



## CONTRACT FOR PROJECT MANAGEMENT CONSULTANCY SERVICES

#### **FOR**

#### CONSTRUCTION OF CIVIL WORKS PACKAGES FOR MAHSR PROJECT

#### **BETWEEN**

#### NATIONAL HIGH SPEED RAIL CORPORATION LIMITED

#### AND

JOINT VENTURE OF TATA CONSULTING ENGINEERS LIMITED, CONSULTING ENGINEERS LIMITED, CONSULTING ENGINEERS GROUP LTD, AARVEE ASSOCIATES ARCHITECTS ENGINEERS & CONSULTANTS PVT LTD.AND PADECO CO LTD.



# QUARTERLY ENVIRONMENTAL STATUS REPORT NO. 04, REV: 00 REPORTING PERIOD: 01-JAN-2023 TO 31-MAR-2023

| DESCRIPTION           | REPORTING<br>PERIOD | OF<br>ISSUE | REVISION | PREPARED BY                                              | REVIEWED BY             | APPROVED<br>BY        |
|-----------------------|---------------------|-------------|----------|----------------------------------------------------------|-------------------------|-----------------------|
| QUARTERLY             | 01-01-2023          |             |          | ABHISHEK VERMA<br>VAISHNAVI NIMBALKAR<br>BHAVIK KHANDAVI | SONAL PAREEK<br>KAUSHIK | MICHAEL HAN<br>SANGDU |
| ENV. STATUS<br>REPORT | TO<br>31-03-2023    | 02-06-23    | 0        | Abbiran . Oballor.                                       | Sonal Parule            | Hate                  |
|                       |                     |             |          | Therid                                                   | DOCUMENT NO.            |                       |





# **Contents**

| ABBR | EVIATIONS                                                | 5  |
|------|----------------------------------------------------------|----|
| 1 At | oout the Project                                         | 7  |
| 2 Pr | oject Infrastructure Packages and Activities under MAHSR | 7  |
| 3 En | vironmental Management at MAHSR                          | 11 |
| 4 En | vironmental Status Report (ESR)                          | 12 |
| 5 Le | gal Base                                                 | 12 |
| 5.1  | Status of Legal Compliances                              | 13 |
| 6 En | vironmental Monitoring Status                            | 17 |
| 6.1  | Environmental Monitoring of C4 Package                   | 18 |
| 6.1  | .1 Ambient Air quality monitoring                        | 18 |
| 6.1  | .2 DG stack monitoring:                                  | 24 |
| 6.1  | .3 Ambient Noise Quality Monitoring:                     | 24 |
| 6.1  | .4 Drinking Water Quality Monitoring:                    | 30 |
| 6.1  | .5 Surface Water Quality Monitoring:                     | 30 |
| 6.1  | .6 Bottom Sediment Quality Monitoring:                   | 38 |
| 6.1  | .7 Wastewater Quality Monitoring:                        | 38 |
| 6.1  | .8 Vibration Monitoring:                                 | 39 |
| 6.2  | Environmental Monitoring of C5 Package                   | 39 |
| 6.2  | 2.1 Ambient Air quality monitoring                       | 39 |
| 6.2  | 2.2 Ambient Noise Quality Monitoring:                    | 41 |
| 6.2  | 2.3 Vibration Monitoring:                                | 42 |
| 6.3  | Environmental Monitoring of C6 Package                   | 42 |
| 6.3  | 3.1 Ambient Air Quality Monitoring:                      | 43 |
| 6.3  | 3.2 DG stack monitoring:                                 | 46 |
| 6.3  | 3.3 Ambient Noise Quality Monitoring:                    | 46 |
| 6.3  | 3.4 Drinking Water Quality Monitoring:                   | 48 |
| 6.3  | S.5 Surface Water Quality Monitoring:                    | 48 |
| 6.3  | Bottom Sediment Quality Monitoring                       | 49 |
| 6.3  | 3.7 Groundwater Quality Monitoring                       | 49 |
| 6.3  |                                                          |    |
| 6.3  | 3.9 Vibration Monitoring                                 | 53 |
| 6.4  | Environmental Monitoring of C7 Package                   |    |
| 6.4  |                                                          |    |
| 6.4  | 6.3.2 Ambient Noise Quality Monitoring:                  | 55 |

| 6.5 E     | nvironmental Monitoring of C8 Package                       | 56 |
|-----------|-------------------------------------------------------------|----|
| 6.5.1     | Ambient Air Quality Monitoring:                             | 56 |
| 6.3.2     | Ambient Noise Quality Monitoring:                           | 57 |
| 6.5.2     | Vibration Monitoring                                        | 58 |
| 6.6 E     | nvironmental Monitoring of P1B Package                      | 59 |
| 6.6.1     | Ambient Air Quality Monitoring:                             | 59 |
| 6.6.2     | DG stack monitoring:                                        | 60 |
| 6.6.3     | : Ambient Noise Quality Monitoring                          | 60 |
| 6.7 E     | nvironmental Monitoring of P4 Packages (3 workshops)        | 61 |
| 6.7.1     | Ambient Air Quality Monitoring:                             | 61 |
| 6.7.2     | Workplace Air Quality Monitoring:                           | 62 |
| 6.7.3     | Ambient Noise Quality Monitoring:                           | 62 |
| 6.7.4     | Workplace Noise Monitoring                                  | 62 |
| 6.7.5     | Noise Monitoring for DG stack                               | 63 |
| 6.7.6     | DG Stack Monitoring:                                        | 63 |
| 6.7.7     | Drinking Water Quality Monitoring:                          | 63 |
| 6.7.8     | Wastewater Quality Monitoring:                              | 63 |
| 6.8 V     | Vaste Management                                            | 64 |
| 7 Envir   | onmental Inspections in the Quarter                         | 66 |
| 7.1 D     | etails of Inspections Conducted & SORs issued               | 66 |
| 7.2 D     | etails of NCRs issued in the Quarter.                       | 71 |
| 7.3 S     | tatus of NCRs                                               | 72 |
| 7.4 C     | ood Practices Observed at various Packages                  | 76 |
| 7.4.1     | Tree Plantation                                             | 76 |
| 7.4.2     | Utilisation of renewable energy                             | 76 |
| 7.4.3     | Reuse & Recycle of Waste                                    | 77 |
| 7.4.4     | Good Management Practices                                   | 79 |
| 7.4.5     | Good housekeeping at labour Camps                           | 80 |
| 8 Envir   | onmental Case Studies in the Quarter                        | 82 |
| 9 Traini  | ng on Env Management                                        | 89 |
| 9.1 T     | rainings conducted by PMC                                   | 89 |
| 9.2 T     | rainings conducted at awarded infra packages by Contractors | 90 |
|           | ironmental Day Celebration                                  |    |
|           | evance Redressal                                            |    |
| Annexures |                                                             | 95 |

# **List of Tables**

| TABLE 1: PROJECT COMPONENTS PER INFRA PACKAGE                                                               | 8  |
|-------------------------------------------------------------------------------------------------------------|----|
| TABLE 2:STATUS OF CEMP FOR AWARDED INFRA PACKAGES                                                           | 13 |
| TABLE 3: STATUS OF LEGAL COMPLIANCES FOR P4 (x) AND P4(y) PACKAGES                                          | 13 |
| TABLE 4: STATUS OF LEGAL COMPLIANCES FOR THE PROJECT AND FOR AWARDED INFRA PACKAGES                         | 15 |
| TABLE 5: LIST OF ENVIRONMENTAL MONITORING AGENCIES FOR DIFFERENT AWARDED PACKAGES                           | 17 |
| TABLE 6: STATUS OF ENV. MONITORING AT DIFFERENT INFRA PACKAGES                                              | 17 |
| TABLE 7: MONITORING FREQUENCY AND LOCATIONS FOR C4 PACKAGE IN THE QUARTER                                   | 18 |
| TABLE 8: MONITORING FREQUENCY AND LOCATIONS FOR C5 PACKAGE IN THE QUARTER                                   | 39 |
| TABLE 9: MONITORING FREQUENCY & LOCATIONS FOR C6 PACKAGE IN THE QUARTER                                     | 42 |
| TABLE 10: MONITORING STATUS OF JAN-MARCH 2023 FOR C7 PACKAGE                                                | 54 |
| TABLE 11: MONITORING STATUS OF JAN-MARCH 2023 FOR C8 PACKAGE                                                | 56 |
| TABLE 12: MONITORING STATUS OF JAN-MARCH 2023 FOR P1B PACKAGE                                               | 59 |
| TABLE 13: AMBIENT AIR QUALITY ANALYSIS OF THE 3 WORKSHOPS                                                   | 61 |
| TABLE 14: WORKPLACE AIR QUALITY ANALYSIS OF THE 3 WORKSHOPS                                                 | 62 |
| TABLE 15: AMBIENT NOISE QUALITY ANALYSIS OF THE 3 WORKSHOPS                                                 |    |
| TABLE 16: WORKPLACE NOISE QUALITY ANALYSIS OF THE 3 WORKSHOPS                                               |    |
| TABLE 17: SOURCE NOISE QUALITY ANALYSIS OF THE 3 WORKSHOPS                                                  | 63 |
| TABLE 18: DG STACK MONITORING ANALYSIS OF THE 3 WORKSHOPS                                                   | 63 |
| TABLE 19: DRINKING WATER QUALITY MONITORING ANALYSIS OF THE 3 WORKSHOPS                                     | 63 |
| TABLE 20: WASTEWATER QUALITY MONITORING ANALYSIS OF THE 3 WORKSHOPS                                         |    |
| TABLE 21: SUMMARY OF WASTE MANAGEMENT IN QUARTER FOR DIFFERENT PACKAGES                                     |    |
| TABLE 22: SITE VISITS IN THE MONTH OF JAN. 2023                                                             | 66 |
| TABLE 23: SITE VISITS IN THE MONTH OF FEB. 2023                                                             | 67 |
| TABLE 24: SITE VISITS IN THE MONTH OF MARCH 2023                                                            | 69 |
| TABLE 25: NCRs raised in the Quarter                                                                        |    |
| TABLE 26: STATUS OF NCRS ISSUED TILL MARCH 2023.                                                            |    |
| Table 27: Tree Plantation in the Quarter                                                                    |    |
| TABLE 28: TRAININGS CONDUCTED BY PMC.                                                                       |    |
| Table 29: Environmental Trainings conducted for the Quarter (Jan-Mar 2023)                                  | 90 |
| List of Figures                                                                                             |    |
| FIGURE 1: MAHSR PROJECT                                                                                     | 7  |
| FIGURE 2: DIFFERENT INFRASTRUCTURE PACKAGES UNDER MAHSR                                                     |    |
| FIGURE 3:MITIGATION MEASURES ADOPTED AT SITE IN C4 PACKAGE                                                  |    |
| FIGURE 4: GRAPHICAL REPRESENTATION OF PM10 BEHAVIOUR IN C4 PACKAGE                                          |    |
| FIGURE 5: GRAPHICAL REPRESENTATION OF PM2.5 BEHAVIOUR IN C4 PACKAGE                                         |    |
| FIGURE 6: GRAPHICAL REPRESENTATION OF DG STACK MONITORING FOR C4 PACKAGE                                    |    |
| FIGURE 7: AMBIENT NOISE MONITORING AT DAYTIME IN DB(A)IN C4 PACKAGE FOR SENSITIVE LOCATIONS                 |    |
| FIGURE 8: AMBIENT NOISE MONITORING AT NIGHT-TIME IN DB(A)IN C4 PACKAGE FOR SENSITIVE LOCATIONS              |    |
| FIGURE 9: AMBIENT NOISE MONITORING AT DAYTIME IN DB(A) IN C4 FOR CONSTRUCTION SITES                         |    |
| FIGURE 10: AMBIENT NOISE MONITORING AT NIGHT-TIME IN DB(A) IN C4 FOR CONSTRUCTION SITES                     |    |
| FIGURE 11: MITIGATION MEASURES DEPLOYED TO CONTROL NOISE POLLUTION AT SITE.                                 |    |
| FIGURE 12: GRAPHICAL REPRESENTATION OF BOD IN SURFACE WATER IN 14 RIVERS FOR C4 PACKAGE (2 GRAPHS)          |    |
| FIGURE 13: GRAPHICAL REPRESENTATION OF TOTAL COLIFORM IN SURFACE WATER IN 14RIVERS FOR C4 PACKAGE(2 GRAPHS) |    |
| FIGURE 14 : GRAPHICAL REPRESENTATION OF CONDUCTIVITY IN SURFACE WATER IN 14RIVERS AT C4 PACKAGE (2 GRAPHS)  |    |
| FIGURE 15 : GRAPHICAL REPRESENTATION OF BOD IN SURFACE WATER IN 7 PONDS AT C4 PACKAGE                       |    |
| FIGURE 16: GRAPHICAL REPRESENTATION OF TOTAL COLIFORM IN SURFACE WATER IN 7 PONDS AT C4 PACKAGE             |    |
| FIGURE 17: GRAPHICAL REPRESENTATION OF CONDUCTIVITY IN SURFACE WATER IN 7 PONDS AT C4 PACKAGE               |    |
| FIGURE 18:GRAPHICAL REPRESENTATION OF PM10 BEHAVIOUR IN C5 PACKAGE                                          |    |
|                                                                                                             |    |

| FIGURE 19: GRAPHICAL REPRESENTATION OF PM2.5 BEHAVIOUR IN C5 PACKAGE                                       | 41 |
|------------------------------------------------------------------------------------------------------------|----|
| Figure 20: Graphical Analysis of Ambient Noise Quality in Day time in C5 Package                           | 41 |
| FIGURE 21: GRAPHICAL ANALYSIS OF AMBIENT NOISE QUALITY IN NIGHT-TIME IN C5 PACKAGE                         | 42 |
| FIGURE 22: GRAPHICAL REPRESENTATION OF PM <sub>10</sub> BEHAVIOUR IN C6 PACKAGE                            | 44 |
| FIGURE 23: GRAPHICAL REPRESENTATION OF PM <sub>2.5</sub> BEHAVIOUR IN C6 PACKAGE                           | 45 |
| Figure 24: Graphical representation of DG Stack Monitoring for C6 Package                                  | 46 |
| FIGURE 25: GRAPHICAL REPRESENTATION OF NOISE MONITORING IN DAY TIME OF SENSITIVE LOCATIONS IN C6 PACKAGE   | 47 |
| FIGURE 26: GRAPHICAL REPRESENTATION OF NOISE MONITORING IN NIGHT-TIME OF SENSITIVE LOCATIONS IN C6 PACKAGE | 47 |
| FIGURE 27: GRAPHICAL REPRESENTATION OF NOISE MONITORING IN DAY TIME IN C6 PACKAGE FOR CONSTRUCTION SITES   | 48 |
| FIGURE 28: GRAPHICAL REPRESENTATION OF NOISE MONITORING IN NIGHT-TIME IN C6 PACKAGE FOR CONSTRUCTION SITES | 48 |
| Figure 29: Ground water Quality Monitoring graphical representation C6 Package                             | 52 |
| FIGURE 30: GRAPHICAL REPRESENTATION OF PM10 BEHAVIOUR IN C7 PACKAGE                                        | 54 |
| FIGURE 31:GRAPHICAL REPRESENTATION OF PM2.5 BEHAVIOUR IN C7 PACKAGE                                        | 55 |
| FIGURE 32: GRAPHICAL ANALYSIS OF AMBIENT NOISE QUALITY IN DAY TIME IN C7 PACKAGE                           | 55 |
| FIGURE 33: GRAPHICAL ANALYSIS OF AMBIENT NOISE QUALITY IN NIGHT-TIME IN C7 PACKAGE                         | 56 |
| FIGURE 34: GRAPHICAL REPRESENTATION OF PM10 BEHAVIOUR IN C8 PACKAGE                                        | 57 |
| FIGURE 35: GRAPHICAL REPRESENTATION OF PM2.5 BEHAVIOUR IN C8 PACKAGE                                       | 57 |
| Figure 36: Graphical Analysis of Ambient Noise Quality in Day time in C8 Package                           | 58 |
| FIGURE 37: GRAPHICAL ANALYSIS OF AMBIENT NOISE QUALITY IN NIGHT-TIME IN C8 PACKAGE                         | 58 |
| FIGURE 38: GRAPHICAL REPRESENTATION OF PM10 BEHAVIOUR IN P1B PACKAGE                                       | 59 |
| FIGURE 39: GRAPHICAL REPRESENTATION OF PM2.5 BEHAVIOUR IN P1B PACKAGE                                      | 59 |
| Figure 40: Graphical representation of DG Stack Monitoring for P1B Package                                 | 60 |
| FIGURE 41: GRAPHICAL ANALYSIS OF AMBIENT NOISE QUALITY IN DAY TIME IN P1B PACKAGE                          | 60 |
| FIGURE 42: GRAPHICAL ANALYSIS OF AMBIENT NOISE QUALITY IN NIGHT-TIME IN P1B PACKAGE                        | 61 |
| FIGURE 43: NO. OF OBSERVATIONS RAISED IN EACH PACKAGE IN THE QUARTER                                       | 70 |
| Figure 44: Observations with respect to issues                                                             | 70 |
| FIGURE 45: UTILIZATION OF RENEWABLE ENERGY IN PROJECT                                                      | 77 |
| Figure 46: Best Practices under Reuse & Recycling                                                          | 79 |
| Figure 47: Best Practices                                                                                  | 80 |
| Figure 48: Illustrations of good housekeeping observed in Labour Camp                                      | 81 |
| FIGURE 49: NINE RIVER CROSSINGS BETWEEN CH 373 TO CH 393 IN C4 PACKAGE                                     | 82 |
| FIGURE 50: ONE RIVER CROSSING AT CH 395 IN C5 PACKAGE                                                      | 82 |
| Figure 51: Mugger Crocodile found in Vishwamitri River                                                     | 82 |
| Figure 52: Inspection by Project staff, NHSRCL, Industry representative, GPCB official                     | 87 |
| FIGURE 53: KYOTO PROTOCOL DAY CELEBRATIONS                                                                 | 93 |
| FIGURE 54: WORLD WATER DAY CELEBRATIONS                                                                    | 93 |

## **ABBREVIATIONS**

AAQM **Ambient Air Quality Monitoring** 

**Ambient Noise Monitoring ANM BMW** Bio Medical Waste

**BOD** Biochemical Oxygen Demand

**Batching Plant** BP

C&D Construction & Debris

Construction Environment Management Plan **CEMP** 

Chainage Ch

CO Carbon Monoxide Carbon dioxide  $CO_2$ COC Clauses of Contract

COD Chemical Oxygen Demand Central Pollution Control Board **CPCB** 

Coastal Regulation Zone CRZ CTE Consent to Establish Consent to Operate CTO CYCasting Yard DO Dissolved Oxygen Digital Elevation Model **DEM** 

Diesel Set DG

**Environment Conductivity** EC **Environment Clearance** EC

**Environment Impact Assessment** EIA **Electric Overhead Travelling EOT EPA Environment Protection Agency EMP Environment Management Plan Environment Monitoring Plan EMoP ESR Environment Status Report** 

General Arrangement Drawing, here it refers to crossing locations **GAD** 

Gujarat Pollution Control Board **GPCB** 

Groundwater GW Kilometre Km LC Labour Camp

**MAHSR** Mumbai Ahmedabad High Speed Railway

meter

Milligrams per litre mg/lMT Metric Tonnes NA Not Applicable

New Austrian Tunnelling Method NATM

Non-Conformance Report/ Non Compliance Report **NCR** NHSRCL National High Speed Railway Corporation Limited

Nos. Numbers

Nitrogen oxides **NO**x

**OWC** Organic Waste Converter Project Affected People **PAP** 

Particulate Matter PM

**Project Management Consultant PMC** 

PO Project office QA/QC Quality Assessment/ Quality Control

**RCC** Reinforced Cement Concrete

Revision Rev

RO **Reverse Osmosis** Right of Way **ROW** Section Sec

S-EIA Supplemental Environmental Impact Assessment

Safety Health & Environment SHE

Sulphur dioxide  $SO_2$ 

Site Observation Report SOR State Pollution Control Board **SPCB** 

**Sedimentation Tank** STSewage Treatment Plant STP Tunnel Boring Machine **TBM** PMC Consortium **TCAP** 

**TDS Total Dissolved Solids** Terms of Reference **TOR** Transit Mixer

TM

**TSS Total Suspended Solids** 

UG Underground

# 1 About the Project

The Government of India under National High-Speed Rail Corporation Limited (NHSRCL) is constructing Mumbai Ahmedabad High Speed Rail Project (MAHSR) funded by Japan International Cooperation Agency (JICA). The Mumbai-Ahmedabad section has total length of approximately 508 km. A fully dedicated line with double track will be constructed as the main line for the project. On the Mumbai side, the line would run through an underground tunnel across the Thane creek to an underground station at Bandra-Kurla complex. On the Ahmedabad side, the line would run over viaducts to the stations at Ahmedabad and Sabarmati, integrating with the existing Indian Railway stations for the convenience and easy transfer of passengers. In total, 12 Nos. of stations are planned including Mumbai Station and Sabarmati Station and three depots.

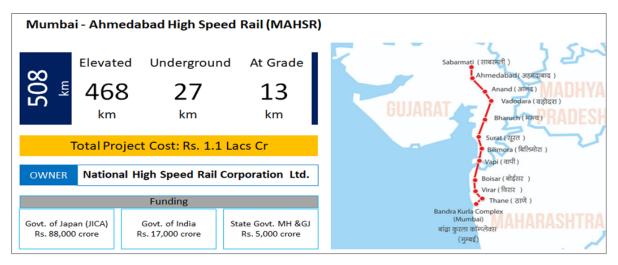



Figure 1: MAHSR Project

# 2 Project Infrastructure Packages and Activities under MAHSR

MAHSR is divided into various infra packages. The details are provided in Figure 2 below.

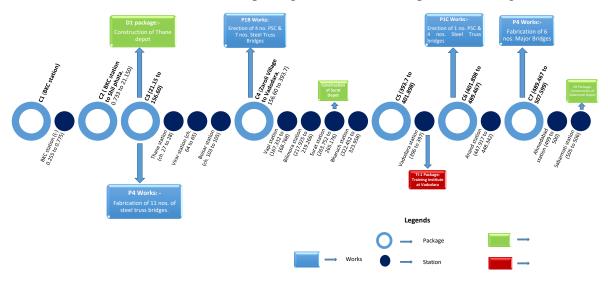



Figure 2: Different Infrastructure Packages under MAHSR

# **Project Components** under each infra package is provided below –

Table 1: Project Components per Infra Package

| # | Infra Package                   | Components                                                                              |
|---|---------------------------------|-----------------------------------------------------------------------------------------|
| 1 | C1 Package                      | The Works include Underground Station (UG Station),                                     |
|   | (Ch 0.255 - 0.755               | Cut & Cover Tunnel and Shaft-1, along with its above                                    |
|   | underground at Bandra           | ground facilities.                                                                      |
|   | Kurla Complex)                  |                                                                                         |
| 2 | C2 Package                      | Construction of Tunnel, located between Bandra Kurla                                    |
|   | (Ch .733 – 21.150)              | Complex (BKC), Mumbai and Shilphata-                                                    |
|   |                                 | • 3 Tunnels by TBM;                                                                     |
|   |                                 | • 3 Tunnels by NATM;                                                                    |
|   |                                 | • 1 ADIT by NATM;                                                                       |
|   |                                 | • Shaft - 2 @ Ch 6.95 & Shaft - 3 @ Ch 16.21                                            |
|   | CO. D. J.                       | • 38 nos. of equipment rooms.                                                           |
| 3 | C3 Package                      | • Viaducts & Bridges 124.035 km.                                                        |
|   | (Ch 21.15 – 156)                | • 28 Crossing Bridges.                                                                  |
|   |                                 | • 11 Structural Steel Bridges (Fabrication at P4);                                      |
|   |                                 | • 5.359 km of Earth Structures.                                                         |
|   |                                 | 6 Mountain Tunnels with a total length of 6 km.                                         |
|   |                                 | • 3 Stations - Thane, Virar & Boisar;                                                   |
|   |                                 | 1 Maintenance Depot at Boisar; 8 Sub-                                                   |
|   |                                 | Maintenance Depots.                                                                     |
|   |                                 | 3 Traction Sub Section; 3 Sectioning Posts; 5 Sub  Sectioning Posts; 7 Signaling Posts; |
|   |                                 | Sectioning Posts; 7 Signaling Rooms.                                                    |
| 4 | C4 Package                      | Viaducts & Bridges 234.755 km;                                                          |
|   | (Ch 156.6 – 393.700)            | • 53 Crossing Bridges;                                                                  |
|   |                                 | • 45 m of Earth Structures;                                                             |
|   |                                 | • 1 no. Mountain Tunnels 350m;                                                          |
|   |                                 | • 4 Stations - Vapi, Bilmora, Surat & Bharuch.                                          |
|   |                                 | • 1 Maintenance Depot at Surat; 4 Maintenance Depot                                     |
|   |                                 | at Vapi, Bilmora, Surat & Bharuch; 11 Sub.                                              |
|   |                                 | Maintenance Depots; 1 Confirmation Car Base Shed.                                       |
|   |                                 | • 5 Traction Sub Section; 4 Sectioning Posts; 10 Sub                                    |
|   |                                 | Sectioning Posts; 10 Signaling Rooms; 10                                                |
|   |                                 | Distribution Sub Section                                                                |
| _ | C5 De also as                   | V: 1 4 6 D : 1 7 412 1                                                                  |
| 5 | C5 Package (393.700 to 401.898) | • Viaducts & Bridges 7.412 km;                                                          |
|   | (373.700 to 401.070)            | 15 Crossing Bridges.     27m of Station Americal Violente                               |
|   |                                 | 827m of Station Approach Viaduct;      Stations Vadadors                                |
|   |                                 | 1 Stations – Vadodara     1 Confirmation Con Page Shed: 1 Signaling Page.               |
|   |                                 | • 1 Confirmation Car Base Shed; 1 Signaling Room;                                       |
|   |                                 | 1 Distribution Sub Station                                                              |
| 6 | C6 Package (Ch                  | Viaducts & Bridges 86.819 km;                                                           |
|   | 401.898 to 489.467)             | • 25 Crossing Bridges; 1 Station - Anand / Nadiad.                                      |
|   | 1321373 00 1371107)             | <ul> <li>1 Maintenance Depot; 4 Sub. Maintenance Depots;</li> </ul>                     |
|   |                                 | 1 Maintenance Depot, 4 Sub. Maintenance Depots,                                         |

| #  | Infra Package                            | Components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|----|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    |                                          | 3 Traction SS; 3 Sectioning Posts; 3 Sub Sectioning Posts                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 7  | C7 Package<br>(Ch 489.467 to<br>507.599) | <ul> <li>Viaducts &amp; Bridges 16.839 km;</li> <li>31 Crossing Bridges; Erection 6 nos. of Major Bridges (Fabrication in P4).</li> <li>Station Approach Rigid Frame Viaduct - 2 nos. ADI (435m) &amp; Sabarmati (865m).</li> <li>2 Stations - Ahmedabad &amp; Sabarmati.</li> <li>1 Sub Maintenance Depot;</li> <li>1 Sub Sectioning Post; 2 Signaling Rooms; 2 Distribution SS;</li> <li>Station Entrance at Ahmedabad</li> </ul>                                                         |  |  |  |  |
| 8  | C8 Package<br>(Sabarmati Depot)          | <ul> <li>Sabarmati Depot shall cover an area of approx. 840,000 sq.m for the Rolling Stock</li> <li>No. of tracks in Stabling area - Initial 10 increasing to 29 in future;</li> <li>1 Maintenance Depot; 3 Gantry Cranes; 1 EOT Crane;</li> <li>Roads; Water Treatment; Storage Tanks;</li> <li>Operation Control Centre for the entire Operation</li> </ul>                                                                                                                               |  |  |  |  |
| 9  | P1B Package                              | <ul> <li>4 No. PSC Bridges (GAD 9, 10, 11 &amp; 1441) and</li> <li>7 No. Steel Truss Bridges (GAD 68, 1134, 12, 61, 14, 15 &amp; 62)</li> <li>Construction of Foundation works, Substructure works, Superstructure works, installation of bearings, deck arrangements as per TOR, Design &amp; Drawings, and other associated works like temporary diversion of roads along with road traffic management, utility diversion and protection as required, and any incidental works</li> </ul> |  |  |  |  |
| 10 | P1C Package                              | <ul> <li>01 No. PSC Bridge (GAD 33)</li> <li>04 No. Steel Truss Bridges (GAD 28, 1967, 31 and 32)</li> <li>Construction of Foundation works, Substructure works, Superstructure works, installation of bearings, deck arrangements as per TOR, Design &amp; Drawings, and other associated works like temporary diversion of roads along with road traffic management, utility diversion and protection as required, and any incidental works</li> </ul>                                    |  |  |  |  |
| 11 | P4 (x) and P4 (y)<br>Package             | Bridges for crossing over roads / Rivers / Railways / other structures. Procurement, fabrication, and transportation to various bridge Sites of steel truss                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |

| #  | Infra Package                                       | Components                                                                                                                                                                                                                                                                                                                                                                                                           |
|----|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                     | superstructures for 33 Nos. of Bridges, including accessories as per the drawings and supply of bearings, check-assembly, painting, transportation of the fabricated materials and bearings to the bridge-sites/site-delivery-yards, unloading, stacking and handing over of the same to the respective construction contractors.  • 33 nos. of bridges are divided as - • 11 in C3 • 11 in P1B • 5 in P1C • 6 in C7 |
| 12 | D1 Package<br>(Thane Depot)                         | All Works pertaining to Design, Construction, Installation, Testing and Commissioning of Thane Depot consisting of Inspection Sheds, various building, Maintenance Facilities, and Associated works                                                                                                                                                                                                                  |
| 13 | TI-1 Package<br>(Training Institute at<br>Vadodara) | Construction of the Training Institute Main Building,<br>Admin. Area, Training Area, Practice Area, Residential<br>Building, Common Utilities, Canteen Building, Utility<br>Building.                                                                                                                                                                                                                                |

As of March 2023, C1 C4, C5, C6, C7, C8, P1B, P1C, and P4 packages have been commissioned. Since C1 package commenced in last week of March 2023 and activities with respect to Environmental management had not initiated, hence, the new package is not mentioned in the present report.

The **Project Activities** common to all Construction packages that has environmental impacts are the following –

- Site Clearing, levelling & preparation (cutting, stripping, excavation, earth movement, compaction) for ROW, casting yards, Batching Plants, Site offices.
- Transportation of Equipment, Machinery, Materials & Manpower
- Installation of Equipment & Machinery
- Operation of Equipment, Machinery & Vehicles
- Civil construction temporary roads, excavation, concreting, piling, blasting etc.
- Electrical & Mechanical works
- Storage, handling & Disposal of wastes (Municipal, C&D waste, E-waste, Hazardous waste, Bio-medical wastes etc.)
- Influx of labour and the ancillary activities associated with it development of Labour camps, provision of associated utilities, water wastewater management, medical facilities, waste management.

For P4 package which involves fabrication of bridges, following activities has environmental impacts:

- Transportation of Material
- Process related activities Marking & Cutting of Steel, Drilling & Punching of holes,
   Welding, Blasting & Painting
- Storage of raw material, hazardous chemicals and waste
- Electrical & Mechanical works
- Storage, handling & Disposal of wastes (Municipal, C&D waste, E-waste, Hazardous waste, Bio-medical wastes etc.)
- Provision of amenities for Labour Canteen, Toilets, Water, Waste & Wastewater management

# 3 Environmental Management at MAHSR

During the planning stage, environmental impact assessment (EIA) studies were conducted, and its reports were prepared as EIA (during feasibility study) and Supplemental EIA (S-EIA, during detailed design study), respectively.

While it was not possible to avoid or reverse all the adverse impacts caused by the proposed project, considerable impacts were identified and mitigation measures to minimize, control and manage, the residual environmental impacts were proposed as the Environmental Management Plan (EMP) in the S-EIA.

The MAHSR Project is being implemented in specific Infra Packages which are floated as separate Tenders. The Contractor responsible for a specific Infra Package is responsible for implementation of Environmental Management Plan (EMP) in their respective areas of the Mumbai Ahmedabad High Speed Railway (MAHSR) Project. The Contractor as per Contractual Agreement is required to prepare Construction Environmental Management Plan (CEMP) based on the EMP and EMOP in S-EIA.

Project Management Consultant (PMC)<sup>1</sup> (also called as Supervision and General Consultant) appointed for the project is responsible for Supervision and Reporting of Environmental Management Plan (EMP) and Environment Monitoring Plan (EMoP) implementation which is being executed by Infra Package Contractors, as well as various mitigative measures suggested by authorities and fulfilment of Japan International Cooperation Agency (JICA) Environmental Guidelines.

The primary task of PMC is –

- Supervision and Reporting of the Environmental Management Plan (EMP) and
- Environment Monitoring Plan (EMoP) for the MAHSR Project
   Evaluating the adequacy of the approved CEMP by confirming compliance status by Contractor through inspections. Detecting and suggesting corrective actions for non-conformances/irregularities observed.

<sup>&</sup>lt;sup>1</sup> PMC is a JV, Consortium comprising of Tata Consulting Engineers (TCE), Consulting Engineers Group (CEG), Aarvee Associates & PADECO Co.

- Ensuring Laws of the Land are complied with. Legal register as provided in CEMP is referred to, additionally any legal instrument that has been missed, amended, or introduced in the course of Construction is suggested to be included and complied with.
- Analysing Environmental monitoring conducted in field, based on the Environmental & Social Monitoring Plan given in CEMP.
- Reporting Quarterly summary of the monthly monitoring items. Identifying the gaps and suggesting improvement measures.
- Identifying unanticipated impacts and risks and suggest mitigation measures. Also identifying good practices and environmental incidents.
- Verifying grievances submitted by project affected people.
- Evaluating training programs conducted by Contractor.
- Supporting NHSRCL for preparation of necessary document and/or replies to other parties regarding environment and related matters.

# 4 Environmental Status Report (ESR)

PMC is required to submit Environmental Status Report (ESR) every Quarter which shall include –

- Environmental monitoring analysis
- Environment inspection reports including environmental incidents, non-conformances, and good practices.
- Compliance of Contractor's environment management plan (CEMP) & EMP of S-EIA and non-conformities thereof
- Compliance to condition of statutory clearance & legislative requirements
- Grievances readdressed
- Adequacy of the training programs
- The report shall also include the analysis of above data, findings, and recommendations for further improvements of EMP

In line with the various objectives and tasks mentioned above, the present report is the fourth ESR submitted by PMC. The reporting period is  $1^{st}$  Jan  $2023 - 31^{st}$  March 2023.

# 5 Legal Base

The MAHSR project does not attract requirements of prior Environmental Clearance (EC) as per EIA Notification, 2006 as the Railway sector is not included in the Schedule I of the notification. However, other regulatory clearances and permissions based on various Central, State and Gram Panchayat level regulation will apply (as relevant) during the construction and operational phases. These regulatory requirements have been addressed in the Construction Environmental Management plan (CEMP) of each awarded infra packages.

The Contract between Employer (National High Speed Rail Corporation Limited) and the Contractor defines the Contractor's responsibilities towards Environmental and Social Aspects in Section 6 of Appendix 8000-I, Division 8000 of General Specifications, Volume 3. Based

on the Contract, the Contractor prepared its work specific construction environmental management plan (CEMP) and obtained approval from Engineer /Employer. All the legal compliances are outlined in the respective CEMPs of the awarded infra packages.

The status of CEMP approval of various infra packages is provided in following Table no 2.

Table 2:Status of CEMP for awarded Infra Packages

| Infra Package | CEMP Status    |
|---------------|----------------|
| C4 Package    | Approved       |
| C5 Package    | Approved       |
| C6 Package    | Approved       |
| C7 Package    | Rev 06 - NONOC |
| C8 Package    | Rev 02 - NONOC |
| P1B           | Rev 06 - NONOC |
| P1C           | Rev 03 -NONOC  |
| P4 (X) & (Y)  | Approved       |

PMC has to monitor the status of legal compliances for each infra package and report the same to NHSRCL on Monthly and Quarterly basis.

## 5.1 Status of Legal Compliances

Table 3 & 4 provides a snapshot of legal compliances in various packages. <u>Folder on Legal Compliances is attached as a separate document (Part B) to this Report</u>. **Annexure 1** provides the summary of legal compliances of awarded packages, those items that require detailing.

