

ENVIRONMENTAL SOCIAL MANAGEMENT PLAN (ESMP)

FOR CONSULTING SERVICES FOR DESIGN REVIEW AND CONSTRUCTION SUPERVISION FOR CONSTRUCTION OF A NEW BRIDGE ACROSS THE VOLTA RIVER ON THE EASTERN CORRIDOR PROJECT

March 2020

Joint venture of : CENTRAL CONSULTANT INC.,

ORIENTAL CONSULTANTS GLOBAL CO., LTD.

In Association with HAG Consult Ltd. and Associated Consultants Ltd.

Loan No.: GH-P13

CONSULTING SERVICES FOR DESIGN REVIEW AND CONSTRUCTION SUPERVISION FOR THE CONSTRUCTION OF A NEW BRIDGE ACROSS THE VOLTA RIVER OF THE EASTERN CORRIDOR PROJECT (GH-P13)

GHANA HIGHWAY AUTHORITY

Environmental and Social Management Plan

March, 2020

Doc	Description	By	Review	Approved	Submission
No.					Date
1	ESMP	Marian Mingle,	Naki Tetteh-	Alice Owiaba	
		Nathan Sika	Anowie	Addai -	
				Yeboah	
Signature	2	M. M, NS	N.T. A	AOAY	
Date: Ma	arch 2020				

File Name	Consulting Services for Design Review and Construction					
	Supervision for the Construction of a New Bridge Across the					
	Volta River of the Eastern Corridor (GH-P13):					
	Environmental and Social Management Plan					
Document	1					
Revision						
Revision description						
Prepared by	Prepared by Marian Mingle/ Nathan Sika					
Checked by	Jane Naki Tetteh-Anowie					
Approved	Alice Owiaba Addai- Yeboah					
Issue date	March, 2020					

Associated Consultants

33 Royalt Castle Road

Kokomlemle

P.O. Box M 259 Acera-Ghana

Tel: +233302237528

TABLE OF CONTENTS

L	IST OF A	ABBREVIATIONS	V
1.0	GENE	ERAL INTRODUCTION	1
1	.1 OB.	JECTIVES OF ESMP	1
2.0	CONT	TEXT	2
2	.1 Bac	kground	2
2	.2 Pro	ject Objectives	3
2	.3 Pro	ject Works	3
2	.4 Pro	ject Components	4
	2.4.1	Horizontal and Vertical Alignments	5
	2.4.2	Pedestrian Facilities	5
	2.4.3	Traffic Control Devices	5
	2.4.4	Construction Materials	6
	2.4.5	Construction Camp Establishment	6
	2.4.6	Site Preparation	6
	2.4.7	Earthworks	6
	2.4.8	Materials Sourcing and Extraction	6
	2.4.9	Piling Activities	6
	2.4.10	Road Surface Materials	7
2	.5 Bas	eline Conditions	7
	2.5.1	Climate	7
	2.5.2	Topography	7
	2.5.3	Geology and Soil Type	7
	2.5.4	Vegetation	8
	2.5.5	Animal Species	8
	2.5.6	Water Resources	
	2.5.7	Water Quality	9
	2.5.8	Air Quality	11
	2.5.9	Noise	12
	2.5.10	Population	13
	2.5.11	Economic Activities	14
	2.5.12	Public Utilities	15
3.0	BENE	FICIAL AND ADVERSE IMPACTS	16
4.0	MITIO	GATION MEASURES	22
	4.1.1	Prevention of the Spread of Diseases	24

	4.1.2 Tree Planting	24
5.0	ENVIRONMENTAL AND SOCIAL MONITORING PROGRAMME	25
6.0	PUBLIC CONSULTATIONS	27
	Appreciation	27
	Concerns	
7.0	RESPONSIBILITIES AND INSTITUTIONAL ARRANGEMENTS	
7.1	Japan International Cooperation Agency (JICA)	29
7.2	Engineer	29
7.3	Contractor	30
7.4	Environmental and Social Officer	31
7.5	EPA	32
7.6	GHA/Client	32
7.7	Shai Osudoku and North Tongu District Assemblies	32
7.8	Water Resource Commission	32
7.9	The General Public	32
8.0	SUMMARY OF ESMP	
9.0	IMPLEMENTATION SCHEDULE AND REPORTING	42
10.0	CONCLUSIONS	
LIST	OF TABLES	
Table	1: Summary the project profile	1
	2:Summary of Project Scope	
Table	3: Fishes found in the Volta Lake	8
Table	4: Surface Water Quality of Volta River (Dufor Adidome landing site)	10
Table	5: Surface Water Quality of Volta River (Volivo landing site)	10
Table	6: Ambient PM10 and PM2.5 Measured on 17/12/2019	12
Table	7: Nitrogen Dioxide, Sulphur Dioxide, Carbon Monoxide levels measured on 17/12/2019	12
Table	8: Daytime Ambient Noise levels (dBA) recorded on 17/12/2019	12
Table	9: Night time Ambient Noise levels (dBA) recorded on 17/12/2019	12
	12: Summary of Environmental and Social Impacts	
	13: Mitigation Measures and Cost	
	14: Summary of Monitoring Responsibilities and Output	
	15: Environmental Management responsibility of the Engineer	
	16: Environmental Management Responsibilities of Contractor	
	19: Environmental and Social Management Plan	
TTOP	OF FIGURES	
	OF FIGURES	
Figure	e 1: Map showing Project Layout – Feeder Roads Network	3

LIST OF ABBREVIATIONS

ABC Accelerated Bridge Constructions Technique

AfDB African Development Bank

DANIDA Danish International Development Agency

ESO Environmental and Safety Officer EPA Environmental Protection Agency

ESMP Environmental and Social Management Plan

GHA Ghana Highway Authority GoG Government of Ghana

HIV/AIDS Human Immunodeficiency Virus/Acquired Immunodeficiency syndrome

JICA Japan International Cooperation Agency

NGOs Non-Governmental Organisations

P_M Particulate Matter

PAPs Project Affected Persons

STEP Special Terms for Economic Partnership

TSP Total Suspended Particles
WHO World Health Organisation
WRC Water Resource Commission

water Resource Commission

1.0 GENERAL INTRODUCTION

The following briefly summaries the project profile:

Table 1: Summary the project profile

Project Title	CONSULTING SERVICES FOR DESIGN REVIEW AND CONSTRUCTION SUPERVISION FOR THE CONSTRUCTION OF A NEW BRIDGE ACROSS THE VOLTA RIVER ON THE EASTERN CORRIDOR PROJECT (GH-P13)					
Year of Implementation	Design: 2015 Design Review: 2019-2020 Construction: 2020-2025					
Project Duration	77 Months including Design Review and Tender (17 months), Construction (48 months) and Defect Notification Period (12 months)					
Date of Operation Project Completion Date	2025 2026					
1 Toject Completion Date	2020					

1.1 OBJECTIVES OF ESMP

The prime objective of the Environmental and Social Management Plan (ESMP) is to bring the project into compliance with applicable national environmental and social legal requirements as well as those of Japan International Cooperation Agency and the Guidelines for Environmental and Social considerations and other international standards.

The ESMP also defines and outlines the mitigation/enhancement, monitoring, consultative and institutional strengthening measures to be undertaken during project implementation and operation to prevent, minimize, mitigate or compensate for adverse environmental and social impacts. In addition, the ESMP seeks to enhance the project beneficial impacts. Taking the above principles into account, the ESMP for the Consultancy Services has been formulated to address the objectives, actions, strategies and activity costs of the management plan for all the project phases.

2.0 CONTEXT

2.1 Background

The trunk highway network in Ghana consists of three international corridors i.e. Central, Western and Eastern. The Eastern Corridor is the shortest route connecting the most important port of Ghana, Tema Port, and Burkina Faso, and development of this corridor will contribute to the development of less-developed areas along this corridor.

Hence, development of the Eastern Corridor has a high priority, and development plans have been carried out with financial assistance from some development partners, including Japan. The Japan International Cooperation Agency (JICA) has identified the importance of the Eastern Corridor in the cooperation policy for Ghana "Development of infrastructure to support economic growth", and conducted the "Preparatory Survey on the Eastern Corridor Development Project (Master plan and feasibility study: Field Studies) to assist the development of the Eastern Corridor, and proposed construction of 67 km of new road, including a new bridge across the Volta River, after comparing various alternatives.

