ,y} : 事業実施後の送電ロス量 (MWh/y) EF_{elec} : 電力の CO₂排出係数 (t-CO₂/MWh)

¹ 評価対象年は、プロジェクトの平均的な稼働状況下の年、または、複数年の平均値とする。

12. エネルギー/送電効率化

4. 推計に必要なデータ

データ	データの内容	データの入手方法	
の種類		ベースライン排出量	プロジェクト排出量
TLR _{BL,y}	ベースラインシナリオ下の 送電ロス率 (%)	過去の実績値	不要
$TE_{PJ,y}$	事業実施後の送電量 (MWh/y)	計画値	計画値
$TL_{PJ,y}$	事業実施後の送電ロス量 (MWh/y)	不要	計画値
EF _{elec}	グリッド接続の場合: グリッド CO ₂ 排出係数 (t-CO ₂ /MWh) 独立型、ミニグリッドの場 合:ディーゼル発電による CO ₂ 排出係数 (t-CO ₂ /MWh)	デフォルト値を使用(別表3の "Energy Efficiency")。 ただし対象国のデフォルト値が無い場合や、当該国の公表値がある場合等、 他にふさわしい値がある場合は、その値を使用しても良い。 デフォルト値を使用(別表4:想定される状況に応じて適切な値を選択)。 ただし対象国のデフォルト値が無い場合や、当該国の公表値がある場合等、 他にふさわしい値がある場合は、その値を使用しても良い。	

5. その他

(1) プロジェクトバウンダリー

GHG 推計の範囲は、プロジェクトサイト内の当該発電施設とする。

(2) リーケージ

送電網の効率化におけるリーケージの可能性として、設備更新に係る製品製造や資材輸送等に伴う CO_2 排出が考えられる。しかし、これらの CO_2 排出は一時的なものであり、事業規模に比して微小と判断されることが多いため考慮していない。

(3) 解説

本方法論において参考可能な CDM 方法論として AM0067 (Methodology for installation of energy efficient transformers in a power distribution grid, Version 02)と AMS-II.A. (Supply side energy efficiency improvements – transmission and distribution, Version 10)が挙げられる。

本方法論の排出削減量算定ロジックは、AMS-II.A.と同様であるが、本方法論では事業実施前の送電ロス率を用い、事業実施後の送電量の変化(送電システムの拡張等による場合を想定)にも対応できるようになっている。

なお、CDM 方法論では排出削減量が小規模の閾値で制限されているが、本方法論ではそのような条件は設けていない。

(4) 改訂履歴

Version	改訂月	改訂内容	
4.0	2023年3月	• ベースライン排出量の算定方法や必要なデータ等の記述において、「事業実施前」を「ベ	
		ースラインシナリオ下」に修正した。なお、ベースラインシナリオとは、事業実施前の状	
		態の継続などプロジェクトがなかった場合に起こるであろうシナリオである。	
		• 「4. 推計及びモニタリングに必要なデータ」の「事業実施後」の列を削除した (Climate-FIT	
		は、現在は GHG 排出削減量を「計画段階」に定量化することを目的としているため)。	
5.0	2024年3月	• 変更なし。	
6.0	2025年5月	変更なし。	