Table 3: Status of legal Compliances for P4 (x) and P4(y) packages

| Legal Requirement          | Goodluck                                       | Toolfab<br>EIL                                                 | Karbon<br>Steel<br>mart | Salasar<br>TEL                                     | Zetwerk<br>MBL                        |
|----------------------------|------------------------------------------------|----------------------------------------------------------------|-------------------------|----------------------------------------------------|---------------------------------------|
| CTO Water                  | Recd.                                          | CTO Recd.<br>(validity<br>expired)<br>Applied for<br>extension | Recd.                   | Recd.                                              | Recd.                                 |
| CTO Air                    | Recd.                                          | CTO Recd.<br>(validity<br>expired)<br>Applied for<br>extension | Recd.                   | Recd.                                              | Recd.                                 |
| Bio-medical waste disposal | Tie up with<br>Dishan Life<br>care<br>Hospital | Tie-up with<br>Retna<br>Global<br>Hospital                     | -                       | Tie -up<br>with<br>Vardhan<br>Hospital<br>Rajnagar | Tie up with<br>Shree Sai<br>Hospital. |

| Legal Requirement                                                                                                                   | Goodluck    | Toolfab<br>EIL     | Karbon<br>Steel<br>mart | Salasar<br>TEL        | Zetwerk<br>MBL                     |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|-------------------------|-----------------------|------------------------------------|
|                                                                                                                                     |             |                    |                         | extension<br>Gaziabad |                                    |
| Authorization (Hazardous Waste – generation, storage & Handling) E waste and petroleum waste if applicable.                         | Recd.       | Recd.              | -                       | Recd.                 | Recd.                              |
| Agency selection for Disposal of Hazardous waste                                                                                    | Safe Enviro | Sasi<br>Industries | -                       | UPWWP                 | Maharshtra<br>Enviro<br>Power Ltd. |
| Hazardous waste agency details – (i) CTE & CTO of Hazardous waste facility (ii) Authorization from SPCB of Hazardous waste facility | Recd.       | Recd.              | -                       | Recd.                 | Recd.                              |
| Insurance for handling hazardous waste (as per Public Liability Act)                                                                | Recd.       | Recd.              | Recd.                   | Recd.                 | Recd.                              |
| Additional                                                                                                                          | D 1         | D 1                | D 1                     | D 1                   | D 1                                |
| Factories license ISO certifications                                                                                                | Recd.       | Recd.              | Recd.                   | Recd.                 | Recd.                              |

Table 4: Status of legal Compliances for the project and for awarded infra packages

| # | Legal requirement                                                      | C4                                                                      | C5                                   | C6                                                                                 | C7                                                | C8       | P1B                               | P1C                    |
|---|------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------|----------|-----------------------------------|------------------------|
| 1 | CRZ Clearance                                                          | Obtained for<br>Narmada River                                           | NA                                   | NA                                                                                 | NA                                                | NA       | NA                                | NA                     |
| 2 | Forest Permission                                                      | Obtained for 5.8470 ha                                                  | NA                                   | NA                                                                                 | NA                                                | NA       | Applied to the relevant Authority | NA                     |
| 3 | Permission for working near<br>Archaeological Sites                    | NA                                                                      | NA                                   | NA                                                                                 | Obtained for<br>Brick Minar, Sidi<br>Basir Minar, | NA       | NA                                | NA                     |
| 4 | Consent for Batching Plants                                            | Obtained for all<br>19 BPs                                              | CTE of one BP obtained out of 2 BP's | Obtained for 7<br>BPs, 1 pending                                                   | Obtained for 3<br>BPs                             | Obtained | CTE & CTO Obtained for 4 BPs      | CTO obtained for 2 BPs |
| 5 | Consent Crusher Units                                                  | Obtained for all 7 Crusher Units                                        |                                      | Obtained for 3,<br>CTO of 2<br>pending                                             | NA                                                | NA       | NA                                | NA                     |
| 6 | Environmental Clearance & Consent of Stone Quarry                      | EC & CTE Obtained CTO Pending                                           | NA                                   | EC of 4 obtained, Applied for 1no.                                                 | NA                                                | NA       | NA                                | NA                     |
| 7 | Permission from Inland Water<br>Authority of India                     | Obtained for<br>Narmada & Tapi<br>rivers                                | NA                                   | Obtained for<br>Mahi River                                                         | Obtained for<br>Sabarmati River                   | NA       | NA                                | NA                     |
| 8 | Permission for working on<br>State Rivers from Water<br>Resources Dept | 6 river permission<br>obtained & 4<br>applied, 5 still to<br>be applied |                                      | Obtained for 4 rivers                                                              |                                                   | NA       | NA                                | NA                     |
| 9 | Permission for working on<br>Ponds/ canals/ lakes                      | Applied for 2 ponds. Clarity on remaining ponds requested.              |                                      | There are 24 ponds and canals for which permissions have been sought. Few awaited. |                                                   | NA       | NA                                | NA                     |

| #   | Legal requirement                                 | C4                      | C5          | C6               | C7              | C8                | P1B              | P1C               |
|-----|---------------------------------------------------|-------------------------|-------------|------------------|-----------------|-------------------|------------------|-------------------|
| 10  | Permission for Storing                            | Obtained for 7          | NA (Using   | Obtained for 4   |                 | NA (Using         |                  |                   |
|     | Petroleum Products                                | locations               | bowser)     | sections         |                 | bowser)           | NA               |                   |
| 11  | Permission for abstracting                        | Permission recd         |             | Obtained for 40  | Applied for 3   |                   | Obtained for 4   | Obtained for only |
|     | Groundwater                                       | for 64 borewells,       |             | borewells        | locations       |                   | borewells, all   | for 1 location    |
|     |                                                   | 4 remaining             |             |                  |                 |                   | other pending    | GAD 33, 1         |
|     |                                                   | applied                 |             |                  |                 |                   |                  | pending.          |
| 12  | Authorised Vendor for Bio-                        | 3 agencies              | Tie up with | Agency selected  | Agency selected |                   | Tie up with      | Tie up with       |
|     | medical waste disposal                            | selected                | Hospital.   |                  |                 |                   | hospital         | hospital          |
| 13  | Authorization from SPCB for                       | Obtained for only       |             | Obtained for all | -               |                   | -                | -                 |
|     | generation & handling of                          | Sec 4, other            |             | 4 sections.      |                 |                   |                  |                   |
|     | BMW for all Health Care                           | sections applied        |             |                  |                 |                   |                  |                   |
|     | facilities                                        |                         |             |                  |                 |                   |                  | the transfer      |
| 14  | Authorisation from SPCB for                       | -                       |             | -                | -               |                   | -                | Applied to GPCB   |
|     | hazardous waste storage and                       |                         |             |                  |                 |                   |                  |                   |
| 1.5 | handling                                          | 2 4 4 1 1               |             | 4 A 41 . 1       | A 1 1           |                   | 0 4 4 1 1        | A 1 1 1 1         |
| 15  | Authorised Vendor for disposal of hazardous waste | 3 Authorised            |             | 4 Authorised     | Agency selected | Agencies selected | 2 Authorised     | Agencies selected |
| 1.0 | •                                                 | vendors selected        |             | vendors selected | COD W           | selected          | vendors selected | COD Waste         |
| 16  | Permission for disposal of C&D waste from Local   | C&D Waste reused in the |             | C&D Waste        | C&D Waste       |                   | C&D Waste        | C&D Waste         |
|     | Authority                                         |                         |             | reused in the    | reused in the   |                   | reused in the    | reused in the     |
| 17  | Permission for Railway                            | project                 |             | project          | project         |                   | project<br>NA    | project<br>NA     |
| 17  | Stations & Maintenance                            | -                       |             | -                | -               |                   | IVA              | IVA               |
|     | Depots                                            |                         |             |                  |                 |                   |                  |                   |
| 18  | Permission from local                             | NA                      |             | NA               |                 |                   | NA               | NA                |
| 10  | authority for disposal of                         | 1111                    |             | 1111             |                 |                   | 1111             | 1111              |
|     | wastewater in sewerage                            |                         |             |                  |                 |                   |                  |                   |
|     | system                                            |                         |             |                  |                 |                   |                  |                   |
| 19  | Consent for STP                                   |                         |             |                  |                 | NA                | NA               | NA                |

| Complied                                     | Applied to the relevant Authority |    | Information requested from Contractor |
|----------------------------------------------|-----------------------------------|----|---------------------------------------|
| Partial Compliance, some permissions awaited | Not yet applied                   | NA | Not Applicable                        |

# **6 Environmental Monitoring Status**

As per contract requirement, both baseline and construction phase monitoring shall be conducted at all the civil packages. For the purpose of environmental monitoring and analysis study, respective contractors have proposed the Government approved environmental monitoring laboratories. The agencies selected are accredited with MoEF&CC and National Accreditation Board for Testing and Calibration Laboratories/Quality Council of India (NABL/QCI). Details of laboratory involved in different packages is given in Table 5 below.

| # | Package Name   | Name of the approved monitoring agencies        |  |
|---|----------------|-------------------------------------------------|--|
| 1 | C4 Package     | M/s Shree Krishna Analytical Services Pvt. Ltd. |  |
| 2 | C5 Package     | M/s Go Green Mechanisms Pvt. Ltd.               |  |
| 3 | C6 Package     | M/s Shree Krishna Analytical Services Pvt. Ltd. |  |
| 4 | C7 Package     | M/s Go Green Mechanisms Pvt. Ltd.               |  |
|   |                | M/s SKYLAB Analytical Laboratory                |  |
| 5 | C8 Package     | M/s Go Green Mechanisms Pvt. Ltd                |  |
| 6 | P1B Package    | M/s SKYLAB Analytical Laboratory                |  |
|   |                | M/s Shree Krishna Analytical Services Pvt. Ltd  |  |
| 7 | P1C Package    | M/s Team Test House                             |  |
| 8 | P4 (X) Package | M/s Ashvamedh Engineering & Consultant for ZMBL |  |
|   |                | M/s Noida Testing Laboratory for STEL           |  |
| 9 | P4 (Y) Package | M/s Eco tech labs Pvt. Ltd for TEIL             |  |
|   |                | M/s Noida Testing Laboratory for GML            |  |

Table 5: List of Environmental Monitoring Agencies for different awarded Packages

In the Quarter (Jan-March 2023) construction time Environmental Monitoring is being conducted in all awarded packages, except P1C package, which is scheduled to start from April 2023. Status of Environmental Monitoring is provided in Table 6.

| #  | Package | Baseline/ Pre-<br>construction<br>monitoring | Start of construction time monitoring | Status/ Observation for the Quarter                                                          |
|----|---------|----------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------|
| 1. | C4      | Sep-Dec 2021                                 | Feb-2022                              | Conducted in the Quarter.                                                                    |
| 2. | C5      | Nov-Dec 2022                                 | Feb-2023                              | In this quarter, Construction Env Monitoring has been conducted in February-23 and March 23. |
| 3. | C6      | Nov 21- Jan 22                               | Mar -2022                             | Conducted in the Quarter                                                                     |
| 4. | C7      | Jun-Jul 2022                                 | Feb 2023                              | In this quarter, Construction Env Monitoring has been conducted in February-23 only          |
| 5. | C8      | Jun-Jul 2022                                 | Nov 2022                              | Conducted in the Quarter.                                                                    |
| 6. | P1B     | June 2022                                    | Sep 2022                              | Conducted in the Quarter                                                                     |
| 7. | P1C     | Jan 2023                                     |                                       | Construction monitoring not started in the quarter.                                          |

Table 6: Status of Env. Monitoring at different Infra Packages

| #  | Package | Baseline/ Pre-<br>construction<br>monitoring                                                             | Start of construction time                     | Status/ Observation for the Quarter                                                                                                                                                    |
|----|---------|----------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |         |                                                                                                          | monitoring                                     |                                                                                                                                                                                        |
| 8. | P4      | Baseline data of previous year (Year 2021-22) will be used as baseline, as these were ongoing workshops. | Jun-22 (STEL)<br>Jul-22 (GML)<br>Jan-23 (TEIL) | <ul> <li>In the quarter,</li> <li>STEL &amp; GLM - Monitoring conducted in Dec 2022, reported in Jan 23</li> <li>TEIL - Monitoring conducted in Jan 23, reported in Mar 23.</li> </ul> |

#### 6.1 Environmental Monitoring of C4 Package

Monitoring locations for the quarter Jan-Mar 2023 for C4 Package is provided in Table below.

**Environmental Attribute** Sr. Frequency No. of Locations monitored No **Feb** 23 Jan 23 Mar 23 44 1. Air Quarterly / Monthly 14 14 Noise Weekly 44 44 45 3. Vibration Weekly 36 36 36 Pre & Post Monsoon 4. Ground Water Level 0 0 0 Quarterly / Monthly 28 5. Drinking water 30 32 6. Surface Water quality Quarterly 23 0 (2 river (Upstream and Baseline, Downstream) 14 Rivers & 7 ponds monitoring) **Bottom Sediment** 7. **Ouarterly** 0 0 12 Six Monthly (Pre & Post 8. **Ground Water Quality** 0 0 0 Monsoon) 9. **DG Stack Emission** Six Monthly 1 0 5 Monitoring 10. Wastewater quality Quarterly 0 6 2 monitoring for STP

Table 7: Monitoring frequency and locations for C4 package in the Quarter

## 6.1.1 Ambient Air quality monitoring

Ambient Air quality monitoring was conducted at 44 locations in the last quarter of January to March 2023. Two locations were not monitored (AAQM - 09, 26) in the quarter, reason being that these were not active construction sites during the time of monitoring.

As per the ambient air quality analysis report, some of the locations were found above permissible limits in last quarter (Jan-Mar 23) details as provided below. The data is provided in **Annexure 2 (Appendix 2.1)**.

Particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>): It was found that the PM<sub>10</sub> values were exceeding both standards & baseline at 22 locations & PM<sub>2.5</sub> concentrations were exceeding both baseline and

standard values at 20 locations. Refer Figures 2 & 3 for graphical representation. In all, 29 locations have increased particulate matter in which 13 locations were common for exceedance for both  $PM_{10}$  &  $PM_{2.5}$  that are underlined.

- 1. AAQM -3 Vapi Station, Office / Residential Building at Ch. 168/000
- 2. AAQM-6 Project Site office, batching plant, Sander, labour camp at Ch. 188/000,
- 3. AAQM-7 Project Site working area and Labour camp at Ch. 207
- 4. AAQM-8 Crusher Sondhalwada
- 5. AAQM-41 Sondhalwada Quarry
- 6. <u>AAQM-10</u> Project Site office, batching plant, labour camp, Commercial Shed, factory, Residential Billimora Near at Ch. 217/300
- 7. AAQM-11 Billimora station and office Building at Ch. 218/500
- 8. AAQM-12 Village changa (Residential) at Ch. 222/700 Construction site.
- 9. AAQM-14 Project Site office, batching plant, labour camp at Ch. 232/000
- 10. AAQM -15 Sensitive location, temple, Gurukul, at Ch. 239/400
- 11. AAOM -17 Chikali Crusher
- 12. AAQM-18 Project Site office, batching plant, labour camp at Ch. 243/000
- 13. AAQM-19 Project Site office, batching plant, labour camp at Ch. 254/000
- 14. AAQM -20 Sensitive Area Ch. 260 School, Village habitation and Construction
- 15. AAQM-21 Surat Station office area 264/000 and Residential Area
- 16. AAQM-22 Surat Depot at Ch. 262 /700
- 17. AAQM-23 Project Site office, batching plant, labour camp at Ch. 268/000
- 18. AAQM-24 Project Site office, Batching plant, labour Camp and residential Area Ch. 274
- 19. AAQM-45 Project Site office, batching plant, labour camp at Ch. 281/000
- 20. AAQM-25 Project Site office, batching plant, labour camp at Ch. 290/000
- 21. AAQM-27 Zankhav Crusher Plant I
- 22. AAQM-43 Zankhav Crusher Plant 3
- 23. AAQM-46 Project Site Office, batching plant Ch. 320
- 24. AAQM-29 Project Site office, batching plant, labour camp at Ch. 321/000
- 25. AAOM-30 Bharuch Depot and Station and office area Ch. 324/000
- 26. AAQM-40 Choki Crusher
- 27. AAQM-34 Project Site office, batching plant, labour camp at Ch. 359/000
- 28. AAQM-35 Vadodara Depot at Ch. 382
- 29. AAQM-39 Crusher Ajabpura

Gaseous pollutant (SO<sub>2</sub>, NO<sub>X</sub> and CO): Concentration of gaseous pollutant like SO<sub>2</sub>, NO<sub>X</sub> concentrations (Construction value) were exceeding baseline values but are much within the NAAQ standards. Concentration of gaseous pollutant like CO concentrations (Construction value) at all locations were found within baseline and NAAQ standard values.

Following air quality management control measures are implemented at site which has exceeding limits –

- Dust sweeping & water sprinkling activities are carried out to suppress the dust as and when required as a remedial measure for air pollution.
- Dusty working sites or public roads, precautions have been taken to suppress the dust via water sprinkling.
- DG sets provided with adequate stack height.
- Burning of waste in open is prohibited.
- Tree plantation conducted at site and maintained regularly.

- Construction machinery and equipment are regularly maintained to achieve higher fuel efficiency resulting in lower emissions.
- Mechanical mop used for cleaning the internal and approach roads.
- Pollution under control certificate maintained for road transport vehicles and equipment.

Some illustrations of mitigation measures at various locations are shown below -



Awareness created about impact due to air pollution at Chainage 165 & 167



Water Sprinkling is carried out at Surat Station chainage 264.



Housekeeping at chainage 188 CY



Tree Plantation at Vapi Station at Ch. 168



Water Sprinkling is carried out at chainage 165.



Speed Limit administrative Control at Ch. 168



DG with adequate stack height at Ch. 168



Water Sprinkling at Aggregate storage area in CY 167



Water Sprinkling at Internal road at Ch. 167



Wind shield provided around Batching plant at Ch. 167



Training Provided to the workforce about Noise and Air Pollution at Ch. 217



Green net provided to arrest the dust from hopper and conveyor belt at Ch. 217



Adequate Stack height on DG set at Ch. 217



Covered the raw materials stacking in CY. 217



Vehicle speed limit board displayed in PCY 264 to reduce the fugitive emission



CPCB compliant DGs are used having sufficient stack height and placed at upwind direction in the PCY 264

Figure 3:Mitigation measures adopted at Site in C4 Package

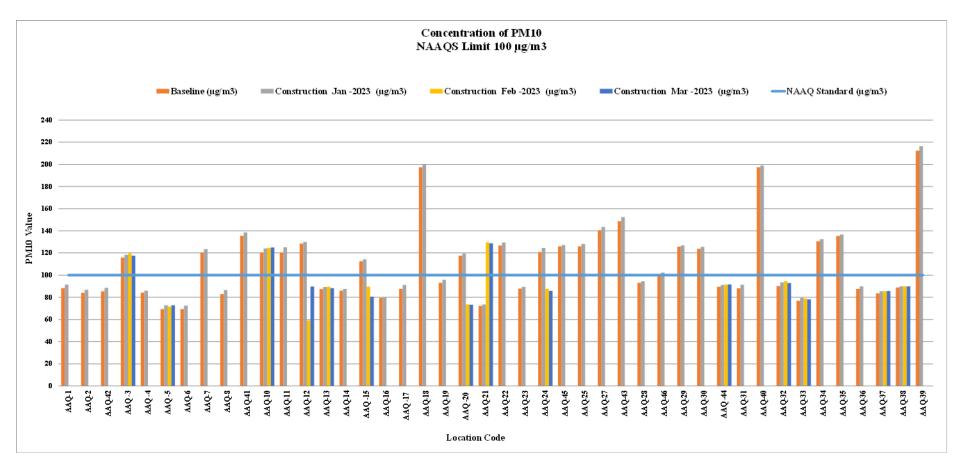



Figure 4: Graphical Representation of PM10 behaviour in C4 Package

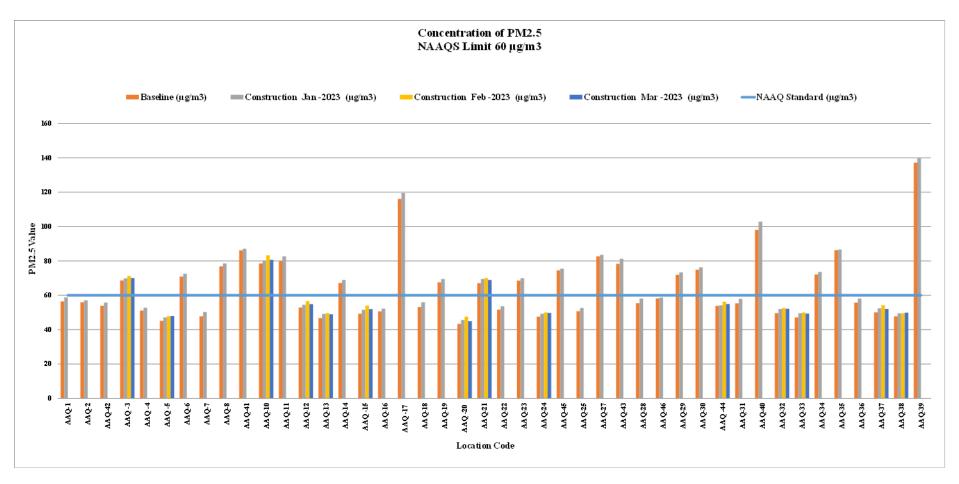



Figure 5: Graphical Representation of PM2.5 behaviour in C4 Package

#### **6.1.2 DG** stack monitoring:

DG stack monitoring was conducted in month of Jan & Mar 2023 in the quarter for 6 nos. of DG Stacks at 5 locations. The results are within the standards for stack monitoring as per EPA (G.S.R.771(E) 11th Dec 2013). The graphical representation of analysis result is provided in Figure 6 and the data is provided in **Annexure 2 (Appendix 2.4)**.

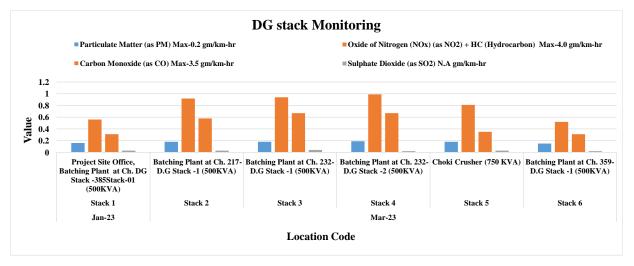



Figure 6: Graphical representation of DG Stack Monitoring for C4 Package

#### **6.1.3** Ambient Noise Quality Monitoring:

Ambient Noise quality monitoring was conducted in 45 locations in the quarter of January to March 2023. Only One location was not monitored as there was no construction activity at the location during the quarter. As per ambient noise quality analysis, most of the locations shows both the daytime and night-time noise level were within the prescribed limit as per respective zone standards except for few locations. The data for all 45 locations is provided in **Annexure 2** (**Appendix 2.2**).

Following locations show increased noise levels from permissible limits. The increased levels may be due to construction activity as well as other activities carried out nearby the project premises.

Day & Night-time Noise values exceeding standards & baseline at –

- ANQM -3 Vapi Station, Office / Residential Building at Ch. 168/000
- ANQM-10 Project Site office, batching plant, labour camp, Commercial Shed, factory, Residential Billimora Near at Ch. 217/300
- ANQM -20 Sensitive Area Ch. 260 School, Village habitation and Construction
- ANQM-21 Surat Station office area 264/000 and Residential Area (not exceeding baseline)

Day Noise values exceeding baseline & standards at –

- ANQM-38 Construction, Sensitive and residential locations at Ch. 393/500
- Night-time Noise values exceeding baseline & standards at
  - ANOM-37 Construction, Sensitive and residential locations at Ch. 390/300.

It is important to note that all the above locations are sensitive locations and need strict control measures.

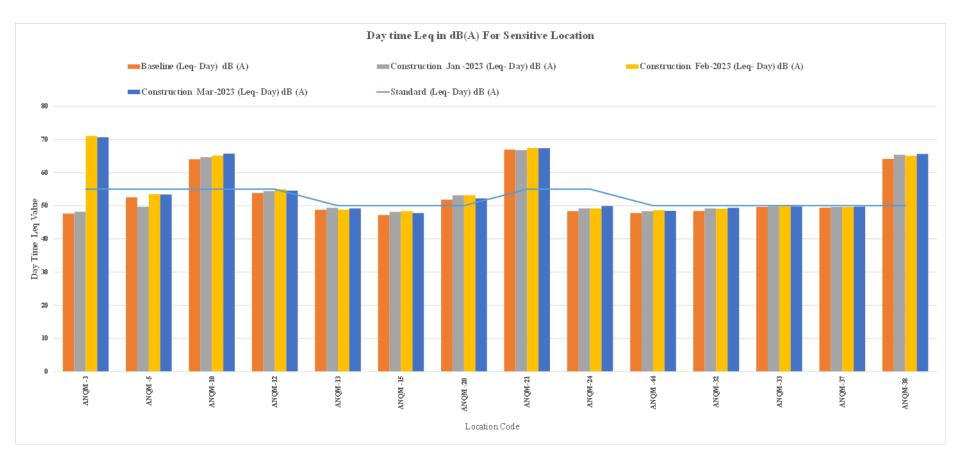



Figure 7: Ambient noise monitoring at daytime in dB(A)in C4 Package for sensitive locations

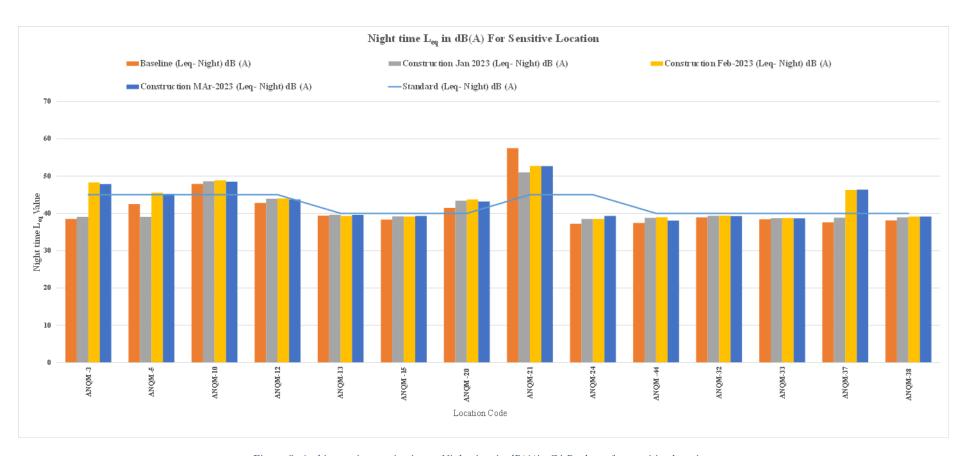



Figure 8: Ambient noise monitoring at Night-time in dB(A)in C4 Package for sensitive locations

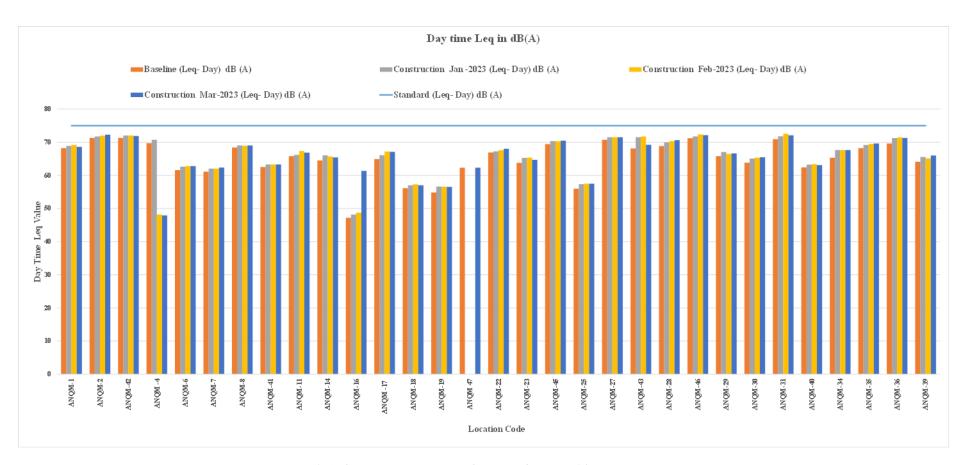



Figure 9: Ambient noise monitoring at daytime in dB(A) in C4 for Construction Sites

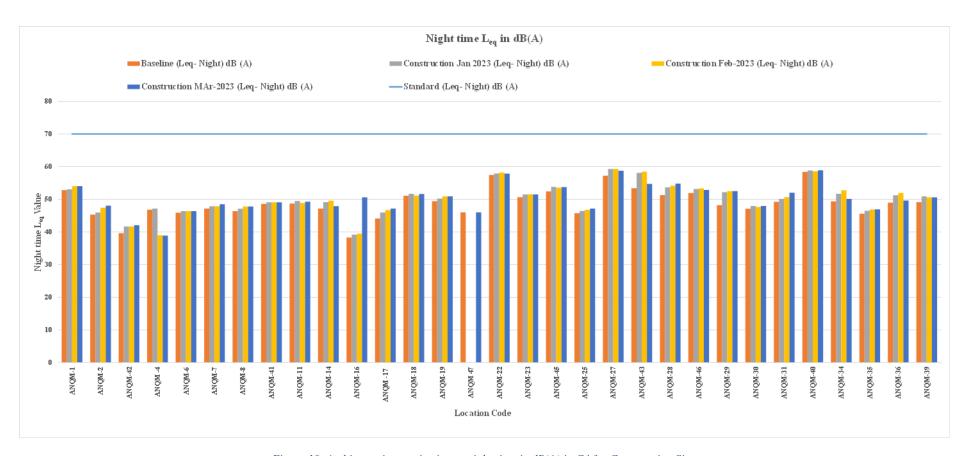



Figure 10: Ambient noise monitoring at night-time in dB(A) in C4 for Construction Sites

Following noise quality management control measures are implemented at site –

- Machinery and vehicles are maintained regularly, with particular attention to silencers and mufflers, to keep construction noise levels to a minimum.
- Night-time construction in residential neighbourhoods is avoided to an extent possible.
- Stationary construction equipment stationed away from noise-sensitive sites.
- Low noise designed equipment used with the latest technologies.
- All DGs are provided with CPCB Class II Standard and acoustic enclosure.
- Ground jack hammering and impact pile driving during night-time hours near residential areas is avoided.
- Avoid metal-to-metal contact on equipment to the extent possible.
- Tree plantation conducted at site and maintained regularly.
- Sharp bit used for drilling operation.

## Some illustrations of control measures adopted -



Acoustic Enclosure on DG Sets



Compliance of Noise norms for DG sets



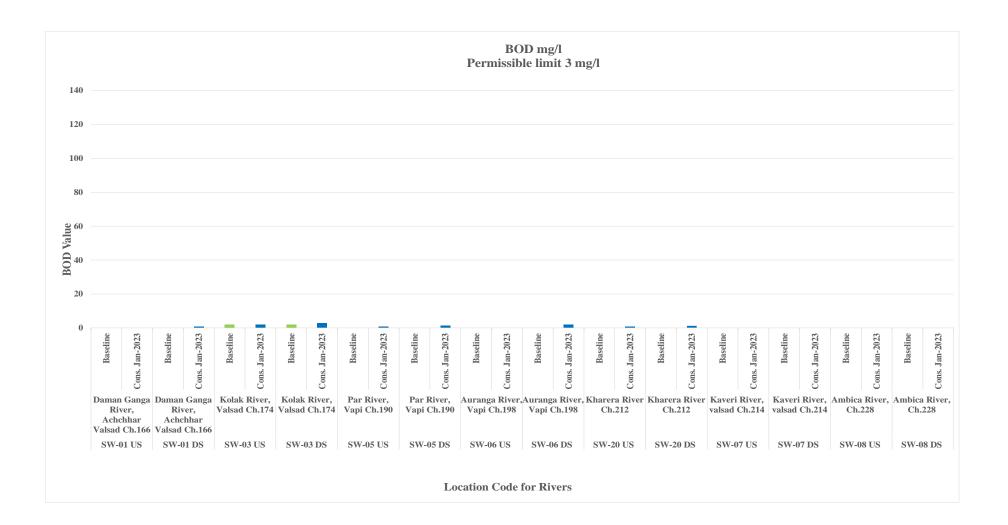
Metal sheets are provided along the project boundary near the sensitive & residential area at Ch. 260



Awareness created among the workforce on noise pollution and control measures at Ch. 260

Figure 11: Mitigation Measures deployed to control Noise pollution at Site.

#### **6.1.4 Drinking Water Quality Monitoring:**


As per drinking water analysis for the quarter Jan to Mar 2023, all the parameters were found within the permissible limit of the Indian Standard for the Drinking Water Quality- IS: 10500-2012. All the chemical parameters are below the permissible limits. The data is provided in **Annexure 2 (Appendix 2.4)**.

### **6.1.5** Surface Water Quality Monitoring:

Surface water quality monitoring was conducted in the month of January 2023 in the quarter (Jan-Mar 23). Samples from 23 locations were taken for surface water quality monitoring which comprised of 14 rivers and 7 ponds. Out of these 14 rivers 2 rivers viz. Kim River, Ch.293 & Vishwamitra River Ch.388 baseline was conducted. The data is provided in **Annexure 2** (**Appendix 2.5**).

Standards considered for analysis of surface water quality were IS 2296. The parameters included for analysis were – pH, DO, BOD, Free Ammonia (N), Electrical Conductivity, Sodium Absorption Ratio, Total Coliforms. Most of the parameters were found within the permissible limits. However, there were 3 parameters viz. BOD, Total Faecal coliform & Conductivity which were exceeding tolerance limits (shown in graphs Fig. 12 to17 for rivers and ponds separately) at following locations–

- Extremely high BOD values & Total coliforms & Conductivity at Vishwamitra River Ch.376 & Ch 380 both in u/s & d/s which means the river has high influx of sewage from the towns & villages nearby. Further, it is also known that there are Crocodile habitat, cattle bathing and other activities that contribute to organic load in the river.
- Downstream values of Mindola River have high BOD & Total coliform values as compared to upstream values, which implies that high organic matter ingress is there between u/s and d/s locations. Contractor do not have any labour colony nearby. The nearest labour colony is at Ch 243 (7 kms away) where STP is installed. Hence, project activities are not contributing to the organic load.
- Navi Nagri Pond (SW-15) & Kuwardha Gram Pond (SW-18) has BOD of the range between 15 to 20 mg/l and Total coliforms count between 4000MPN – 6000MPN/100ml, which implies sewage ingress in the ponds from nearby areas. Contractor has been communicated to be careful at these locations and not allow any drainage from nearby labour areas (toilets) to be released in the drains leading to these ponds.
- Downstream values of Narmada River have increased Total coliform values as compared to upstream values, which implies that sewage ingress is there between u/s and d/s locations. The nearest labour colony is at Ch 321 (1 km) where STP is installed. Hence, project activities are not contributing to the organic load. At site there are 3 nallahs observed between u/s and d/s which may be contributing to organic load, 1 is from Gokulnagar village, 1 temple drain leads into the river and one labour camp drain from Dilip Buildcon is being discharged.



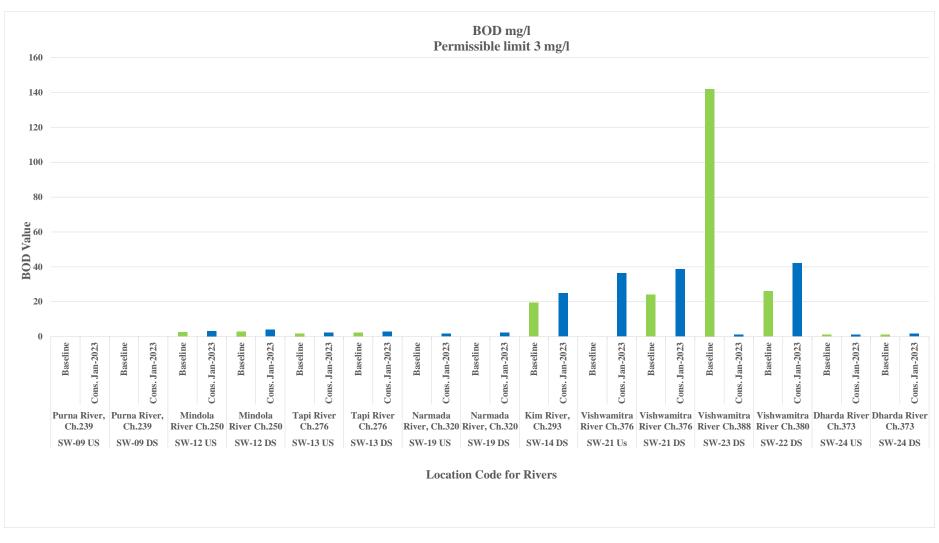
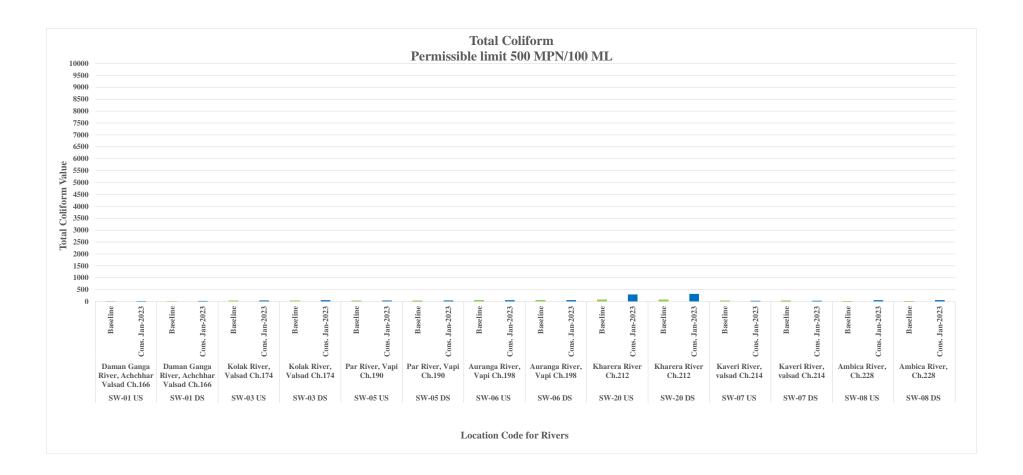




Figure 12: Graphical representation of BOD in Surface Water in 14 rivers for C4 Package (2 graphs)



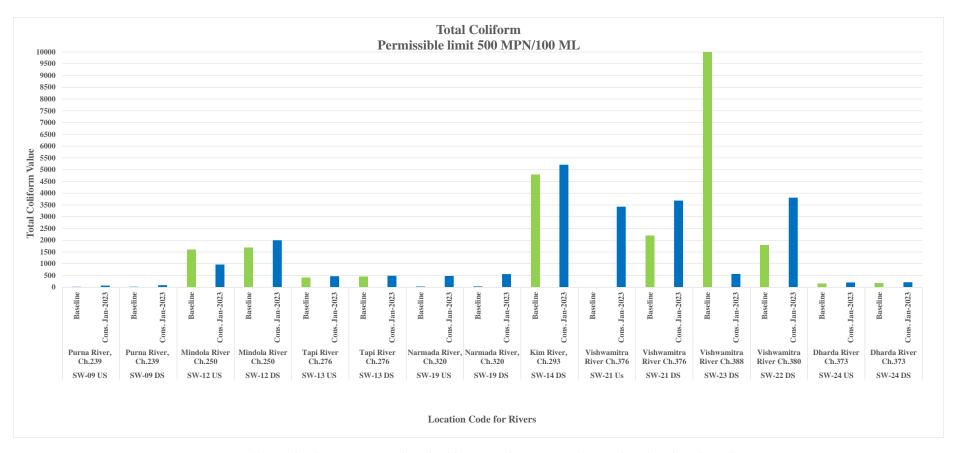




Figure 13: Graphical representation of Total coliform in Surface water in 14Rivers for C4 Package(2 graphs)



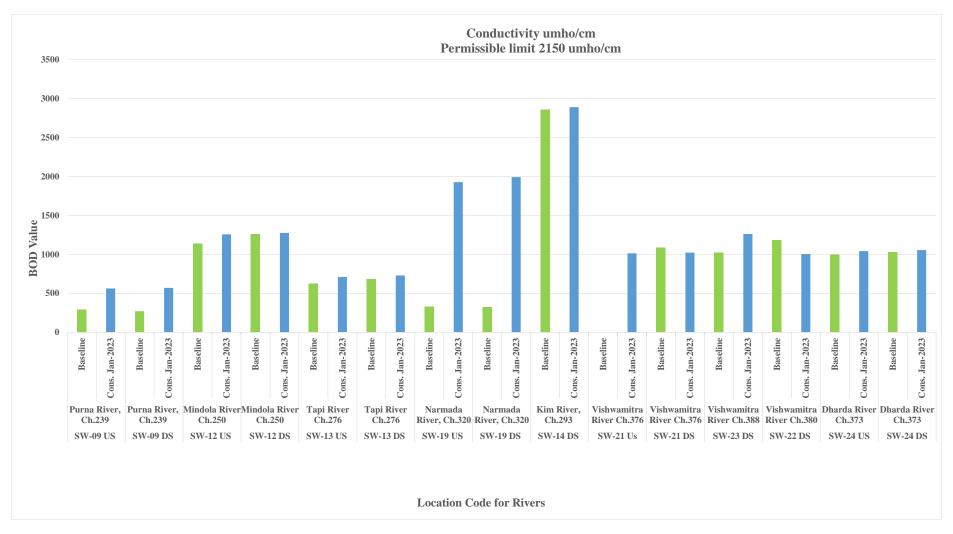



Figure 14: Graphical representation of Conductivity in Surface water in 14Rivers at C4 package (2 graphs)

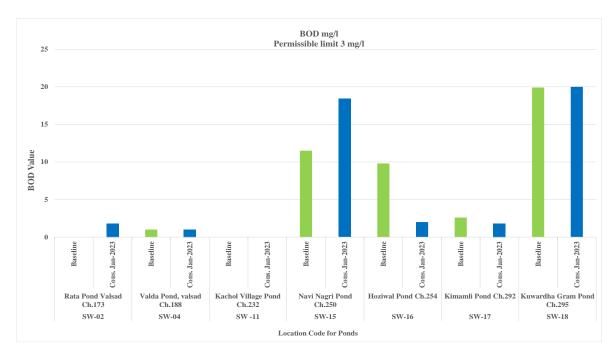



Figure 15: Graphical representation of BOD in Surface water in 7 Ponds at C4 package

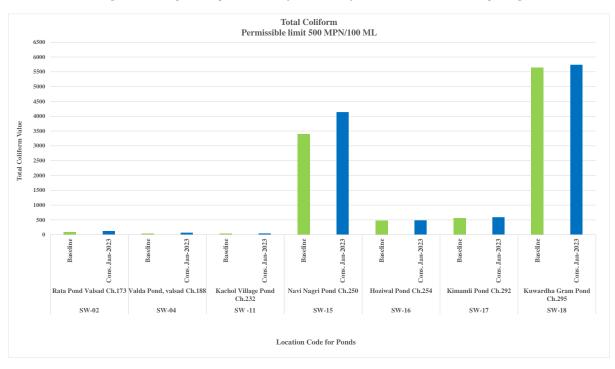



Figure 16: Graphical representation of Total Coliform in Surface water in 7 Ponds at C4 package

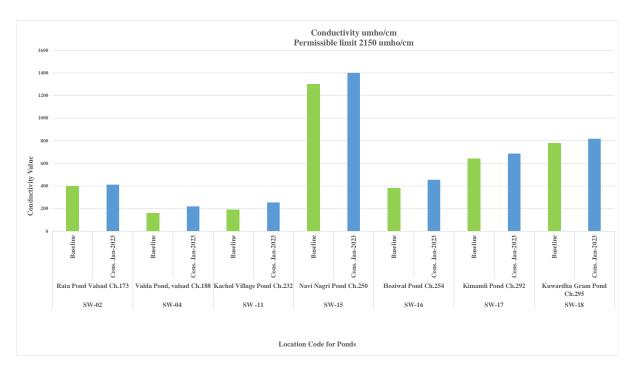



Figure 17: Graphical representation of Conductivity in Surface water in 7 Ponds at C4 package

## **6.1.6 Bottom Sediment Quality Monitoring:**

Bottom Sediment quality monitoring was conducted in the month of January 2023 in the last quarter (Jan-Mar 23). Samples from 12 river locations were taken for Bottom sediment quality monitoring. The data is provided in **Annexure 2 (Appendix 2.6).** 

Out of 12 rivers only for 3 rivers, there was a marked change observed for few parameters which are discussed as below.