Based on this proposal, the GoG has decided to develop this road section with financial assistance from the African Development Bank (AfDB). And the GoG requested the Government of Japan to execute a Yen Loan project to construct a new bridge across the Volta River by applying the Special Terms for Economic Partnership (STEP) scheme, in order to construct a high-quality, durable, and economically viable bridge by applying various Japanese technologies.

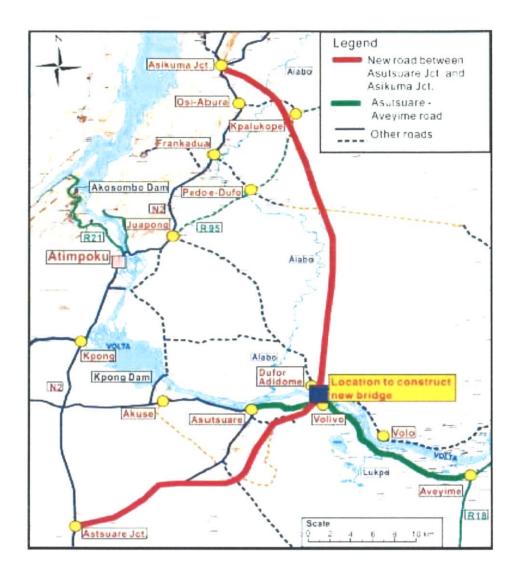


Figure 1: Map showing Project Layout - Feeder Roads Network

2.2 Project Objectives

The objective of the Study is to carry out detailed design and prepare draft bidding documents for the project to construct a new bridge across the Volta River and its approach road by using a Yen Loan and applying the STEP scheme.

2.3 Project Works

The Proposed Bridge will be located at Adidome Dufor on the southern bank and Volivo on the northern bank. The village of Adidome Dufor belongs to the North Tongu District Assembly while Volivo is under the Shai Osudoku District Assembly. The project site is located approximately 75 km north-east of Accra on the Eastern Corridor across the two districts.

2.4 Project Components

Major scope of the project is as follows:

- Construction of bridge substructure including double sheet pile cofferdam
- Construction of weathering steel bridge superstructure
- Erection of cable-stayed bridge with high precision
- Construction of approach road (565 m on the southern side of the river bank and 370 m on the northern side)
- Construction of rest/observatory area
- Construction of toll plaza facility
- Installation of axle load scale
- Construction of drainage structures
- Other ancillary works

Table 2: Summary of Project Scope

Work Type	Work Item	Sub Work Item			
Bridge	Foundation for abutments	Piling foundations			
	Foundation for piers	Spread foundation, excavation of groundwater rock layer with single steel pipe sheet pile cofferdam			
	Abutments	Reverse T-type abutments			
	Piers	Pier (main tower): Column type elliptical piers x 2 Pier (approach): Round column piers x 2			
	Superstructure	Main girders: Steel-deck edge girder			
	(Continuous cable-stayed	Main towers: Reinforced concrete			
	bridge)	Bridge length: 540 m (34 m + 96 m + 280 m +			
		96 m + 34 m)			
	Pavement	Asphalt pavement			
	Typical cross section	Carriageway: 3.65 m × 2			
		Shoulder: 2.50 m × 2			
		Sidewalk: 2.00 m × 2			
		Railing: 0.40 m × 2			
		Total bridge width: 17.10 m			
	Ancillary components	Bearings, expansion joints, inspection gondolas			
		and paths, pavement markings, traffic signs,			
		guard fences, road illumination, landscape			
		illumination, navigation aids and aviation			

		obstacle lights			
Approach	Length (Main road)	Right bank of Volta River (Volivo side): 565 m			
Roads		Left bank of Volta River (Dufor Adidome			
		side): 370 m			
	Earth works	Formation of sub-base			
	Pavement	Asphalt concrete pavement			
	Road drainage	Side ditches and cross culverts			
	Ancillary works	Road illuminations, pavement markings, traffic			
		signs, guard fences and road safety devices			
	Typical cross section	Carriageway: 3.65 m × 2			
		Shoulder: 2.50 m × 2			
		Rounding: 1.00 m × 2			
		Total road width: 12.30 m			
Other	Toll plaza	Two toll plazas (Volivo side and Dufor			
Facilities	* #	Adidome side)			
		Toll booths and toll gates, administration			
	1 1	office, temporary parking space for overloaded			
	2 22 22	vehicles, axle load scale, interlocking pavement			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and road illumination			
	Rest stop	One location (Dufor Adidome side)			
		Commercial building, parking lots, access road,			
		park and observation deck and illumination			

2.4.1 Horizontal and Vertical Alignments

The horizontal and vertical alignments of the project have been designed to meet standard requirements and to improve safety.

2.4.2 Pedestrian Facilities

In view of pedestrians in the vicinity of the proposed bridge, facilities for pedestrians have been included in the design to cater for their needs. These facilities include provision of walkways parallel to the various roads.

2.4.3 Traffic Control Devices

Traffic control and road safety devices will be put in place in addition to other necessary road furniture when implementing the project.

2.4.4 Construction Materials

Within the Shai Osudoku and North Tongu areas and the adjoining municipalities, there are both new and existing borrow and quarry pits that can be sourced for the construction materials for this project.

2.4.5 Construction Camp Establishment

Appropriate land for construction camp sites will be sought for by the Contractor(s) to house the following:

- I. Main Camp Sites
 - a) Consultants' offices,
 - b) Contractors' offices,
 - c) Fuel farms
 - d) Truck parking yards
- II. Materials Holding and Batching plants
- III. Pre-cast yards

2.4.6 Site Preparation

Construction process begins with the alignment surveying, pegging and clearing. This involves bush clearing, top soil stripping to be followed with earthworks. Bush clearing removes vegetation cover including grass, shrubs and trees. Tress will also be removed and the Contractor is expected to maintain a record of the number, species and characteristics of the trees removed for compensation through planting.

2.4.7 Earthworks

Earth moving is the removal of the overburden along the alignment to give way for filling with appropriate materials. This generates significant spoil earth materials to be disposed off or reused elsewhere. The activities will involve moving fill materials (gravel) to fill and development of the base on which the road surface will be formed.

2.4.8 Materials Sourcing and Extraction

Mobilisation of materials will be the main activities such as to include aggregate from the quarry sites, gravel from borrow areas and water from sources. Materials haulage, storage, batching and applications are major project activities.

2.4.9 Piling Activities

A deep foundation is required to support the bridge; therefore, piling for the foundation will also be major activity.

2.4.10 Road Surface Materials

The surface materials would be asphaltic concrete. The proposed project route is expected to be durable, having the capacity to bear substantial and diverse volumes of load with the expected increase in vehicular volume, a better, smoother riding ability, and a low noise generation characteristic.

2.5 Baseline Conditions

2.5.1 Climate

The Volivo part of the southeast coastal plain is one of the hottest and driest areas in the country whiles the climate Adidome is more tropical, influenced by the south-west monsoons from the south Atlantic and the dry harmattan winds from the Sahara. The mean temperature for the area is approximately 27°C, with a maximum temperature of around 33°C and minimum of 22°C. Though, it can reach peaks as high as 40°C in Volivo. Precipitation is generally low and erratic, normally receiving rainfall between September and November. The mean annual rainfall ranges from 762.5 mm in the coastal area to 1,220 mm in other parts. Temperature and humidity vary little throughout the year. Average humidity is high at around 80%.

2.5.2 Topography

In the central part of Accra plain, the relief is gentle and undulating with altitude not exceeding 70 m above sea level. The plains are punctuated by a few prominent inselbergs, isolated hills, outliers and knolls scattered across the area. Prominent relief features include the Yongua inselberg (427 m) which has a conical shape with a number of outliers around the Asutsuare and Osuwem areas, the Krabote inselberg also to the North, and the Shai Hills (289m) towards the western part of the area. There are conspicuous large rock outcrops and boulders in the vicinity.