- At Ambika River there is an increase observed in Exchangeable Calcium as Ca, Cation exchange capacity & Total Boron.
- At Purna River there is increase in values of Chloride.
- At Tapi River there is increase in values of Chloride & in values of Cation exchange capacity.

At Purna and Tapi the increase in chlorides can be attributed to construction activities. Cement & concrete has chlorides and there is a possibility that TM Wash or Boomer wash may have been done in these rivers, C&D Waste dumped on the TAB could have washed off and settled on the sediments, increasing the chloride content. Increased values in Ambika River appears to be catchment contribution.

## **6.1.7** Wastewater Quality Monitoring:

Wastewater monitoring was conducted in Feb & Mar 23 in the last quarter (Jan-Mar 23) for 8 locations of STP treated water. NGT order 2019 standards for STP treated water were used for analysis. All the parameters in the STPs were found within permissible limits except Ammoniacal Nitrogen, COD & TSS in one location which is Project site area and labour camp at Ch.-207. This implies that the STP at Ch 207 is not working satisfactorily and needs maintenance and the same has been communicated to the Contractor. Parameter of Faecal

Coliform in wastewater analysis has been missed to be monitored and the same has been communicated to the Contractor. The data is provided in **Annexure 2** (**Appendix 2.7**).

## **6.1.8 Vibration Monitoring:**

Ground vibration monitoring was conducted in the quarter Jan to Mar 2023 and there was no exceedance to damage criteria as per (FTA 2006) observed. The range of vibrations is between 0.00 to 0.3 PPV (mm/s). Kindly Refer **Annexure 2** (**Appendix 2.8**).

## 6.2 Environmental Monitoring of C5 Package

Monitoring locations for the quarter Jan-Mar 2023 for C5 Package is provided in Table below.

| Sr. | Environmental Attribute                            | Frequency                                  | No. of I | No. of Locations monitored |        |  |  |
|-----|----------------------------------------------------|--------------------------------------------|----------|----------------------------|--------|--|--|
| No  |                                                    |                                            |          | Feb 23                     | Mar 23 |  |  |
| 1.  | Air                                                | Quarterly / Monthly                        | -        | 10                         | 5      |  |  |
| 2.  | Noise                                              | Weekly                                     | -        | 10                         | 7      |  |  |
| 3.  | Vibration                                          | Weekly                                     | -        | 5                          | 10     |  |  |
| 4.  | Ground Water Level                                 | Pre-monsoon & Post<br>Monsoon              | -        | 0                          | 0      |  |  |
| 5.  | Drinking water                                     | Quarterly / Monthly                        | _        | 0                          | 0      |  |  |
| 6.  | Surface Water quality<br>(Upstream and Downstream) | Quarterly                                  | -        | 0                          | 0      |  |  |
| 7.  | Bottom Sediment                                    | Quarterly                                  | _        | 0                          | 0      |  |  |
| 8.  | Ground Water Quality                               | Six Monthly (Pre-monsoon and Post Monsoon) | -        | 0                          | 0      |  |  |
| 9.  | DG Stack Emission<br>Monitoring                    | Six Monthly                                | -        | 0                          | 0      |  |  |
| 10. | Wastewater quality                                 | Quarterly                                  | -        | 0                          | 0      |  |  |

Table 8: Monitoring Frequency and locations for C5 package in the Quarter

#### 6.2.1 Ambient Air quality monitoring

Ambient Air quality monitoring was conducted in month of February and March 23 in the quarter. As per the ambient air quality analysis report, all the locations were found exceeding the permissible limits, details as provided below. The data is provided in **Annexure 3 (Appendix 3.1)**.

**Particulate matter (PM\_{10} and PM\_{2.5}):** It was found that the PM $_{10}$  & PM $_{2.5}$  concentrations is exceeding both Baseline and Standard values for the following locations. Refer Figures 18 & 19 for graphical representation -

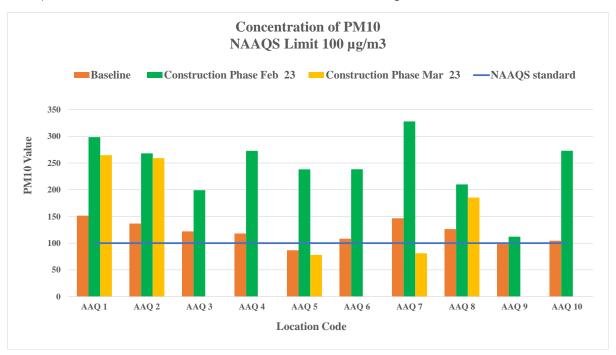
- AAQ 1 Commercial, Pandya Bridge P403- P405/Ch398.406- Ch398.491
- AAQ 2 Residential, Shagun Society -Ch 398.100- Ch 398.200
- AAQ 3 Conformation Car Base -p136-p142/ch 395.067-Ch 395.287
- AAQ 4 Chhani P 540-P 542 (temple/Residental)
- AAQ 5 Vishwamitri (In sun/Temple)-P116-P120/Ch 394.300- Ch394.445
- AAQ 6 Akota res. /Madarsa/Temple/P 143-P149/Ch 396.327-Ch 395.552
- AAQ 7 Punjab Steel -P401/CH 398.321
- AAQ 8 Vadodara Railway station and traffic area TP 03

- AAQ 9 PC yard-Khalipur
- AAQ 10 Quarry Crusher-Khervadi

Contractor ensures water sprinkling on regular basis in these areas. Muck heaps in ROW is covered with tarpaulin to control the dust emissions. Air mist gun has been installed at Punjab Steel plant to bring down the fugitive emissions.








Water Sprinkling

Air Mist Gun at Punjab Steel plant

Muck covered with tarpaulin

Gaseous pollutant (SO<sub>2</sub>, NO<sub>X</sub> and CO): Concentration of gaseous pollutant like SO<sub>2</sub>, NO<sub>X</sub> concentrations (Construction value) were exceeding baseline values but are much within the NAAQ standards. Concentration of gaseous pollutant like CO concentrations (Construction value) at all locations were found within baseline and NAAQ standard values.



Figure~18: Graphical~Representation~of~PM10~behaviour~in~C5~Package

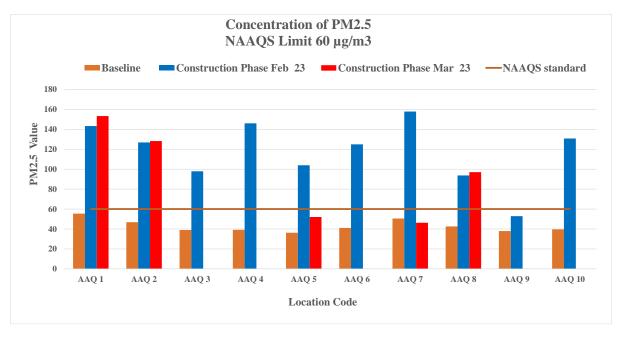



Figure 19: Graphical Representation of PM2.5 behaviour in C5 Package

#### **6.2.2** Ambient Noise Quality Monitoring:

Ambient Noise quality monitoring was conducted in February and March 2023 in the quarter. As per ambient noise quality baseline results, majority of the locations have noise levels exceeding the standard limit as per the respective zone they belong to. Similar trend is visible during the Construction time monitoring as well. The data is provided in **Annexure 3 (Appendix 3.2).** 

The analysis shows that,

- Day time noise values at ANQ 6 (Commercial, Quarry Crusher Khervadi) are exceeding both baseline values and standard limits.
- Night-time values at ANQ 9 (Akota res. /Madarsa/Temple/P 143-P149/Ch 396.327-Ch 396.552) are exceeding both baseline values and standard limits.

Seven locations show increased noise levels compared to permissible limits. due to construction activity as well as other activities carried out nearby the project premises.

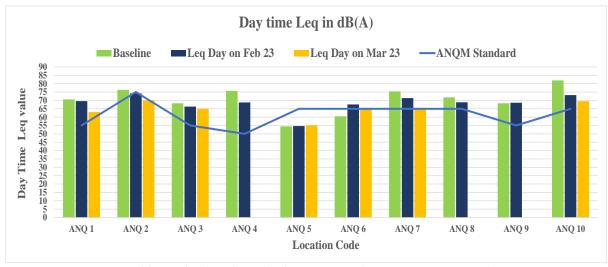



Figure 20: Graphical Analysis of Ambient Noise Quality in Day time in C5 Package

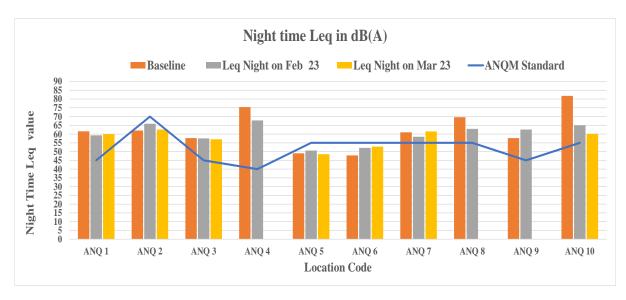



Figure 21: Graphical Analysis of Ambient Noise Quality in Night-time in C5 Package

## **6.2.3** Vibration Monitoring:

Ground vibration monitoring was conducted in February and March 2023 in the quarter. There is no exceedance in damage criteria observed (considering average values) as per FTA 2006 at any of the locations. Refer **Annexure 3 (Appendix 3.3)** 

There were 3 locations which has maximum vibration values above 5 PPV (permitted values), in the month of Feb 2023, these locations are Shagun Society, Vishwamitri P116 to P120, and Vadodara Railway Station. The range of vibrations at these locations was between 6.4 to 7.7 PPV (mm/s) max at Vadodara Railway Station. All the 3 locations encounter vibrations due to proximity to railway lines and highway. However, in the month of March 2023, the vibration levels were found to be within the damage criteria.

## 6.3 Environmental Monitoring of C6 Package

Wastewater quality monitoring

Monitoring locations for the quarter Jan-Mar 2023 is provided in Table below.

**Environmental Attribute** No. of Locations monitored Sr. **Frequency** No Jan 23 Feb 23 Mar 23 1. Air Ouarterly / Monthly 22 22 12 22 23 2. Noise Weekly 20 3. Weekly 22 24 20 Vibration Ground Water Level Pre & Post Monsoon 4. 0 0 0 Quarterly / Monthly 15 5. Drinking water 8 0 6. Surface Water quality (upstream Quarterly 3 0 6 & downstream) 7. **Bottom Sediment** Quarterly 0 0 Ground Water Quality Six Monthly (Pre & 15 0 3 Post Monsoon) **DG Stack Emission Monitoring** 9 9. Six Monthly 0 0

16

11

Quarterly

Table 9: Monitoring Frequency & Locations for C6 Package in the Quarter

0

## **6.3.1** Ambient Air Quality Monitoring:

Ambient Air quality monitoring was conducted covering 33 locations, spread over the length of the package, in the last quarter. As per the ambient air quality analysis, **particulate matter as well as gaseous pollutant concentration were found well within the standards** at all locations in the quarter. Refer Figures 22 & 23. The data is provided in **Annexure 4 (Appendix 4.1)**.

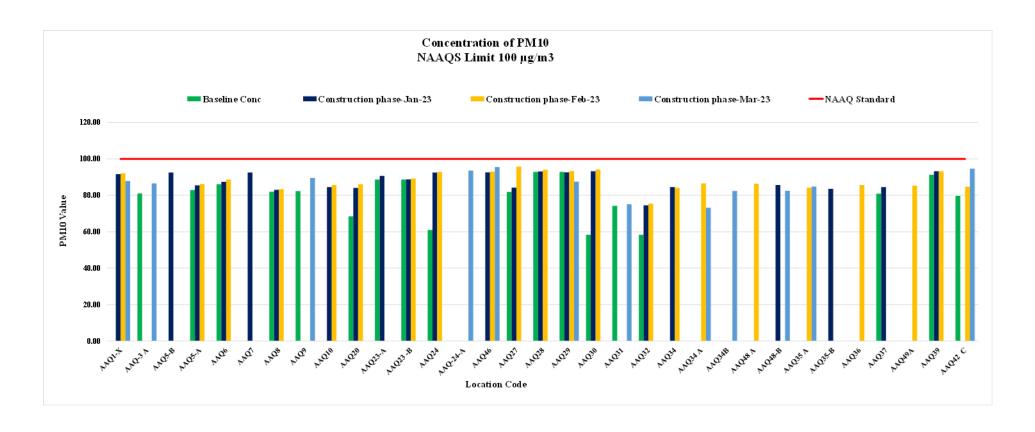



Figure 22: Graphical Representation of PM<sub>10</sub> behaviour in C6 Package

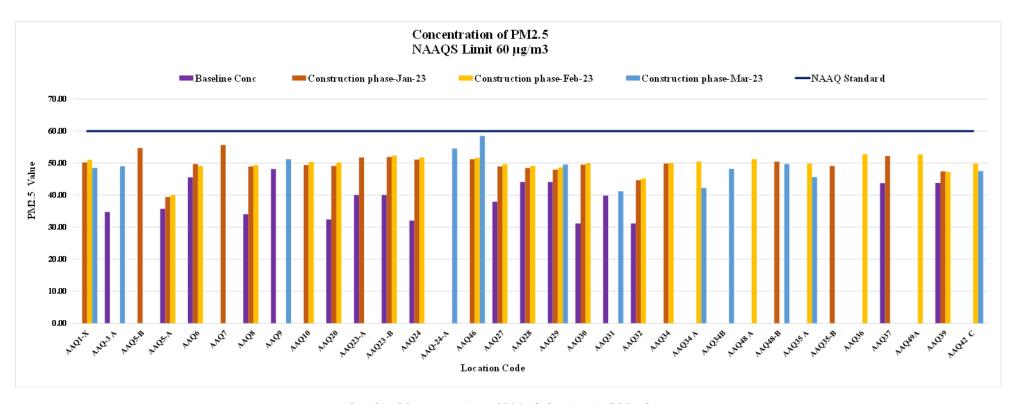



Figure 23: Graphical Representation of PM<sub>2.5</sub> behaviour in C6 Package

#### **6.3.2 DG** stack monitoring:

DG stack monitoring was conducted in month of January 2023 in the quarter of 9 nos. of DG Stacks, located in 4 locations. The results are within the Stack standards as per EPA (G.S.R.771(E) 11th Dec 2013). The graphical representation of analysis result is provided in Figure 24 and the data is provided in **Annexure 4 (Appendix 4.2)**.

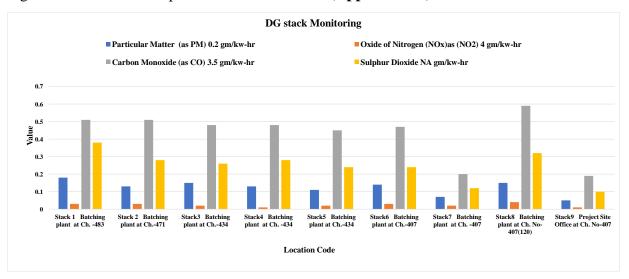



Figure 24: Graphical representation of DG Stack Monitoring for C6 Package

## **6.3.3** Ambient Noise Quality Monitoring:

Ambient Noise quality monitoring was conducted covering 29 locations, spread over the length of the package, in the last quarter. As per ambient noise quality monitoring data both the daytime and night-time noise levels are well within the permissible limits as per the respective zone standards but in two sensitive locations it was found that the noise levels were exceeding permissible limits during night time. Refer Figures 25 to 28 and **Annexure 4 (Appendix 4.3)** for the data. These 2 locations are.

- ANQ 49-B Village -Kanij, Active Project Site at Ch.-476
- ANQ 35-A Village -Katakpura, Active Project Site at Ch.-468

Since these are sensitive locations control measures are required to be strictly adhered to in these locations.

**Following control measures for Noise quality** are proposed at site by the Contractor in their MPR of January 2023:

- Machinery and vehicles should be maintained regularly, with particular attention to silencers and mufflers, to keep construction noise levels to minimum.
- Noise barriers should be erected at appropriate locations such as residential areas and sensitive receptors which are adjacent to the corridor.
- Avoid night-time construction in residential neighbourhoods.
- Locate stationary construction equipment as far as possible from noise-sensitive sites.
- Use low noise designed equipment.
- Ensure that site managers periodically check the site, nearby residences, and other sensitive receptors for noise problems so that solutions can be quickly applied.
- Monitor and maintain equipment to meet noise limits.
- Use acoustic enclosures, shields, or shrouds for equipment and facilities.

- Use high-grade engine exhaust silencers and engine-casing sound insulation.
- Prohibit aboveground jack hammering and impact pile driving during night-time hours near residential areas.
- Minimize the use of generators for power equipment.
- Grade surface irregularities on construction sites.
- Use moveable sound barriers at the source of the construction activity.
- Limit or avoid certain noisy activities during night-time hours.
- Avoid the use of equipment that generates impulsive noise.
- Avoid metal-to-metal contact on equipment.
- Ensure that periods of respite are provided in the case of unavoidable maximum noise level events.

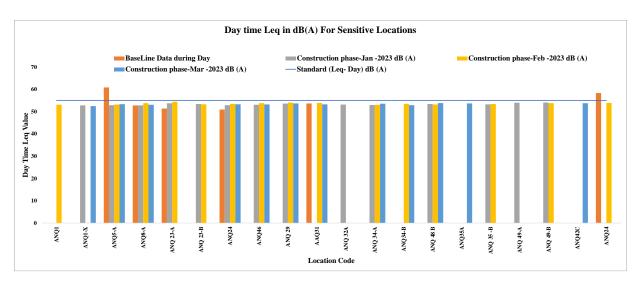



Figure 25: Graphical Representation of Noise Monitoring in Day Time of Sensitive Locations in C6 Package

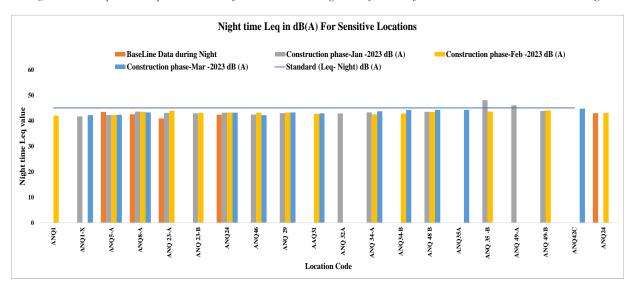



Figure 26: Graphical Representation of Noise Monitoring in Night-time of Sensitive Locations in C6 Package

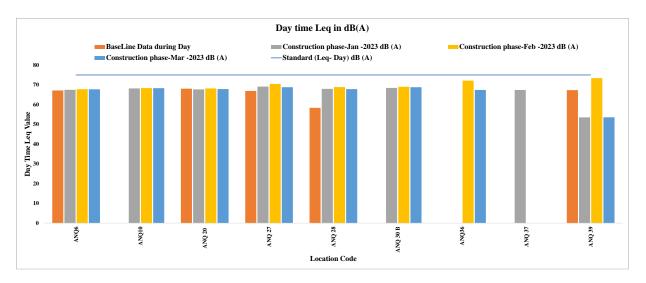



Figure 27: Graphical Representation of Noise Monitoring in Day Time in C6 Package for Construction Sites

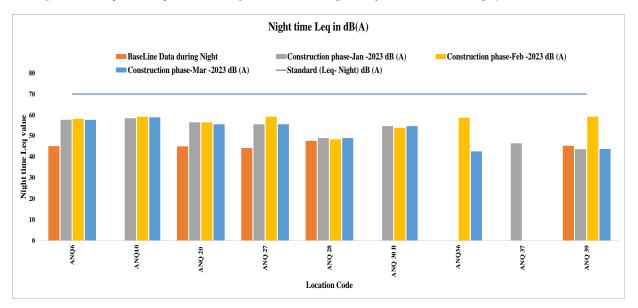



Figure 28: Graphical Representation of Noise Monitoring in Night-time in C6 Package for Construction Sites

#### **6.3.4 Drinking Water Quality Monitoring:**

As per drinking water analysis for the quarter Jan to Mar 2023, all the parameters were found within the permissible limit of the Indian Standard for the Drinking Water Quality- IS: 10500-2012. All the chemical parameters are below the permissible limits. The data is provided in **Annexure 4 (Appendix 4.4).** 

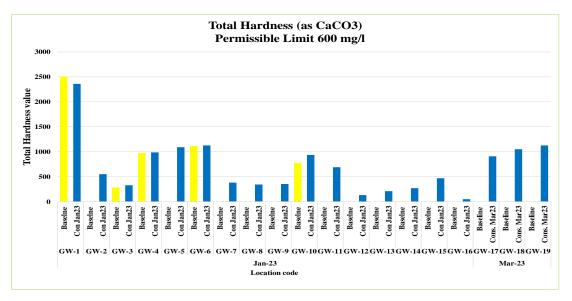
## **6.3.5** Surface Water Quality Monitoring:

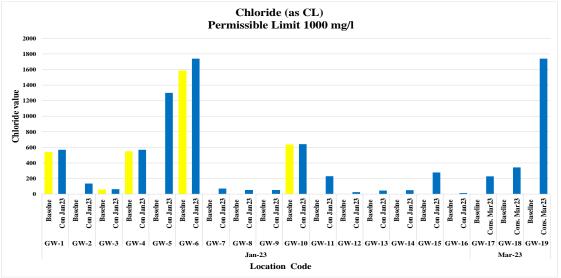
Surface water quality monitoring was conducted in the month of January & March 2023 in the quarter. Samples from 9 locations were taken for surface water quality monitoring which comprised of 3 rivers (Upstream and Downstream), 3 ponds & 3 Canal. Most of the parameters were found within the baselines values and the tolerance limit as per IS: 2296, as per CPCB's water quality criteria Class B. The data is provided in **Annexure 4 (Appendix 4.5).** 

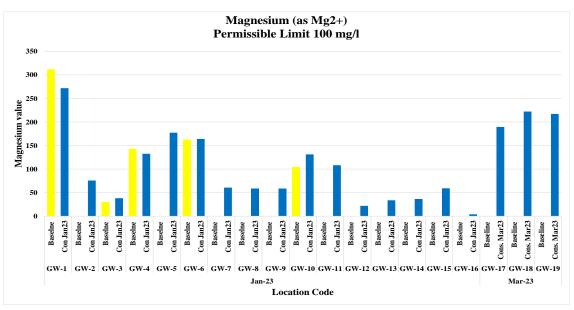
#### **6.3.6** Bottom Sediment Quality Monitoring

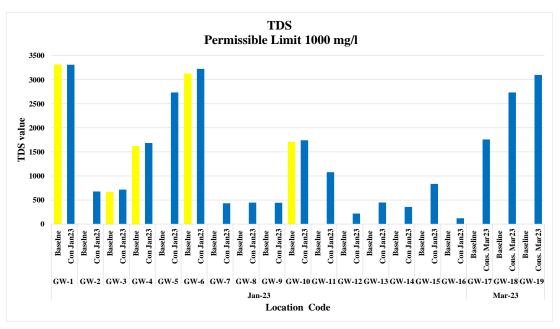
Bottom Sediment quality monitoring was conducted in month of January 2023 in the quarter (Jan-Mar 23) for 3 rivers (Mahi, Mohar and Meshwa Rivers). The data is provided in **Annexure 4** (**Appendix 4.6**). The analysis shows slight increase in some parameters as compared to baseline values.

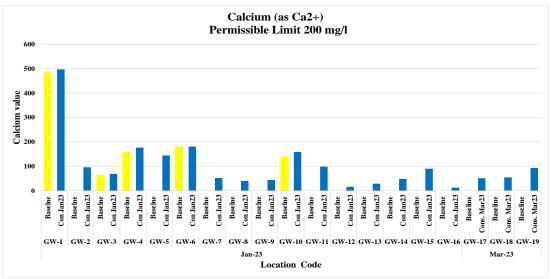
- A) Bottom sediment quality analysis of Mahi River shows -
  - Increase in Phosphorus as P, Phosphates, Exchangeable Sodium as Na, Iron, Nickel, & Total Boron which signifies industrial influx from the Catchment.
- B) Bottom sediment quality analysis of Mohar River shows -
  - Marked increase in EC values. This is verified by increase in Sulphates, Chlorides, and Phosphates. Increase in salinity (or Conductivity), Sulphates and Chlorides can be attributed to construction activities (cementitious flows, C&D Waste settled on the bottom sediments).
  - Increase in Exchangeable Sodium as Na, Exchangeable Magnesium as Mg, Boron, Iron, Zinc, Nickel, signifies industrial influx from the Catchment.
  - Increase in phosphates in Mahi and Mohar rivers may be contribution from washing water (greywater) discharge from labour colonies.
- C) Bottom sediment quality analysis of Meshwa River shows
  - Increase in Boron signifies industrial influx from the Catchment.

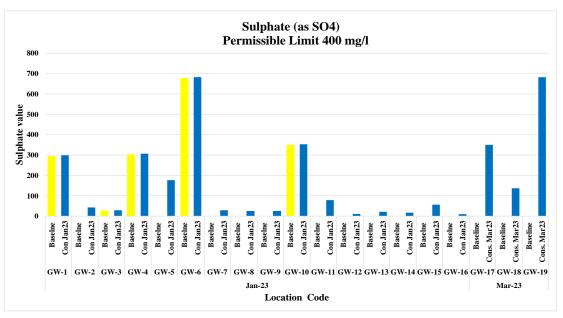

#### 6.3.7 Groundwater Quality Monitoring

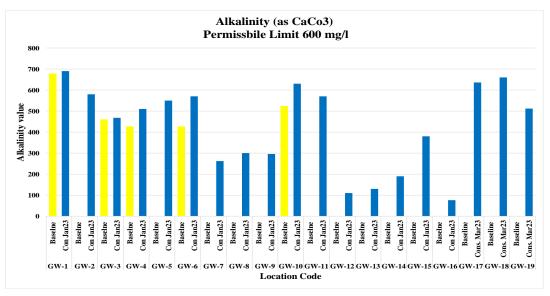

Ground water quality of 18 locations were monitored in the quarter (Jan to Mar 2023). Majority of the parameters were found within the permissible limit of the Indian Standard for the Ground water Quality- IS: 10500-2012.

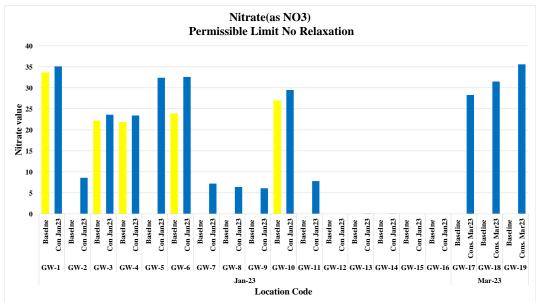

Some of the chemical parameters (as shown in graphically in Figure 23) were found going beyond the permissible limits for some locations viz. Ch 407, Ch 447, Ch 448, Ch 471 and Ch 483. However, while comparing the results with baseline, the exceedance is found minimal.


Slight increase as compared to baseline values is observed in Magnesium values at Ch 447, Ch 448 and Ch 483. Since, the region has hard water, magnesium can show variations over the seasons. Marked increase from baseline values in Fluoride (as F) values is observed at Ch448 and Ch 483. Fluoride ingress in groundwater at these locations may be due to industrial seepage (as there is no naturally occurring fluoride in GW) and is not related to construction activities.


Some of the parameters and their increased levels are shown graphically in Figure 23. The GW quality data is provided in **Annexure 4** (**Appendix 4.7**).













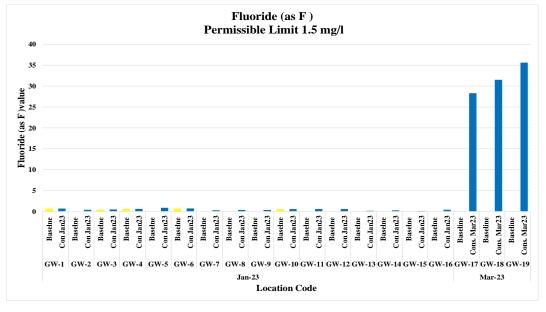




Figure 29: Ground water Quality Monitoring graphical representation C6 Package

## **6.3.8** Wastewater Quality Monitoring:

Wastewater quality monitoring was conducted in Jan and Feb 23 during quarter (Jan to Mar 2023) for 6 locations. Data is provided in **Annexure 4 (Appendix 4.)** 

In January 2023, monitoring was conducted for 6 locations - 5 locations RO reject water, 6 locations STP water and 4 locations was greywater.

In February 2023, monitoring was conducted for 6 locations - 6 locations were STP water, 4 were Greywater.

The results shows that STPs of all 6 locations are not working satisfactorily as TSS, COD & Ammoniacal Nitrogen are high, as per NGT order 2019 standards for STP treated water. It has been communicated to the Contractor to the maintain STPs.

The results of the Greywater quality monitoring shows that the parameters are within limits, as per CPCB general effluent standards on inland surface flows.

Parameter of Faecal Coliform in wastewater analysis has been missed under monitoring. Contractor has been communicated for inclusion of missing parameters in next round of monitoring.

## **6.3.9 Vibration Monitoring**

Ground vibration monitoring was conducted in the quarter Jan to Mar 2023 and there was no exceedance to damage criteria as per (FTA 2006) was observed<sup>2</sup>. The range of vibrations is between 0.000 to 0.300 PPV (mm/s). Refer **Annexure 4 (Appendix 4.8)** for data.

<sup>&</sup>lt;sup>2</sup> Reference -Table no 20 & 21, Annexure XV of CEMP of C6 Package.

## 6.4 Environmental Monitoring of C7 Package

Monitoring locations for the quarter Jan-March 2023 is provided in Table below.

| Sr. | Environmental Attribute | Frequency No. of Lo          |        | ocations monitored |        |
|-----|-------------------------|------------------------------|--------|--------------------|--------|
| No  |                         |                              | Jan 23 | Feb 23             | Mar 23 |
| 1.  | Air                     | Quarterly / Monthly          | 0      | 13                 | 0      |
| 2.  | Noise                   | Weekly                       | 0      | 2                  | 0      |
| 3.  | Vibration               | Weekly                       | 0      | 0                  | 0      |
| 4.  | Ground Water Level      | Pre-monsoon & Post Monsoon   | 0      | 0                  | 0      |
| 5.  | Drinking water          | Quarterly / Monthly          | 0      | 0                  | 0      |
| 6.  | Ground Water Quality    | Six Monthly (Pre-monsoon and | 0      | 0                  | 0      |
|     | -                       | Post Monsoon)                |        |                    |        |
| 7.  | DG Stack Emission       | Six Monthly                  | 0      | 0                  | 0      |
|     | Monitoring              | -                            |        |                    |        |

Table 10: Monitoring status of Jan-March 2023 for C7 Package

Contractor has been communicated to conduct monitoring of all environmental attributes and not limited to ambient air and noise monitoring and on all locations.

## **6.4.1** Ambient Air Quality Monitoring:

Ambient Air quality monitoring was conducted in February 2023 in the quarter. As per the ambient air quality analysis, particulate matter as well as gaseous pollutant concentration are well within the standards at all locations. Data provided in **Annexure 5** (**Appendix 5.1**).

**Particulate matter (PM<sub>10</sub> and PM<sub>2.5</sub>):** Both PM<sub>10</sub> & PM<sub>2.5</sub> concentration are within NAAQS standard. It is observed that particulate matter PM<sub>10</sub> concentration at 3 locations (i) near Maninagar Railway station, (ii) CH-498 Near railway colony, (iii) CH-500+750 Near parcel room and PM<sub>2.5</sub> concentration at 5 locations (i) near Casting yard batching plant, (ii) Vatva railway station,(iii) CH-498 Near railway colony, (iv) CH-500+750 Near parcel room, (v) Near Sabarmati riverfront is exceeding baseline, however, it is below standards. Refer Figures 30 & 31.

Contractor is regularly doing water sprinkling in the area to control the dust emissions.

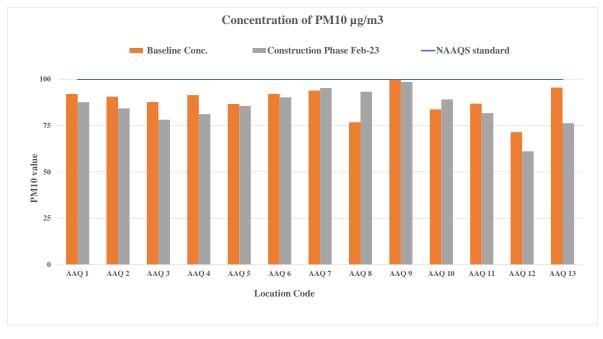



Figure 30: Graphical Representation of PM10 behaviour in C7 Package

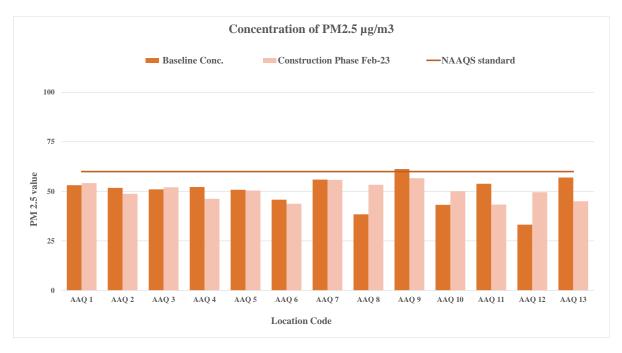



Figure 31: Graphical Representation of PM2.5 behaviour in C7 Package

## **6.4.2 6.3.2 Ambient Noise Quality Monitoring:**

Ambient Noise quality monitoring was conducted in February 2023 in the quarter for only 2 locations. Ambient noise quality reports shows that both the daytime and night-time noise levels are within the baseline limit. Casting yard day noise showing a small hike with respect to ANQM standard in the baseline, this was due to the proximity to highway. The data is provided in **Annexure 5 (Appendix 5.2).** 

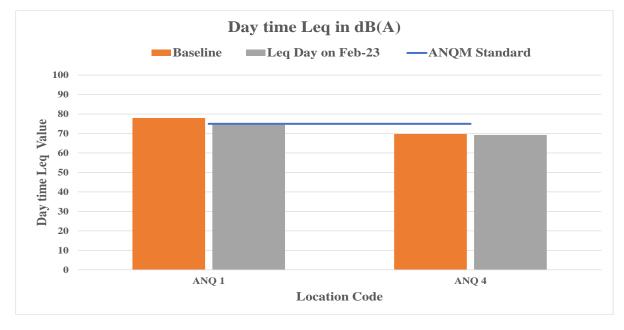



Figure 32: Graphical Analysis of Ambient Noise Quality in Day time in C7 Package

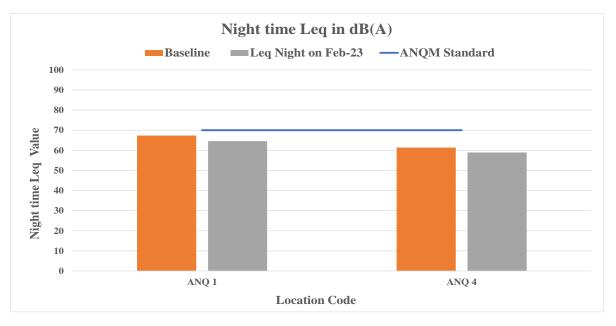



Figure 33: Graphical Analysis of Ambient Noise Quality in Night-time in C7 Package

## 6.5 Environmental Monitoring of C8 Package

Monitoring locations for the quarter Jan-March 2023 is provided in Table below.

Sr. **Environmental Attribute Frequency** No. of Locations monitored No Jan 23 Feb 23 Mar 23 Air Quarterly / Monthly 3 3 3 3 3 3 Weekly Noise 3. Vibration Weekly 3 3 3 Ground Water Level Pre-monsoon & Post Monsoon 0 4. 0 0 5. Drinking water Quarterly / Monthly 0 0 0 Ground Water Quality Six Monthly (Pre-monsoon and 6. 0 0 0 Post Monsoon) 7. DG Stack Emission 0 Six Monthly 0 0 Monitoring

Table 11: Monitoring status of Jan-March 2023 for C8 Package

Contractor has been communicated to conduct monitoring of all environmental attributes and not limited to ambient air, noise and vibration monitoring.

#### **6.5.1** Ambient Air Quality Monitoring:

Ambient Air quality monitoring was conducted at 3 locations (Jan to Mar 2023) in the quarter. As per the ambient air quality analysis, particulate matter as well as gaseous pollutant concentration are well within the standards at all locations. Data provided in **Annexure 6** (**Appendix 6.1**).

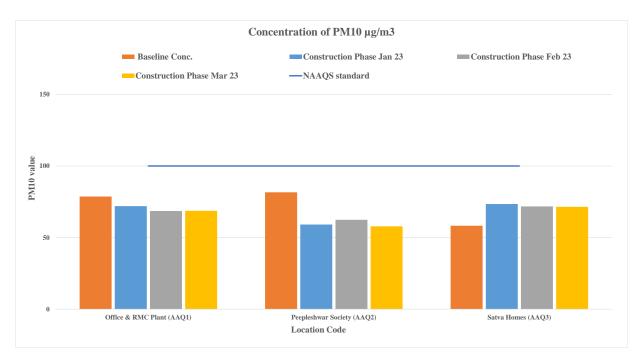



Figure 34: Graphical Representation of PM10 behaviour in C8 Package

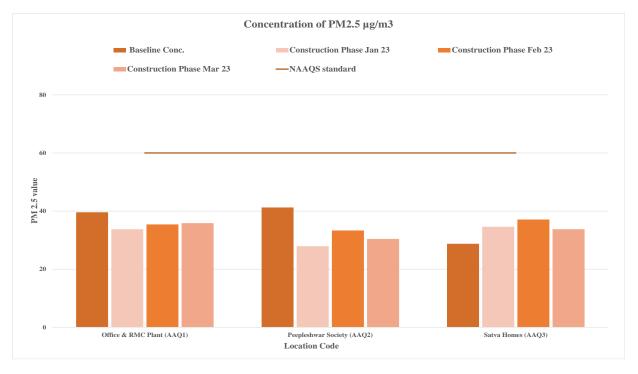



Figure 35: Graphical Representation of PM2.5 behaviour in C8 Package

It is observed that particulate matter concentration near Satva homes is exceeding baseline, however, it is below standards. Contractor is regularly doing water sprinkling in the area to control the dust emissions.

## **6.3.2** Ambient Noise Quality Monitoring:

Ambient Noise quality monitoring was conducted at 3 locations (Jan to Mar 2023) in the quarter. Ambient noise quality reports shows that both the daytime and night-time noise levels are within the prescribed limit for the office area.

The baseline of residential areas viz. Peepleshwar society and Satva homes is exceeding standards. This is because of the proximity to Railway lines. However, it is to be noted that the daytime and night-time noise levels are within the baseline values in these 2 locations. The data is provided in **Annexure 6 (Appendix 6.2).** 

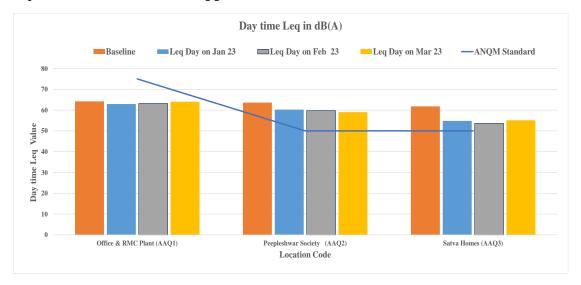



Figure 36: Graphical Analysis of Ambient Noise Quality in Day time in C8 Package

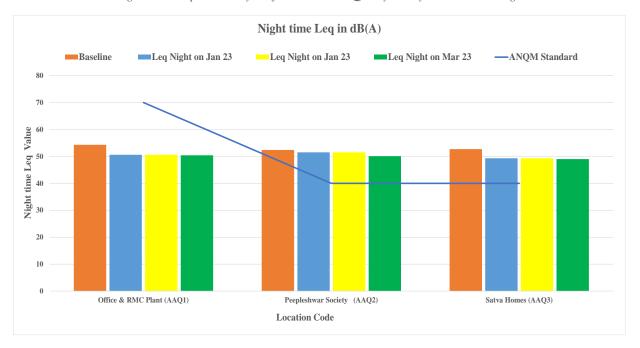



Figure 37: Graphical Analysis of Ambient Noise Quality in Night-time in C8 Package

#### **6.5.2** Vibration Monitoring

Ground vibration monitoring was conducted in the quarter Jan to Mar 2023 and there was no exceedance to damage criteria as per (FTA 2006) was observed. The range of vibrations is between 0.24 to 1.74 PPV (mm/s). Refer **Annexure 6 (Appendix 6.3)** for data.

## 6.6 Environmental Monitoring of P1B Package

Monitoring locations for the quarter Jan-March 2023 is provided in Table below.

| Sr. | Environmental        | 1                                  |        | No of Locations monitored |        |  |  |
|-----|----------------------|------------------------------------|--------|---------------------------|--------|--|--|
| No  | Attribute            |                                    | Jan 23 | Feb 23                    | Mar 23 |  |  |
| 1.  | Air                  | Quarterly / Monthly                | 04     | 00                        | 02     |  |  |
| 2.  | Noise                | Weekly                             | 04     | 04                        | 04     |  |  |
| 4.  | Ground Water Level   | Pre-monsoon & Post Monsoon         | 0      | 0                         | 0      |  |  |
| 5.  | Drinking water       | Quarterly / Monthly                | 0      | 0                         | 0      |  |  |
| 6.  | Ground Water Quality | Six Monthly (Pre and Post Monsoon) | 0      | 0                         | 0      |  |  |
| 7.  | DG Stack Emission    | Six Monthly                        | 0      | 0                         | 03     |  |  |
|     | Monitoring           |                                    |        |                           |        |  |  |

Table 12: Monitoring status of Jan-March 2023 for P1B Package

Contractor has been communicated to conduct monitoring of all environmental attributes and not limited to ambient noise monitoring.

## 6.6.1 Ambient Air Quality Monitoring:

Ambient Air quality monitoring was conducted at 4 locations in January and March 2023, in the quarter. As per the ambient air quality analysis, particulate matter as well as gaseous pollutant concentration are well within the standards at all locations. Data provided in **Annexure 7** (**Appendix 7.1**).

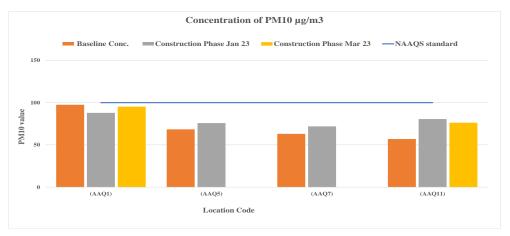



Figure 38: Graphical Representation of PM10 behaviour in P1B Package

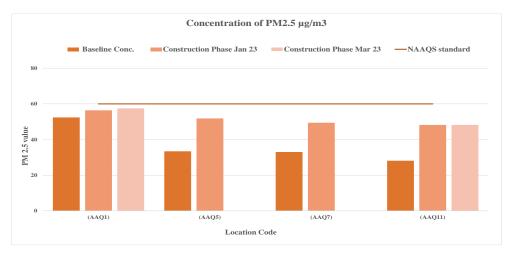



Figure 39: Graphical Representation of PM2.5 behaviour in P1B Package

#### **6.6.2 DG** stack monitoring:

DG stack monitoring was conducted in month of March 2023 in the quarter of 3 nos. of DG Sets, located in 1 location. The results are within the Stack standards as per EPA (G.S.R.771(E) 11th Dec 2013). The graphical representation of analysis result is provided in Figure 40 and the data is provided in **Annexure 4 (Appendix 4.2)**.

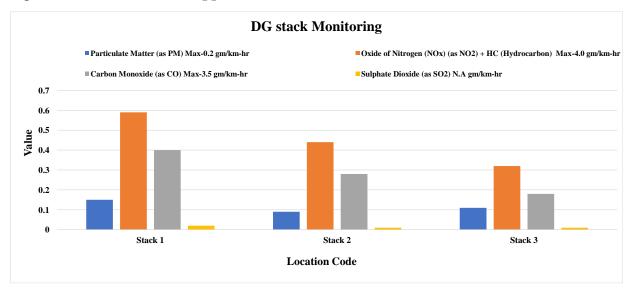



Figure 40: Graphical representation of DG Stack Monitoring for P1B Package

## **6.6.3** : Ambient Noise Quality Monitoring

Noise Quality Monitoring was conducted at 4 locations Jan- March 23 in the quarter. As per ambient noise quality analysis most of the locations shows both the daytime and night-time noise level are within the prescribed limit as per permissible standard. The data is provided in **Annexure 7(Appendix 7.2).** 

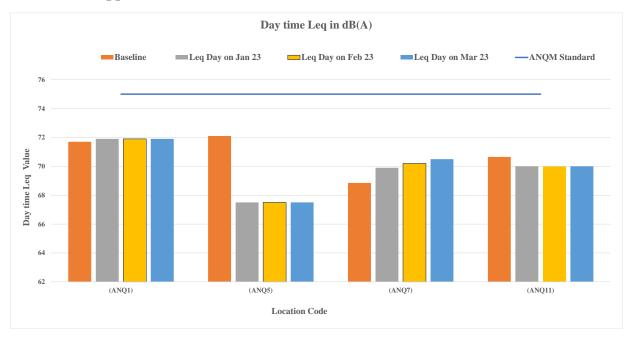



Figure 41: Graphical Analysis of Ambient Noise Quality in Day time in P1B Package

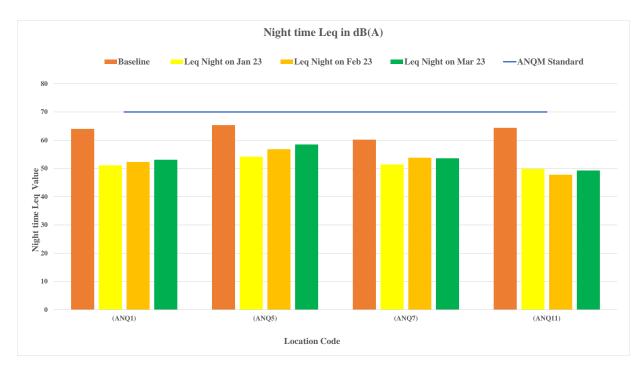



Figure 42: Graphical Analysis of Ambient Noise Quality in Night-time in P1B Package

## 6.7 Environmental Monitoring of P4 Packages (3 workshops)

In P4 Package, monitoring was conducted in STEL Workshop in P4(X) and GML Workshop P4(Y) in December 2022, which was reported in January 2023. Monitoring was conducted in TEIL workshop P4(X)in January 23, which was reported in March 2023. Hence, for the quarterly documentation of Jan to Mar 2023, 2 monitoring results are discussed for STEL and GML Workshops and 1monitoring result for TEIL.

#### 6.7.1 Ambient Air Quality Monitoring:

Ambient Air Quality Analysis for all the 3 workshops are discussed in Table 13 below. Refer Annexure 8 (Appendix 8.1) for results.

Table 13: Ambient Air Quality Analysis of the 3 Workshops

| Workshop | Location on                          | Analysis                                                                                                                                                                                                                            |
|----------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Monitoring                           |                                                                                                                                                                                                                                     |
| STEL     | At the main entrance of the          | Particulate matter concentration was found <b>beyond the permissible limits</b> in the month of Dec 22 and Mar 23,                                                                                                                  |
|          | Workshop                             | however, the values were comparable to baseline values. Reason: Ambient Air Quality at STEL Harpur is in an industrial area; hence, the background air quality is already poor. The gaseous pollutants were found within standards. |
| GML      | At the main entrance of the Workshop | Particulate matter and gaseous pollutants concentration were found within the permissible limits in the month of Dec 22 and Mar 23.                                                                                                 |
| TEIL     | Bay 1                                | Particulate matter and gaseous pollutants concentration were found within the permissible limits in the month of Mar 23.                                                                                                            |

## **6.7.2** Workplace Air Quality Monitoring:

Workplace Air Quality Analysis for all the 3 workshops are discussed in Table 14 below. Refer Annexure 8 (Appendix 8.2) for results.

Table 14: Workplace Air Quality Analysis of the 3 Workshops

| Workshop | Location on       | Analysis  Analysis                                               |  |  |  |  |
|----------|-------------------|------------------------------------------------------------------|--|--|--|--|
| _        | Monitoring        |                                                                  |  |  |  |  |
| STEL     | CNC Drilling area | Particulate matter and gaseous pollutants concentration were     |  |  |  |  |
|          | and HSD bay area  | found within the permissible limits in the month of Dec 22 and   |  |  |  |  |
|          |                   | Mar 23.                                                          |  |  |  |  |
| GML      | Fabrication       | Particulate matter and gaseous pollutants concentration were     |  |  |  |  |
|          | Workshop and      | found within the permissible limits in the month of Dec 22 and   |  |  |  |  |
|          | Painting Blasting | Mar 23, however, were exceeding the baseline values. Indoor Air  |  |  |  |  |
|          | area              | quality is required to be maintained below baseline values for   |  |  |  |  |
|          |                   | which proper ventilation is workshop is required/ continuous air |  |  |  |  |
|          |                   | exchange mechanisms to be deployed.                              |  |  |  |  |
| TEIL     | Bay 1 and Bay 2   | Particulate matter and gaseous pollutants concentration were     |  |  |  |  |
|          |                   | found within the permissible limits in the month of Mar 23,      |  |  |  |  |
|          |                   | however, were exceeding the baseline values. Indoor Air quality  |  |  |  |  |
|          |                   | is required to be maintained below baseline values for which     |  |  |  |  |
|          |                   | proper ventilation is workshop is required/ continuous air       |  |  |  |  |
|          |                   | exchange mechanisms to be deployed.                              |  |  |  |  |

## **6.7.3** Ambient Noise Quality Monitoring:

Ambient Noise Quality Analysis for all the 3 workshops are discussed in Table 15 below. Refer Annexure 8 (Appendix 8.3) for results.

Table 15: Ambient Noise Quality Analysis of the 3 Workshops

| Workshop | Location on          | Analysis                                                   |
|----------|----------------------|------------------------------------------------------------|
|          | Monitoring           |                                                            |
| STEL     | At the main entrance | Both daytime and night-time values were within permissible |
|          | of the Workshop      | limits in the month of Dec 22 and Mar 23.                  |
| GML      | At the main entrance | Both daytime and night-time values were within permissible |
|          | of the Workshop      | limits in the month of Dec 22 and Mar 23.                  |
| TEIL     | Bay 1 and Bay 3      | Both daytime and night-time values were within permissible |
|          |                      | limits in the month of Mar 23.                             |

## **6.7.4** Workplace Noise Monitoring.

Workplace Noise Quality Analysis for all the 3 workshops are discussed in Table 16 below. Refer Annexure 8 (Appendix 8.4) for results.

Table 16: Workplace Noise Quality Analysis of the 3 Workshops

| Workshop | Location on Monitoring         | Analysis                        |
|----------|--------------------------------|---------------------------------|
| STEL     | CNC Drilling area and HSD      | Values are within the standards |
|          | bay area                       |                                 |
| GML      | Near Welding & Drilling area   | Values are within the standards |
| TEIL     | 3 locations in the workshop (8 | Values are within the standards |
|          | samples)                       |                                 |

## 6.7.5 Noise Monitoring for DG stack

Source Noise from DG Sets is discussed in Table 17 below. Refer Annexure 8 (Appendix 8.5) for results.

Table 17: Source Noise Quality Analysis of the 3 Workshops

| Workshop | <b>Location on Monitoring</b> | Analysis                                                                                                     |
|----------|-------------------------------|--------------------------------------------------------------------------------------------------------------|
| STEL     | Two DG Sets in Workshop       | As per the results, noise levels were found within the permissible limits in closed window state of DG Sets. |
| GML      | Monitoring Not conducted      |                                                                                                              |
| TEIL     | One DG Set in Workshop        | As per the results, noise levels were found within the permissible limits in closed window state of DG Sets. |

## **6.7.6 DG Stack Monitoring:**

DG Sets Stack monitoring analysis is discussed in Table 18 below. Refer Annexure 8 (Appendix 8.6) for results.

Table 18: DG Stack Monitoring Analysis of the 3 Workshops

| Workshop | <b>Location on Monitoring</b> | Analysis                                                                                                 |
|----------|-------------------------------|----------------------------------------------------------------------------------------------------------|
| STEL     | Two DG Sets                   | Particulate matter as well as gaseous pollutants concentration were found within the permissible limits  |
| GML      | Not conducted                 |                                                                                                          |
| TEIL     | One DG Set                    | Particulate matter as well as gaseous pollutants concentration were found within the permissible limits. |

## **6.7.7 Drinking Water Quality Monitoring:**

Drinking Water Quality monitoring analysis is discussed in Table 19 below. Refer Annexure 8 (Appendix 8.7) for results.

Table 19: Drinking Water Quality Monitoring Analysis of the 3 Workshops

| Workshop | <b>Location on Monitoring</b> | Analysis                                             |
|----------|-------------------------------|------------------------------------------------------|
| STEL     | One sample                    | All the parameters were found within the permissible |
|          |                               | limit of the Indian Standard for the Drinking Water  |
|          |                               | Quality IS: 10500-2012.                              |
| GML      | One sample                    | All the parameters were found within the permissible |
|          |                               | limit of the Indian Standard for the Drinking Water  |
|          |                               | Quality IS: 10500-2012.                              |
| TEIL     | One sample                    | All the parameters were found within the permissible |
|          |                               | limit of the Indian Standard for the Drinking Water  |
|          |                               | Quality IS: 10500-2012.                              |

## **6.7.8** Wastewater Quality Monitoring:

Wastewater Quality monitoring analysis is discussed in Table 20 below. Refer Annexure 8 (Appendix 8.8) for results.

Table 20: Wastewater Quality Monitoring Analysis of the 3 Workshops

| Workshop | <b>Location on Monitoring</b> | Analysis                                                                                                                       |
|----------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| STEL     | One sample                    | As per the wastewater Quality monitoring analysis report, all the parameters were found within limits as specified in the CTO. |
| GML      | Not Conducted                 |                                                                                                                                |
| TEIL     | Not Conducted                 |                                                                                                                                |

# 6.8 Waste Management

Summary of Waste management in the quarter is provided in Table below, which entails generation, reuse/recycle and disposal details of different packages. Detailed information about each type of waste for these packages are provided in **Annexure 9**.

Table 21: Summary of Waste Management in Quarter for different packages

| #  | Type of waste generated       | C4      | C5          | C6                       | C7              | C8             | P1B      | P1C | P4(X)   | P4(Y) |
|----|-------------------------------|---------|-------------|--------------------------|-----------------|----------------|----------|-----|---------|-------|
| 1  | C&D waste (Cum)               | 2248    | 293.2       | 3030                     | 1181.7          | -              | 114.80   | -   | NA      | NA    |
| 2  | Metal scrap (MT)              | 2847.98 | 81.87       | 365                      | -               | -              | -        | -   | 534.578 | 234   |
| 3  | Wood Waste (Kg)               | 3213    | -           |                          | 570             | -              | -        | -   | -       | -     |
| 4  | Used oil/Lubricant<br>(Litre) | 1930    | 98          | 3247                     | 180             | 2060           | 184      | -   | -       | -     |
| 5  | Batteries (Units)             | 25 nos. | -           | 01nos.                   | -               | 4nos.          | 7nos.    | -   | -       | =     |
| 6  | Biomedical waste (Kg)         | 7.15    | 0.5         | 16.81                    | 2.75            | -              | 4.438    | -   | -       | -     |
|    | Recycled/Reused Waste         | C4      | C5          | C6                       | <b>C7</b>       | C8             | P1B      | P1C | P4(X)   | P4(Y) |
| 7  | C&D waste (Cum)               | 950     | -           | 2583.6                   | 750.8           | -              | -        | -   | -       | -     |
| 8  | Metal scrap (MT)              | 926     | -           | -                        | -               | -              | -        | -   |         |       |
|    |                               |         | Reused to p | repare shoe racks, re    | st sheds, water | r stations etc | <u>.</u> |     |         |       |
| 9  | Wood Waste (kg)               | 1568    |             |                          | -               |                |          |     |         |       |
| 10 | Food Waste (Kg)               | -       | -           | reused to prepare manure | -               |                | 136      |     |         |       |
| 11 | Used Oil (litres)             | 4850    | -           |                          | -               |                |          |     |         |       |
|    | Disposal of Waste             | C4      | C5          | C6                       | C7              | C8             | P1B      | P1C | P4(X)   | P4(Y) |
| 12 | Batteries (Kg)                | -       | -           | -                        | -               | -              | 26nos.   | -   | -       | -     |
| 13 | Biomedical Waste (Kg)         | 7.15    | 0.5         | 16.81                    | 2.75            | -              | 4.438    | -   | -       | -     |
| 14 | Food Waste (kg)               | 288114  | 2886.9      | -                        | 14.5            | 58             | 73       |     | -       | -     |
| 15 | Metal Scrap (kg)              | 559.44  | 1.2         | -                        | -               | -              | -        | -   | -       | -     |
| 16 | Wood Waste (kg)               | 3030    | -           |                          | 570             |                | 136      |     |         |       |

# 7 Environmental Inspections in the Quarter

# 7.1 Details of Inspections Conducted & SORs issued

The supervisions conducted in the month of January, February & March 2023 by Env Team, TCAP is provided in Tables below.

Table 22: Site Visits in the month of Jan. 2023

| Sr.<br>No. | Section | Location | Inspection date | SOR Number                                                                     | Remarks                                                                            |
|------------|---------|----------|-----------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|            | ackage  |          | uate            |                                                                                |                                                                                    |
| 1.         | Sec 4   | Ch 321   | 07.01.2023      | TCAP/C4/S5/ENV/34<br>OR<br>AEDO- 0000001137                                    | Monthly Site inspection                                                            |
| 2.         | Sec 3   | Ch 254   | 13.01.2023      | TCAP/C4/S2/ENV/36<br>OR<br>AEDO- 0000001169                                    | Monthly Site inspection                                                            |
| 3.         | Sec 3   | Ch 243   | 13.01.23        | TCAP/C4/S2/ENV/35<br>OR AEDO-<br>0000001167                                    | Monthly Site inspection                                                            |
| 4.         | Sec 3   | Ch 243   | 13.01.23        | TCAP/MAHSR/PMC/<br>C4/2023/SHE/2434                                            | Verification of compliance LTC/MAHSR/Pkg-C4/EHS/2022/5531 dated 19-12-2022         |
| 5.         | Sec 1   | Ch 188   | 19.01.2023      | TCAP/C4/S1/ENV/37<br>OR<br>AEDO- 0000001340                                    | Monthly Site inspection                                                            |
| 6.         | Sec 1   | Ch 156   | 19.01.2023      | TCAP/C4/S1/ENV/38.<br>AEDO-0000001341<br>TCAP/C4/S1/ENV/38.<br>AEDO-0000001341 | Monthly Site inspection                                                            |
| 7.         | Sec 1   | Ch 165   | 19.01.2023      | TCAP/C4/S1/ENV/39.<br>AEDO-0000001342                                          | Monthly Site inspection                                                            |
| 8.         | Sec 5   | CH 359   | 24.01.2023      | TCAP/C4/S5/ENV/40<br>AEDO-0000001343                                           | Monthly Site inspection                                                            |
| 9.         | Sec-5   | Ch 359   | 16.01.2023      | TCAP/MAHSR/PMC/<br>C4/2023/SHE/2433                                            | Verification of compliance LTC/MAHSR/Pkg-C4/EHS/2022/5563 dt. 20.12.2022           |
| 10.        | Sec 2   | Ch 238   | 27.01.2023      | TCAP/C4/S2/ENV/41<br>AEDO-0000001355                                           | Monthly Site inspection                                                            |
|            |         |          |                 | TCAP/MAHSR/PMC/<br>C4/2023/SHE/2543                                            | Verification of Compliance.<br>LTC/MAHSR/Pkg-C4/EHS/2023/5699<br>dated 03-01-2023. |
| 11.        | Sec 2   | Ch 217   | 31.01.2023      | TCAP/C4/S2/ENV/42<br>AEDO-0000001377                                           | Monthly Site inspection                                                            |

| Sr.         | Section  | Location                                      | Inspection | SOR Number                                                    | Remarks                                         |  |
|-------------|----------|-----------------------------------------------|------------|---------------------------------------------------------------|-------------------------------------------------|--|
| No.         |          |                                               | date       |                                                               |                                                 |  |
| C5 Pa       | ackage   |                                               |            |                                                               |                                                 |  |
| 12.         | C5       | Chhani<br>Canal,<br>Janardhan,<br>Vishwamitri | 16.01.2023 |                                                               | Verification of Compliance AEDO no. 56          |  |
| C6 Pa       | ackage   |                                               |            |                                                               |                                                 |  |
| 13.         | C6 Sec 3 | CH 463                                        | 04.01.2023 |                                                               | Joint inspection with client at Mohar River     |  |
| 14.         | C6 Sec 4 | Ch 483                                        | 04.01.2023 |                                                               | Labour Camp inspection (Good practices found)   |  |
| 15.         | C6 Sec 3 | CH 450 to<br>463                              | 10.01.2023 |                                                               | Weekly walk with contractor                     |  |
| 16.         | C6 Sec 1 | CH 407                                        | 07-01-2023 | TCAP/MAHSR/PMC/<br>C6/Sec-1/SOR/223 OR<br>AEDO-0000000198     | Monthly Site inspection                         |  |
| 17.         | C6 Sec3  | CH 463                                        | 10.01.2023 | AEDO-0000000231                                               | Monthly Site inspection                         |  |
| 19.         | C6 Sec 2 | CH 434                                        | 12-01-2023 | TCAP/MAHSR/PMC/<br>C6/Sec-2/SOR/224<br>OR AEDO-<br>0000000199 | Monthly Site inspection                         |  |
| 20.         | C6 Sec 4 | CH 471 to 483                                 | 20-01-2023 |                                                               | Joint inspection with client                    |  |
| C7 Pa       | ackage   |                                               |            |                                                               |                                                 |  |
| 21.         | C7       | Ahmedabad station                             | 21.01.2023 | COR-0000002172                                                | Monthly Site inspection                         |  |
| P1B 1       | Package  |                                               |            |                                                               |                                                 |  |
| 22.         | P1B      | GAD 1441                                      | 12.01.2023 | TCAP/P1B/1441/ENV/<br>04.<br>AEDO-0000000139                  | Monthly Site inspection                         |  |
| 23.         | P1B      | GAD 10<br>Basecamp                            | 13.01.2023 |                                                               | NCR Verification inspection on TM wash facility |  |
| P1C Package |          |                                               |            |                                                               |                                                 |  |
| 24          | P1C      | GAD 33                                        | 08.01.2023 |                                                               | Inspection of Env<br>Monitoring                 |  |

Table 23: Site Visits in the month of Feb. 2023

| Sr.<br>No. | Section   | Location | Inspection date | SOR Number                                  | Remarks                 |
|------------|-----------|----------|-----------------|---------------------------------------------|-------------------------|
| C4 P       | ackage    |          |                 |                                             |                         |
| 1.         | C4 Sec 04 | CH 331   | 22.02.2023      | TCAP/C4/S4/ENV/43<br>OR<br>AEDO- 0000001564 | Monthly Site inspection |
| 2.         | C4 Sec 03 | CH 268   | 27.02.2023      | AEDO- 0000000764                            | Monthly Site inspection |
| 3.         | C4 Sec 03 | CH 254   | 27.02.2023      | AEDO-<br>0000001169/SOR no-<br>036          | Monthly Site inspection |

| Sr.<br>No. | Section        | Location                 | Inspection date | SOR Number                                                                | Remarks                              |  |  |  |
|------------|----------------|--------------------------|-----------------|---------------------------------------------------------------------------|--------------------------------------|--|--|--|
| 4.         | C4 Sec 03      | CH 243                   | 27.02.2023      | AEDO- 0000000962                                                          | Monthly Site inspection              |  |  |  |
| C5 D       | C5 Package     |                          |                 |                                                                           |                                      |  |  |  |
| 5.         | C5 Sec 2       | Punjab<br>Steel          | 06-02-2023      | TCAP/MAHSR/PMC/C<br>5/ SEC-2/SOR/0081<br>OR<br>AEDO-0000000081            | Monthly Site inspection              |  |  |  |
| 6.         | C5 Sec 1       | ССВ                      | 17.02.2023      | TCAP/MAHSR/PMC/C<br>5/ SEC-1/SOR/0089<br>OR<br>AEDO-0000000089            | Monthly Site inspection              |  |  |  |
| C6 P       | ackage         |                          |                 |                                                                           |                                      |  |  |  |
| 7.         | C6 Sec 3       | CH 447                   | 02-02-2023      | TCAP/MAHSR/PMC/C<br>6/Sec-3/SOR/269<br>OR<br>AEDO-0000000245              | Monthly Site inspection              |  |  |  |
| 8.         | C6Sec 1        | CH 407                   | 03-02-2023      | TCAP/MAHSR/PMC/C<br>6/Sec-1/SOR/267<br>OR<br>AEDO-0000000243              | Monthly Site inspection              |  |  |  |
| 9.         | C6 Sec3        | CH 459 to<br>463         | 06.02.2023      | TCAP/MAHSR/PMC/C<br>6/Sec-3/SOR/255<br>OR<br>AEDO-0000000231              | Monthly Site inspection              |  |  |  |
| 10.        | C6 Sec 4       | CH 483                   | 08.02.2023      | TCAP/MAHSR/PMC/C<br>6/Sec-4/SOR/270<br>OR<br>AEDO-0000000246              | Monthly Site inspection              |  |  |  |
| 11.        | C6 Sec 2       | CH 434                   | 09.02.2023      | TCAP/MAHSR/PMC/C<br>6/Sec-2/SOR/268<br>OR<br>AEDO-0000000244              | Monthly Site inspection              |  |  |  |
| 12.        | C6 Sec 4       | CH 483                   | 15.02.2023      |                                                                           | MARS Audit                           |  |  |  |
| 13.        | C6 Sec 1       | CH 417                   | 21.02.2023      | TCAP/MAHSR/PMC/C<br>6/Sec-1/SOR/275<br>AEDO-0000000251                    | Monthly Site inspection              |  |  |  |
| 14.        | C6 Sec 2       | CH 434                   | 24.02.2023      |                                                                           | Monthly Site inspection (NCR raised) |  |  |  |
| 15.        | C6 Sec 3       | CH 448                   | 25.02.2023      | TCAP/MAHSR/PMC/C<br>6/Sec-3/SOR/278<br>AEDO-0000000254                    | Monthly Site inspection              |  |  |  |
|            | ackage         |                          | 1 0 = 6         |                                                                           |                                      |  |  |  |
| 16.        | C7             | Vatva<br>Casting<br>yard | 07.02.2023      | C7/S1/SOR/Environmen<br>t/147 Or<br>AEDO-0000000147 or<br>AEDO-0000000148 | Monthly Site inspection              |  |  |  |
|            | ackage         |                          |                 |                                                                           |                                      |  |  |  |
| 17.        | <u>C8</u>      | DEPO                     | 07.02.2023      | AEDO-0000000047                                                           | Monthly Site inspection              |  |  |  |
| 18.        | Package<br>P1B | GAD 15                   | 22.02.2023      | TCAP/P1B/GAD-<br>15/ENV/05                                                | Monthly Site inspection              |  |  |  |

| Sr.<br>No.  | Section | Location | Inspection date | SOR Number      | Remarks    |  |
|-------------|---------|----------|-----------------|-----------------|------------|--|
|             |         |          |                 | AEDO- 000000183 |            |  |
| P1C Package |         |          |                 |                 |            |  |
| 19          | P1C     | GAD 33   | 10.02.2023      |                 | MARS Audit |  |

Table 24: Site Visits in the month of March 2023

| Sr.         | Section   | Location                                             | Inspection | SOR Number                               | Remarks                                                    |
|-------------|-----------|------------------------------------------------------|------------|------------------------------------------|------------------------------------------------------------|
| No.         | Section   | Location                                             | date       | BOK Number                               | Kciiiai Ks                                                 |
|             | ackage    |                                                      | uute       |                                          |                                                            |
| 1.          | C4, Sec 2 | CH 232                                               | 10.03.2023 | AEDO- 0000000960                         | Monthly Site inspection                                    |
| 2.          | C4, Sec 2 | CH 238                                               | 10.03.2023 |                                          | Compliance verification of NCR                             |
| 3.          | C4        | CH 385                                               | 28.03.2023 | AEDO-0000001815                          | Monthly Site inspection                                    |
| 4.          | Sec-5     | CH 359                                               | 02.03.2023 | TCAP/MAHSR/PMC/<br>C4/2023/SHE/2723      | Verification of compliance TCAP/MAHSR/PMC/C4/2023/SHE/2723 |
| C5 P        | ackage    |                                                      |            |                                          |                                                            |
| 5.          | C5        | Casting<br>Yard<br>Khalipur,<br>Vishwami<br>tri, CCB | 03.03.2023 | AEDO-0000000092                          | Monthly Site inspection                                    |
| 6.          | C5        | Punjab<br>Steel                                      | 23.03.2023 |                                          | Compliance Verification of NCR-7 and SOR-81                |
| <b>C6 P</b> | ackage    |                                                      |            |                                          |                                                            |
| 7.          | C6 Sec 3  | CH 463                                               | 02.03.2023 |                                          | Weekly Walk                                                |
| 8.          | C6 Sec 3  | CH 447                                               | 14.03.2023 | AEDO-0000000268                          | Monthly Site inspection                                    |
| 9.          | C6 Sec 2  | CH 434                                               | 16.03.2023 | AEDO-0000000267                          | Monthly Site inspection                                    |
| 10.         | C6 Sec 4  | Ch 466-<br>Ch 476                                    | 25.03.2023 | AEDO-0000000278                          | Monthly Site inspection                                    |
| 11.         | C6 Sec 1  | CH 417                                               | 28.03.2023 | AEDO-0000000277                          | Monthly Site inspection                                    |
| C7 P        | ackage    | •                                                    |            |                                          |                                                            |
| 12.         | C7        | Station<br>and<br>Batching<br>plant                  | 27.03.2023 | AEDO-0000000184                          | Monthly Site inspection                                    |
| 13.         | C7        | Vatva<br>casting<br>yard and<br>Batching<br>plant    | 27.03.2023 | AEDO-0000000185                          | Monthly Site inspection                                    |
|             | ackage    |                                                      |            |                                          |                                                            |
| 14.         | C8        | DEPO                                                 | 27.03.2023 | AEDO-0000000059                          | Monthly Site inspection                                    |
|             | Package   |                                                      |            |                                          |                                                            |
| 15.         | P1B       | GAD<br>1441                                          | 16.03.2023 | AEDO-0000139<br>(Uploaded on 04.04.2023) | Compliance Verification of CAR.                            |
| 16.         | P1B       | GAD 12                                               | 28.03.2023 | AEDO-0000212                             | Monthly Site inspection                                    |
| P1C         | Package   |                                                      |            |                                          |                                                            |
| 17.         | P1C       | GAD 33                                               | 24.03.2023 | -                                        | Monthly Site inspection                                    |

## Total **242 number of observations** were raised in the Quarter as provided in Figure 43.

Further analysis as illustrated in Figure 44 shows that maximum observations were on hazardous waste management followed by drainage & C&D Waste issues.

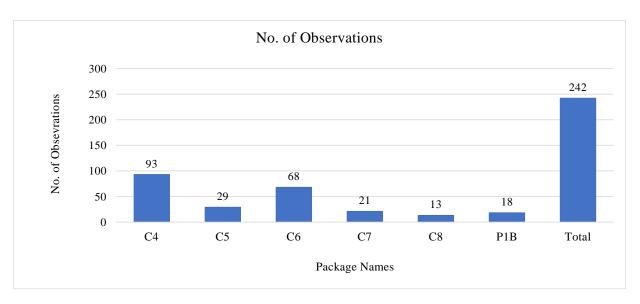



Figure 43: No. of Observations raised in each Package in the Quarter

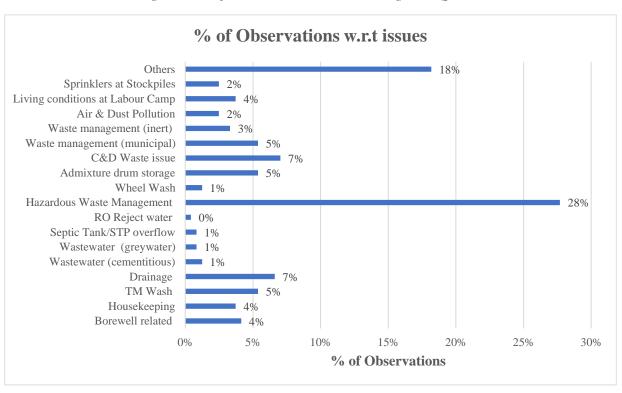



Figure 44: Observations with respect to issues

## 7.2 Details of NCRs issued in the Quarter.

Based on the Inspections carried out in different Packages, NCR were raised. Table 25 provides the details of the NCRs raised in the Quarter.