2.5.3 Geology and Soil Type

The project area forms part of the lower Volta flood plain. The repeated process of flooding and receding of the Volta River over the years has created fertile alluvial soil in the Volivo area and a coarser textured sample in the Adidome region. There is also the presence of a vast sedimentary stratum of oyster shells deposits and a number of inland lakes. Soils in the area are poorly drained pale-coloured sandy silt and underlying clay formed recently or in the contemporary Volta Alluvium making cultivation difficult. Nevertheless, they are suitable for rice and sugarcane cultivation under irrigation as they appear to be moderately well-supplied with nutrients in their natural condition, and are easily workable even with simple implements. They also provide raw materials for the pottery, brick and tile industries. The main mineral deposits in the area are clay, oyster shells, feldspar, nepheline gneiss, sand and granite.

2.5.4 Vegetation

The Project area lies in the Coastal Savanna Grassland/ Thicket Scrub vegetation zone. As part of the Accra Plains, it is an open tree savanna where the trees and shrubs occur in clumps formed on termite mounds that are scattered in the area. Some of the tree and shrub species that characterize the vegetation of the study area are Securinega Virosa, Abutilon mauritianum, Grewia carpinifolia, Adansonia digitata and Zanthoxylum xanthoxyloides. Azadirachta indica, an introduction, has spread widely in the area. Leucaena leucocephala, an Alien Invasive Species, is very abundant in the thickets in the Dorfor-Adidome section of the project area. The Dorfor-Adidome thicket Scrub is also abundant in the Gold Star climber species Ritchiea reflexa. The Gold Star rating implies the species is rear in the project area. Conservation action is required for this species to ensure that it is not completely removed and wiped from the area by the project. A large portion of the vegetation remains dry for most of the year particularly in the southern area with the exception of the short rainy season. In the Volta floodplain, tall swampy grass and tall savannah grass with isolated thickets and trees are the prevalent type of vegetation as well as farms and farm-regrowth. Some common grasses include Andropogon gayanus, Hyparrhenia rufa, Chloris pilosa, heteropogon contortus and Sporobolus pyramidalis. Along the Volta River, the vegetation is dense and the stream basins where mainly mango, oil palm, baobab, silk cotton, acacia and others are grown. Farther from the river, the vegetation is sparse, dominated by grassland interspersed with neem trees and guinea grass, digitaria decumbent and fan palms.

2.5.5 Animal Species

Generally, the species diversity and abundance of mammals within the proposed project site was very low with the giant rat (*Cricetomys gambianus*) being the dominant fauna. Though all species are partly protected under the Wildlife Conservation Regulations of Ghana, only four of the species encountered are categorized as Least Concern on the IUCN Red List of Threatened Species. Of the 39 species of birds recorded, none was of international conservation importance while 2 are of national conservation importance. These are namely the Cattle Egret (*Bubulcus ibis*) and the Yellow billed Kite (*Milvus aegyptius*). The two species are however widely spread throughout the project area and have wide range of habitat distribution in Ghana hence are not expected to be impacted significantly by the project.

The table below shows the fishes found the Volta Lake.

Table 3: Fishes found in the Volta Lake

	English Name	Scientific Name	Local Name
1	Nile Tilapia	Oreochromis niloticus	Koobi
2	Catfishes	Clarias gariepinus	Adwene
		Heterobrancus bidorsalis	

3	Bagrid catfish	Chrysichthys nigrodigitatus	Gblovi
4	African Bony tongue	Heterotis niloticus	Superku
5	West African Pygmy herrings	Sierrathrissa spp	One Mouth Thousand
6	Snakehead	Parachanna obscura	Koboo
7	Tiger fish	Hydrocynnus foskahlii	Akao/ Akawo
8	Electric fish, Africa knife	Gymnarchus niloticus	Aprukusu/ Eyor
9	Nile Perch	Lates niloticus	Akwaabi
10	Puffer Fish	Tetraodontidae	

Source: Fisheries Commission

2.5.6 Water Resources

Flowing over a fairly low terrain, streams have carved wide valleys yet they are dry for most of the year in the Volivo region. A number of artificial dams and ponds of varying size have been constructed in the district and are used for irrigation and watering of livestock. A total of 18 towns in Volivo have access to piped water with the remaining towns depending on wells, boreholes and other sources. Most of the people living in the villages, on the other hand, depend on borehole water, hand-dug well water, streams and rivers. An estimated 34% of the inhabitants in the 231 settlements in Volivo have no access to potable water. Ground water in the area is saline.

The Adidome area is however drained by the Alabo, Kolo, Aklakpa, Gblor, and Nyifla Rivers and their numerous tributaries into the Volta River. During the rainy season, these streams overflow their banks, causing damage to roads and farms. There are several ponds and dugouts/dams in the area, which serve as the main source of water for the inhabitants and livestock. Sources of water for domestic use and for those in the villages are pipe-borne, boreholes, streams, hand dug wells, streams and rivers with towns being the exception. Until 1994, most communities in Adidome had no access to potable water. But the Danish Government (Danish International Development Agency/DANIDA)-led water supply project provided piped water to Tedeafenui and other communities in the Adidome area. In addition, 26 communities have been provided with a total number of 89 shallow wells fitted with hand pumps. The Volta River offers an important source of water to the towns and villages nearby.

2.5.7 Water Quality

Water and air quality as well as noise levels in or near the project site were examined during the Field Studies. The results of the tests generally show values that are environmentally favourable than the EPA guideline values. The results of the water quality, air quality and noise level tests are presented in Tables below.

As the only water body within the immediate project zone, the physical, chemical and biological parameter of the Volta River was analyzed. Table 4 and 5 shows the results for the water samples taken from the two landing sites of the proposed bridge.

Table 4: Surface Water Quality of Volta River (Dufor Adidome landing site)

Parameter	EPA Method No.	Unit	Value	GS 175-1	WHO Guideline
Turbidity	3	NTU	<1.00		5
Colour (Apparent)	2	Hz	2.50-		15
Odour		-	-	Inoffensive	Inoffensive
рН	4	рН	6.42	6.5-8.5	6.5-8.5
		Units			
Conductivity	1	μs/cm	68.4	-	
Tot. Suspended Solids (SS)	5	mg/l	<1.00	0	-
Tot. Dissolved Solids (TDS)	6	mg/l	41.0	1000	1000
Sodium	30	mg/l	5.10	200	200
Potassium	29	mg/l	3.00	30	30
Calcium	23	mg/l	7.29	200	200
Magnesium	26	mg/l	0.817	150	150
Total Iron	31	mg/l	< 0.010	0.3	0.3
Ammonia	13	mg/l	< 0.001	0.00-1.5	0.00-1.5
Chloride	24	mg/l	2.28	250	250
Sulphate	19	mg/l	2.24	250	250
Phosphate	17	mg/l	0.048	-	-
Manganese	26	mg/l	0.012	0.4	0.4
Nitrite	14	mg/l	0.370	1.0	1.0
Nitrate	15	mg/l	< 0.001	10	10
Total Hardness (CaCo3)	25	mg/l	21.0	500	500
Total Alkalinity (CaCo3)	22	mg/l	24.0	-	-
Calcium Hardness (as	23	mg/l	20.2	-	-
CaCo3)					
Mg Hardness (as CaCo3)	26	mg/l	0.760	-	-
Fluoride	20	mg/l	< 0.005	1.5	1.5
Bicarbonate as CaCo3)	22	mg/l	29.2	-	-
Carbonate	22	mg/l	0.00	-	-

 Table 5: Surface Water Quality of Volta River (Volivo landing site)

Parameter	EPA Method No.	Unit	Value	GS 175-1	WHO Guideline
Turbidity	3	NTU	1.41		5
Colour (Apparent)	2	Hz	2.50		15
Odour		-	-	Inoffensive	Inoffensive
рН	4	pH Units	6.66	6.5-8.5	6.5-8.5
Conductivity	1	μs/cm	66.3	-	-
Tot. Suspended Solids (SS)	5	mg/l	<1.00	0	-
Tot. Dissolved Solids (TDS)	6	mg/l	39.8	1000	1000
Sodium	30	mg/l	4.40	200	200
Potassium	29	mg/l	2.00	30	30
Calcium	23	mg/l	8.09	200	200
Magnesium	26	mg/l	0.185	150	150
Total Iron	31	mg/l	< 0.010	0.3	0.3
Ammonia	13	mg/l	0.050	0.00-1.5	0.00-1.5
Chloride	24	mg/l	2.48	250	250
Sulphate	19	mg/l	2.51	250	250
Phosphate	17	mg/l	0.022	-	-
Manganese	26	mg/l	0.006	0.4	0.4
Nitrite	14	mg/l	0.382	1.0	1.0
Nitrate	15	mg/l	< 0.001	10	10
Total Hardness (CaCo3)	25	mg/l	21.6	500	500
Total Alkalinity (CaCo3)	22	mg/l	30.0	-	-
Calcium Hardness (as CaCo3)	23	mg/l	18.2	-	-
Mg Hardness (as CaCo3)	26	mg/l	3.36	-	-
Fluoride	20	mg/l	<0.005	1.5	1.5
Bicarbonate as CaCo3)	22	mg/l	36.6	-	-
Carbonate	22	mg/l	0.00	-	-

2.5.8 Air Quality

Information on baseline air quality gives an indication of existing levels of ambient air quality parameters in order to evaluate the impact of additional emissions from the constructional and operational phases of the project on the environment. The levels will also be the reference for the continuous assessment of possible impacts of the project on the air quality of the receiving environment.

Table 6 shows ambient Particulate matter (PM) and Total Suspended Particles (TSP) within the project area while Table 8 shows the Nitrogen dioxide, Sulphur dioxide and Carbon Monoxide levels measured.

Table 6: Ambient PM10 and PM2.5 Measured on 17/12/2019

LOCATION	$PM_{2.5}(\mu g/m^3)$	PM ₁₀ (μg/m ³)	TSP(μg/m³)
Volivo	13.8	21.8	37.7
Dufor Adidome	14.4	22.0	36.9
Ghana Standards for 24-hour Ambient	35	70	150
air Quality for PM ₁₀ and PM _{2.5}			

Table 7: Nitrogen Dioxide, Sulphur Dioxide, Carbon Monoxide levels measured on 17/12/2019

LOCATION	NO ₂ (μg/m ³)	$SO_2 (\mu g/m^3)$	CO (mg/m³)
Volivo	0.3	<0.1	<2
Dufor Adidome	0.2	<0.1	<2
Ghana Standards for NO2, S02, CO	150	50	10

2.5.9 Noise

Ambient noise levels recorded were below the Ghana standards (Day) which is consistent with the residential and farming area.

Table 8: Daytime Ambient Noise levels (dBA) recorded on 17/12/2019

LOCATION	LAEQ	L ₁₀	L50	L90	L _{MAX}
Volivo	39.5	41.3	37.6	34.0	52.1
Dufor Adidome	36.1	38.7	33.9	31.4	50.4
Ghana Standard for Residential Daytime noise	55				•

Table 9: Night time Ambient Noise levels (dBA) recorded on 17/12/2019

LOCATION	LAEQ	L ₁₀	L50	L90	L _{MAX}
Volivo	34.5	37.1	33.5	32.0	50.8

Dufor Adidome	32.1	35.8	31.9	30.6	46.9
Ghana Standard for Residential Daytime noise					1

2.5.10 Population

The project catchment area falls within two main Districts: Shai Osudoku and North Tongu District. The total population for the two main districts is estimated at 151,909. This is made up of 62,131 people from Shai Osudoku and 89,777 from North Tongu district. Males form the majority (51.3%) in Shai Osudoku whiles females form the majority (52.7%) in the North Tongu district.

Population Sizes of Project Districts Area

Districts		Male	Female	Total
Shai Osudoku District Projection)	(2017	31,873 (51.3%)	30,253 (49.7%)	62,131
North Tongu (2010 Population)		42,492 (47.3%)	47,285 (52.7%)	89,777
Total				151,909

(Source: GSS)

On the other hand, the total population of the two communities is also estimated at 8,809 made up of 3000 people from Volivo and 5,809 from Dorfor Adidome. A detail of gender disaggregation distribution is shown in the table below:

Estimated Population Size of the Project Communities

Community	Male	Female	Total
Volivo	1659 (55.3%)	1341 (44.7%)	3000
Dorfor Adidome	2986 (51.4%)	2823 (48.6%)	5809
Total			8809

General Community Structure / Settlement

Volivo

Volivo is surrounded by nine (9) main communities under the Dofor electoral area. These communities are Kewu, Atrobinya, Avakpo, Volivo-Lanor, Mafikoper, Chiefkoper, Amegbolor, Atabui and Duffor. Traditionally, the community is headed by the community chief and his elders whiles an elected Assembly member supported by a unit committee runs the political day-to-day administration of the community. The people of Volivo are mainly Dangmes with a few of the populace being Ewes. There are about 700 households with an average household size of 5

people per house in the community. Culturally, the person of Volivo celebrates "Jehayem" every May. Jahayem is celebrated to shame hunger.

• Dorfor Adidome

Dorfor Adidome is the largest among 12 communities under the electoral area. Unlike Volivo, Dorfor Adidome is made up of seven (7) main clans and the heads of these clans form the elders of the community. However, the clans are presided over by the main chief who controls the affairs traditionally in the community. All clans have their unique symbol but the community has the Baobab Tree as the universal symbol for the community. Politically, the Assembly member together with the unit committee members runs the political administration of the community. According to the community elders, the estimated average household size is five (5) people per house. The people of Dorfor Adidome are mainly Ewes with few Fulanis. The people culturally celebrate the "Ayimagonu" and "Dzrafedu-Za" festivals in November and March / April respectively. The festival is celebrated to remind community members of how their forefathers became victorious in the 1870 Global war.

2.5.11 Economic Activities

The economy is of the two communities is dominated by agriculture activities on subsistence basis in a labor-intensive manner. The most dominant crop under cultivation is Rice and this cultivated district wide. At Volivo, the rice farming is mainly done on irrigation basis. Water is usually drawn from irrigation facilities from Akuse and Asutsuare. Again, Volivo is also known for the production of fruits such as banana, mangoes, pineapple. Other major crops cultivated in both communities are cassava, maize, pepper, oil palm etc.

The agricultural land is farmed by its owners and there are no tenant farmers. This was confirmed by the assembly man of Dufor Adidome. Golden Exotic Estate has a plan of extending its 800 ha banana plantation to 3,000 ha and Tropo Farms has a 5 ha fish farm.

Another considerable farming activity undertaken in both communities is the fishing activity which is mainly done on the Volta river. The river is mainly known for the production of tilapia. Other traditional fishing communities include Bakpa, Mafi, Mepe, Battor and Volo in the catchment area. Also, livestock farming forms part of the farming activities undertaken by the communities. The Fulanis at Adidome are mainly noted for the rearing of cattle in the area.

Another area of interest that has gainfully engaged the youth and women in the area is Oyster Shell mining and processing. Oyster shells are naturally found on the grounds in both communities. The shells are processed by way of crushing by machine used for poultry feed. They are also processed for paints such as white wash paints, emulsion paints. There are also few artisans such as masons, welders, seamstress/tailors, electrician etc.

Oyster shell mining activities ongoing at Dorfor Adidome

2.5.12 Public Utilities

Approach roads are planned to cross existing electricity lines. Limited but additional social services may be introduced during the construction stage, possibly improving the situation.

3.0 BENEFICIAL AND ADVERSE IMPACTS

Table 12 summarizes the impacts of the project particularly during the construction phase by providing a description and an assessment of identified impacts.