Table 25: NCRs raised in the Quarter.

|      | Location             | Date       | NCR No.   | Issue                                                                                                                 |
|------|----------------------|------------|-----------|-----------------------------------------------------------------------------------------------------------------------|
|      |                      | Jan        | uary 2023 |                                                                                                                       |
| C4 I | Package              |            | 1         |                                                                                                                       |
| 01   | Ch 350 P01           | 16.01.2023 | NCR- 0494 | NCR#0494 TM Wash in Water course                                                                                      |
| 02.  | Ch 165               | 20.01.2023 | NCR-512   | NCR#496 Rejected water discharged<br>@ CH 165                                                                         |
| 03.  | Ch 165               | 20.01.2023 | NCR -514  | NCR#498_Poor wastewater<br>management @ Ch.165 Km                                                                     |
| 04.  | Ch 188               | 20.01.2023 | NCR-515   | NCR#498_Poor wastewater<br>management @ Ch.165 Km                                                                     |
| 05.  | Ch 188               | 20.01.2023 | NCR-517   | NCR#501_Unavailability of toilets<br>@Ch.188 Km                                                                       |
| 06   | Ch 359 Store         | 24.01.2023 | NCR-537   | Improper storage of hazardous chemicals                                                                               |
| 07   | Ch 359 Labour colony | 24.01.2023 | NCR- 540  | wastewater disposal outside the premises                                                                              |
| 08   | Ch 174 P12 ROW       | 30.01.2023 | NCR-575   | TM Wash in ROW near Ch 174 P12                                                                                        |
| 09   | Ch 217               | 30.01.2023 | NCR-590   | Wastewater disposal outside the premises                                                                              |
| C6 I | Package              |            |           |                                                                                                                       |
| 10   | Sec 2 CH 438/P-17&18 | 21.01.2023 | NCR-092   | Glue was falling into the Canal water beneath                                                                         |
| 11   | Sec2 CH 434          | 17-01-2023 | NCR-0116  | Air pollution from B.P.                                                                                               |
|      |                      | F          | eb. 2023  |                                                                                                                       |
| C4 I | Package              |            | 1         |                                                                                                                       |
| 1.   | Ch 217               | 01.02.2023 | NCR - 590 | Improper wastewater disposal @217                                                                                     |
| 2.   | Ch 217               | 11.02.2023 | NCR - 652 | TM wash in ROW near Ch 219 PO 9                                                                                       |
| C6 - | - Package            |            |           |                                                                                                                       |
| 3.   | Ch 407               | 03.02.2023 | NCR-114   | Sewage wastewater from a toilet block near Batching plant is being disposed off outside the premises in nearby lands. |
| 4.   | Sec2 CH 434          | 24.02.2023 | NCR-120   | Casting yard are choked with solid waste: Drain blockage.                                                             |
| C7 I | Package              |            |           |                                                                                                                       |

| 5.          | Vatva Casting Yard          | 07.02.2023 | NCR80 and 81        | Poor housekeeping and drainage issue was observed at Batching Plant at Vatva Casting yard. NCR# 41 |  |  |  |  |  |  |
|-------------|-----------------------------|------------|---------------------|----------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 6.          | Kalupur station Labour camp | 07.02.2023 | NCR-078<br>and 079  | Poor living conditions in labour Camp                                                              |  |  |  |  |  |  |
| 7.          | C7                          | 09.02.2023 | NCR- 082<br>and 083 | Env. Baseline monitoring NCR# 42                                                                   |  |  |  |  |  |  |
|             | March 2023                  |            |                     |                                                                                                    |  |  |  |  |  |  |
| C4 I        | Package                     |            |                     |                                                                                                    |  |  |  |  |  |  |
| 1.          | Ch 320 P08                  | 25.03.2023 | NCR-0792            | TM Wash in ROW in an open pit                                                                      |  |  |  |  |  |  |
| C5 I        | Package                     |            |                     |                                                                                                    |  |  |  |  |  |  |
| 2           | Janardhan Labour camp       | 03.03.2023 | COR-<br>0000002136  | Poor living condition at Janardhan cold storage                                                    |  |  |  |  |  |  |
| 3           | Punjab Steel                | 03.03.2023 | COR-<br>0000002137  | Poor Housekeeping issue at Punjab<br>Steel                                                         |  |  |  |  |  |  |
| 4           | Vishwamitri                 | 03.03.2023 | NCR- 0021           | The Hazardous and Other Wastes at ROW of Vishwamitri area                                          |  |  |  |  |  |  |
| <b>C6 I</b> | Package                     |            |                     |                                                                                                    |  |  |  |  |  |  |
| 5.          | Ch 434                      | 27.03.2023 | NCR-130             | Air Pollution at Ch. 334 Batching Plant                                                            |  |  |  |  |  |  |

## 7.3 Status of NCRs

Status of NCRs issued till March 2023 in the awarded infra packages is given in Table 26 below.

Table 26: Status of NCRs issued till March 2023

| #    | NCR on Issue & Location                            | Issued date         | NCR No.  | Status                     |
|------|----------------------------------------------------|---------------------|----------|----------------------------|
| C4 1 | Package                                            |                     |          |                            |
| 1    | TM Washing Facility @ Ch. 321 & 331                | 09-05-2022 NCR-0100 |          | Closed                     |
| 2    | Poor Housekeeping & TM<br>Wash @ Ch. 359 CY        | 09-05-2022          | NCR-0101 | Pending with Contractor    |
| 3    | Concrete disposed on soil<br>@ Ch. 243 P16         | 27-05-2022          | NCR-0123 | Pending with Engineer      |
| 4    | NCR#117_No Provision of wash facility @ Ch. 238 BP | 27-05-2022          | NCR-0130 | Pending with<br>Engineer   |
| 5    | Poor Maintenance of BP & ST @ Ch. 238              | 27-05-2022          | NCR-0131 | Pending with Engineer      |
| 6    | Non-Hygienic Situation @<br>Ch. 232 CY             | 07-06-2022          | NCR-0140 | Pending with Contractor    |
| 7    | NCR#134_Non-Functional<br>Facility @ Ch. 232 CY    | 07-06-2022          | NCR-0141 | Pending with<br>Contractor |

| #  | NCR on Issue & Location                                     | Issued date | NCR No.  | Status                     |
|----|-------------------------------------------------------------|-------------|----------|----------------------------|
| 8  | Cement dust blown from<br>Silo @ Ch 331 BP                  | 10-06-2022  | NCR-0154 | Closed                     |
| 9  | NCR#145_Environmental<br>Violations @ Ch. 243 BP            | 15-06-2022  | NCR-0158 | Closed                     |
| 10 | Concrete wastewater and C&D waste @ch.188                   | 28-06-2022  | NCR-0173 | Pending with<br>Engineer   |
| 11 | NCR#161_housekeeping<br>and waste management<br>@Ch:188     | 28-06-2022  | NCR-0174 | Pending with<br>Contractor |
| 12 | NCR#164_Cementitious<br>wastewater, C&D waste<br>@Ch.268    | 30-06-2022  | NCR-0177 | Closed                     |
| 13 | NCR#226_Cementitious<br>wastewater, C&D waste<br>@Ch.331    | 02-09-2022  | NCR-0240 | Closed                     |
| 14 | NCR#227_Fresh concrete<br>spill on public<br>road@244/P8    | 02-09-2022  | NCR-0241 | Closed                     |
| 15 | Env. contamination outside<br>BP@Ch.243 Km CY               | 08-09-2022  | NCR-0251 | Closed                     |
| 16 | Improper wastewater disposal @ Ch. 331 Km                   | 04-11-2022  | NCR-0340 | Closed                     |
| 17 | Kachol Lake near<br>Pond filling Grievances @<br>Ch. 299 Km | 08-11-2022  | NCR-0343 | Pending with Contractor    |
| 18 | Blockage of Lined Canal @<br>Ch 217                         | 11-11-2022  | NCR-0355 | Closed                     |
| 19 | Blockage of storm water drain @ Ch. 215 Km                  | 11-11-2022  | NCR-0354 | Pending with Contractor    |
| 20 | Blockage of Natural drain<br>@ Ch. 217 Km                   | 12-11-2022  | NCR-0351 | Pending with Contractor    |
| 21 | Oil Spillage observed @<br>Ch 232 CY                        | 12-11-2022  | NCR-0358 | Closed                     |
| 22 | Concrete wash into Narmada River.                           | 18-11-2022  | NCR-0370 | Closed                     |
| 23 | Bentonite dumped into ground @ Ch. 309 Km.                  | 05.12.2022  | NCR-0402 | Closed                     |
| 24 | NCR#478_TM Wash in<br>Natural water<br>source@Ch.350        | 16.01.2023  | NCR- 494 | Pending with<br>Contractor |
| 25 | NCR#496_ Rejected water discharged @ Ch. 165 Km             | 20.01.2023  | NCR-512  | Closed                     |
| 26 | NCR#498_Poor wastewater<br>management @ Ch.165 Km           | 20.01.2023  | NCR -514 | Pending with<br>Contractor |

| #    | NCR on Issue & Location                                                   | Issued date | NCR No.                       | Status                                                          |  |
|------|---------------------------------------------------------------------------|-------------|-------------------------------|-----------------------------------------------------------------|--|
| 27   | NCR499_Poor<br>Housekeeping & C&D<br>waste 188 Km                         | 20.01.2023  | NCR-515                       | Pending with Contractor                                         |  |
| 28   | NCR#501_Unavailability of toilets @Ch.188 Km                              | 20.01.2023  | NCR-517                       | Pending with Contractor                                         |  |
| 29   | NCR#521_ Improper<br>storage of chemicals<br>@Ch359Km                     | 24.01.2023  | NCR-537                       | Pending with<br>Engineer                                        |  |
| 30   | NCR#524_Greywater<br>disposal into drain @<br>Ch359 km                    | 24.01.2023  | NCR- 540                      | Pending with Contractor                                         |  |
| 31   | NCR #559_TM wash in<br>ROW near Ch. 174 P12                               | 30.01.2023  | NCR-575                       | Pending with Contractor                                         |  |
| 32   | NCR#574_Improper<br>wastewater disposal @ Ch<br>217 Km                    | 30.01.2023  | NCR-590                       | Pending with Contractor                                         |  |
| 33   | NCR#636_TM wash in<br>ROW near Ch. 219 P09                                | 11.02.2023  | NCR - 652                     | Pending with<br>Engineer                                        |  |
| 34   | NCR#776_No TM<br>Washing Facility @ Ch.<br>320 P08                        | 25.03.2023  | NCR-0792                      | Pending with<br>Contractor                                      |  |
| C5 I | Package                                                                   |             |                               |                                                                 |  |
| 35   | Non-Conformances<br>observed in Labour Colony<br>@ Janardhan Cold Storage | 20.12.2022  | NCR-0546 (COR-<br>0000001601) | Pending with contractor                                         |  |
| 36   | Air Pollution @ Punjab<br>Steel                                           | 29.12.2022  | NCR-0579 (COR-<br>0000001694) | Pending with contractor                                         |  |
| 37   | Poor living condition at @Janardhan cold storage                          | 03.03.2023  | COR-0000002136                | Pending with contractor                                         |  |
| 38   | Housekeeping issue<br>@Punjab Steel                                       | 03.03.2023  | COR-0000002137                | Pending with contractor                                         |  |
| 39   | The Hazardous and Other Wastes @ Vishwamitri                              | 03.03.2023  | NCR- 0021                     | Pending for<br>Engineer final<br>approval in<br>system/ unifier |  |
| C6 1 | Package                                                                   |             |                               |                                                                 |  |
| 40   | Batching Plant facility<br>observed violating at Ch<br>434                | 14-06-2022  | NCR-0035                      | Pending with contractor                                         |  |
| 41   | Disposal of sewage from<br>Labour colony of Sec 3                         | 21-06-2022  | NCR-0036                      | Pending with contractor                                         |  |
| 42   | Disposal of sewage from<br>Labour colony of Sec 3                         | 06-07-2022  | NCR-0050                      | Closed                                                          |  |

| #    | NCR on Issue & Location                                                                                                        | Issued date | NCR No.      | Status                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|-----------------------------------------------------------------|
| 43   | NCR-046, Transit Mixer<br>wash on the banks of Mahi<br>River                                                                   | 09-08-2022  | NCR-0053     | Closed                                                          |
| 44   | TM wash was not being done in the TM wash facility @Ch 407                                                                     | 22.10.2022  | NCR-0071     | Pending with<br>Engineer                                        |
| 45   | Polymer mix water was seen spread in ROW at Ch 482 (Viaduct area) due to leaking polymer pipes.                                | 17-11-2022  | NCR-0080     | Closed                                                          |
| 46   | Glue was falling into the canal water beneath@ Sec 2 CH 438/P-17&18_NCR 100                                                    | 21.01.2023  | NCR-092      | Pending with contractor                                         |
| 47   | Cement was blowing off from the silo, contributing to Air pollution @ Sec2 CH 434.                                             | 17-01-2023  | NCR-0116     | Pending with<br>Engineer                                        |
| 48   | Sewage wastewater from a toilet block near Batching plant is being disposed off outside the premises in nearby lands @ Ch 407. | 03.02.2023  | NCR-114      | Pending with<br>Engineer                                        |
| 49   | Solid waste creating unhygienic condition @ Sec 2 CH 434                                                                       | 24.02.2023  | NCR-120      | Pending with contractor                                         |
| 50   | Air pollution@ Ch 434                                                                                                          | 27.03.2023  | NCR-130      | Pending with Engineer                                           |
| C7 I | Package                                                                                                                        |             |              |                                                                 |
| 51   | Inadequate Toilet facilities<br>at SBI Station, Ahmedabad<br>Station & Casting yard                                            | 25-06-2022  | NCR- 006     | Closed<br>IPC Linking<br>pending                                |
| 52   | Vatva Casting Yard-<br>regarding the poor air<br>quality management<br>surrounding Batching plant                              | 17-11-2022  | NCR-043      | Pending for Engineer final approval in system/ unifier          |
| 53   | Sabarmati Stn- The toilet facility not maintained properly and is not in working condition                                     | 24-11-2022  | NCR -046     | Pending for Engineer final approval in system/ unifier          |
| 54   | Poor housekeeping and<br>drainage issue at Batching<br>Plant @ Vatva Casting<br>Yard                                           | 07.02.2023  | NCR80 and 81 | Pending for<br>Engineer final<br>approval in<br>system/ unifier |

| #   | NCR on Issue & Location                                                                                                         | Issued date | NCR No.          | Status                                                          |
|-----|---------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|-----------------------------------------------------------------|
| 55  | Labour camp in non-<br>conformance of very high<br>severity@ Kalupur station                                                    | 07.02.2023  | NCR-078 and 079  | Pending for<br>Engineer final<br>approval in<br>system/ unifier |
| 56  | C7 Env Monitoring                                                                                                               | 09.02.2023  | NCR- 082 and 083 | Pending for<br>Engineer final<br>approval in<br>system/ unifier |
| P1B | Package                                                                                                                         |             |                  |                                                                 |
| 57  | NCR#9_Hazardous waste management @GAD1441                                                                                       | 06-09-2022  | NCR-0009         | Pending with Contractor                                         |
| 58  | Cementitious wastewater<br>from TM Wash facility and<br>Batching plant drains off<br>into an earthen pit, P1B<br>Basecamp@GAD10 | 25-11-2022  | NCR-0017         | Pending with<br>Contractors                                     |

#### 7.4 Good Practices Observed at various Packages

#### 7.4.1 Tree Plantation

In total 2226 number of trees were planted during the quarter (refer Table 19). This amounts to 22,260 kg of carbon sequestration per annum for next 20 years of the tree life. Cumulatively, 1,29,360 kg of carbon sequestration per annum for next 20 years of the tree life has been achieved till March 2023 by the tree plantation drive in the project. Assuming 90% survival rate of trees, 1,16,424 kg of carbon sequestration per annum is achieved till March 23

Awarded **Tree Plantation Package** Jan 23 Feb 23 Mar 23 Total in Qtr. **Cumulative** till Mar 23 C4 651 260 266 1177 8691 C5 25 0 0 25 85 230 477 1762 C6 247 0 C7 0 0 0 0 40 25 **C**8 10 10 45 94 178 P1B 150 328 0 P1C 939 63 61 50 174 P4 (x) 1351 P4 (y) ---520 **TOTAL** 2226 12936

Table 27: Tree Plantation in the Quarter

#### 7.4.2 Utilisation of renewable energy

Battery operated vehicle is being used at C6 location in the project area of infra package.



Renewable energy utilization at C6 package

Figure 45: Utilization of Renewable Energy in Project

#### 7.4.3 Reuse & Recycle of Waste

Wood, metal scrap and C&D Waste being reused for making different items as shown below.





Rejected Drums used for storage of battery waste and Dust bins making in C4 package



Tested concrete cube is used for making tree guard, Package C4.



Waste concrete & MS pipes are used for making delineators, Package C4.



Tree pot is made by using waste concrete, Package C4.



Welding butts & cutting wheels are stored in metallic bin, Metal scrap used to make Box for collecting nails at Ch 268 store



Use of RO rejected water, permanent mechanism made for water sprinkling at batching plant area at Ch 434, C6 Package



Empty drums are used for flower sapling plantation at Ch. 254 in C4 package



Reuse of scrap material, Plantation by using scrap Material in C6 Package



Pile head chipping work under progress and reuse in temporary road work, Converter in C6 Package





Tested QC cubes are used for making garden wall, bund wall, drain etc. in all section and tested concrete cube is used for making tree guard in all section in C6 Package.







Tested cube used for making water storage taank, garbage Storage zone , drain & chamber in C4  $\,$  Package



**Earthing Pit Developed from Waste Concrete Cube in C8 Package** 

Figure 46: Best Practices under Reuse & Recycling

#### **7.4.4** Good Management Practices

Some good management practices are observed in different packages.

- Domestic wastewater is recycled in STP & treated water is in use on haul roads for dust control in C4 Package.
- Batching plant loading area covered with GI sheets for dust control emissions in C6 package.

• Green net is provided on aggregate bins and silo at batching plant to control dust emissions at C5 package.



Treated wastewater filling in tanker for using in water sprinkling.



Covershed provided to control dust emiossion in hoppers at C6 package



Standard stack height provided to DG in C4 package





Green net is provided on aggregate bins and silos at batching plant in C5 package

Figure 47: Best Practices

#### 7.4.5 Good housekeeping at labour Camps

In some labour camps, good housekeeping is observed. Such cleanliness should be observed at all labour camps.



Good Housekeeping maintained at Labour Camp at C6 Package

Figure~48:~Illustrations~of~good~house keeping~observed~in~Labour~Camp

## 8 Environmental Case Studies in the Quarter

#### **CASE STUDY 1: Crocodile Conservation Plan at MAHSR**

MAHSR project is passing through Vishwamitri river (of Dhadhar Riverine system) at 9 locations in C4 Package and at 1 location in C5 package. Refer Figures 49 & 50.

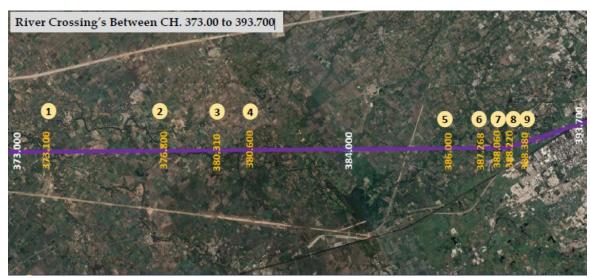



Figure 49: Nine River Crossings between Ch 373 to Ch 393 in C4 package

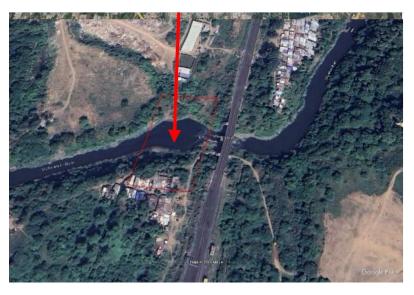



Figure 50: One river crossing at Ch 395 in C5 package

Vishwamitri river is habitat for Mugger crocodile (*Crocodylus palustris*) which is protected under Wildlife Protect Act, 1972. Refer Figure 51.

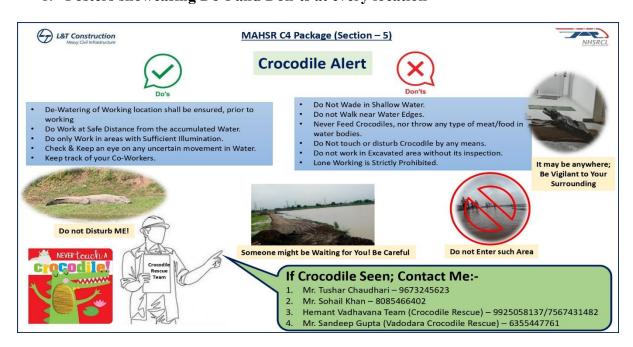
| S.No. | Common                                       | Scientific              | Schedule as per         | Identification image                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|----------------------------------------------|-------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Name                                         | Name                    | WLPA, 1972              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1     | Mugger<br>crocodile or<br>marsh<br>crocodile | Crocodylus<br>palustris | Schedule -I<br>(Part C) | - Charles and the control of the con |

Figure 51: Mugger Crocodile found in Vishwamitri River

The project aims to construct in a sustainable manner and without disturbing the existing habitat and breeding ground of crocodile, aquatic & terrestrial ecosystem and crocodile movement in the river while maintaining the natural flow of water. Protection of wildlife is a priority, and hence, Crocodile Conservation Plan for C4 and C5 packages has been prepared.

The main objectives of the Conservation Plan were -

- Identification of impacts on existing habitats & breeding ground due to construction activity at site.
- To address & reduce human-crocodile conflict during construction and to exercise all necessary controls with respect to Crocodile management at selected sites.
- To plan and schedule activities for protection and conservation of Crocodiles in the area.


Based on the sighting during primary survey in June & August 2022 in C4 package, the number of Mugger crocodiles in the Vishwamitri and Dhadhar River was estimated to be 25 to 35 during June 2022. Most of the crocodiles sighted were adults of more than 3 m in length and only a few sub-adults were recorded. No eggs were recorded. Even though hatchling and juveniles were recorded in June 2022, no hatchlings or juveniles were recorded in August 2022. Maximum number of crocodiles were spotted at Ch 373.

In C5 package, the survey was conducted in Jan-Feb 2023. The total of 30 crocodilian species (*Crocodylus palustris*) were observed during day and night survey in river stretch of 1 km (500 m in upstream and downstream each), out of which 7 were juvenile (3 in upstream & 4 in downstream) and 21 were adults (11 in upstream & 12 in downstream).

Crocodile nests were identified at each chainage and marked for protection. There are 2 nests within 50 m downstream of P134 in the river in C5 package. In C4 Package, **Annexure 10** provides maps that showcase potential habitat/nesting areas for 9 locations.

Following Actions have been adopted to safeguard the human-crocodile conflict and their protection during Construction activities –

#### 1. Posters showcasing Do's and Don'ts at every location



# 2. Trainings conducted by NGOs (approved by Forest officials)





# 3. Trainings conducted by internal staff





# 4. Signages displayed at all active locations





## 5. Fencing and barricading in the Crocodile areas













Other than the above measures, other control measures adopted on site are –

- No visitors, other than working team shall be allowed at site. In unavoidable case, visitor shall be trained on crocodile safety and shall be accompanied by expert.
- Expert ground staff shall be deployed for monitoring of crocodile movement in the area.
- Identification of critical habitat for feeding and nesting of muggers to be done and work shall be executed at a safe distance from it.
- Programs for public and workmen awareness to be conducted for mugger and human safety.
- Night work shall be avoided and if continued, sufficient illumination shall be ensured with expert crocodile rescue person, ambulance, male nurse, site engineer, site supervisor, welfare officer and EHSO.
- Lone working shall be prohibited.
- It shall be ensured that no food or meat or fish waste is thrown into water body or left at site.
- Preparation of food and eating at site near crocodile habitat area is strictly prohibited.
- Dedicated security guard and night patrolling team to be deployed.

**Annexure 10** provides the Action Plan developed by C4 Package and C5 package for Crocodile Conservation and Protection.

#### CASE STUDY 2: Unidentified Gas was leaked at Sec 1 C6 package (2 incidences)

**Incident 1 date & time**: 12-01-2023 @ 10:00 PM to 13.01.2023 @ 02:00 AM.

**Incident Location 1**: Ch 409.920 Ajod village

**The Incident**: During the night shift of 12<sup>th</sup> January 2023, workers were exposed to an unidentified gas while they were engaged in FSLM launching activities at CH 409 Ajod village. Suddenly, there were cases of nausea and vomiting reported amongst the workers working at height. First, it was assumed that it was food related but later it was realised that there was a typical smell felt at the top of the Girder, that was impacting the workers' health.

When reported, immediate Medical first aid was given to the workers who were exposed and were kept under observation.

The very next morning, Engineer had given instructions to Contractor to contact all relevant authorities about the probable leakage, and stop the work till the issue gets resolved.

Contractor had duly informed to the Director of Relief, Vadodara State Emergency Operation (Refer **Annexure 11**), GPCB Vadodara and nearby industries.





Figure 52: Inspection by Project staff, NHSRCL, Industry representative, GPCB official

On 13<sup>th</sup> January, the Contractor, NHSRCL representative, Potential gas line owner and GPCB officer visited the incident location and carried out the gas monitoring by Gas Analyzer. However, during the daytime, gas had dispersed, and no toxic gas was recorded.

As per GPCB's advise, ambient air quality monitoring was conducted on 15<sup>th</sup> January 23, and it was found that there no ammonical gas as doubted by the officials. Refer **Annexure11** for Ambient Air quality results.

**Incident 2 date & Time**: 20.02.2023 @ 12:30 PM

**Incident location 2:** Ch 411 P5 & P6

**The Incident:** On 20<sup>th</sup> February 23 at around 12:30 pm, workers were engaged in FSLM launching activities at a certain height on the girder. Suddenly, similar incident happened, where workers were exposed to an unidentified gas and felt nauseated.

The incident was immediately reported to all. Medical first aid was provided to workers. Engineer also informed the Contractor for proper investigation as the incident happened twice in a span of a month and around the same vicinity that had happened in the night of 12<sup>th</sup> January 23. It was reported that only workers at height felt the smell and were impacted while workers on the ground were not impacted.

Contractor distributed the masks and jaggery to all workers and staff working in the area.

Contractor informed Gujarat Pollution Control Board and requested for proper identification of the gas. GPCB officials visited the incident location and gave following instructions-

- Immediately purchase portable multi gas analyzer and keep the record of the gases.
- On working area, Gas analyzer has to be installed and register has to be maintained of every hour

- An environmental expert has to be appointed at the working location for identification of gas.
- Doctor has to be appointed at working location.

The very same day, Contractor installed the Gas analyzer and did the analysis. Ambulance was kept in the incident location.



**Inspection by GPCB Officials** 



Mask & Jaggery distribution



Ambulance at site



**Ambient Air Monitoring device installed** 



|    | 20/04/22 17:31 | ter FR-09   | 00:0 HM    | 88:0 ftm | 01:0.7 | 48-17  |
|----|----------------|-------------|------------|----------|--------|--------|
| _  |                | Yu 14.03    |            | 81.0     | 81:0   | 20-7   |
| 3. | 20/02/23.94    | - 411 FT-FT | -0: 5pm    | 80.0gm   | 0007   | 81.07  |
| y. |                |             | 00-0-m     |          | 00:01. |        |
| 5- |                | MILES P     | 00-0 pm    | 00-0465  | 00 01  |        |
| 6. |                | 411-10-1    | .00-0 ppm. | 00.00    | 00.04  | 81.07. |

**Multi Gas Analyzer and Recording** 

#### The root cause for the incident:

The root cause of the incident could not be identified. However, there is a possibility, during the 1<sup>st</sup> incident, gases emitting from various industries in the vicinity were concentrated in the

atmosphere due to inversion phenomenon in a winter night, which might have impacted the health of the workers.

In the 2<sup>nd</sup> incident, since the workers impacted were only few workers working at height while others did not get impacted, there is a possibility of a localised release of gases from the nearby industry.

#### Preventive action suggested & followed:

- 1. Gas Analyzer kept at site to record various gases and record the results in a register.
- 2. Worker to wear proper mask and PPE.
- 3. Ambulance kept at site.

Letters written in regard to the incident –

- L&T/TIIC-TFL/RREC/TCAP/MAHSR/C6/2023/3477 dated 13/1/23
- TCAP/MAHSR/PMC/C6/2023/SHE/2322 dated 18/1/23
- L&T/TIIC-TFL/RREC/TCAP/MAHSR/C6/2023/3508 dated 24/1/23
- Email from CEE TCAP to CSHEO, C6 dated 20/02/23
- L&T/TIIC-TFL/RREC/TCAP/MAHSR/C6/2023/3629 dated 22/2/23
- TCAP/MAHSR/PMC/C6/2023/SHE/2558 dated 06/03/23
- L&T/TIIC-TFL/RREC/TCAP/MAHSR/C6/2023/3709 dated 17/3/23

Although the incident **cannot be considered as an environmental incident as part of the project activities**, however it has been recorded as the environmental violation by a third party due to which health of the workers got impacted by an unidentified gas leakage.

# 9 Training on Env Management

#### 9.1 Trainings conducted by PMC

PMC conducted the on-site trainings for the Contractor & TCAP staff on *Environmental Management at MAHSR*. In the Month of Jan, Feb & Mar 2023, 5 trainings were conducted in various packages. Attendance sheet is attached in **Annexure 12** and details provided in Table below.

| # | Month    | Location  | Date       | Attendees     | Duration    | Manhours |
|---|----------|-----------|------------|---------------|-------------|----------|
| 1 | January  | C4, Sec 3 | 08/01/2023 | 26            | 2 hrs       | 52       |
| 2 | 2023     | C6, Sec 3 | 25/01/2023 | 32            | 1 hr 30 min | 48       |
| 3 |          | C4, Sec 4 | 31/01/2023 | 24            | 2 hrs       | 48       |
| 4 |          | C4, Sec 5 | 24/01/2023 | 24/01/2023 47 |             | 94       |
| 5 | Feb 2023 | C6 Sec 4  | 08/02/2023 | 23            | 2 Hr        | 46       |
|   |          | Ch 483    |            |               |             |          |
|   |          |           |            |               | TOTAL       | 288 hrs  |

Table 28: Trainings conducted by PMC.



Training at Sec 3, C6 Package



Training at Sec1, C4 Package



Training at Sec 3, C4 Package



Training at Sec 5, C4 Package



OB/02/2023 11:11

Training at Sec 4, C6 Package



# 9.2 Trainings conducted at awarded infra packages by Contractors

As per the monthly submissions by the eight awarded infra packages, only 4 packages viz. C4,C5,C6, P1B & P4 has provided details of environment related trainings. The details are given below in Table 29 below.

Table 29: Environmental Trainings conducted for the Quarter (Jan-Mar 2023)

| # | Training topic | No. of<br>participants<br>(January) | No. of participants (February) | No. of participants (March) | Training<br>Manhour<br>s |
|---|----------------|-------------------------------------|--------------------------------|-----------------------------|--------------------------|
|   | C4 Package     |                                     |                                |                             |                          |

| #  | Training topic                                                                | partic | of<br>ipants<br>uary)        | parti    | o. of<br>cipants<br>ruary) | parti                                            | o. of<br>cipants<br>arch) | Training<br>Manhour<br>s |
|----|-------------------------------------------------------------------------------|--------|------------------------------|----------|----------------------------|--------------------------------------------------|---------------------------|--------------------------|
| 1  | Hazardous waste Management like handling, transport, storage, and disposal    |        | 41                           |          | 314                        |                                                  | 751                       | 3706                     |
| 2  | Noise pollution and control measures                                          | 92     | 22                           | 1        | .77                        | 12                                               | 288                       | 2387                     |
| 3  | Construction Environment Management Plan                                      | 4      | -5                           |          | 42                         | 2                                                | 224                       | 1244                     |
| 4  | Construction Waste Management Plan                                            | 9.     | 40                           | 4        | 48                         | 18                                               | 800                       | 6376                     |
| 5  | Air Pollution and Control<br>Measures                                         | 10     | 08                           | 3        | 357                        | 1:                                               | 536                       | 2001                     |
| 6  | C&D Waste Management                                                          | 30     | 08                           | 5        | 666                        | 1:                                               | 548                       | 2422                     |
| 7  | Environment Aspect and Impact<br>Assessment                                   |        | 55                           | 1        | 88                         | 1                                                | 08                        | 261                      |
| 8  | Polymer Spillage and Control<br>Measures                                      | 1.     | 35                           | 2        | 253                        | 14                                               | 430                       | 1818                     |
| 9  | Resource Conservation (Water,<br>Energy and Natural Resource<br>Conservation) |        | -                            | !        | 92                         | 1                                                | 92                        | 852                      |
| 10 | Environment Monitoring                                                        |        | -                            |          | 84                         | 3                                                | 38                        | 1266                     |
|    | Total                                                                         |        |                              | Ŭ 1      |                            |                                                  |                           | 22333                    |
|    | C5 Package                                                                    |        |                              |          |                            |                                                  |                           |                          |
| 1  | Waste/ Hazardous Management                                                   | 1      | 2                            |          | 42                         | 2                                                | 20                        | 146                      |
| 2  | Legal Requirements                                                            |        | <del>-</del><br><del>-</del> |          | -                          |                                                  |                           | 42                       |
| 3  | KYOTO PROTOCOL                                                                |        |                              | 19       |                            | 1                                                |                           | 38                       |
| 4  | T.M Wash                                                                      |        |                              |          |                            | 15                                               |                           | 15                       |
| 5  | Environment Awareness                                                         |        |                              |          |                            |                                                  | 21                        | 21                       |
|    | Total                                                                         |        |                              |          |                            |                                                  | <u> </u>                  | 262                      |
|    | P1B Package                                                                   |        |                              |          |                            |                                                  |                           | 202                      |
| 1  | Waste Management                                                              | 1      | -2                           |          | 42                         |                                                  | 42                        | 42                       |
| 1  | Hazardous waste segregation,                                                  | 7      | · <u>L</u>                   |          | +4                         |                                                  | +4                        | 42                       |
| 2  | storage & disposal                                                            | 6      | 54                           | (        | 64                         |                                                  | 16                        | 140                      |
| 3  | Legal Requirements                                                            | 2      | 0                            |          |                            |                                                  | 40                        | 15                       |
| 4  | Housekeeping                                                                  | 3      | 10                           |          | -                          |                                                  | <del>10</del><br>22       | 11                       |
| 5  | Total                                                                         |        | -                            |          | -                          |                                                  | <u> </u>                  | 208                      |
| 3  |                                                                               |        |                              |          |                            |                                                  |                           | 200                      |
|    | C8 Package                                                                    |        |                              |          |                            |                                                  |                           |                          |
| 1  | Waste Management & Housekeeping                                               | 2      | 25                           |          | 12                         | (                                                | 35                        | 6                        |
| 2  | Water Pollution Control                                                       | 2      | 20                           | ,        | 22                         | ,                                                | 24                        | 6.26                     |
|    |                                                                               |        | U                            | -        | <i>LL</i>                  | -                                                | <b>24</b>                 |                          |
| 3  | Awareness Training on Dust and Noise Pollution                                | 2      | 22                           | :        | 20                         |                                                  | -                         | 6.23                     |
| 4  | Health & Hygiene                                                              | 1      | 2                            | <u> </u> | _                          |                                                  | _                         | 1                        |
| 5  | Noise and Vibration impact and its control measures                           |        | -                            |          | _                          |                                                  | 17                        | 2.5                      |
| 6  | World Water Day                                                               | _      |                              |          | _                          |                                                  | 16                        | 2.4                      |
|    | Total                                                                         | -      |                              |          |                            |                                                  |                           | 24.39                    |
|    | P4 (x) Package                                                                | Jan 23 |                              | Fe       | b 23                       | Me                                               | nr 23                     | 2                        |
|    | I (a) I uchuge                                                                | STEL   | ZMBL                         | STEL     | ZMBL                       | STEL                                             | ZMBL                      |                          |
| 1  | MSDS – Hazardous Material<br>Handling                                         | 19     |                              |          | Z.IIII                     |                                                  | Z.IIII                    | 19                       |
| 2  | Waste Management                                                              | 14     | 96                           |          |                            | <del>                                     </del> |                           | 110                      |
| 3  |                                                                               | 14     | 90                           | 20       | 61                         |                                                  |                           | 84                       |
| 4  | Environmental legal compliance  Kyoto Protocol                                |        |                              | 20<br>46 | 64                         |                                                  |                           | 46                       |
|    | Water Conservation Water                                                      |        |                              | 40       |                            |                                                  |                           |                          |
| 5  | Pollution, and its control                                                    |        |                              |          |                            | 36                                               | 45                        | 81                       |

| # | Training topic                                          | No. of participants (January) |      | No. of participants (February) |      | No. of participants (March) |      | Training<br>Manhour<br>s |
|---|---------------------------------------------------------|-------------------------------|------|--------------------------------|------|-----------------------------|------|--------------------------|
| 6 | Basics of Environmental Monitoring and its Requirements |                               |      |                                |      | 15                          | 36   | 51                       |
|   | Total                                                   |                               |      |                                |      |                             |      | 391                      |
|   | P4 (y) Package                                          | Jar                           | n 23 | Fe                             | b 23 | Ma                          | r 23 |                          |
|   |                                                         | TEIL                          | GML  | TEIL                           | GML  | TEIL                        | GML  |                          |
| 1 | MSDS – Hazardous Material<br>Handling                   | 38                            | 24   |                                |      |                             |      | 62                       |
| 2 | Waste Management                                        | 35                            | 21   |                                |      |                             |      | 56                       |
| 3 | Environmental legal compliance                          |                               |      |                                | 41   |                             |      | 41                       |
| 4 | Kyoto Protocol                                          |                               |      | 19                             |      |                             |      | 19                       |
| 5 | Water Conservation Water<br>Pollution, and its control  |                               |      |                                |      | 22                          | 29   | 51                       |
| 6 | Basics of Environmental Monitoring and its Requirements |                               |      |                                |      | 24                          | 41   | 41                       |
|   | Total                                                   |                               |      |                                |      |                             |      | 270                      |

Total training man-hours for the quarter (January, February & March 2023) for the entire project is **23776.39** manhours.

#### 10 Environmental Day Celebration

In the quarter, 2 Environmental days were celebrated –

- 1. 16<sup>th</sup> Feb as Kyoto Protocol Day
- 2. 22<sup>nd</sup> March as World Water Day

**Annexure 13** provides the photos of various activities conducted in different packages on these days.

#### KYOTO PROTOCOL DAY

In the Month of Feb 2023, on 16<sup>th</sup> February, Kyoto Protocol Day was celebrated in all Packages. On this day, governments around the world reaffirm their commitment to reducing environmental pollution and carbon emissions within their respective industries and commercial activities. Contractors in MAHSR project also celebrated the day by imparting awareness sessions on Kyoto Protocol and its importance, Climate Change and Global warming. Tree plantation was also done on large scale to commensurate the Day. Photos below illustrates the activities conducted in various packages.