Table 10: Summary of Environmental and Social Impacts

IMPACT	DESCRIPTION	ASSESSMENT
POSITIVE IMPACTS- CO	ONSTRUCTIONAL PHASE	
Employment and Income	Job opportunities will be	Extent: Local, District, regional,
	created for both skilled and	national
	unskilled labour	
		Duration : Temporary and Short term
		Magnitude: High
Estado III C. I. I	The least estimate	Evaluation: Major
Enhance skills for Local Artisans	The local artisans will have	Extent: Local, District, regional,
Arusans	the opportunity to be trained by the contractor enhancing	national
,	their skills on the job and	Duration: Long Term
	pushing them to a higher	Duration. Long Term
	level in their field or career.	Magnitude: Medium
	10 101 111 011011 110110 01 0010011	A Angusta and I / A data and I
5	and the second	Evaluation: Major
Increase revenue for the	Revenue can be generated by	Extent: District
Municipal Assemblies	the North Tongu and Shai	
	Osudoku District Assemblies	Duration: Long Term
	from traders who sell or trade	
	around the project site to	Magnitude: Medium
	workers through ticketing.	
		Evaluation: Major
	as a new land mark/tourist	
DOCUMENT VI CO : COO : -	spot in the area.	
POSITIVE IMPACTS- OP		
Regional Economy	The Project would lead to an	Extent: Regional
	overall upgrading of the	D. C. I.
	socioeconomic setting in the	Duration: Long term

	area.	
	Appreciation of land and	Magnitude: High
	property values in the road	g
	section and the immediate	Evaluation: Major
	neighbourhoods will be	Diamation. Wajor
	enhanced	
WILL O		
Vehicle Operating and	By providing an alternate	Extent: Local, District and Regional
Transportation Costs	bridge route, tremendous	
	savings will be made on	Duration: Long term
	general fuel consumption and	
	reduction in vehicular	Magnitude: High
	emission pollution.	
	The project has potential to	Evaluation: Major
	benefit road users through	
	reduced vehicle	
	maintenance costs and	
li li li li	delays.	
NEGATIVE IMPACTS- C	ONSTRUCTIONAL PHASE	
Water Quality	Spills of potential	Extent: Local, District and Regional
	contaminating materials and	
	other waste during	Duration: Temporary and Short term
	construction could impact on	
	the Volta River	Magnitude: High
	Dredging operation and	
	disposal of dredged materials	Evaluation: Major
	during piling activities will	
	deteriorate water quality in	
	the river especially local	
	turbidity.	
Air Quality	Dust will be generated during	Extent: Local, District and Regional
Kanasarah	the construction activities.	Zarran Boom, Bishiet and Regional
	and sometimental delivities.	Duration: Temporary and Short term
	Emissions from construction	Daracion. Temporary and Short term
	vehicles and equipment.	Magnitude: High
	verneres and equipment.	magnituue. mgn
		Evaluation: Major
Call Facility	Dood a	Evaluation: Major
Soil Erosion and	Road construction will	Extent: Local
Sedimentation	intensify the effects of	

vegetation removal, soil disturbance, and exposure of bare soil surface Evaluation: Minor Landscape Modification Aesthetic and visual quality Extent: Local
bare soil surface Evaluation: Minor
Evaluation: Minor
Landscape Modification Aesthetic and visual quality Extent: Local
*
deteriorate due to material
sourcing, excavations, Duration: Temporary and Short term
stockpiling of materials, etc.
Magnitude: low
Evaluation: Negligible
Land Acquisition and Though there would be no Extent: Local
Relocation involuntary resettlement for
the project, a limited number Duration: Long term
of non-governmental plots of
land would need to be Magnitude: High
acquired in areas where
currently no road exists. Evaluation: Major
In addition, there are two
baobab trees standing in the
middle of the planned
approach road of religious
importance in Dufor
Adidome will be removed or
relocated.
Also, in Dufor Adidome the
community cemetery is to be
resituated.
Noise and Vibration Construction activities Extent: Local
involving heavy duty
machinery, vehicular Duration: Short Term
movement, vehicle horns etc,
may increase ambient noise Magnitude: Medium
levels and vibration beyond
the immediate project area. Evaluation: Minor
Due to the 1km -7m distance
from the main project area

	and thick vegetation noise	
	may however be within	
	standard levels.	
Constant Cons		
Construction Camps	Improper construction of	Extent: Local
	camps may destroy an area,	
	leading to obvious	Duration: Short Term
	consequences on soil erosion	
	and water quality.	Magnitude: Medium
		Evaluation: Minor
Construction Waste	Large quantities of	Extent: Local
Disposal	construction wastes would be	
	generated whilst	Duration: Short Term
	rehabilitating the road.	
	Poor sanitation and solid	Magnitude: High
	waste disposal in	
	construction camps and work	Evaluation: Minor
	sites are likely to have	
	negative impacts on human	
8	health and the environment.	
Public Health and Safety	Stagnant water in pools near	Extent: Local, District and Regional
·	the road is a health hazard to	,
	nearby residents since they	Duration: Long Term
	serve as breeding sites for	C
	vectors of disease such as	Magnitude: High
	malaria.	S
	Increase risk of spreading	Evaluation: Major
	sexually transmitted	
	infections (STIs) and AIDS	a.
	to rural inhabitants.	
	The safety of vehicular road	
	users and pedestrians may be	
	endangered by an increased	
	risk of accidents resulting	
	from collisions with	
	construction vehicles and	
	equipment or unsafe road	
	conditions.	

Public Utilities	Public utilities along the	Extent: Local
	project road may include	
	telecommunication lines and	Duration: Short Term
	electricity cables could be	
	relocated resulting in	Magnitude: Medium
	disruption of utility services.	
	Overhead high-tension cables	Evaluation: Major
	run along the road at sections	Evaluation: Major
	of the project area.	
Flora	Removal of vegetation within	Extent: Local
Fiora	the Right of Way (ROW)	Extent. Local
	including two Baobab trees	Duration: Short Term
		Duration: Short Term
	and some Gold star specie (Ritchiea reflexa) of	Magnitudas Madium
		Magnitude: Medium
	conservation importance.	Evaluation Major
7, 41 1	Soil compaction,	Evaluation: Major
	Indicat impact from dust	
	Indirect impact from dust,	
*	particles; oil, fuel;	
	Covering riverbed on riparian	
	vegetation.	
	vegetation.	
	Spoil material from road	
	cutting can kill vegetation on	
1 2	disposal site	*
Fauna	There is the likelihood of	Extent: Local
rauna	poaching by construction	Extent. Local
	workers in the project area.	Duration: Short Term
	workers in the project area.	Duration. Short Term
		Magnitude: Low
		Wagnitute. Low
		Evaluation: Major
Aquatic Life	Piling and dredging activities	Extent: Local
Aquane Life	will increase turbidity	Extent. Local
	particulate matter, and	Duration: Short Term
		Duration. Short Telli
	suspended solids in the water column, which can interfere	Magnitude: Medium
	column, which can interfere	Magnitude: Medium

	with the he whaterwith ti-	
	with the he photosynthetic	E I I I I I I I I I I I I I I I I I I I
	ability of phytoplankton,	Evaluation: Major
	feeding of fish and reduce	
	availability of catch for	
	fishermen.	
Cultural Heritage	Two baobab trees considered	Extent: Local
	to be sacred by the Fetish	
	group in Dufor Adidome	Duration: Short Term
	need to be removed	
	following proper religious	Magnitude: Low
	and cultural procedures.	
	Unmarked graves also need	Evaluation: Minor
	to be relocated as a result of	
	the project.	
NEGATIVE IMPACTS - C		
Land Use Changes	Several land use changes	Extent: Local, District
8	may occur which may lead to	Exemi Eoui, District
	the loss of the main	Duration: Long Term
	objectives of easing traffic	Duration. Long Term
	flow	Magnituda, High
	now	Magnitude: High
		Ford M.
A-'I AMY III C.C.		Evaluation: Major
Accidents/Health, Safety	Health and safety risks could	Extent: Local, District and Regional
and Security	be elevated due to the "new	
		Duration: Long Term
	would allow for high traffic	
	volumes with its consequent	Magnitude: High
	impacts;	
	 elevated noise, 	Evaluation: Major
	 potential accidents, 	
	• demand on sanitary	
	facilities	
	• potential spread of	
	diseases	
	GIOCUSCS	

4.0 MITIGATION MEASURES

The following mitigation measures have been considered as the most suitable to reduce the negative impacts that the project may result in.