Tree Plantation at C4 package





Awareness program at C5 package

Training at C7 package

Figure 53: Kyoto Protocol Day celebrations

#### **WORLD WATER DAY**

On 22nd March 2023, World Water Day was celebrated in all Packages to highlight the importance of freshwater. The theme for World Water Day 2023 was 'Accelerate Change'. World Water Day is significant as it raises awareness about the global water crisis and emphasizes the importance of preserving freshwater resources. This day is an international observance and an opportunity to learn more about water related issues, be inspired to tell others and take action to make a difference.

Contractors in MAHSR project also celebrated the day by imparting awareness sessions on World Water Day and its importance, Water Conservation, and other water related topics. Tree plantation was also done to commensurate the Day. Photos below illustrates the activities conducted in various packages.







Awareness Session at C7 package

A TOTAL STATE

Paintaing (displays on Wall) at C6 Package

C6 Package Awareness session at P1C package Figure 54: World Water day celebrations

#### 11 Grievance Redressal

During the quarter, 35 grievances were reported (32 in C4 Package, 1 in C5 Package & 2 in C6 & P1C package). These have been addressed at the level of NHSRCL and forwarded to the concerned Department for further action. Refer Annexure 14 for details.

Till March 2023, **104 number** of constructions related grievances have been received, out of which **23 have been resolved**, 1 found invalid and 80 still pending.

Details are provided below -

```
Total grievances received in C4 Package (till Mar 2023)
                                                                     = 88 \text{ nos.}
Total no. of cases resolved till last quarter (till Dec 2022)
                                                                     = 6 \text{ nos.}
Total no. of cases resolved in this quarter (till Mar 2023)
                                                                     = 10
No. of grievances unresolved in C4 package
                                                                     =72 \text{ nos.}
Total grievances received in C6 & P1C Package (till Mar 2023)
                                                                    = 11 \text{ nos.}
Total no. of cases resolved till last quarter (till Dec 2022)
                                                                     = 7 nos. (1 grievance invalid)
Total no. of cases resolved in this quarter (till Mar 2023)
                                                                     = 0
No. of grievances unresolved in C6 package
                                                                     =4 nos.
Total grievances received in C5 Package (till Mar 2023)
                                                                     = 3 \text{ nos.}
Total no. of cases resolved till last quarter (till Dec 2022)
                                                                     = 0
Total no. of cases resolved in this quarter (till Mar 2023)
                                                                     = 1
No. of grievances unresolved in C5 package
                                                                     = 2 \text{ no.}
Total grievances received in C7 & C8 Package (till Mar 2023)
                                                                    = 1 no.
Total no. of cases resolved
                                                                     = 0
No. of grievances unresolved in C7 package
                                                                     = 1 no.
```

Grievances not received in any other infra packages till Mar 2023.

# **Annexures**

| ANNEXURE 1: LEGAL STATUS OF VARIOUS INFRA PACKAGES                   | 100 |
|----------------------------------------------------------------------|-----|
| APPENDIX 1.1: LEGAL STATUS OF C4 PACKAGE                             | 100 |
| APPENDIX 1.2: LEGAL STATUS OF C6 PACKAGE                             | 107 |
| APPENDIX 1.3: LEGAL STATUS OF C5, C7 & C8 PACKAGES                   | 110 |
| APPENDIX 1.4: LEGAL STATUS OF P1B PACKAGE                            |     |
| APPENDIX 1.5: LEGAL STATUS OF P1C PACKAGE                            | 112 |
| ANNEXURE 2: ENVIRONMENTAL DATA OF C4 PACKAGE                         | 113 |
| APPENDIX 2.1: AMBIENT AIR QUALITY MONITORING DATA FOR C4 PACKAGE     | 113 |
| APPENDIX 2.2 AMBIENT NOISE QUALITY DATA FOR C4 PACKAGE               | 121 |
| APPENDIX 2.3: DG STACK MONITORING FOR C4 PACKAGE                     |     |
| APPENDIX 2.4: DRINKING WATER QUALITY MONITORING FOR C4 PACKAGE       |     |
| APPENDIX 2.5: SURFACE WATER QUALITY MONITORING DATA FOR C4 PACKAGE   |     |
| APPENDIX 2.6: BOTTOM SEDIMENT QUALITY MONITORING DATA FOR C4 PACKAGE |     |
| APPENDIX 2.7: STP TREATED WATER QUALITY MONITORING AT C4 PACKAGE     |     |
| APPENDIX 2.8: VIBRATION MONITORING DATA FOR C4 PACKAGE               |     |
| ANNEXURE 3: ENV MONITORING DATA OF C5 PACKAGE                        |     |
| APPENDIX 3.1: AMBIENT AIR QUALITY MONITORING DATA FOR C5 PACKAGE     |     |
| APPENDIX 3.2: AMBIENT NOISE QUALITY DATA FOR C5 PACKAGE              |     |
| APPENDIX 3.3 VIBRATION MONITORING DATA FOR C5 PACKAGE                | 268 |
| ANNEXURE 4: ENVIRONMENTAL DATA OF C6 PACKAGE                         | 271 |
| APPENDIX 4.1: AMBIENT AIR QUALITY MONITORING DATA FOR C6 PACKAGE     | 271 |
| APPENDIX 4.2: DG STACK MONITORING DATA FOR C6 PACKAGE:               | 279 |
| APPENDIX 4.3: AMBIENT NOISE QUALITY DATA FOR C6 PACKAGE              |     |
| APPENDIX 4.4: DRINKING WATER QUALITY MONITORING DATA FOR C6 PACKAGE: |     |
| APPENDIX 4.5: SURFACE WATER QUALITY MONITORING DATA FOR C6 PACKAGE   |     |
| APPENDIX 4.6: BOTTOM SEDIMENT QUALITY MONITORING DATA FOR C6 PACKAGE |     |
| APPENDIX 4.7: GROUND WATER QUALITY MONITORING DATA FOR C6 PACKAGE    |     |
| APPENDIX 4.8: WASTEWATER QUALITY MONITORING DATA FOR C6 PACKAGE      |     |
| APPENDIX 4.9: VIBRATION MONITORING DATA FOR C6 PACKAGE               | 352 |
| ANNEXURE 5: ENVIRONMENTAL DATA OF C7 PACKAGE                         |     |
| APPENDIX 5.1: AMBIENT AIR QUALITY MONITORING DATA FOR C7 PACKAGE     |     |
| APPENDIX 5.2: AMBIENT NOISE QUALITY DATA FOR C7 PACKAGE              |     |
| ANNEXURE 6: ENVIRONMENTAL DATA OF C8 PACKAGE                         |     |
| APPENDIX 6.1: AMBIENT AIR QUALITY MONITORING DATA FOR C8 PACKAGE     | 366 |
| APPENDIX 6.2: AMBIENT NOISE QUALITY DATA FOR C8 PACKAGE              |     |
| APPENDIX 6.3: VIBRATION MONITORING DATA FOR C8 PACKAGE               | 369 |
| ANNEXURE 7: ENVIRONMENTAL DATA OF P1B PACKAGE                        |     |
| APPENDIX 7.1: – AMBIENT AIR QUALITY DATA FOR P1B PACKAGE             |     |
| APPENDIX 7.2: – DG STACK MONITORING DATA FOR P1B PACKAGE             |     |
| APPENDIX 7.2: – AMBIENT NOISE QUALITY DATA FOR P1B PACKAGE           | 373 |
| ANNEXURE 8: ENVIRONMENTAL MONITORING DATA OF P4 PACKAGE              | 374 |
| APPENDIX 8.1: AMBIENT AIR MONITORING FOR P4 PACKAGE                  |     |
| APPENDIX 8.2: WORKPLACE AIR QUALITY MONITORING FOR P\$ PACKAGE       |     |
| APPENDIX 8.3: AMBIENT NOISE QUALITY MONITORING                       |     |
| APPENDIX 8.4: WORKPLACE NOISE MONITORING                             |     |
| APPENDIX 8.5: NOISE MONITORING FOR DG SET-STEL                       |     |
| APPENDIX 8.6: DG STACK MONITORING -TEIL                              |     |
| AFFENDIA O. / . DKINKING WATEK ANALYSIS -STEL                        | 384 |

| ANNEXURE 9: WASTE GENERATION & MANAGEMENT DETAILS OF VARIOUS INFRA PACKAGES                | 392 |
|--------------------------------------------------------------------------------------------|-----|
| APPENDIX 9.1: STATUS OF WASTE GENERATION & MANAGEMENT DETAILS AT C4 PACKAGE IN THE QUARTER | 392 |
| APPENDIX 9.2: STATUS OF WASTE GENERATION & MANAGEMENT DETAILS AT C6 PACKAGE IN THE QUARTER | 394 |
| APPENDIX 9.3: STATUS OF WASTE GENERATION & MANAGEMENT AT C5 PACKAGE IN THE QUARTER         | 395 |
| APPENDIX 9.4: STATUS OF WASTE GENERATION & MANAGEMENT AT C7 PACKAGE IN THE QUARTER         | 396 |
| APPENDIX 9.5: STATUS OF WASTE GENERATION & MANAGEMENT AT C8 PACKAGE IN THE QUARTER         | 397 |
| APPENDIX 9.6: STATUS OF WASTE GENERATION & MANAGEMENT AT P1B PACKAGE IN THE QUARTER        | 398 |
| ANNEXURE 10: CROCODILE CONSERVATION PLAN                                                   | 400 |
| ANNEXURE 11: EVIDENCES ON INCIDENT                                                         | 413 |
| ANNEXURE 12: ATTENDANCE SHEET FOR TRAININGS CONDUCTED BY TCAP                              | 419 |
| ANNEXURE 13: PHOTO EVIDENCE OF ENVIRONMENT DAY CELEBRATIONS IN DIFFERENT PACKAGES          | 429 |
| ANNEXURE 14: STATUS OF PUBLIC GRIEVANCES TILL MARCH 2023                                   | 438 |

## List of Tables

| Table 1 : Status of CTE & CTO for Batching Plants in C4 Package                        | 100 |
|----------------------------------------------------------------------------------------|-----|
| Table 2: Status of CTE & CTO for Crusher & Quarry in C4 Package                        | 101 |
| Table 3: Status of Ground water permission for C4 Package                              | 102 |
| Table 4: Status of PESO permission for C4 package                                      | 103 |
| Table 5: Status of Permissions for Construction work on Rivers and Ponds at C4 package | 104 |
| Table 6: authorisation for biomedical waste generation & storage                       | 105 |
| Table 7: Approved agency for biomedical waste disposal for C4 Package                  | 106 |
| Table 8: Approved agencies for hazardous waste disposal for C4 Package                 | 106 |
| Table 9: Other permissions for C4 Package                                              |     |
| Table 10: Status of CTE & CTO for Batching Plant in C6 Package                         |     |
| Table 11: Status of Ground water permission for C6 Package                             |     |
| Table 12: Status of PESO permission for C6 Package                                     |     |
| Table 13: Status of permission Ponds & Canals for C6 Package                           |     |
| Table 14: Status of River crossing permission for C6 Package                           |     |
| Table 15: Status of CTE & CTO for Crushers at C6 Package                               |     |
| Table 16: Authorisation for biomedical waste generation & storage for C6 Package       |     |
| Table 17 Approved agency for biomedical waste disposal for C6 Package                  |     |
| Table 18 Approved agencies for hazardous waste disposal for C6 Package                 |     |
| Table 19: CTE/CTO status of Batching plant for C5 Package                              |     |
| Table 20: CTO/CTE Status of Batching plant for C7 Package                              |     |
| Table 21: River permission for C7 Package                                              |     |
| Table 22: Status of CTE & CTO for Batching Plants in C8 Package                        |     |
| Table 23: Status for batching plant CTE & CTO for P1B Package                          |     |
| Table 24: Status of Ground water permission for P1B Package                            |     |
| Table 25 Approved agencies for hazardous waste disposal for P1B Package                |     |
| Table 26 Other permissions for P1B Package                                             |     |
| Table 27: CTE/CTO status of batching plant for P1C Package                             |     |
| Table 28: Status of Ground water permissions for P1C Package                           |     |
| Table 29: Ambient Air quality Locations vis-à-vis Location codes for C4 Package        |     |
| Table 30: Ambient Air quality Monitoring data for C4 Package for Particulate Matter    |     |
| Table 31: Ambient Air quality Monitoring data for C4 Package for gaseous pollutants    |     |
| Table 31: Ambient An quanty Monitoring data for C4 rackage for gaseous pondiants       |     |
| Table 32: Ambient Noise quality Locations vis-a-vis Location codes for C4 Fackage      |     |
|                                                                                        |     |
| Table 34: DG stack monitoring of C4 Package                                            |     |
| Table 35: Drinking Water Quality at C4 Package for January 2023                        |     |
|                                                                                        |     |
| Table 37: Drinking Water Quality at C4 Package for March 2023                          |     |
| Table 38: Surface Water Quality Monitoring Data for C4 Package in January 2023         |     |
| Table 39 Bottom sediment Quality Monitoring C4 package in Jan 23                       |     |
| Table 40: STP treated water Quality Monitoring at C4 Package in the Quarter            |     |
| Table 41: Vibration Monitoring Data for C4 Package for January 2023                    |     |
| Table 42: Vibration Monitoring Data for C4 Package for February 2023                   |     |
| Table 43 Vibration Monitoring Data for C4 Package for March 2023                       |     |
| Table 44: Ambient air quality monitoring locations for C5 Package                      |     |
| Table 45: Ambient Air quality Monitoring data for C5 Package                           |     |
| Table 46: Ambient noise quality monitoring locations for C5 Package                    |     |
| Table 47: Ambient Noise quality monitoring data for C5 Package                         |     |
| Table 48: Vibration monitoring at C5 Package in February 23                            |     |
| Table 49 Vibration monitoring at C5 Package in March 23                                |     |
| Table 50: Ambient Air Quality Monitoring Locations for C6 Package                      |     |
| Table 51: Ambient Air Quality Monitoring Data for C6 Package for PM10 and PM2.5        |     |
| Table 52: Ambient Air Quality Monitoring Data for C6 Package for gaseous pollutants    |     |
| Table 53: DG Stack Monitoring Data for C6 Package in January 2023                      |     |
| Table 54: Ambient Noise Quality Monitoring Locations for C6 package                    |     |
| Table 55: Ambient Noise Quality Data for C6 package                                    |     |
| Table 56: Drinking Water Quality Data for C6 Package in January 23                     |     |
| Table 57: Drinking Water Quality Data for C6 Package on February 23                    |     |
| Table 58: Surface Water Quality Monitoring Data for C6 Package in January 2023         | 307 |

| Table 59: Surface Water Quality Monitoring Data for C6 Package in February 2023                  | 310 |
|--------------------------------------------------------------------------------------------------|-----|
| Table 60:Bottom Sediment Quality Analysis for C6 Package on January 2023                         |     |
| Table 61: Ground Water Quality Monitoring Data for C6 Package in January 2023                    | 316 |
| Table 62: Ground Water Quality Monitoring Data for C6 Package on March 2023                      | 337 |
| Table 63: Groundwater Quality results – locations where parameters beyond the permissible limits | 343 |
| Table 64: Treated-Waste-water Quality Data for C6 Package                                        | 346 |
| Table 65: Greywater Wastewater Quality Monitoring for C6 package                                 | 348 |
| Table 66: RO reject Quality Monitoring Data for C6 Package                                       | 350 |
| Table 67: Vibration Monitoring Data for C6 Package in January 2023                               | 352 |
| Table 68: Vibration Monitoring Data for C6 Package in February 2023                              | 356 |
| Table 69: Vibration Monitoring Data for C6 Package in March 2023                                 | 360 |
| Table 70: Ambient Air quality Monitoring data for C7 Package for particulate matter              | 363 |
| Table 71: Ambient Air quality Monitoring data for C7 Package for gaseous pollutants              |     |
| Table 72: Ambient Noise Quality Data for C7 Package                                              |     |
| Table 73: Ambient Air quality Monitoring data for C8 Package for particulate matter              | 366 |
| Table 74: Ambient Air quality Monitoring data for C8 Package for gaseous pollutants              | 367 |
| Table 75: Ambient Noise Quality Data for C8 Package                                              | 368 |
| Table 76: Vibration Monitoring Data for C8 Package in January 2023                               | 369 |
| Table 77: Vibration Monitoring Data for C8 Package in Feb 2023                                   | 369 |
| Table 78: Vibration Monitoring Data for C8 Package in March 2023                                 |     |
| Table 79: Ambient Air quality Monitoring data for P1B Package for particulate matter             |     |
| Table 80: Ambient Air quality Monitoring data for P1B Package for gaseous pollutants             |     |
| Table 81 DG stack Monitoring Data for P1B Package in January 23                                  |     |
| Table 82: Ambient Air Monitoring for P4X package at STEL Workshop                                |     |
| Table 83: Ambient Air Monitoring for P4Y package at GML Workshop                                 |     |
| Table 84: Ambient Air Monitoring for P4Y package at TEIL Workshop                                |     |
| Table 85:Workplace Air Monitoring at STEL Workshop                                               |     |
| Table 86:Workplace Air Monitoring at GML Workshop                                                |     |
| Table 87: Workplace Air Monitoring at TEIL Workshop                                              | 378 |
| Table 88: Ambient Noise Quality Monitoring at STEL                                               |     |
| Table 89: Ambient Noise Quality Monitoring at GML                                                |     |
| Table 90: Ambient Noise Quality Monitoring at TEIL                                               |     |
| Table 91: Workplace Noise Monitoring at STEL Workshop                                            | 380 |
| Table 92: Workplace Noise Monitoring at GML Workshop                                             | 380 |
| Table 93: Workplace Noise Monitoring at TEIL Workshop                                            | 380 |
| Table 94: Noise Monitoring for DG stacks at STEL                                                 | 381 |
| Table 95: DG Stack Monitoring at STEL                                                            | 382 |
| Table 96: DG stack monitoring data at TEIL                                                       | 383 |
| Table 97: Noise Monitoring for DG stacks at TEIL                                                 | 383 |
| Table 98: Drinking water analysis for STEL                                                       | 384 |
| Table 99: Drinking water analysis for GML                                                        | 386 |
| Table 100: Drinking water analysis for TEIL                                                      | 389 |
| Table 101: Treated Wastewater Quality Analysis for STEL                                          | 391 |
| Table 102: Status of Waste Generation & Management Details at C4 package in the Quarter          | 392 |
| Table 103:Status of Waste Generation & Management Details at C6 package in the Quarter           | 394 |
| Table 104:Status of Waste Generation & Management Details at C5 package in the Quarter           | 395 |
| Table 105:Status of Waste Generation & Management Details at C7 package in the Quarter           | 396 |
| Table 106:Status of Waste Generation & Management Details at C8 package in the Quarter           |     |
| Table 107:Status of Waste Generation & Management Details at P1B package in the Quarter          |     |
| Table 108: Construction related public grievances received till March 2023                       | 438 |

# **Annexure 1: Legal Status of various Infra Packages**

Copies of legal Compliances are provided in the Folder attached as Part B of this Document.

## **Appendix 1.1: Legal Status of C4 Package**

Table 1: Status of CTE & CTO for Batching Plants in C4 Package

| S.<br>No. | Description                                                                      | Clearance<br>type | Status as on 31st<br>March 23 | Operational<br>Status      | Valid up to   |
|-----------|----------------------------------------------------------------------------------|-------------------|-------------------------------|----------------------------|---------------|
| 1         |                                                                                  |                   | Batching Plant C4             |                            |               |
| 1         | Batching plant at<br>Chainage 159/000                                            | CTE & CTO         | CTE & CC&A obtained.          | Operational                | 31-Mar-2023*  |
| 2         | Batching plant at<br>Chainage 165/300                                            | CTE & CTO         | CTE & CTO obtained.           | Operational                | 22-Nov-2028   |
| 3         | Batching plant at<br>Chainage 167/200                                            | CTE & CTO         | CTE & CTO obtained.           | Operational                | 27-Jul-2037   |
| 4         | Batching plant at<br>Chainage 188/000                                            | CTE & CTO         | CTE & CTO obtained.           | Operational                | 06-Jan-2027   |
| 5         | Batching plant at<br>Chainage 217/000                                            | CTE & CTO         | CTE & CC&A<br>Obtained.       | Operational                | 30-Jun-2027   |
| 6         | Batching plant at<br>Chainage 232/000                                            | CTE & CTO         | CTE & CTO obtained            | Operational                | 30-Sep-2026   |
| 7         | Batching plant at<br>Chain age 232/000-<br>kachol (For Noise<br>Barrier Factory) | CTE & CTO         | CTE Applied                   | Under<br>Commissionin<br>g | -             |
| 8         | Batching plant at<br>Chainage 238/000                                            | CTE & CTO         | CTE & CTO obtained            | Operational                | 27-Jul-2026   |
| 9         | Batching plant at<br>Chainage 243/000                                            | CTE & CTO         | CTE & CTO obtained.           | Operational                | 31-Dec-2028   |
| 10        | Batching plant at<br>Chainage 254/000                                            | CTE & CTO         | CTE & CTO obtained.           | Operational                | 10th Aug 2026 |
| 11        | Batching plant at<br>Chainage 261/000                                            | CTE & CTO         | CTE Applied                   | Under<br>Commissionin<br>g | -             |
| 12        | Batching plant at<br>Chainage 268/000                                            | CTE & CTO         | CTE and CTO obtained.         | Operational                | 25th Feb 2025 |
| 13        | Batching plant at<br>Chainage 275/000                                            | CTE & CTO         | CTE & CC&A obtained.          | Operational                | 22-Jul-2023   |
| 14        | Batching plant at<br>Chainage 281/000                                            | CTE & CTO         | CTE & CC&A obtained.          | Operational                | 05-Sep-2023   |
| 15        | Batching plant at<br>Chainage 290/000                                            | CTE & CTO         | CTE & CC&A<br>Obtained.       | Operational                | 29-June-2023  |
| 16        | Batching plant at<br>Chainage 306/000                                            | CTE & CTO         | CTE & CTO obtained.           | Operational                | 31-Dec-2028   |

| S.<br>No. | Description                           | Clearance<br>type | Status as on 31st<br>March 23 | Operational<br>Status | Valid up to   |
|-----------|---------------------------------------|-------------------|-------------------------------|-----------------------|---------------|
| 17        | Batching plant at<br>Chainage 320/000 | CTE & CTO         | CTE & CC&A<br>Received        | Operational           | 27th Jan 2030 |
| 18        | Batching plant at<br>Chainage 321/000 | CTE & CTO         | CTE & CTO obtained.           | Operational           | 30-Sep-2028   |
| 19        | Batching plant at<br>Chainage 331/000 | CTE & CTO         | CTE & CTO obtained.           | Operational           | 31-Dec-2028   |
| 20        | Batching plant at<br>Chainage 359/000 | CTE & CTO         | CTE & CTO obtained.           | Operational           | 31-Dec-2027   |
| 21        | Batching plant at<br>Chainage 385/000 | CTE & CTO         | CTE & CTO obtained.           | Operational           | 30-Sep-2024   |

Table 2: Status of CTE & CTO for Crusher & Quarry in C4 Package

| S. No.  | Description         | Clearance                | Status as on 31st                                          | Operational | Valid upto                                                                  |
|---------|---------------------|--------------------------|------------------------------------------------------------|-------------|-----------------------------------------------------------------------------|
| 5. 110. | Description         | type                     | March -2023                                                | Status      | vana upto                                                                   |
| 2       |                     |                          | Stone Crushers                                             | at C4       |                                                                             |
| 1       | Sondhalwada         | CTE & CTO                | CTE & CTO obtained.                                        | Operational | 18-Feb-2027                                                                 |
| 2       | Chikhli             | CTE & CTO                | CTE & CTO obtained.                                        | Operational | 31-Mar-2026                                                                 |
| 3       | Zankhav-I           | CTE & CTO                | CTE & CTO obtained.                                        | Operational | 30-Jul-2026                                                                 |
| 4       | Zankhav-III         | CTE & CTO                | CTE & CTO obtained.                                        | Operational | 21-Apr-2025                                                                 |
| 5       | Choki Crusher       | CTE & CTO                | CTE & CTO obtained.                                        | Operational | 31-Dec 2026                                                                 |
| 6       | Ajabpura            | CTE & CTO                | CTE & CTO obtained.                                        | Operational | 30-Sep-2024                                                                 |
| 7       | Kherwadi            | CTE & CTO                | CTE & CTO obtained.                                        | Operational | 31-Mar-2028                                                                 |
| 3       | Stone Quarries C4   |                          |                                                            |             |                                                                             |
| 1       | Sondhalwada         | Environment<br>Clearance | Environment Clearance received. CTE obtained, CTO Obtained |             | Conterminous with<br>validity of lease or<br>30 years whichever<br>is early |
| 1.1     | Sondhalwada         | CTE & CTO                | CTE and CTO not obtained                                   | Operational | Valid up to 09<br>Nov-2027                                                  |
| 2       | Debarpada<br>Quarry | EC<br>CTE & CTO          | EC Obtained<br>CTE and CTO not<br>obtained                 |             |                                                                             |
| 3       | Chikhli<br>Quarry   | EC<br>CTE & CTO          | EC Obtained<br>CTE and CTO not<br>obtained                 |             | Remarks –<br>Subcontracted,<br>Contractor has                               |
| 4       | Kantav<br>Quarry    | EC<br>CTE & CTO          | EC Obtained<br>CTE and CTO not<br>obtained                 |             | written letters to sub-contractors to submit Consents.                      |
| 5       | Choki Quarry        | EC<br>CTE & CTO          | EC Obtained<br>CTE and CTO not<br>obtained                 |             |                                                                             |

| 6 | Amarapura<br>Quarry | EC<br>CTE & CTO | EC Obtained<br>CTE and CTO not<br>obtained |  |  |
|---|---------------------|-----------------|--------------------------------------------|--|--|
|---|---------------------|-----------------|--------------------------------------------|--|--|

Table 3 : Status of Ground water permission for C4 Package

| S.<br>No. | Section   | Chain age | Village                   | No. of<br>Wells | Quantity (KLD) | Application no./Permission no.                                     | Valid up to                                                                           |
|-----------|-----------|-----------|---------------------------|-----------------|----------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|           |           | 159       | Nagwas                    | 3               | 52             | CGWA/NOC/INF/ORIG/202<br>2/16060 dated 27-July-2022                | 26-Jun- 27                                                                            |
| 1         | Section 1 | 165       | Borigam                   | 2               | 150            | CGWA/NOC/INF/ORIG/202<br>2/17080dated 21-Nov-2022                  | 26-Jun- 27 20-Nov-27 29-Jun-27 04-Sept- 27 20-Nov-27 20-Sept- 27 13-Sept-27 02-Nov-27 |
| 1         | Section 1 | 167       | Dungra                    | 3               | 70             | CGWA/NOC/INF/ORIG/202<br>2/15907 dated 30-June-2022                | 29-Jun-27                                                                             |
|           |           | 188       | Balda                     | 5               | 170            | CGWA/NOC/INF/ORIG/202<br>2/16247 dated 05-Sept-2022                | 04-Sept- 27                                                                           |
|           |           | 217       | Nandark<br>ha,<br>Gandevi | 2               |                | Application No. 73941                                              |                                                                                       |
| 2         | Section 2 | 232       | Kachhol                   | 2               | 410            | CGWA/NOC/INF/ORIG/202<br>2/17082dated 21-Nov-2022                  | 20-Nov-27                                                                             |
|           |           | 238       | Nasilpor                  | 3               | 205            | CGWA/NOC/INF/ORIG/202<br>2/16395 dated 21-09-2022                  | 20-Sept- 27                                                                           |
|           |           | 243       | Padgha                    | 1               | 262            | CGWA/NOC/INF/ORIG/202<br>2/16313 dated 14 -Sept-2022               | 13-Sept-27                                                                            |
|           |           | 254       | Bhatia                    | 1               | 198            | CGWA/NOC/INF/ORIG/202<br>2/16310 dated 14-Sept-2022                | 13-Sept-27                                                                            |
| 3         | Section 3 | 268       | Kosmad<br>a               | 2               | 207            | CGWA/NOC/INF/ORIG/202<br>2/16912 dated 03-Nov-2022                 | 02-Nov-27                                                                             |
|           |           | 275       | Kholvad<br>, Kamrej       | 2               |                | 21-4/10152/GJ/INF/2022                                             |                                                                                       |
|           |           | 290       | Mulad                     | 2               | 207            | CGWA/NOC/INF/ORIG/202<br>2/16312 dated 14-Sept-2022                | 13-Sept-27                                                                            |
|           |           | 306       | Panoli                    | 10              |                | CGWA/NOC/INF/ORIG/202<br>2/17416 dated 28-12-2022                  |                                                                                       |
| 4         | Section 4 | 321       | Kukarw<br>ada             | 10              |                | CGWA/NOC/INF/ORIG/202<br>3/17819 dated 23rd Feb-2023<br>(attached) |                                                                                       |
|           |           | 331       | Mahudh<br>ala             | 10              | 160            | CGWA/NOC/INF/ORIG/202<br>2/16101 dated 16-08-2022                  | 15-Aug-27                                                                             |
| 5         | Section 5 | 359       | Mangrol                   | 10              | 200            | CGWA/NOC/INF/ORIG/202<br>2/16278 dated 09-Sept-2022                | 08-Sept-27                                                                            |
|           |           | 385       |                           |                 |                | Information awaited                                                |                                                                                       |

Table 4: Status of PESO permission for C4 package

| Sr No. | Location/ Ch/Section | Status                                                       | Valid up to |
|--------|----------------------|--------------------------------------------------------------|-------------|
| 1      | Ch. 168              | Permission Obtained                                          | 31-Dec-2023 |
| 2      | Ch 188               | Permission Obtained                                          | 31-Dec-2023 |
| 3      | Ch. 232              | Permission obtained from Add. District Magistrate<br>Navsari | 31-Dec-2023 |
| 4      | Ch. 268 (Kosmada)    | Permission obtained from Chief Controller of Explosive       | 31-Dec-2023 |
| 5      | Ch. 290.500 (Kim)    | Permission obtained from Chief Controller of Explosive       | 31-Dec-2023 |
| 6      | Ch. 321              | Permission Obtained                                          | 31-Dec-2023 |
| 7      | Ch.359               | Permission Obtained                                          | 31-Dec-2023 |

Table 5: Status of Permissions for Construction work on Rivers and Ponds at C4 package

| Sr. No. | Section                                            | Location                                                 | Status                                                                                        | Application Nos./ Permission no. & date                                                                                                                                                                         |
|---------|----------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4       | Rivers C4 P                                        | ackage                                                   |                                                                                               |                                                                                                                                                                                                                 |
| 1       |                                                    | Daman Ganga<br>River, Achchhar<br>Valsad Chainage<br>166 | Application submitted to SE Daman Ganga Project Circle, Valsad for obtaining permission.      | Submitted via letter LTC/MAHSR/Pkg- C4/EXT/GEN2022/14 & Under process                                                                                                                                           |
| 2       |                                                    | Darotha River                                            | Application not yet submitted                                                                 |                                                                                                                                                                                                                 |
| 3       | Section4<br>01<br>(Chainage                        | Kolak River,<br>Rata, Valsad<br>Chainage 174             | Application submitted SE Daman Ganga Project Circle, Valsad for obtaining permission.         | Submitted via letter LTC/MAHSR/Pkg- C4/EXT/GEN2022/15 & under process                                                                                                                                           |
| 4       | 156/600 to<br>210/315)                             | Par River, Vapi<br>Chainage 190                          | Application submitted SE Daman Ganga Project Circle, Valsad for obtaining permission.         | Submitted via letter LTC/MAHSR/Pkg- C4/EXT/GEN2022/18 & Under process                                                                                                                                           |
| 5       |                                                    | Auranga River,<br>Vapi Chainage<br>198                   | Application submitted to EE, Irrigation Department, Ambica Division for obtaining permission. | Submitted via letter LTC/MAHSR/Pkg- C4/EXT/GEN2022/12 & Under process                                                                                                                                           |
| 6       |                                                    | Kaveri River,<br>Valsad Chainage<br>212                  | Permission Obtained.                                                                          | Permission obtained from Narmada WR, WS & KALPSAR Dept vide letter no.JA no: Anvin/PB- 3/MAHSR/Vshi/3256 dated 05-11-22  Submitted the Construction methodology via letter LTC/MAHSR/Pkg- C4/DEG/2022/SRR/10309 |
| 7       | Section -02<br>(Chainage<br>210/525 to<br>241/510) | Kharera River<br>Ch 212                                  | Permission Obtained.                                                                          | Permission obtained from Narmada WR, WS & KALPSAR Dept vide letter no.JA no: Anvin/PB- 3/MAHSR/Vshi/3256 dated 05-11-22  Submitted the Construction methodology via letter LTC/MAHSR/Pkg- C4/DEG/2022/SRR/10308 |
| 8       |                                                    | Ambica River,<br>Chainage 228                            | Permission Obtained.                                                                          | Permission obtained from Narmada WR, WS & KALPSAR Dept vide letter no.JA no: Anvin/PB-3/MAHSR/Vshi/3256 dated 05-11-22  Submitted the Construction methodology via letter LTC/MAHSR/Pkg-C4/EXT/GEN2022/4446.    |

| Sr. No. | Section                                            | Location                       | Status                                                               | Application Nos./ Permission no. & date                                                                                                                                                   |
|---------|----------------------------------------------------|--------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9       |                                                    | Purna River,<br>Chainage 239   | Permission Obtained.                                                 | Permission obtained from Narmada WR, WS & KALPSAR Dept vide letter no.JA no: Anvin/PB- 3/MAHSR/Vshi/3256 dated 05-11-22  Submitted the Construction methodology via letter LTC/MAHSR/Pkg- |
| 10      |                                                    | Mindola River                  | Application not yet                                                  | C4/EXT/GEN2022/24                                                                                                                                                                         |
| 10      | Gaatian 02                                         | Chainage 250                   | submitted. IWAI Permission                                           | NOC                                                                                                                                                                                       |
| 11      | Section -03<br>(Chainage<br>241/770 to<br>297/027  | Tapi River<br>Chainage 276     | obtained. Letter of intimation to WRD not yet made                   | NOC received on 04-04-2022<br>IWAI/NOC-<br>Online/NW100/Surat/202                                                                                                                         |
| 12      |                                                    | Kim River,<br>Chainage 293     | Application not yet submitted.                                       |                                                                                                                                                                                           |
| 13      | Section-04<br>(Chainage<br>297/287 to<br>333/276)  | Narmada River,<br>Chainage 320 | IWAI Permission obtained. Intimation letter to WRD submitted.        | NOC received on 04-04-2022<br>IWAI/NC/NW-73/2017.                                                                                                                                         |
| 14      | Section -05<br>(Chainage<br>333/606 to<br>393/700) | Dhadhar River,<br>Chainage 373 | Application submitted to concern authority for obtaining permission. | Submitted via letter LTC/MAHSR/Pkg- C4/EXT/GEN2022/19 & Under process                                                                                                                     |
| 15      | Section-05                                         | Vishwamitri<br>river           | Application not yet submitted                                        |                                                                                                                                                                                           |
| 5       | Ponds C4 Pa                                        | ickage                         |                                                                      |                                                                                                                                                                                           |
| 1       | Ch 231 to 233                                      | Kachol                         | Permission Obtained                                                  | Submitted via letter<br>LTC/MAHSR/C4/S2/AUT-<br>P/2021/002 dt 2-06-21                                                                                                                     |
| 2       | Ch 235                                             | Sisodra                        | Permission Obtained                                                  | Submitted via letter<br>LTC/MAHSR/C4/S2/AUT-<br>P/2021/002 dt 2-06-21                                                                                                                     |
| 3       | Ch - 173                                           | Rata                           | Application not yet submitted.                                       |                                                                                                                                                                                           |
| 4       | Ch. 188                                            | Badla                          | Application not yet submitted.                                       |                                                                                                                                                                                           |
| 5       | Ch. 223                                            | Vadsangdha                     | Application not yet submitted.                                       |                                                                                                                                                                                           |
| 6       | Ch. 250                                            | Nagri                          | Application not yet submitted.                                       |                                                                                                                                                                                           |
| 7       | Ch. 254                                            | Hoziwala                       | Application not yet submitted.                                       |                                                                                                                                                                                           |
| 8       | Ch. 292                                            | Kimabali                       | Application not yet submitted.                                       |                                                                                                                                                                                           |
| 9       | Ch. 295                                            | Kuwardha                       | Application not yet submitted.                                       |                                                                                                                                                                                           |

Table 6: authorisation for biomedical waste generation & storage

| Sr. No. | Section   | Status                         | Vide No. & Date           |
|---------|-----------|--------------------------------|---------------------------|
|         | Section 4 | Authorisation Obtained for Sec | BMW AUTH NO: BMW- 363045, |
|         |           | 4 only                         | valid up to 31/12/2075.   |

Table 7: Approved agency for biomedical waste disposal for C4 Package

| Sr. No. | Section     | Name of Disposal Agency/ Status                             | Remark               |
|---------|-------------|-------------------------------------------------------------|----------------------|
| 1.      | Section 1&2 | M/s En-clear Bio-medical waste Pvt ltd                      | Informed through MPR |
| 2.      | Section 3&4 | M/s En-clear Bio-medical waste Pvt ltd & M/s Globe Biocare. | Informed through MPR |
| 3.      | Section 5   | M/s Samvedhana BMW Incinerator.                             | Informed through MPR |

Table 8: Approved agencies for hazardous waste disposal for C4 Package

| Sr. No. | Section   | Name of Disposal Agency                       | Approval Status                                      |
|---------|-----------|-----------------------------------------------|------------------------------------------------------|
| 1.      |           | M/s ABC Organics & Chemicals, Bharuch         | Engineer letter no. 1244 dt. 11-Jul-<br>2022 (NONO)  |
| 2       | Section   | M/s Jai Ambe Thin Chem, Valsad                | Engineer letter no. 1244 dt. 11-Jul-<br>2022 (NONO)  |
| 3       | 1,2,3,4,5 | M/s A-One Lube Refinery, Navsari              | Engineer letter no. 1244 dt. 11-Jul-<br>2022 (NONOC) |
| 4       |           | M/s: Moradia Brothers Chem Pvt. Ltd.<br>Surat | Engineer letter no. 1613 dt. 19-Sep-<br>2022 (NONO)  |