Table 11: Mitigation Measures and Cost

IMPACT	PROPOSED MITIGATION		
NEGATIVE IMPACTS- CONSTRUCTIONAL PHASE			
Water Quality	Preventing contamination of surface water bodies and ground water		
	Proper disposal of all waste chemical substances away from the River		
	Buffer zones of vegetation should be provided between work sites and water bodies		
	Fuel trucks will be obliged to carry at all times, anti-spill trays and a supply of suitable material, such as sawdust, for absorption of minor spills		
Air Quality	Periodic watering of exposed surfaces.		
	Enforcing lower speed limits within the work zone		
	Cover all trucks hauling materials		
	Equipment and vehicles used are in good condition to ensure minimal emissions.		
	Regular monitoring of PM, TSP, CO _x , NO _x , etc should be done during construction.		
Soil Erosion	Plan and execute earthworks with due diligence to prevent soil erosion		
Landscape Modification	Avoid cutting down of trees where possible		
	The bridge and all other facilities will be landscaped		
	Shrubs and grass will be planted in the median whilst trees		
	are planted along the sides of the approach roads		
	Borrow pits will be rehabilitated by re-vegetation of the site.		
	Borrows and quarry that will be established in the project vicinity will be operated and closed in the context of contract		

	agreement established prior to construction
Land Acquisition and Relocation	Proper and adequate compensation promptly paid to the land and property owners. Payment should take place before structures are taken over by the project.
Noise and Vibration	Maintain construction equipment regularly to control of noise. Plan and execute the works so that it does not become a nuisance to the general public where possible. Provision of appropriate safety gear for workers.
Construction Camps	Ensure that the construction camp is carefully sited and arranged to minimise their impact.
Construction Waste	Ensure proper disposal of construction waste Provide toilet facilities for workers
Public Health and Safety	Eliminating breeding sites of disease vectors. Occupational Health & Safety Plan HIV/AIDS Awareness programme/ Community Outreaches Post Traffic Signs and warnings Implement Speed limits at construction site
Public Utilities	Consult utility providers to plan and realign displaced utility services
Flora and Fauna	Conservation action is required for species of concern to ensure that they are not completely removed from the area by the project.
Aquatic Life	Dredging and piling works shall be planned to occur outside the known spawning and breeding season/period of the commonest fish species in the water body. The Accelerated Bridge Constructions (ABC) Technique will be employed to reduce the duration of impact on the water system and its associated species Monitor the water quality in the runoff from the site or areas affected by dredge plumes, and improve work practices as necessary. Protect water bodies from sediment loads by silt screen or bubble curtains or other barriers.

	Use environment friendly and non-toxic slurry during	
	construction of piles to discharge into the lake.	
NEGATIVE IMPACTS- OPERATIONAL PHASE		
Land Use Changes	The Shai Osudoku and North Tongu district Assemblies	
	should enforce land use zoning regulations in their districts.	
Health, Safety and Security	Road safety awareness campaigns should be organized	
	sensitize people on road safety and protection of the road	
	signage and information	
	Ensure improvement and protection of signage, guard rails	
	and other features that contribute to road safety	
	Strict monitoring compliance with traffic use and speed	
	limits	
	Enhanced Information and awareness of HIV/AIDS	

4.1.1 Prevention of the Spread of Diseases

The spread of HIV/AIDS among project workers and communities during construction is one of the main health risks. The project design shall include sensitization programs of the dangers of HIV/AIDS through prevention and awareness campaigns; and through linkages with local NGOs and Health Authorities in the project area as well as creating the capacity for continuous prevention and awareness campaigns for road users.

4.1.2 Tree Planting

Trees are likely to be felled during the construction phase and as a compensatory measure the contractor is expected to plant four trees for every tree that will be felled.

5.0 ENVIRONMENTAL AND SOCIAL MONITORING PROGRAMME

Environmental monitoring ensures that the impacts have been accurately predicted and that mitigation measures are being implemented as planned and has the assumed effects. The monitoring exercise will ensure that the remedial actions recommended in the assessment are incorporated in the project and maintained throughout the operation life where appropriate. It will also identify additional remedial measures and corrective measures or redesign remedial measures if they are not sufficiently effective.

All major stakeholders in the project have a monitoring responsibility of some kind. However, only the Supervising Engineer, the Ghana Highway Authority Environmental Monitoring Unit, The EPA, the Forestry Services Division (The Forestry Commission), Water Resources Commission and the Contractor are allocated specific and formal monitoring obligations. Traffic Police, Health Authorities and other public authorities will automatically monitor some of the effects of the project during their daily work.

Periodic interviews with the beneficiaries of the projects will also be undertaken to assess their opinions about the effect of the implementation of the project.

Table 12: Summary of Monitoring Responsibilities and Output

Party Responsible	Parameters to be Monitored	Output		
EPA	Enforce any actions that may be needed to ensure environmental quality standards are not breached and permit requirements are maintained	Regular monitoring to ensure compliance Instructions to Contractor and the Engineer		
Forestry Services Division (The Forestry Commission) Water Resources	 Implementing agency in charge of wetlands. Reforestation or land remediation program Instructions to Contractor and the Engineer 			
Commission	 Implementing agency in charge of water bodies Issue permits, Supervision, Monitoring of Piling and Cofferdam works 	Instructions to Contractor and the Engineer		
GHA (Environment Monitoring Unit)	 Overall Environmental Performance of the Project Community relations Payment of appropriate compensation 	Quarterly Environmental reports		

	• Construction methods and	Monthly Environmental
The Engineer	materials	reports.
The English	• Environmental management of	1
	construction sites	Incident Reports as and
	• Implementation of mitigation	1.1 111
11.1 64 1.1	measures for air, water, soil	
	traffic, Occupational Health and	
	Safety, etc.	
	• Environmental management of	
	construction camps	
	• Contractors waste management	
	Staged rehabilitation of impac	
	areas	
	 Community relations 	
	• Environmental performance of	
	contractor's equipment	3 11 11 11 11
	• Accidents (traffic, spills etc.)	
	• Environmental performance of	
	mitigation measures	
	• Environmental performance of	Maintenance records
The Contractor	equipment and plants	
	• Implementation of interim and	Accident Reports
	permanent mitigation measures	
	Waste Management plan	Mitigating actions e.g.
	• Occupational Health and Safety	sprinkling of water, traffic
	measures	signs, safety barriers
	Base Camp Management	
	• Air and Water quality	
	 Accidents of any kind 	
Shai Osudoku and	• Specific tasks assigned to various	Reports and instruction to
North Tongu District	units	Contractor and GHA
Assemblies		
Health Authorities	• Change of frequency of diseases	Health reports.
	• Occurrence of new diseases in the	
	area	
Local Communities	Negative environmental impacts	Complaints to Contractor
	Social disturbance	and Supervising Engineer

6.0 PUBLIC CONSULTATIONS

Public consultations were undertaken at various levels with stakeholders at to elicit the perceptions of the different stakeholders with regard to the positive and negative impacts the project. The outcome of the consultation with the various stakeholders and beneficiaries of the project is summarized as follows:

Appreciation

- ✓ Improved road conditions
- ✓ Improved safety for users
- ✓ Reduction in occurrence of accidents;
- ✓ Enhance landscape and status of the municipality
- ✓ Creation of employment during the construction phase of the project.

Concerns

As much as stakeholders appreciate the project, they also had concerns which are listed below:

- Disruption of livelihood
- Prompt payment of adequate compensation;
- Employment opportunities for the locals should be ensured.
- Increased dust and noise pollution during the construction phase of the project;
- Non-motorized structures to enhance Safety of pedestrians and passengers;
- Appropriate provisions to control traffic congestion during construction.
- Road safety measures included in design.

During the preparation of the ESMP Report discussions were held with a number of stakeholders including GHA, EPA, Forestry department and the District Assemblies to discuss their monitoring responsibilities and institutional gaps. Overall there was broad support for the project. The stakeholders supported the proposed road development mostly to improve the traffic situation.

During the course of the ESMP implementation, GHA and Contractor will continuously consult key and important stakeholders to inform them about the implementation of the project as well the ESMP. These consultations will aim to: (i) Keep local communities updated on progress of project implementation of mitigation activities (where applicable); and (iv) Disseminate the ESMP content and its implementation procedure to them. Continuous public consultation will help to ensure that any grievances by the local community are addressed in time, and this can guarantee that the project will be supported by the local community.

In terms of public disclosure, copies of ESMP and its summary shall be shared with relevant stakeholders such as local communities, relevant government institutions and society organizations among others. The purpose will be to inform them about the project activities; negative environmental and social impacts expected from project and proposed mitigations.

7.0 RESPONSIBILITIES AND INSTITUTIONAL ARRANGEMENTS

The Engineer is expected to discuss and convey the contents of this management plan, recommended mitigation/interventions outlined under the impact, as well as the wishes of the affected stakeholders to the Contractor and construction workers for integration in the construction process. Stakeholders will need to be involved in the project monitoring framework through good relations between the contractor and the stakeholders and through timely information on the construction schedules, duration of construction works, potential interference with their daily activities and other issues arising. This will also help in resolving of problems related to construction and prevention of possible social conflicts associated with the project. Communication channels should always be open to ensure proper and timely responses to any complaints that may arise from the road project.

Specific responsibilities will be as follows:

7.1 Japan International Cooperation Agency (JICA)

JICA being the donor or funder of the project has the following responsibilities:

- To provide financial support to the project and ESMP
- To provide technical and supervisory support
- To review environmental and social impacts Report regularly

7.2 Engineer

Table 13: Environmental Management responsibility of the Engineer

PROJECT PHASE	No	ENGINEER'S RESPONSIBILITIES
<u>Design</u>	1	Design the project with the least negative
		environmental impact during the operational life of the
		road
	2	Design the project prescribing materials with the least
		negative environmental impact
	3	Incorporate any feasible traffic safety measures within
		the project design.
	4	Design environmentally friendly road drainage systems
	5	Incorporate all suitable clauses requiring the contractor
		to execute his work with due diligence and apply
		environmentally friendly methods.
		Such requirements must be accompanied by the
		necessary methods for monitoring and accompanied by
		the necessary methods for monitoring and enforcement.
		Clauses with principle contents as minimum
		requirement.

Implementation	6	The Engineer will supervise and enforce the
		Contractors performance on all environmental
		requirements included in the Contract Documents.
	7	The engineer will monitor the overall environmental
		impact of the projects and recommend additional
		mitigation measures for implementation when deemed
		necessary.

7.3 Contractor

Table 14: Environmental Management Responsibilities of Contractor

PROJECT PHASE	No	CONTRACTOR'S RESPONSIBILITIES
Mobilisation	1	Prepare a detailed Environmental Management Plan be
11. 11. 6 01 1 1		approved by the Engineer and GHA as stated in the contracts
	2	Ensure that the management as well as site managers and
te din Perendigas di		foremen are well informed about all environmental issues of the
() ()		project.
	3	Ensure that all site managers and foremen trained in
		environmentally friendly construction methods
	5	Ensure that all equipment mobilised fulfil the environmental
		requirements of the contracts
	6	Properly establish, operate and rehabilitate construction camp.
	7	Obtain necessary approvals for all borrow pits
	8	Establish a waste management plan covering all types of
		wastes.
Project Execution	9	Apply environmental requirement and construction methods.
	10	Ensure occupational health and safety of all workers and
		visitors to the site at all times.
	11	Fulfil all environmental requirements of the Contract
		Documents.
	12	Inform the Engineer if any unforeseen negative environmental
		impact should occur.
	13	Provide safe passage around or through the work site for all
		kinds of traffic.
	14	Ensure that all workers at his camp live responsibly with the
	1	communities along the road corridor
	15	Responsible for providing potable water to any community

		whose water source is made unwholesome due to the project
		activities until the water is made wholesome again.
	16	Responsible for management of all types of waste generated
		from construction activities, camps, quarries and borrow pits.
Demobilisation	17	Ensure that all affected project areas have been properly
		cleaned of waste, graded and re-vegetated.

7.4 Environmental and Social Officer

As part of the construction team of the contractor, an Environmental and Safety Officer (ESO) is also required. The ESO will be an employee of the Contractor appointed to monitor and review the on-site environmental and social management plan and implementation of the ESMP. The ESO shall be on site daily throughout the duration of the project construction. The ESO's responsibilities will include the following:

- Assist Contractor in ensuring that the necessary environmental authorizations and permits are obtained;
- Maintain open and direct lines of communication between the Employer, Contractor, Consultant and relevant institutions with regard to environmental matters;
- Undertake regular site inspections of all construction areas with regard to compliance with the ESMP.
- Monitor and verify adherence to the ESMP at all times and verifying that environmental impacts are kept to a minimum;
- Take appropriate action if the specifications are not followed;
- Assist the Contractor in finding environmentally responsible solutions to problems;
- Undertake and monitor environmental awareness training for all new personnel coming onto site;
- Ensure labour protection equipments are of good quality and are available on site at all the times:
- Advise on the removal of person(s) and/or equipment not complying with the specifications;
- Recommend the issuing of fines for transgressions of site rules and penalties for contraventions of the ESMP;
- Implement works permit system and ensure the permit conditions for work are followed strictly;
- Keep detailed records of all site activities that may pertain to the environment.
- Undertake a continual review of the ESMP and recommending additions; and
- Compile a final audit report regarding the ESMP and its implementation during the construction period, after completion of the contract and submitting this report to the Employer.

7.5 EPA

The EPA is responsible for coordinating environmental issues in Ghana. The Agency is expected to issue the necessary environmental permits and also to ensure that monitoring and reporting requirements (as required by the ESMP with EPA standards and guidelines) are met.

EPA has to enforce any actions that may be needed to ensure that environmental quality standards are not breached and that permit requirements are maintained.

7.6 GHA/Client

The overall implementation, project supervision and monitoring falls under the purview of the Environmental Monitoring Unit of the GHA. It will be in charge of overseeing the implementation of the ESMP. They also have to issue instructions and guidelines for the additional mitigation measures to be included during project execution. Additionally, they will also liaise with the local health, road/ traffic and educational Authorities to plan awareness raising campaigns.

7.7 Shai Osudoku and North Tongu District Assemblies

The Shai Osudoku and North Tongu district assemblies can be seen as the general administrator during the construction and operational phases of the project. The relevant departmental officers in the Municipal Assembly would be called upon where necessary during the project construction and operational phases to provide the necessary permits and advisory services to the project implementers. Some of the areas where they will be required include:

- Approving locations for establishing work camps;
- Involvement in relocation of project affected persons along the road;
- Liaising with the GHA in the project area to assist in the sensitization campaigns for HIV/AIDS and Road Safety Sensitization;
- Identifying locations for disposal of construction debris;
- Issuing permits or relevant documentation for health and safety monitoring in accordance with local health and safety legislation.

7.8 Water Resource Commission

The Water Resource Commission is responsible for management of water resources in Ghana. The Commission is expected to issue the necessary water permits for piling and cofferdams and also to ensure that monitoring and reporting requirements by the permitting conditions

7.9 The General Public

The general public has no specific tasks in the ESMP, but their role is however important. The public must express their concerns of the projects not only in the preliminary designs phase but also whenever they are aware of previously unforeseen impacts or when impacts take a different

order of magnitude than expected. The public have an unwritten obligation to inform the Engineer about such developments as early as possible. The public is also the target of awareness raising campaigns to mitigate the negative impacts of the project.

ENVIRONMENTAL SOCIAL MANAGEMENT PLAN Consulting Services for Design Review and Construction Supervision for the Construction of a New Bridge Across the Volta River of the Eastern Corridor Project

8.0 SUMMARY OF ESMP

(GH-P13)

The table below summarizes the costs of mitigation measures as well as the monitoring methods and periods and finally the parties responsible for monitoring.