Table 9 : Other permissions for C4 Package

| Sr. No. | Package        | Status                                         | Permission No. & Date       |  |  |
|---------|----------------|------------------------------------------------|-----------------------------|--|--|
| 6       | Forest pe      | Forest permission                              |                             |  |  |
|         |                | Diversion of 5.8470 ha Forest land for Valsad, | No. 6-GJC 081/2018-         |  |  |
| 1       | <b>C4</b>      | Surat, Navsari, Bharuch, Vadodara, Anand,      | BHO/309 dated 13.3.2020     |  |  |
| 1.      | Package        | Kheda & Ahmedabad Districts in Gujarat has     |                             |  |  |
|         |                | been obtained.                                 |                             |  |  |
| 7       | CRZ permission |                                                |                             |  |  |
| 1       | C4             | CRZ clearance for High-Speed Railway Project   | F.No.11-I/2019-IA-III dated |  |  |
| 1       | Package        | across Narmada River                           | 22-Feb 2019                 |  |  |

### Appendix 1.2: Legal Status of C6 Package

Table 10: Status of CTE & CTO for Batching Plant in C6 Package

| S.<br>No. | Description                         | Clearanc<br>e type | Status as on 31 <sup>st</sup><br>March 23       | Operational<br>Status | Valid up to      |
|-----------|-------------------------------------|--------------------|-------------------------------------------------|-----------------------|------------------|
| 1         | Dashrath-Vadodra Ch 407             | CTE &<br>CTO       | CTE & CTO obtained.                             | Operational           | 31-Mar-<br>2025  |
| 2         | Rajupura-Mahi River Anand<br>Ch 417 | CTE &<br>CTO       | CTE applied & CTO pending                       | Operationa<br>1       |                  |
| 3         | Gamdi Anand Ch 434 (2 silos)        | CTE &<br>CTO       | CTE & CTO obtained.                             | Operationa<br>1       | 31-Dec-<br>2026  |
| 4         | Uttarsanda Ch 448                   | CTE &<br>CTO       | CTE & CTO obtained.                             | Operationa<br>1       | 21-Sep-<br>2026  |
| 5         | Piplag Ch 450                       | CTE &<br>CTO       | CTE obtained CTO Obtained                       | Operationa<br>1       | 31-Mar-<br>2023* |
| 6         | Chhapra Ch 471                      | CTE &<br>CTO       | CTE obtained CTO Obtained                       | Operationa<br>1       | 30-Mar-<br>2023* |
| 7         | Mahij Ch 483                        | CTE &<br>CTO       | CTE & Provisional<br>CTO obtained for a<br>year | Operationa<br>1       | 19-Oct-<br>2022  |

Table 11: Status of Ground water permission for C6 Package

| S.<br>No. | Section   | Chainag<br>e | Village | No. of<br>Wells | Quantity<br>(KLD) | Application no./Permission no.                        | Valid up<br>to |
|-----------|-----------|--------------|---------|-----------------|-------------------|-------------------------------------------------------|----------------|
| 1         | Section 1 |              |         | 10              | 140.5             | Permission received vide CGWA/NOC/INF/ORIG/2022/15297 | 25-Apr-<br>27  |
| 2         | Section 2 |              |         | 10              | 145.0             | Permission received vide CGWA/NOC/INF/ORIG/2022/14350 | 17-Jul-<br>27  |
| 3         | Section 3 |              |         | 10              | 145               | Permission received vide CGWA/NOC/INF/ORIG/2021/14164 | 26-Dec-<br>26  |
| 4         | Section 4 |              |         | 10              | 145               | Permission received vide CGWA/NOC/INF/ORIG/2022/14384 | 19-Jan-<br>27  |

Table 12: Status of PESO permission for C6 Package

| S<br>No. | Location/<br>Ch/Section | Status                       | Valid up to |
|----------|-------------------------|------------------------------|-------------|
|          |                         | Licence No. P/WB/GJ/14/7702  |             |
| 1        | Sec 1                   | (P509827) dated 21/01/2022   | 31-12-2023  |
|          |                         | Licence No. P/WB/GJ/14/7682  |             |
| 2        | Sec 2                   | (P509945) dated 31/12/2021   | 31-12-2023  |
|          |                         | Licence No. P/WB/GJ/14/7772  |             |
| 3        | Sec 3                   | (P509557) dated 09/03/2022   | 31-12-2023  |
|          |                         | Licence No.: P/WB/GJ/14/7967 |             |
| 4        | Sec 4                   | (P531668) dated 20/10/2022   | 31-12-2023  |

Table 13: Status of permission Ponds & Canals for C6 Package

| Sr.<br>No. | Section     | Location     | Status               |
|------------|-------------|--------------|----------------------|
| 01         | Section-I   | Canal        | Approval recd        |
| 02         | Section-II  | Canal        | Approval recd        |
| 03         | Section-II  | Petlad Canal | Approval recd        |
| 04         | Section-III | Canal        | Approval recd        |
| 05         | Section-III | Canal & Road | Approval recd        |
| 06         | Section-IV  | Meshwa Canal | Approval recd        |
| 07         | Section-III | Pond,        | NHSRCL recd Approval |
| 08         | Section-IV  | Pond,        | NHSRCL recd Approval |
| 09         | Section-IV  | Pond         | NHSRCL recd Approval |
| 10         | Section-IV  | Pond         | NHSRCL recd Approval |
| 11         | Section-IV  | Pond         | NHSRCL recd Approval |
| 12         | Section-IV  | Pond         | NHSRCL recd Approval |
| 13         | Section-IV  | Pond         | NHSRCL recd Approval |

Table 14: Status of River crossing permission for C6 Package

| Sr.<br>No. | Section  | Location     | Status               | Application Nos./ Permission no. & date |
|------------|----------|--------------|----------------------|-----------------------------------------|
|            | Section- |              |                      | IWAI/NOC-Online/NW-                     |
| 1          | 01 (Ch:  | Mahi river   | Permission obtained. | 66/Vadodara/2021                        |
|            | 416+840) |              |                      | dtd.11.10.2021.                         |
|            | Section- |              |                      | Mahi/PB-                                |
| 2          | 03(Ch:   | Mohar River  | Permission obtained. | 3/NHSRCL/River/Crossing                 |
|            | 463+940) |              |                      | 1367                                    |
|            | Section- |              |                      | Mahi/PB-                                |
| 3          | IV (Ch:  | Vatrak River | Permission obtained. | 3/NHSRCL/River/Crossing                 |
|            | 473+600) |              |                      | 1367                                    |
|            | Section- |              |                      | Mahi/PB-                                |
| 4.         | IV (Ch:  | Meshwa River | Permission obtained. | 3/NHSRCL/River/Crossing                 |
|            | 476+600) |              |                      | 1367                                    |

Table 15: Status of CTE & CTO for Crushers at C6 Package

| S.<br>No. | Description | Clearance type | Status as on 31st<br>March -2023 | Operational<br>Status | Valid up to  |
|-----------|-------------|----------------|----------------------------------|-----------------------|--------------|
| 1         | Ajabpura    | CTE & CTO      | CTE Received, waiting for CTO.   |                       |              |
| 2         | Sundalpura  | CTE & CTO      | CTE & CTO received               | Operational           | 30-Sep-2024  |
| 3         | Sevaliya    | CTE & CTO      | CTE & CTO received               | Operational           | 14-Sep-2026  |
| 4         | Tulsigam    | CTE & CTO      | Awaits CTE and CTO of Tulsigram  |                       |              |
| 5         | Othwad      | CTE & CTO      | CTE & CTO received               | Operational           | 02-July-2026 |
|           |             |                |                                  |                       | No quarries  |
|           |             |                |                                  |                       | owned by C6  |
|           |             |                |                                  |                       | Package.     |

Table 16: Authorisation for biomedical waste generation & storage for C6 Package

| Sr. No. | Section   | Status        | Vide No. & Date                      |
|---------|-----------|---------------|--------------------------------------|
| 1       | Section 1 | Authorisation | BMW AUTH NO: BMW-361922, VALID UPTO: |
| 1.      | Section 1 | Obtained      | 31/12/2075                           |
| 2.      | Section 2 | Authorisation | BMW AUTH NO: BMW-359699, VALID UPTO: |
| 2.      |           | Obtained      | 31/12/2075                           |
| 3.      | Section 3 | Authorisation | BMW AUTH NO: BMW-359956, VALID UPTO: |
| 3.      |           | Obtained      | 31/12/2075                           |
| 1       | Section 4 | Authorisation | BMW AUTH NO: BMW-361922, VALID UPTO: |
| 4.      |           | Obtained      | 31/12/2075                           |

Table 17 Approved agency for biomedical waste disposal for C6 Package

| Sr.<br>No. | Section           | Name of Disposal Agency/ Status        | Remark               |
|------------|-------------------|----------------------------------------|----------------------|
| 1.         | C6 – All sections | M/s Samvedna Bio-medical & Incinerator | Informed through MPR |

Table 18 Approved agencies for hazardous waste disposal for C6 Package

| Sr.<br>No. | Section         | Name of Disposal Agency                                       | Approval Status                                    |
|------------|-----------------|---------------------------------------------------------------|----------------------------------------------------|
| 1.         |                 | M/s S.K Metals industries                                     | Engineer letter no. 1233 dt. 02-Jul-2022 (NONO)    |
| 2.         | Section         | M/s Lucky petroleum                                           | Engineer letter no. 0797 dt. 22-Apr-2022 (NONO)    |
| 3          | Section 1,2,3,4 | M/s Star decontamination and Recycling                        | Engineer letter no. 1815 dt. 17-Oct-2022<br>(NONO) |
| 4.         |                 | M/s. Reliance Barrels Supply Co. and M/s. Jawrawala Petroleum | Engineer letter no. 2210 dt. 24-Dec-2022 (NONOC)   |
| 5.         |                 | M/s S.S. Industries                                           | Engineer letter no. 2421 dt. 03-Feb-2023 (NONO)    |

### Appendix 1.3: Legal Status of C5, C7 & C8 Packages

Table 19: CTE/CTO status of Batching plant for C5 Package

| S. No. | Description           | Clearance<br>type | Status as on 30th<br>March 23 | Operational<br>Status | Valid<br>upto    |
|--------|-----------------------|-------------------|-------------------------------|-----------------------|------------------|
| 1      | Punjab Steel (90 cum) | CTE & CTO         | CTE obtained,<br>CTO pending  | Operational           | 25-July-<br>2029 |
| 2.     | Punjab Steel (90 cum) | CTE & CTO         | CTE & CTO pending             |                       |                  |
| 3.     | Casting Yard (60 cum) | CTE & CTO         | CTE & CTO pending             |                       |                  |

 $Table\ 20:\ CTO/CTE\ Status\ of\ Batching\ plant\ for\ C7\ Package$ 

| S. No. | Description | Clearance<br>type | Status as on 30th March 23 | Operational<br>Status | Valid upto   |
|--------|-------------|-------------------|----------------------------|-----------------------|--------------|
| 1      | Kalupur     | CTE & CTO         | CTE obtained, CTO Obtained | Operational           | 20-July-2027 |
| 2      | Sabarmati   | CTE & CTO         | CTE obtained, CTO Obtained | Operational           | 20-Aug-2027  |
| 3      | Vatva       | CTE & CTO         | CTE obtained, CTO Obtained | Operational           | 30-Jun-2027  |

Table 21: River permission for C7 Package

| S.no | River           | Status                                                                                                            |
|------|-----------------|-------------------------------------------------------------------------------------------------------------------|
| 1    | Sabarmati River | Coming under jurisdiction of IWAI (Inland Waterways Authority) and necessary clearance from IWAI is obtained.     |
| 2    | Sabarmati River | Permission from Sabarmati Board/ Irrigation department for working on Sabarmati River and Canal is under process. |
| 3    | Canal           | Permission from Sabarmati Board/ Irrigation department for working on Canal is under process.                     |

Table 22: Status of CTE & CTO for Batching Plants in C8 Package

| S. No. | Description          | Clearance<br>type | Status as on 31st March 23 | Operational<br>Status | Valid upto  |  |
|--------|----------------------|-------------------|----------------------------|-----------------------|-------------|--|
| 1      | Maintenance<br>Depot | CTE &<br>CTO      | CTE & CTO obtained         | Operational           | 01-Nov-2027 |  |

### **Appendix 1.4: Legal Status of P1B Package**

Table 23: Status for batching plant CTE & CTO for P1B Package

| S.<br>No. | Description       | Description Clearance type Status as on 31st March 23 |                       | Operational<br>Status | Valid up to |
|-----------|-------------------|-------------------------------------------------------|-----------------------|-----------------------|-------------|
| 1         | Base camp Navsari | CTE & CTO                                             | CTE & CTO<br>Obtained | Operational           | 30-Jun-2027 |
| 2         | GAD 12            | CTE & CTO                                             | CTE & CTO<br>Obtained | Operational           | 19-Jun-2023 |
| 3         | GAD 1441          | CTE & CTO                                             | CTE & CTO<br>Obtained | Operational           | 29-Jun-2024 |
| 4         | GAD 15            | CTE & CTO                                             | CTE & CTO<br>Obtained | Operational           | 30-Jun-2027 |

Table 24: Status of Ground water permission for P1B Package

| S.<br>No. | Sectio<br>n | Chainag<br>e | Village  | No. of<br>Wells | Quantit<br>y<br>(KLD) | Application no./Permission no. | Valid up to |
|-----------|-------------|--------------|----------|-----------------|-----------------------|--------------------------------|-------------|
| 1         |             |              | Tarsadi, | 1               | 9                     | 21-                            | X Y 11 11.  |
|           |             |              | Mangrol  |                 |                       | 4/9984/GJ/IND/2022             | Validity    |
| 2         |             |              | Un,      | 1               | 8                     | 21-                            | Not given   |
|           |             |              | Navsari  | 1               | 0                     | 4/10200/GJ/IND/2022            | for         |
| 2         |             |              | Kudsad,  | 1               | 9                     | 21-                            | withdrawal  |
| 3         |             |              | Olpad    | 1               | 9                     | 4/9983/GJ/IND/2022             | less than   |
| 4         |             |              | Tralsi,  | 1               | 7                     | 21-                            | 10KLD       |
| 4         |             |              | Bharuch  | 1               | /                     | 4/9982/GJ/IND/2022             |             |

Table 25 Approved agencies for hazardous waste disposal for P1B Package

| Sr.<br>No. | Section | Name of Disposal Agency                                           | Approval Status                                 |
|------------|---------|-------------------------------------------------------------------|-------------------------------------------------|
| 1          | P1B     | M/s- Mateshwari Metals for the disposal of used battery.          | Engineer letter no. 0923 dated 22-Nov-22 (NONO) |
| 1.         | PID     | M/s- Jai Ambe Thin Chem for the disposal of used oil / waste oil. | Engineer letter no. 0924 dated 22-Nov-22 (NONO) |

Table 26 Other permissions for P1B Package

| Sr.<br>No. | Package        | Status Permission No. & Date                                                                                                                                                                |
|------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | Forest permiss | sion                                                                                                                                                                                        |
| 1.         | P1B<br>Package | Permission applied for the following and is regularly followed up by NHSRCL –  1. 0.0111 ha Kanthariya, Bharuch  2. 0.7687 ha Sisodra & Amodpura, Navsari  3. 0.2753 ha Vaghaldhara, Valsad |

# **Appendix 1.5: Legal Status of P1C Package**

Table 27: CTE/CTO status of batching plant for P1C Package

| S. No. | Description                  | Clearance<br>type | Status as on 30th March<br>23 | Operational<br>Status | Valid<br>upto   |
|--------|------------------------------|-------------------|-------------------------------|-----------------------|-----------------|
| 1      | For Base<br>Camp<br>Nadiad   | CTE & CTO         | CTE obtained, CCA obtained    | Operational           | 01-Jun-<br>2023 |
| 2      | For Base<br>Camp<br>Vadodara | СТЕ & СТО         | CTE Applied, CTO not applied  | Operational           |                 |

Table 28: Status of Ground water permissions for P1C Package

| S.No. | Description                | ption   No. of   Quantity   Wells   (KLD) |     | <b>Application Status</b>                            | Application<br>Date                                        |
|-------|----------------------------|-------------------------------------------|-----|------------------------------------------------------|------------------------------------------------------------|
| 1     | For Base Camp,<br>Nadiad   | 1                                         | 9.9 | Applied via letter<br>no.: 21-<br>4/9054/GJ/INF/2022 | Validity Not<br>given for<br>withdrawal less<br>than 10KLD |
| 2     | For Base Camp,<br>Vadodara |                                           |     | Not yet applied                                      |                                                            |
| 3     | For Other GAD's            |                                           |     | Not yet applied                                      |                                                            |

# **Annexure 2: Environmental Data of C4 Package**

### Appendix 2.1: Ambient Air Quality Monitoring Data for C4 Package

Table 29: Ambient Air quality Locations vis-à-vis Location codes for C4 Package

| SI no | Code    | Monitoring Location                                                                                                   |
|-------|---------|-----------------------------------------------------------------------------------------------------------------------|
| 1     | AAQ-1   | Project Site office, batching plant, labour camp, Dadar and Nagar Haveli, at Ch. 159/000                              |
| 2     | AAQ-2   | Project Site office, batching plant, labour camp at Ch.65/000                                                         |
| 3     | AAQ-42  | Project Site Office, Batching Plant, Ch. no 167                                                                       |
| 4     | AAQ -3  | Vapi Station, Office / Residential Building at Ch. 168/000                                                            |
| 5     | AAQ -4  | Vapi Depot, Vapi Ambatch Road, Koparli Road, Village Vapi at Ch. 170/300                                              |
| 6     | AAQ -5  | Paria Gaon - Residential at Ch. 181                                                                                   |
| 7     | AAQ-6   | Project Site office, batching plant, Sander, labour camp at Ch. 188/000,                                              |
| 8     | AAQ-7   | Project Site working area and Labour camp at Ch. 207                                                                  |
| 9     | AAQ-8   | Crusher Sondhalwada                                                                                                   |
| 10    | AAQ-41  | Sondhalwada Quarry                                                                                                    |
| 11    | AAQ-10  | Project Site office, batching plant, labour camp, Commercial Shed, factory, Residential Billimora Near at Ch. 217/300 |
| 12    | AAQ-11  | Billimora station and office Building at Ch. 218/500                                                                  |
| 13    | AAQ-12  | Village changa (Residential) at Ch. 222/700 Construction site.                                                        |
| 14    | AAQ-13  | Ganesh temple, Sensitive location, Construction at Ch. 236/900                                                        |
| 15    | AAQ-14  | Project Site office, batching plant, labour camp at Ch. 232/000                                                       |
| 16    | AAQ -15 | Sensitive location, temple, Gurukul, at Ch. 239/400                                                                   |
| 17    | AAQ-16  | Project Site office, batching plant, labour camp at Ch. 238/000                                                       |
| 18    | AAQ -17 | Chikali Crusher                                                                                                       |
| 19    | AAQ-18  | Project Site office, batching plant, labour camp at Ch. 243/000                                                       |
| 20    | AAQ-19  | Project Site office, batching plant, labour camp at Ch. 254/000                                                       |

| SI no | Code    | Monitoring Location                                                           |  |  |  |  |  |  |  |
|-------|---------|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 21    | AAQ -20 | Sensitive Area Ch. 260 School, Village habitation and Construction            |  |  |  |  |  |  |  |
| 22    | AAQ-21  | Surat Station office area 264/000 and Residential Area                        |  |  |  |  |  |  |  |
| 23    | AAQ-22  | Surat Depot at Ch. 262 /700                                                   |  |  |  |  |  |  |  |
| 24    | AAQ-23  | oject Site office, batching plant, labour camp at Ch. 268/000                 |  |  |  |  |  |  |  |
| 25    | AAQ-24  | Project Site office, Batching plant, labour Camp and residential Area Ch. 274 |  |  |  |  |  |  |  |
| 26    | AAQ-45  | Project Site office, batching plant, labour camp at Ch. 281/000               |  |  |  |  |  |  |  |
| 27    | AAQ-25  | Project Site office, batching plant, labour camp at Ch. 290/000               |  |  |  |  |  |  |  |
| 28    | AAQ-27  | Zankhav Crusher Plant – I                                                     |  |  |  |  |  |  |  |
| 29    | AAQ-43  | Zankhav Crusher Plant_3                                                       |  |  |  |  |  |  |  |
| 30    | AAQ-28  | Project Site office, batching plant, labour camp at Ch. 306/000               |  |  |  |  |  |  |  |
| 31    | AAQ-46  | Project Site Office, batching plant Ch. 320                                   |  |  |  |  |  |  |  |
| 32    | AAQ-29  | Project Site office, batching plant, labour camp at Ch. 321/000               |  |  |  |  |  |  |  |
| 33    | AAQ-30  | Bharuch Depot and Station and office area Ch. 324/000                         |  |  |  |  |  |  |  |
| 34    | AAQ -44 | Tham Village, Majjid sensitive Area, Construction site at ch. 328             |  |  |  |  |  |  |  |
| 35    | AAQ-31  | Project Site office, batching plant, labour camp at Ch. 331/000               |  |  |  |  |  |  |  |
| 36    | AAQ-40  | Choki Crusher                                                                 |  |  |  |  |  |  |  |
| 37    | AAQ-32  | Sensitive Locations Ch. 346/500                                               |  |  |  |  |  |  |  |
| 38    | AAQ-33  | Sensitive Locations Ch. 348/500                                               |  |  |  |  |  |  |  |
| 39    | AAQ-34  | Project Site office, batching plant, labour camp at Ch. 359/000               |  |  |  |  |  |  |  |
| 40    | AAQ-35  | Vadodara Depot at Ch. 382                                                     |  |  |  |  |  |  |  |
| 41    | AAQ-36  | Project Site office, batching plant, labour camp at Ch. 385/000               |  |  |  |  |  |  |  |
| 42    | AAQ-37  | Sensitive Location Ch. 390/300                                                |  |  |  |  |  |  |  |
| 43    | AAQ-38  | Sensitive Location Ch. 393/500                                                |  |  |  |  |  |  |  |
| 44    | AAQ-39  | Crusher Ajabpura                                                              |  |  |  |  |  |  |  |

Table 30: Ambient Air quality Monitoring data for C4 Package for Particulate Matter

|       |         |               |          | PM 10                     |                           |                           |               |          | PM 2.5                    |                  |                           |
|-------|---------|---------------|----------|---------------------------|---------------------------|---------------------------|---------------|----------|---------------------------|------------------|---------------------------|
| SI No | Code    | NAAQ Standard | Baseline | Construction<br>Jan -2023 | Construction<br>Feb -2023 | Construction<br>Mar -2023 | NAAQ Standard | Baseline | Construction<br>Jan -2023 | Construction Feb | Construction<br>Mar -2023 |
| 1     | AAQ-1   | 100           | 88.22    | 91.5                      |                           |                           | 60            | 56.4     | 58.7                      |                  |                           |
| 2     | AAQ-2   | 100           | 84.05    | 86.9                      |                           |                           | 60            | 55.91    | 57.1                      |                  |                           |
| 3     | AAQ-42  | 10s0          | 85.4     | 88.5                      |                           |                           | 60            | 53.93    | 55.8                      |                  |                           |
| 4     | AAQ -3  | 100           | 115.83   | 118.25                    | 119.52                    | 117.62                    | 60            | 68.65    | 69.85                     | 71.25            | 70.05                     |
| 5     | AAQ -4  | 100           | 84.12    | 85.95                     |                           |                           | 60            | 51.1     | 52.8                      |                  |                           |
| 6     | AAQ -5  | 100           | 69.34    | 72.8                      | 71.59                     | 72.86                     | 60            | 45.13    | 47.1                      | 47.85            | 47.9                      |
| 7     | AAQ-6   | 100           | 69.34    | 72.52                     |                           |                           | 60            | 70.84    | 72.52                     |                  |                           |
| 8     | AAQ-7   | 100           | 120.46   | 123.6                     |                           |                           | 60            | 47.71    | 50.25                     |                  |                           |
| 9     | AAQ-8   | 100           | 82.91    | 86.5                      |                           |                           | 60            | 76.82    | 78.52                     |                  |                           |
| 10    | AAQ-41  | 100           | 135.47   | 138.5                     |                           |                           | 60            | 86.1     | 87.1                      |                  |                           |
| 11    | AAQ-10  | 100           | 120.41   | 124.1                     | 124.52                    | 124.91                    | 60            | 78.49    | 80.14                     | 83.26            | 80.66                     |
| 12    | AAQ-11  | 100           | 120.41   | 125.1                     |                           |                           | 60            | 79.95    | 82.56                     |                  |                           |
| 13    | AAQ-12  | 100           | 128.36   | 129.98                    | 59                        | 89.66                     | 60            | 52.85    | 54.5                      | 56.55            | 54.8                      |
| 14    | AAQ-13  | 100           | 87.49    | 89.35                     | 89.55                     | 88.23                     | 60            | 46.73    | 49.12                     | 49.55            | 48.93                     |
| 15    | AAQ-14  | 100           | 86.01    | 87.55                     |                           |                           | 60            | 67.1     | 68.9                      |                  |                           |
| 16    | AAQ -15 | 100           | 112.59   | 114.2                     | 89.55                     | 80.64                     | 60            | 49.18    | 51.5                      | 53.95            | 51.9                      |
| 17    | AAQ-16  | 100           | 79.5     | 80.2                      |                           |                           | 60            | 50.61    | 52.2                      |                  |                           |
| 18    | AAQ -17 | 100           | 87.53    | 91.1                      |                           |                           | 60            | 116.09   | 119.5                     |                  |                           |
| 19    | AAQ-18  | 100           | 197.34   | 199.8                     |                           |                           | 60            | 53.16    | 55.9                      |                  |                           |

|       |         |               |          | PM 10                     |                           |                           |               |          | PM 2.5                    |                           |                           |
|-------|---------|---------------|----------|---------------------------|---------------------------|---------------------------|---------------|----------|---------------------------|---------------------------|---------------------------|
| SI No | Code    | NAAQ Standard | Baseline | Construction<br>Jan -2023 | Construction<br>Feb -2023 | Construction<br>Mar -2023 | NAAQ Standard | Baseline | Construction<br>Jan -2023 | Construction Feb<br>-2023 | Construction<br>Mar -2023 |
| 20    | AAQ-19  | 100           | 93.09    | 95.8                      |                           |                           | 60            | 67.49    | 69.5                      |                           |                           |
| 21    | AAQ -20 | 100           | 117.5    | 119.5                     | 73.55                     | 73.18                     | 60            | 43.34    | 45.6                      | 47.55                     | 44.9                      |
| 22    | AAQ-21  | 100           | 72.25    | 73.52                     | 129.55                    | 128.7                     | 60            | 67.04    | 69.5                      | 69.99                     | 68.92                     |
| 23    | AAQ-22  | 100           | 126.68   | 129.5                     |                           |                           | 60            | 51.62    | 53.6                      |                           |                           |
| 24    | AAQ-23  | 100           | 87.86    | 89.5                      |                           |                           | 60            | 68.5     | 69.9                      |                           |                           |
| 25    | AAQ-24  | 100           | 120.78   | 124.6                     | 87.55                     | 85.88                     | 60            | 47.5     | 49.2                      | 49.98                     | 49.67                     |
| 26    | AAQ-45  | 100           | 126      | 127.1                     |                           |                           | 60            | 74.5     | 75.5                      |                           |                           |
| 27    | AAQ-25  | 100           | 126      | 128.2                     |                           |                           | 60            | 50.65    | 52.6                      |                           |                           |
| 28    | AAQ-27  | 100           | 140.36   | 143.5                     |                           |                           | 60            | 82.63    | 83.52                     |                           |                           |
| 29    | AAQ-43  | 100           | 148.6    | 152.4                     |                           |                           | 60            | 78.3     | 81.2                      |                           |                           |
| 30    | AAQ-28  | 100           | 93.06    | 94.52                     |                           |                           | 60            | 55.35    | 58.1                      |                           |                           |
| 31    | AAQ-46  | 100           | 100.3    | 102.2                     |                           |                           | 60            | 58.2     | 58.6                      |                           |                           |
| 32    | AAQ-29  | 100           | 125.64   | 126.9                     |                           |                           | 60            | 71.85    | 73.25                     |                           |                           |
| 33    | AAQ-30  | 100           | 123.88   | 125.5                     |                           |                           | 60            | 74.81    | 76.25                     |                           |                           |
| 34    | AAQ -44 | 100           | 89.5     | 91.2                      | 91.42                     | 91.6                      | 60            | 53.8     | 54.2                      | 56.25                     | 54.91                     |
| 35    | AAQ-31  | 100           | 88.16    | 91.25                     |                           |                           | 60            | 55.25    | 57.85                     |                           |                           |
| 36    | AAQ-40  | 100           | 197.34   | 199                       |                           |                           | 60            | 98.1     | 102.8                     |                           |                           |
| 37    | AAQ-32  | 100           | 90.15    | 93.5                      | 94.55                     | 92.82                     | 60            | 49.58    | 51.95                     | 52.56                     | 52.05                     |
| 38    | AAQ-33  | 100           | 76.8     | 79.5                      | 78.89                     | 78.11                     | 60            | 47.05    | 49.52                     | 49.95                     | 49.32                     |
| 39    | AAQ-34  | 100           | 130.62   | 132.5                     |                           |                           | 60            | 72.03    | 73.55                     |                           |                           |
| 40    | AAQ-35  | 100           | 135.4    | 136.6                     |                           |                           | 60            | 86.18    | 86.59                     |                           |                           |

|       |        |               |          | PM 10                     |                           |                           | PM 2.5        |          |                           |                  |                           |
|-------|--------|---------------|----------|---------------------------|---------------------------|---------------------------|---------------|----------|---------------------------|------------------|---------------------------|
| SI No | Code   | NAAQ Standard | Baseline | Construction<br>Jan -2023 | Construction<br>Feb -2023 | Construction<br>Mar -2023 | NAAQ Standard | Baseline | Construction<br>Jan -2023 | Construction Feb | Construction<br>Mar -2023 |
| 41    | AAQ-36 | 100           | 87.57    | 89.9                      |                           |                           | 60            | 55.8     | 58.11                     |                  |                           |
| 42    | AAQ-37 | 100           | 83.43    | 85.5                      | 85.5                      | 85.73                     | 60            | 50.09    | 52.42                     | 54.2             | 51.98                     |
| 43    | AAQ-38 | 100           | 88.92    | 89.9                      | 89.9                      | 89.93                     | 60            | 47.73    | 49.52                     | 49.5             | 49.82                     |
| 44    | AAQ-39 | 100           | 212.36   | 216.5                     |                           |                           | 60            | 137.19   | 139.85                    |                  |                           |

Table 31: Ambient Air quality Monitoring data for C4 Package for gaseous pollutants

|       |         |               |          | SO4                       |                           |                           |               |                  | NOX                       |                           |                           |               |          | CO                        |                           |                           |
|-------|---------|---------------|----------|---------------------------|---------------------------|---------------------------|---------------|------------------|---------------------------|---------------------------|---------------------------|---------------|----------|---------------------------|---------------------------|---------------------------|
| SI no | Code    | NAAQ Standard | Baseline | Construction<br>Jan -2023 | Construction<br>Feb -2023 | Construction<br>Mar -2023 | NAAQ Standard | Baseline (µg/m3) | Construction<br>Jan -2023 | Construction<br>Feb -2023 | Construction<br>Mar -2023 | NAAQ Standard | Baseline | Construction<br>Jan -2023 | Construction<br>Feb -2023 | Construction<br>Mar -2023 |
| 1     | AAQ-1   | 80            | 8.65     | 8.95                      |                           |                           | 80            | 21.45            | 22.52                     |                           |                           | 4             | 1.34     | 1.36                      |                           |                           |
| 2     | AAQ-2   | 80            | 7.6      | 7.95                      |                           |                           | 80            | 18.15            | 19.05                     |                           |                           | 4             | 1.17     | 1.2                       |                           |                           |
| 3     | AAQ-42  | 80            | 8.2      | 8.56                      |                           |                           | 80            | 22.5             | 23.45                     |                           |                           | 4             | 1.19     | 1.22                      |                           |                           |
| 4     | AAQ -3  | 80            | 16.35    | 16.95                     | 16.35                     | 16.87                     | 80            | 29.95            | 31.22                     | 29.95                     | 31.56                     | 4             | 1.19     | 1.22                      | 1.23                      | 1.25                      |
| 5     | AAQ -4  | 80            | 8.8      | 9.12                      |                           |                           | 80            | 31.14            | 32.52                     |                           |                           | 4             | 1.31     | 1.34                      |                           |                           |
| 6     | AAQ -5  | 80            | 6.85     | 7.15                      | 6.85                      | 7.26                      | 80            | 23.43            | 24.58                     | 23.43                     | 24.66                     | 4             | BDL      | BDL                       | BDL                       | BDL                       |
| 7     | AAQ-6   | 80            | 8.36     | 8.48                      |                           |                           | 80            | 17.9             | 18.45                     |                           |                           | 4             | 1.07     | 1.12                      |                           |                           |
| 8     | AAQ-7   | 80            | 5.35     | 5.48                      |                           |                           | 80            | 17.16            | 17.85                     |                           |                           | 4             | 1.08     | 1.13                      |                           |                           |
| 9     | AAQ-8   | 80            | 8.85     | 9.15                      |                           |                           | 80            | 46.18            | 47.55                     |                           |                           | 4             | 1.07     | 1.12                      |                           |                           |
| 10    | AAQ-41  | 80            | 15.25    | 15.5                      |                           |                           | 80            | 32.75            | 33.65                     |                           |                           | 4             | 1.24     | 1.26                      |                           |                           |
| 11    | AAQ-10  | 80            | 8.15     | 8.45                      | 8.15                      | 8.82                      | 80            | 23.9             | 24.52                     | 23.9                      | 24.93                     | 4             | 1.16     | 1.19                      | 1.19                      | 1.18                      |
| 12    | AAQ-11  | 80            | 10.3     | 10.56                     |                           |                           | 80            | 22.9             | 23.52                     |                           |                           | 4             | 1.15     | 1.17                      |                           |                           |
| 13    | AAQ-12  | 80            | 9.3      | 9.74                      | 9.3                       | 9.65                      | 80            | 20.9             | 21.52                     | 20.9                      | 22.1                      | 4             | 1.25     | 1.28                      | 1.28                      | 1.29                      |
| 14    | AAQ-13  | 80            | 7        | 7.15                      | 7                         | 7.21                      | 80            | 27.9             | 28.54                     | 27.9                      | 28.93                     | 4             | BDL      | BDL                       | BDL                       |                           |
| 15    | AAQ-14  | 80            | 14.65    | 15.14                     |                           |                           | 80            | 37.25            | 39.12                     |                           |                           | 4             | 1.35     | 1.38                      |                           |                           |
| 16    | AAQ -15 | 80            | 4        | 4.15                      | 4                         | 4.26                      | 80            | 10.2             | 10.24                     | 10.2                      | 10.36                     | 4             | BDL      | BDL                       | BDL                       | BDL                       |
| 17    | AAQ-16  | 80            | 19       | 19.52                     |                           |                           | 80            | 42.8             | 43.25                     |                           |                           | 4             | 1.12     | 1.17                      |                           |                           |
| 18    | AAQ -17 | 80            | 19.95    | 20.52                     |                           |                           | 80            | 33.25            | 34.55                     |                           |                           | 4             | 1.35     | 1.38                      |                           |                           |
| 19    | AAQ-18  | 80            | 7.3      | 7.45                      |                           |                           | 80            | 26.46            | 27.52                     |                           |                           | 4             | 1.1      | 1.13                      |                           |                           |
| 20    | AAQ-19  | 80            | 13.4     | 13.85                     |                           |                           | 80            | 34.55            | 36.22                     |                           |                           | 4             | 1.07     | 1.12                      |                           |                           |

|       |         |               |          | SO4                       |                           |                           |               |                  | NOX                       |                           |                           |               |          | CO                        |                           |                           |
|-------|---------|---------------|----------|---------------------------|---------------------------|---------------------------|---------------|------------------|---------------------------|---------------------------|---------------------------|---------------|----------|---------------------------|---------------------------|---------------------------|
| SI no | Code    | NAAQ Standard | Baseline | Construction<br>Jan -2023 | Construction<br>Feb -2023 | Construction<br>Mar -2023 | NAAQ Standard | Baseline (µg/m3) | Construction<br>Jan -2023 | Construction<br>Feb -2023 | Construction<br>Mar -2023 | NAAQ Standard | Baseline | Construction<br>Jan -2023 | Construction<br>Feb -2023 | Construction<br>Mar -2023 |
| 21    | AAQ -20 | 80            | 9.8      | 9.98                      | 9.8                       | 9.96                      | 80            | 24.15            | 25.11                     | 24.15                     | 23.99                     | 4             | BDL      | BDL                       | BDL                       | BDL                       |
| 22    | AAQ-21  | 80            | 11.1     | 11.45                     | 11.1                      | 11.35                     | 80            | 22.9             | 23.77                     | 22.9                      | 23.99                     | 4             | 1.15     | 1.18                      | 1.19                      | 1.19                      |
| 23    | AAQ-22  | 80            | 20.55    | 20.74                     |                           |                           | 80            | 36.45            | 37.12                     |                           |                           | 4             | 1.39     | 1.41                      |                           |                           |
| 24    | AAQ-23  | 80            | 8.5      | 8.74                      |                           |                           | 80            | 23.35            | 24.52                     |                           |                           | 4             | 1.12     | 1.16                      |                           |                           |
| 25    | AAQ-24  | 80            | 10.55    | 10.85                     | 10.55                     | 10.9                      | 80            | 26.5             | 27.12                     | 26.5                      | 27.33                     | 4             | 1.1      | 1.15                      | 1.14                      | 1.18                      |
| 26    | AAQ-45  | 80            | 13.4     | 13.8                      |                           |                           | 80            | 28.6             | 29.5                      |                           |                           | 4             | 1.3      | 1.34                      |                           |                           |
| 27    | AAQ-25  | 80            | 15       | 15.48                     |                           |                           | 80            | 37.2             | 38.55                     |                           |                           | 4             | 1.06     | 1.08                      |                           |                           |
| 28    | AAQ-27  | 80            | 12.04    | 12.52                     |                           |                           | 80            | 34               | 35.74                     |                           |                           | 4             | 1.14     | 1.16                      |                           |                           |
| 29    | AAQ-43  | 80            | 13.2     | 13.7                      |                           |                           | 80            | 32.1             | 33.1                      |                           |                           | 4             | 1.2      | 1.28                      |                           |                           |
| 30    | AAQ-28  | 80            | 16.15    | 16.52                     |                           |                           | 80            | 36.72            | 37.12                     |                           |                           | 4             | 1.16     | 1.19                      |                           |                           |
| 31    | AAQ-46  | 80            | 12.1     | 12.4                      |                           |                           | 80            | 24.8             | 25.2                      |                           |                           | 4             | 1.2      | 1.25                      |                           |                           |
| 32    | AAQ-29  | 80            | 20.5     | 21.12                     |                           |                           | 80            | 48               | 49.15                     |                           |                           | 4             | 1.3      | 1.32                      |                           |                           |
| 33    | AAQ-30  | 80            | 13.19    | 13.65                     |                           |                           | 80            | 22.5             | 23.12                     |                           |                           | 4             | 1.07     | 1.11                      |                           |                           |
| 34    | AAQ -44 | 80            | 6.7      | 6.9                       | 6.7                       | 6.98                      | 80            | 13.6             | 14.1                      | 13.6                      | 13.96                     | 4             | BDL      | BDL                       | BDL                       | BDL                       |
| 35    | AAQ-31  | 80            | 9.25     | 9.65                      |                           |                           | 80            | 17.5             | 18.24                     |                           |                           | 4             | 1.09     | 1.13                      |                           |                           |
| 36    | AAQ-40  | 80            | 19.95    | 20.85                     |                           |                           | 80            | 33.25            | 35.52                     |                           |                           | 4             | 1.42     | 1.44                      |                           |                           |
| 37    | AAQ-32  | 80            | 28.5     | 29.56                     | 28.5                      | 29.76                     | 80            | 13.5             | 14.12                     | 13.5                      | 14.08                     | 4             | BDL      | BDL                       | BDL                       | BDL                       |
| 38    | AAQ-33  | 80            | 4.1      | 4.29                      | 4.1                       | 4.32                      | 80            | 8.56             | 8.75                      | 8.56                      | 8.66                      | 4             | BDL      | BDL                       | BDL                       | BDL                       |
| 39    | AAQ-34  | 80            | 11.05    | 11.25                     |                           |                           | 80            | 19.42            | 20.42                     |                           |                           | 4             | 1.28     | 1.34                      |                           |                           |
| 40    | AAQ-35  | 80            | 14.65    | 15.12                     |                           |                           | 80            | 24.39            | 25.43                     |                           |                           | 4             | 1.18     | 1.24                      |                           |                           |
| 41    | AAQ-36  | 80            | 16.95    | 17.15                     |                           |                           | 80            | 33.35            | 34.45                     |                           |                           | 4             | 1.14     | 1.17                      |                           |                           |

|       |        |               |          | SO4                       |                           |                           |               |                  | NOX                       |                           |                           |               |          | CO                        |                           |                           |
|-------|--------|---------------|----------|---------------------------|---------------------------|---------------------------|---------------|------------------|---------------------------|---------------------------|---------------------------|---------------|----------|---------------------------|---------------------------|---------------------------|
| SI no | Code   | NAAQ Standard | Baseline | Construction<br>Jan -2023 | Construction<br>Feb -2023 | Construction<br>Mar -2023 | NAAQ Standard | Baseline (µg/m3) | Construction<br>Jan -2023 | Construction<br>Feb -2023 | Construction<br>Mar -2023 | NAAQ Standard | Baseline | Construction<br>Jan -2023 | Construction<br>Feb -2023 | Construction<br>Mar -2023 |
| 42    | AAQ-37 | 80            | 10.5     | 11.01                     | 10.5                      | 11.08                     | 80            | 25.96            | 26.52                     | 25.96                     | 26.75                     | 4             | BDL      | BDL                       | BDL                       | BDL                       |
| 43    | AAQ-38 | 80            | 7.15     | 7.48                      | 7.15                      | 7.54                      | 80            | 18.5             | 19.12                     | 18.5                      | 19.08                     | 4             | BDL      | BDL                       | BDL                       | BDL                       |
| 44    | AAQ-39 | 80            | 15       | 15.45                     |                           |                           | 80            | 32.65            | 33.52                     |                           |                           | 4             | 1.65     | 1.66                      |                           |                           |