Table 15: Environmental and Social Management Plan

IMPACT	PROPOSED	RESPONSIBLE TARGETS TO MONITORING	TARGETS TO	MONITORING	COSTS	MONITORING MONITORING	MONITORING
	MITIGATION PARTY	PARTY	ACHIEVE	METHOD		PERIOD	INDICATORS
NEGATIVE 	MPACTS- CONST	NEGATIVE IMPACTS- CONSTRUCTIONAL PHASE	ASE				
Water	Preventing	Contractor (ESO)		Sampling	For	Water quality	Water quality
Quality	contamination		Compliance	of physico-chemical	Contractor, no	monitoring will	trends
	of surface water	Engineer	with drinking	parameters and	separate cost	be carried every	
	bodies and		water standards	microbiological	item for	three months	
	ground water			parameters	clauses in	from	Complaints from
					contract	commencement	locals
				*EPA would also	documents.	of earthworks	
				ensure compliance			

Air Quality	Periodic	Contractor (ESO)	Minimal dust	Visual observation	For	It will be carried	Air quality trends
	watering of		levels during	of construction	Contractor,	every three	
	exposed		construction	related dust levels	No separate	months, from	Complaints from
	surfaces.			and exhaust fumes	cost item for	initiation to	locals
	Enforcing lower		Low vehicular	from construction	clauses in	completion in	
	speed limits		emissions	machineries.	contract	active	
	within the work		pollution		documents	construction	
	zone			Regular monitoring		areas	
			Compliance	of PM ₁₀ , TSP, CO _x ,			
	Cover all trucks		with Air Quality	NO _x SO _x ,			
	hauling		Standards				
	materials			*EPA would also			
				ensure compliance	7		
	Equipment and						
	vehicles used						
	are in good						
	condition to						
	ensure minimal						
	emissions.						
Soil Erosion	Plan and	Contractor (ESO)	To assess the	Erosion effects will	No separate	Observation will	Water quality
	execute earth		effectiveness of	be monitored by:	cost item for	be ongoing and	
	works with due		environmental		clauses in	reported where	State of potential
	diligence to		protection	Visual observation	contract	required	areas of soil
	prevent soil		measures aimed	of landform and	documents.		erosion.
	erosion		to:	water turbidity		TSS will be	

Consulting Services for Design Review and Construction Supervision for the Construction of a New Bridge Across the Volta River of the Eastern Corridor Project (GH-P13)

measured	nimize Identification of regularly as part	sion; areas of potential of the water	soil instability, soil	ximize erosion, and monitoring	iment standing water. program.	ntion in	face runoff Reports on potential	or existing problem	iment traps areas.	nimize	pended solid .	ds	vnstream of	urbed areas	iitable and Continuous review An amount is Quarterly review Grievances from	ely property of land acquisition/ estimated for during pre- PAPs	npensation the construction,	program compensation extending into ,	olution of the construction	evances to Continuous review Consultant's stage as required	vent of grievance register Property	alation into to identify Impact	flict outstanding issues assessment.	not resolved
	tion of	otential	bility, soil	pun	water.		n potential	g problem										0	q					/ed
	Identificat	areas of p	soil instab	erosion, a	standing v		Reports or	or existing	areas.	-					Continuor	of land ac	compensa	program		Continuor	of grievan	to identify	outstandir	not resolv
	Minimize	erosion;		Maximize	sediment	retention in	surface runoff	through	sediment traps	Minimize	suspended solid	loads	downstream of	disturbed areas	Equitable and	timely property	compensation		Resolution of	grievances to	prevent	escalation into	conflict	
															GHA		Shai Osudoku	and North Tongu	District	Assemblies				
															Proper and	adequate	compensation	promptly paid to	the land and	property	owners.		Payment should	take place
																Acquisition		Relocation						

	(
	before structures		Avoidance of				
	are taken over		unnecessary				
	by the project.		project delays				
Noise and	Maintain	Contractor (ESO)	To ensure that	The collection of	For	Regular	Complaints
Vibration	construction		adopted noise	representative noise	Contractor,	measuring during	received by local
	equipment		controls and	measurements will	No separate	the construction	residents
	regularly to		management	be made during all	cost item for	stage – from	
	control of noise.		systems are	working shifts on the	clauses in	initiation to	
			effective.	day of sampling.	contract	completion in	
	Plan and				documents.	active	
	execute the		To ensure that	The grievance		construction	
	works so that it		noise levels do	register will be		areas	
	does not become		not exceed the	monitored for			
	a nuisance to the		applicable	reports of human			
	general public		standards	irritation.			
	where possible.						
				*EPA would also			
				ensure compliance			
Construction	Ensure that the	Contractor	Minimal	Periodic site	For	Throughout the	Inspection
Camps	construction		disruption to	inspections to be	Contractor,	Construction	reports of camp
	camps are		residents,	carried out by the	No separate	period	sites
	carefully sited		physical and	contractor that site	cost item for		
	and arranged to		biological	camps are kept clean	clauses in		
	minimize their		environment	and within the	contract		
	impact on the			allocated area for	documents.		
	environment			siting.			

Community	prevent and to			recorded
Outreaches	combat diseases.	Quarterly	Throughout the	accidents
		consultation with	construction	
	To ensure that	municipal health	period for safety	Complaints on
Post Traffic	the opportunity	service.		health safety
Signs and	of disease			aspects related to
warnings.	transfer between	Compilation of work		the road
	the non-local	injury statistics and		construction
Implement	workforce and	monitoring to enable		activities.
Speed limits at	local residents is	appropriate action to		
construction site	kept to a	be taken		
	minimum.			
Health & Safety		*EPA would also		
Plan	Avoid any	ensure compliance		
	deterioration in			
	public health			
	and			
	environmental			
	sanitation as a	i)		
	result of the			
	project.			
	To avoid			V
	accidents that			
	occur during			
	construction			

			To ensure that				
			workers are				
			protected from				
			work accidents/				
			occupational				
			hazards				
Public	Consult utility	Contractor	Avoid	Monitoring	Cost 0f USD	Throughout the	Number of
Utilities	providers to		disruption to	reports/complaints	to be included	construction and	complaints from
	plan and realign	Engineer	provision of	from residents	in contract	operation phases	residents
	displaced utility		utility services		documents		
	services	Utility Providers					
NEGATIVE I	MPACTS- OPER	NEGATIVE IMPACTS- OPERATIONAL PHASE					
IMPACT	PROPOSED	RESPONSIBLE	TARGETS TO	MONITORING	COSTS	MONITORING	MONITORING
	MITIGATION	PARTY	ACHIEVE	METHOD		PERIOD	INDICATOR
Land Use	DAs should	Planning unit	To reduce the	Regular inspections	Cost for the	Regular	Land use trends
Changes	enforce land use	(Shai Osudoku	emergence of	of project corridors.	Assemblies	monitoring	along the project
	zoning	and North Tongu	inappropriate			throughout	corridors,
	regulations in	District	land uses			operational	
	the	Assemblies)				period	
	municipality.						
Health,	Ensure	GHA	Effective	Compilation of	Cost included	Regular	Complaints on
Safety and	improvement		information and	statistics on numbers	in contract.	Monitoring	health safety and
Security	and protection	Health Services	signage to	of accidents		throughout	road accidents
	of signage,	(Shai Osudoku	enhance safe			operational	

Consulting Services for Design Review and Construction Supervision for the Construction of a New Bridge Across the Volta River of the Eastern Corridor Project (GH-P13)

ENVIRONMENTAL SOCIAL MANAGEMENT PLAN (ESMP)

period													
th	ų												
Consultation with	municipal health	service.											
	use of the road	To avoid traffic	accidents.		Avoid the	spread of	disease	between the	non-local work	force and local	residents		
and North Tongu	District	Assemblies)											
guard rails and	other features	that contribute	to road safety	Strict	monitoring	compliance with	traffic use and	speed limits		Enhanced	Information and	awareness of	HIV/AIDS

9.0 IMPLEMENTATION SCHEDULE AND REPORTING

GHA is the Executing Agency for the New Bridge project whereas the Ministry of Roads and Highways will provide overall policy direction to the GHA.

The GHA will prepare progress reports on a quarterly basis which will highlight the progress towards meeting the project's targets as will be reflected in the project result based logical framework and the progress in implementation of the ESMP. Apart from reports, monitoring and evaluation will also be undertaken through supervision visits. Quarterly supervision visits and review meetings by the Government and GHA will be essential to track implementation progress, challenges and strategically plan the way forward.

10.0 CONCLUSIONS

The findings from the Environmental and Social Impact Assessment show that although the proposed New Bridge project is expected to have a number of negative impacts most of these are anticipated to occur during the construction phases and are mitigated in the overall road designs. The ESMP provides a set of guidelines for implementing and incorporating environmental management practices to minimize adverse environmental impacts associated with the construction of the bridge and approach roads. Its aim is to establish environmental management standard guidelines for all parties involved in undertaking their various tasks and responsibilities for the project.

The ESMP was also prepared taking into consideration stakeholder's desires and interests and be reviewed continuously for the benefit of acceptability by stakeholders.