### **Appendix 2.2 Ambient Noise Quality Data for C4 Package**

Table 32: Ambient Noise quality Locations vis-à-vis Location codes for C4 Package

| Code     | Monitoring Location                                                                                           |
|----------|---------------------------------------------------------------------------------------------------------------|
| ANQM-1   | Project Site office, batching plant, labour camp, Dadar and Nagar Haveli, at Ch. 159/000                      |
| ANQM-2   | Project Site office, batching plant, labour camp at Ch.65/000                                                 |
| ANQM-42  | Project Site Office, Batching Plant, Ch. no 167                                                               |
| ANQM -3  | Vapi Station, Office / Residential Building at Ch. 168/000                                                    |
| ANQM -4  | Vapi Depot, Vapi Ambatch Road, Koparli Road, Village Vapi at Ch. 170/300                                      |
| ANQM -5  | Paria Gaon - Residential at Ch. 181                                                                           |
| ANQM-6   | Project Site office, batching plant, Sander, labour camp at Ch. 188/000,                                      |
| ANQM-7   | Project Site working area and Labour camp at Ch. 207                                                          |
| ANQM-8   | Crusher Sondhalwada                                                                                           |
| ANQM-41  | Sondhalwada Quarry                                                                                            |
| ANQM-10  | Project Site office, batching plant, labour camp, Commercial Shed, factory, Residential Billimora Near at Ch. |
|          | 217/300                                                                                                       |
| ANQM-11  | Billimora station and office Building at Ch. 218/500                                                          |
| ANQM-12  | Village changa (Residential) at Ch. 222/700 Construction site.                                                |
| ANQM-13  | Ganesh temple, Sensitive location, Construction at Ch. 236/900                                                |
| ANQM-14  | Project Site office, batching plant, labour camp at Ch. 232/000                                               |
| ANQM -15 | Sensitive location, temple, Gurukul, at Ch. 239/400                                                           |
| ANQM-16  | Project Site office, batching plant, labour camp at Ch. 238/000                                               |
| ANQM -17 | Chikali Crusher                                                                                               |
| ANQM-18  | Project Site office, batching plant, labour camp at Ch. 243/000                                               |
| ANQM-19  | Project Site office, batching plant, labour camp at Ch. 254/000                                               |
| ANQM -20 | Sensitive Area Ch. 260 School, Village habitation and Construction                                            |
| ANQM-21  | Surat Station office area 264/000 and Residential Area                                                        |
| ANQM-22  | Surat Depot at Ch. 262 /700                                                                                   |
| ANQM-23  | Project Site office, batching plant, labour camp at Ch. 268/000                                               |
| ANQM-24  | Project Site office, Batching plant, labour Camp and residential Area Ch. 274                                 |
| ANQM-45  | Project Site office, batching plant, labour camp at Ch. 281/000                                               |
| ANQM-25  | Project Site office, batching plant, labour camp at Ch. 290/000                                               |
| ANQM-27  | Zankhav Crusher Plant – I                                                                                     |

| Code     | Monitoring Location                                               |
|----------|-------------------------------------------------------------------|
| ANQM-43  | Zankhav Crusher Plant_3                                           |
| ANQM-28  | Project Site office, batching plant, labour camp at Ch. 306/000   |
| ANQM-46  | Project Site Office, batching plant Ch. 320                       |
| ANQM-29  | Project Site office, batching plant, labour camp at Ch. 321/000   |
| ANQM-30  | Bharuch Depot and Station and office area Ch. 324/000             |
| ANQM -44 | Tham Village, Majjid sensitive Area, Construction site at ch. 328 |
| ANQM-31  | Project Site office, batching plant, labour camp at Ch. 331/000   |
| ANQM-40  | Choki Crusher                                                     |
| ANQM-32  | Sensitive Location at Ch. 346/500                                 |
| ANQM-33  | Sensitive Location at Ch. 348/500                                 |
| ANQM-34  | Project site office Batching plant labour camp at Ch. 359         |
| ANQM-35  | Vadodara Depot at Ch. 382                                         |
| ANQM-36  | Project Site office, batching plant, labour camp at Ch. 385/000   |
| ANQM-37  | Construction, Sensitive and residential locations at Ch. 390/300  |
| ANQM-38  | Construction, Sensitive and residential locations at Ch. 393/500  |
| ANQM-39  | Crusher Ajabpura                                                  |

Table 33 : Ambient Noise Quality Data for C4 Package

| SI NO | Code     | Standar<br>d (Leq-<br>Day) dB<br>(A) | Standar<br>d (Leq-<br>Night)<br>dB (A) | Baseline<br>(Leq-<br>Day) dB<br>(A) | Baseline<br>(Leq-<br>Night)<br>dB (A) | Construc<br>tion Jan<br>-2023<br>(Leq-<br>Day) dB<br>(A) | Construction Feb-<br>2023<br>(Leq-<br>Day) dB<br>(A) | Construc<br>tion<br>Mar-<br>2023<br>(Leq-<br>Day) dB<br>(A) | Construction Jan 2023 (Leq-Night) dB (A) | Construc<br>tion Feb-<br>2023<br>(Leq-<br>Night)<br>dB (A) | Construc<br>tion<br>Mar-<br>2023<br>(Leq-<br>Night)<br>dB (A) |
|-------|----------|--------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|
| 1     | ANQM-1   | 75                                   | 70                                     | 68.2                                | 52.8                                  | 68.875                                                   | 69.15                                                | 68.575                                                      | 53.05                                    | 54.025                                                     | 54.025                                                        |
| 2     | ANQM-2   | 75                                   | 70                                     | 71.3                                | 45.3                                  | 71.75                                                    | 71.975                                               | 72.275                                                      | 45.925                                   | 47.425                                                     | 48.075                                                        |
| 3     | ANQM-42  | 75                                   | 70                                     | 71.3                                | 39.6                                  | 72                                                       | 72                                                   | 71.875                                                      | 41.675                                   | 41.675                                                     | 42.1                                                          |
| 4     | ANQM -3  | 55                                   | 45                                     | 47.6                                | 38.5                                  | 48.175                                                   | 71.025                                               | 70.6                                                        | 39.05                                    | 48.275                                                     | 47.85                                                         |
| 5     | ANQM -4  | 75                                   | 70                                     | 69.7                                | 46.8                                  | 70.7                                                     | 48.175                                               | 47.925                                                      | 47.2                                     | 38.95                                                      | 38.9                                                          |
| 6     | ANQM -5  | 55                                   | 45                                     | 52.5                                | 42.5                                  | 49.65                                                    | 53.5                                                 | 53.35                                                       | 39.05                                    | 45.55                                                      | 45.175                                                        |
| 7     | ANQM-6   | 75                                   | 70                                     | 61.6                                | 45.9                                  | 62.6                                                     | 62.775                                               | 62.775                                                      | 46.35                                    | 46.35                                                      | 46.35                                                         |
| 8     | ANQM-7   | 75                                   | 70                                     | 61.1                                | 47.2                                  | 62.05                                                    | 62.05                                                | 62.35                                                       | 47.825                                   | 47.825                                                     | 48.475                                                        |
| 9     | ANQM-8   | 75                                   | 70                                     | 68.4                                | 46.4                                  | 69.05                                                    | 68.95                                                | 69.025                                                      | 47.1                                     | 47.8                                                       | 47.8                                                          |
| 10    | ANQM-41  | 75                                   | 70                                     | 62.5                                | 48.6                                  | 63.275                                                   | 63.275                                               | 63.275                                                      | 49.075                                   | 49.075                                                     | 49.075                                                        |
| 11    | ANQM-10  | 55                                   | 45                                     | 64                                  | 47.9                                  | 64.6                                                     | 65.1                                                 | 65.675                                                      | 48.6                                     | 48.85                                                      | 48.5                                                          |
| 12    | ANQM-11  | 75                                   | 70                                     | 65.8                                | 48.7                                  | 66.2                                                     | 67.325                                               | 66.875                                                      | 49.5                                     | 48.9                                                       | 49.3                                                          |
| 13    | ANQM-12  | 55                                   | 45                                     | 53.8                                | 42.8                                  | 54.4                                                     | 54.975                                               | 54.55                                                       | 43.9                                     | 43.975                                                     | 43.725                                                        |
| 14    | ANQM-13  | 50                                   | 40                                     | 48.8                                | 39.4                                  | 49.35                                                    | 48.825                                               | 49.175                                                      | 39.625                                   | 39.3                                                       | 39.575                                                        |
| 15    | ANQM-14  | 75                                   | 70                                     | 64.5                                | 47.2                                  | 66.025                                                   | 65.7                                                 | 65.425                                                      | 49.125                                   | 49.55                                                      | 47.925                                                        |
| 16    | ANQM -15 | 50                                   | 40                                     | 47.2                                | 38.3                                  | 48.15                                                    | 48.325                                               | 47.8                                                        | 39.175                                   | 39.125                                                     | 39.3                                                          |
| 17    | ANQM-16  | 75                                   | 70                                     | 47.2                                | 38.3                                  | 48.15                                                    | 48.75                                                | 61.35                                                       | 39.175                                   | 39.475                                                     | 50.575                                                        |
| 18    | ANQM -17 | 75                                   | 70                                     | 64.9                                | 44.1                                  | 66.075                                                   | 67.2                                                 | 67.075                                                      | 45.925                                   | 46.7                                                       | 47.175                                                        |
| 19    | ANQM-18  | 75                                   | 70                                     | 56.1                                | 51.1                                  | 57                                                       | 57.275                                               | 57.025                                                      | 51.7                                     | 51.125                                                     | 51.65                                                         |
| 20    | ANQM-19  | 75                                   | 70                                     | 54.83                               | 49.41                                 | 56.605                                                   | 56.56                                                | 56.525                                                      | 50.2125                                  | 50.91                                                      | 50.9                                                          |
| 21    | ANQM -20 | 50                                   | 40                                     | 51.84                               | 41.43                                 | 53.1425                                                  | 53.1175                                              | 52.225                                                      | 43.41                                    | 43.7275                                                    | 43.175                                                        |
| 22    | ANQM 47  | 75                                   | 70                                     | 62.3                                | 46                                    |                                                          |                                                      | 62.3                                                        |                                          |                                                            | 46                                                            |

| SI NO | Code    | Standar<br>d (Leq-<br>Day) dB<br>(A) | Standar<br>d (Leq-<br>Night)<br>dB (A) | Baseline<br>(Leq-<br>Day) dB<br>(A) | Baseline<br>(Leq-<br>Night)<br>dB (A) | Construc<br>tion Jan<br>-2023<br>(Leq-<br>Day) dB<br>(A) | Construction Feb-<br>2023<br>(Leq-<br>Day) dB<br>(A) | Construc<br>tion<br>Mar-<br>2023<br>(Leq-<br>Day) dB<br>(A) | Construc<br>tion Jan<br>2023<br>(Leq-<br>Night)<br>dB (A) | Construction Feb-<br>2023<br>(Leq-<br>Night)<br>dB (A) | Construc<br>tion<br>Mar-<br>2023<br>(Leq-<br>Night)<br>dB (A) |
|-------|---------|--------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|
| 23    | ANQM-21 | 55                                   | 45                                     | 66.91                               | 57.46                                 | 66.76                                                    | 67.375                                               | 67.325                                                      | 50.9725                                                   | 52.6725                                                | 52.65                                                         |
| 24    | ANQM-22 | 75                                   | 70                                     | 66.91                               | 57.46                                 | 67.2325                                                  | 67.58                                                | 68                                                          | 57.92                                                     | 58.1875                                                | 57.85                                                         |
| 25    | ANQM-23 | 75                                   | 70                                     | 63.75                               | 50.64                                 | 65.23                                                    | 65.35                                                | 64.7                                                        | 51.4575                                                   | 51.535                                                 | 51.475                                                        |
| 26    | ANQM-24 | 55                                   | 45                                     | 48.36                               | 37.2                                  | 49.19                                                    | 49.19                                                | 49.9                                                        | 38.4925                                                   | 38.4925                                                | 39.3                                                          |
| 27    | ANQM-45 | 75                                   | 70                                     | 69.4                                | 52.4                                  | 70.35                                                    | 70.25                                                | 70.475                                                      | 53.8                                                      | 53.55                                                  | 53.725                                                        |
| 28    | ANQM-25 | 75                                   | 70                                     | 55.98                               | 45.74                                 | 57.325                                                   | 57.475                                               | 57.475                                                      | 46.4375                                                   | 46.7825                                                | 47.175                                                        |
| 29    | ANQM-27 | 75                                   | 70                                     | 70.7                                | 57.2                                  | 71.5                                                     | 71.5                                                 | 71.5                                                        | 59.275                                                    | 59.275                                                 | 58.775                                                        |
| 30    | ANQM-43 | 75                                   | 70                                     | 68.1                                | 53.4                                  | 71.475                                                   | 71.75                                                | 69.2                                                        | 58.1                                                      | 58.45                                                  | 54.725                                                        |
| 31    | ANQM-28 | 75                                   | 70                                     | 68.8                                | 51.3                                  | 69.95                                                    | 70.3                                                 | 70.625                                                      | 53.65                                                     | 54.125                                                 | 54.825                                                        |
| 32    | ANQM-46 | 75                                   | 70                                     | 71.2                                | 51.9                                  | 71.75                                                    | 72.325                                               | 72.1                                                        | 53.175                                                    | 53.35                                                  | 52.825                                                        |
| 33    | ANQM-29 | 75                                   | 70                                     | 65.8                                | 48.2                                  | 67.025                                                   | 66.475                                               | 66.625                                                      | 52.175                                                    | 52.525                                                 | 52.525                                                        |
| 34    | ANQM-30 | 75                                   | 70                                     | 63.8                                | 47.1                                  | 65.05                                                    | 65.275                                               | 65.475                                                      | 47.975                                                    | 47.65                                                  | 47.95                                                         |
| 35    | ANQM44  | 50                                   | 40                                     | 47.8                                | 37.4                                  | 48.335                                                   | 48.6225                                              | 48.425                                                      | 38.7975                                                   | 38.9675                                                | 38.05                                                         |
| 36    | ANQM-31 | 75                                   | 70                                     | 70.9                                | 49.2                                  | 71.8                                                     | 72.575                                               | 72.075                                                      | 50.1                                                      | 50.65                                                  | 52                                                            |
| 37    | ANQM-40 | 75                                   | 70                                     | 62.4                                | 58.4                                  | 63.2                                                     | 63.375                                               | 63.075                                                      | 58.825                                                    | 58.525                                                 | 58.9                                                          |
| 38    | ANQM-32 | 50                                   | 40                                     | 48.4                                | 38.9                                  | 49.2                                                     | 49.075                                               | 49.375                                                      | 39.35                                                     | 39.4                                                   | 39.275                                                        |
| 39    | ANQM-33 | 50                                   | 40                                     | 49.6                                | 38.4                                  | 49.75                                                    | 49.75                                                | 49.75                                                       | 38.7                                                      | 38.75                                                  | 38.65                                                         |
| 40    | ANQM-34 | 75                                   | 70                                     | 65.3                                | 49.4                                  | 67.65                                                    | 67.65                                                | 67.65                                                       | 51.7                                                      | 52.75                                                  | 50.1                                                          |
| 41    | ANQM-35 | 75                                   | 70                                     | 68.2                                | 45.6                                  | 69.15                                                    | 69.475                                               | 69.6                                                        | 46.475                                                    | 46.875                                                 | 46.925                                                        |
| 42    | ANQM-36 | 75                                   | 70                                     | 69.6                                | 49                                    | 71.25                                                    | 71.45                                                | 71.3                                                        | 51.225                                                    | 51.925                                                 | 49.6                                                          |
| 43    | ANQM-37 | 50                                   | 40                                     | 49.4                                | 37.6                                  | 49.625                                                   | 49.6                                                 | 49.7                                                        | 38.825                                                    | 46.275                                                 | 46.35                                                         |
| 44    | ANQM-38 | 50                                   | 40                                     | 64.1                                | 38.1                                  | 65.325                                                   | 65                                                   | 65.575                                                      | 38.925                                                    | 39.125                                                 | 39.15                                                         |
| 45    | ANQM-39 | 75                                   | 70                                     | 64.1                                | 49.1                                  | 65.55                                                    | 65.125                                               | 65.95                                                       | 50.9                                                      | 50.6                                                   | 50.575                                                        |

## **Appendix 2.3: DG Stack Monitoring for C4 Package**

Table 34: DG stack monitoring of C4 Package

|            |                                                           |                               |              | Jan-23                                                                     |                                                                  |                                                              | Mar-23                                                       |                                  |                                                              |
|------------|-----------------------------------------------------------|-------------------------------|--------------|----------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|----------------------------------|--------------------------------------------------------------|
|            |                                                           |                               |              | Stack 1                                                                    | Stack 2                                                          | Stack 3                                                      | Stack 4                                                      | Stack 5                          | Stack 6                                                      |
| Sr.<br>No. | Parameters                                                | Requireme<br>nt as per<br>EPA | UOM          | Project Site Office, Batching Plant at Ch. DG Stack - 385Stack-01 (500KVA) | Batching<br>Plant at<br>Ch. 217-<br>D.G Stack -<br>1<br>(500KVA) | Batching<br>Plant at Ch.<br>232- D.G<br>Stack -1<br>(500KVA) | Batching<br>Plant at Ch.<br>232- D.G<br>Stack -2<br>(500KVA) | Choki<br>Crusher<br>(750<br>KVA) | Batching<br>Plant at Ch.<br>359- D.G<br>Stack -1<br>(500KVA) |
| 1          | Particulate Matter (as PM)                                | Max-0.2                       | gm/km-<br>hr | 0.16                                                                       | 0.18                                                             | 0.18                                                         | 0.19                                                         | 0.18                             | 0.15                                                         |
| 2          | Oxide of Nitrogen (NOx)<br>(as NO2) + HC<br>(Hydrocarbon) | Max-4.0                       | gm/km-<br>hr | 0.56                                                                       | 0.92                                                             | 0.94                                                         | 0.99                                                         | 0.81                             | 0.52                                                         |
| 3          | Carbon Monoxide (as CO)                                   | Max-3.5                       | gm/km-<br>hr | 0.31                                                                       | 0.58                                                             | 0.67                                                         | 0.67                                                         | 0.35                             | 0.31                                                         |
| 4          | Sulphate Dioxide (as SO2)                                 | N.A                           | gm/km-<br>hr | 0.03                                                                       | 0.03                                                             | 0.04                                                         | 0.02                                                         | 0.03                             | 0.02                                                         |

### **Appendix 2.4: Drinking Water Quality Monitoring for C4 Package**

Table 35: Drinking Water Quality at C4 Package for January 2023

|           |                              |       | Limit (IS-         | 10500:2012)          | DW1                                            | DW2                                                                       | DW3                                                  | DW4                                                         | DW5                                                           | DW6                     |
|-----------|------------------------------|-------|--------------------|----------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------|
| S.<br>No. | Parameters                   | Unit  | Desirable<br>Limit | Permissible<br>Limit | PSO, Batching Plant Labour Camp, DNH at Ch 159 | Project Site<br>Office,<br>Batching<br>Plant,<br>Labour camp<br>at Ch 165 | Vapi<br>Station,<br>office<br>building at<br>Ch. 168 | Project site office, Batching plant, Labour Camp at Ch. 188 | Project Site<br>office,<br>Labour<br>camp, resort<br>at Ch207 | Sondhalwad<br>a Crusher |
| 1         | Color                        | Hazen | 5                  | 15                   | BDL                                            | BDL                                                                       | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 2         | Odour                        | -     | Agreeable          | Agreeable            | Agreeable                                      | Agreeable                                                                 | Agreeable                                            | Agreeable                                                   | Agreeable                                                     | Agreeable               |
| 3         | Taste                        | -     | Agreeable          | Agreeable            | Agreeable                                      | Agreeable                                                                 | Agreeable                                            | Agreeable                                                   | Agreeable                                                     | Agreeable               |
| 4         | Turbidity                    | NTU   | 1                  | 5                    | BDL                                            | BDL                                                                       | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 5         | pH(Site)                     | -     | 6.5-8.5            | No<br>Relaxation     | 7.4                                            | 7.3                                                                       | 7.6                                                  | 7.5                                                         | 7.7                                                           | 7.4                     |
| 6         | pH (Lab)                     | -     | 6.5-8.5            | No<br>Relaxation     | 7.42                                           | 7.26                                                                      | 7.64                                                 | 7.54                                                        | 7.73                                                          | 7.43                    |
| 7         | Total Hardness<br>(as CaCO3) | mg/l  | 200                | 600                  | 18.5                                           | 8                                                                         | 16                                                   | 9.6                                                         | 22                                                            | 10.5                    |
| 8         | Iron (as Fe)                 | mg/l  | 1                  | No<br>Relaxation     | BDL                                            | BDL                                                                       | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 9         | Chlorides (as Cl)            | mg/l  | 250                | 1000                 | 8.50                                           | 5.50                                                                      | 6.50                                                 | 9.40                                                        | 11.40                                                         | 7.40                    |
| 10        | Fluoride (as F)              | mg/l  | 1                  | 1.5                  | BDL                                            | BDL                                                                       | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 11        | TDS                          | mg/l  | 500                | 2000                 | 54                                             | 58                                                                        | 52                                                   | 58                                                          | 62                                                            | 54                      |
| 12        | Calcium(as<br>Ca2+)          | mg/l  | 75                 | 200                  | 4.8                                            | 2.4                                                                       | 3.8                                                  | 2.8                                                         | 6.4                                                           | 2.5                     |
| 13        | Magnesium (as<br>Mg2+)       | mg/l  | 30                 | 100                  | 1.58                                           | 0.49                                                                      | 1.58                                                 | 0.63                                                        | 1.46                                                          | 1.03                    |
| 14        | Sulphate (as SO4)            | mg/l  | 200                | 400                  | 2.8                                            | 1                                                                         | 3.2                                                  | 3.5                                                         | 6.7                                                           | 4.5                     |
| 15        | Nitrate(as NO3)              | mg/l  | 45                 | No<br>Relaxation     | BDL                                            | BDL                                                                       | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |

|           |                                      |      | Limit (IS-         | 10500:2012)          | DW1                                            | DW2                                                        | DW3                                                  | DW4                                                         | DW5                                                           | DW6                     |
|-----------|--------------------------------------|------|--------------------|----------------------|------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------|
| S.<br>No. | Parameters                           | Unit | Desirable<br>Limit | Permissible<br>Limit | PSO, Batching Plant Labour Camp, DNH at Ch 159 | Project Site Office, Batching Plant, Labour camp at Ch 165 | Vapi<br>Station,<br>office<br>building at<br>Ch. 168 | Project site office, Batching plant, Labour Camp at Ch. 188 | Project Site<br>office,<br>Labour<br>camp, resort<br>at Ch207 | Sondhalwad<br>a Crusher |
| 16        | Chromium (as<br>Cr+6)                | mg/l | 0.05               | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 17        | Alkalinity as<br>CaCO3               | mg/l | 200                | 600                  | 19.5                                           | 15.2                                                       | 12                                                   | 16.2                                                        | 14.8                                                          | 12.7                    |
| 18        | Aluminum (as<br>Al)                  | mg/l | 0.03               | 0.2                  | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 19        | Copper (as Cu)                       | mg/l | 0.05               | 1.5                  | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 20        | Manganese (as Mn)                    | mg/l | 0.1                | 0.3                  | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 21        | Zinc (as Zn)                         | mg/l | 5                  | 15                   | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 22        | Ammonia (as<br>NH3-N)                | mg/l | 0.5                | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 23        | Anionic<br>detergents (as<br>MBAS)   | mg/l | 0.2                | 1                    | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 24        | Boron (as B)                         | mg/l | 0.5                | 1                    | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 25        | Mineral oil                          | mg/l | 0.5                | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 26        | Phenolic<br>compounds (as<br>C6H5OH) | mg/l | 0.001              | 0.002                | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 27        | Cadmium (as Cd)                      | mg/l | 0.003              | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 28        | Cyanide (as CN)                      | mg/l | 0.05               | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 29        | Lead (as Pb)                         | mg/l | 0.01               | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |

|           |                                                    |      | Limit (IS-         | 10500:2012)          | DW1                                            | DW2                                                        | DW3                                                  | DW4                                                         | DW5                                                           | DW6                     |
|-----------|----------------------------------------------------|------|--------------------|----------------------|------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------|
| S.<br>No. | Parameters                                         | Unit | Desirable<br>Limit | Permissible<br>Limit | PSO, Batching Plant Labour Camp, DNH at Ch 159 | Project Site Office, Batching Plant, Labour camp at Ch 165 | Vapi<br>Station,<br>office<br>building at<br>Ch. 168 | Project site office, Batching plant, Labour Camp at Ch. 188 | Project Site<br>office,<br>Labour<br>camp, resort<br>at Ch207 | Sondhalwad<br>a Crusher |
| 30        | Mercury (as Hg)                                    | mg/l | 0.001              | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 31        | Nickel (as Ni)                                     | mg/l | 0.02               | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 32        | Sulphide(H2S)                                      | mg/l | 0.05               | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 33        | Residual Free<br>Chlorine(RFC)                     | mg/l | Min-0.2            | 1                    | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 34        | Total arsenic (as As),                             | mg/l | 0.01               | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 35        | Barium (as Ba)                                     | mg/l | 0.7                | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 36        | Chloramines (as Cl2)                               | mg/l | 4                  | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 37        | Silver(as Ag)                                      | mg/l | 0.1                | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 38        | Molybdanium (as<br>Mo)                             | mg/l | 0.07               | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 39        | Polynuclear<br>Aromatic<br>Hydrocarbons(as<br>PAH) | mg/l | 0.0001             | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 40        | Polychlorinated biphenyls                          | mg/l | 0.0001             | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 41        |                                                    |      |                    |                      |                                                | lomethanes                                                 |                                                      |                                                             |                                                               |                         |
| a)        | Bromoform                                          | mg/l | 0.1                | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |

|           |                                        |      | Limit (IS-         | 10500:2012)          | DW1                                            | DW2                                                        | DW3                                                  | DW4                                                         | DW5                                                           | DW6                     |
|-----------|----------------------------------------|------|--------------------|----------------------|------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------|
| S.<br>No. | Parameters                             | Unit | Desirable<br>Limit | Permissible<br>Limit | PSO, Batching Plant Labour Camp, DNH at Ch 159 | Project Site Office, Batching Plant, Labour camp at Ch 165 | Vapi<br>Station,<br>office<br>building at<br>Ch. 168 | Project site office, Batching plant, Labour Camp at Ch. 188 | Project Site<br>office,<br>Labour<br>camp, resort<br>at Ch207 | Sondhalwad<br>a Crusher |
| b)        | Dibromochlorom ethane                  | mg/l | 0.1                | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| c)        | Bromodichlorom ethane                  | mg/l | 0.06               | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| d)        | Chloroform                             | mg/l | 0.2                | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
|           |                                        |      |                    |                      | Pestici                                        | de Residues                                                |                                                      |                                                             |                                                               |                         |
| 42        | Alachor                                | μg/l | 20                 | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 43        | Atrazine                               | μg/l | 20                 | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 44        | Aldrin/Dialdrin                        | μg/l | 0.03               | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 45        | Alpha HCH                              | μg/l | 0.01               | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 46        | Beta HCH                               | μg/l | 0.04               | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 47        | Butachlor                              | μg/l | 125                | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 48        | Chlorpyriphos                          | μg/l | 30                 | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 49        | Delta HCH                              | μg/l | 0.04               | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 50        | 2,4-<br>Dichlorophenoxy<br>acetic acid | μg/l | 30                 | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |

|           |                                                       |               | Limit (IS-                     | 10500:2012)          | DW1                                            | DW2                                                        | DW3                                                  | DW4                                                         | DW5                                                           | DW6                     |
|-----------|-------------------------------------------------------|---------------|--------------------------------|----------------------|------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------|
| S.<br>No. | Parameters                                            | Unit          | Desirable<br>Limit             | Permissible<br>Limit | PSO, Batching Plant Labour Camp, DNH at Ch 159 | Project Site Office, Batching Plant, Labour camp at Ch 165 | Vapi<br>Station,<br>office<br>building at<br>Ch. 168 | Project site office, Batching plant, Labour Camp at Ch. 188 | Project Site<br>office,<br>Labour<br>camp, resort<br>at Ch207 | Sondhalwad<br>a Crusher |
| 51        | DDT(o,p and p,p-<br>isomers of<br>DDT.DDE and<br>DDD) | μg/l          | 1                              | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 52        | Endosuiphan(alp<br>ha,beta and<br>sulphate)           | μg/l          | 0.4                            | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 53        | Ethion                                                | μg/l          | 3                              | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 54        | Gamma<br>HCH(Lindane)                                 | μg/l          | 2                              | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 55        | Isoproturon                                           | μg/l          | 9                              | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 56        | Malathion                                             | μg/l          | 190                            | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 57        | Methyl Parathion                                      | μg/l          | 0.3                            | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 58        | Monocrotophos                                         | μg/l          | 1                              | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
| 59        | Phorate                                               | μg/l          | 2                              | No<br>Relaxation     | BDL                                            | BDL                                                        | BDL                                                  | BDL                                                         | BDL                                                           | BDL                     |
|           |                                                       |               |                                |                      | Microbiolo                                     | gical Parameter                                            |                                                      |                                                             |                                                               |                         |
| 60        | Total Coliform                                        | MPN/1<br>00ml | Should be<br>absent/<br>100 ml |                      | Absent/100 ml                                  | Absent/100ml                                               | Absent/100<br>ml                                     | Absent/100m                                                 | Absent/100<br>ml                                              | Absent/100<br>ml        |

|           |            |               | Limit (IS-                     | 10500:2012)          | DW1                                            | DW2                                                                       | DW3                                                  | DW4                                                         | DW5                                                           | DW6                     |
|-----------|------------|---------------|--------------------------------|----------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------|
| S.<br>No. | Parameters | Unit          | Desirable<br>Limit             | Permissible<br>Limit | PSO, Batching Plant Labour Camp, DNH at Ch 159 | Project Site<br>Office,<br>Batching<br>Plant,<br>Labour camp<br>at Ch 165 | Vapi<br>Station,<br>office<br>building at<br>Ch. 168 | Project site office, Batching plant, Labour Camp at Ch. 188 | Project Site<br>office,<br>Labour<br>camp, resort<br>at Ch207 | Sondhalwad<br>a Crusher |
| 61        | E.coli     | MPN/1<br>00ml | Should be<br>absent/<br>100 ml |                      | Absent/100 ml                                  | Absent/100ml                                                              | Absent/100<br>ml                                     | Absent/100m                                                 | Absent/100<br>ml                                              | Absent/100<br>ml        |

**Drinking Water Monitoring results contd...** 

|           |                              |       | Limit (IS-         | 10500:2012)          | DW7                                                       | DW8                           | DW9                                                 | DW10                                               | DW11                                                   | DW12                                                       |
|-----------|------------------------------|-------|--------------------|----------------------|-----------------------------------------------------------|-------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------|
| S.<br>No. | Parameters                   | Unit  | Desirable<br>Limit | Permissible<br>Limit | Project site<br>office,<br>Batching<br>plant at Ch<br>217 | NHSRCL<br>office at Ch<br>218 | Project site<br>office, labour<br>camp at Ch<br>232 | Project site<br>office,<br>Labour camp<br>at Ch243 | Project Site<br>office,<br>Labour<br>camp at Ch<br>254 | Project site office, Batching plant, Labour camp at Ch 238 |
| 1         | Color                        | Hazen | 5                  | 15                   | BDL                                                       | BDL                           | BDL                                                 | BDL                                                | BDL                                                    | BDL                                                        |
| 2         | Odour                        | -     | Agreeable          | Agreeable            | Agreeable                                                 | Agreeable                     | Agreeable                                           | Agreeable                                          | Agreeable                                              | Agreeable                                                  |
| 3         | Taste                        | -     | Agreeable          | Agreeable            | Agreeable                                                 | Agreeable                     | Agreeable                                           | Agreeable                                          | Agreeable                                              | Agreeable                                                  |
| 4         | Turbidity                    | NTU   | 1                  | 5                    | BDL                                                       | BDL                           | BDL                                                 | BDL                                                | BDL                                                    | BDL                                                        |
| 5         | pH(Site)                     | -     | 6.5-8.5            | No<br>Relaxation     | 7.1                                                       | 7.7                           | 7.6                                                 | 7.7                                                | 7.4                                                    | 7.3                                                        |
| 6         | pH (Lab)                     | -     | 6.5-8.5            | No<br>Relaxation     | 7.13                                                      | 7.74                          | 7.63                                                | 7.75                                               | 7.36                                                   | 7.32                                                       |
| 7         | Total Hardness (as<br>CaCO3) | mg/l  | 200                | 600                  | 64                                                        | 38                            | 70.5                                                | 62                                                 | 9.5                                                    | 59.5                                                       |
| 8         | Iron (as Fe)                 | mg/l  | 1                  | No<br>Relaxation     | BDL                                                       | BDL                           | BDL                                                 | BDL                                                | BDL                                                    | BDL                                                        |
| 9         | Chlorides (as Cl)            | mg/l  | 250                | 1000                 | 18.40                                                     | 14.50                         | 18.50                                               | 16.00                                              | 5.60                                                   | 15.90                                                      |
| 10        | Fluoride (as F)              | mg/l  | 1                  | 1.5                  | BDL                                                       | BDL                           | BDL                                                 | BDL                                                | BDL                                                    | BDL                                                        |
| 11        | TDS                          | mg/l  | 500                | 2000                 | 93                                                        | 57                            | 94                                                  | 85                                                 | 60                                                     | 83                                                         |

|           |                                   |      | Limit (IS-         | 10500:2012)          | DW7                                           | DW8                           | DW9                                                 | DW10                                               | DW11                                             | DW12                                                   |
|-----------|-----------------------------------|------|--------------------|----------------------|-----------------------------------------------|-------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------------------------|
| S.<br>No. | Parameters                        | Unit | Desirable<br>Limit | Permissible<br>Limit | Project site office, Batching plant at Ch 217 | NHSRCL<br>office at Ch<br>218 | Project site<br>office, labour<br>camp at Ch<br>232 | Project site<br>office,<br>Labour camp<br>at Ch243 | Project Site office,<br>Labour camp at Ch<br>254 | Project site office, Batching plant, Labour camp at Ch |
| 12        | Calcium(as Ca <sup>2+</sup> )     | mg/l | 75                 | 200                  | 14                                            | 8.6                           | 12.4                                                | 12.8                                               | 2.6                                              | 12.6                                                   |
| 13        | Magnesium (as Mg <sup>2+</sup> )  | mg/l | 30                 | 100                  | 7.05                                          | 4.01                          | 9.60                                                | 7.29                                               | 0.73                                             | 6.80                                                   |
| 14        | Sulphate (as SO4)                 | mg/l | 200                | 400                  | 8.9                                           | 6.2                           | 7.8                                                 | 7.8                                                | 1.6                                              | 7.6                                                    |
| 15        | Nitrate(as NO3)                   | mg/l | 45                 | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 16        | Chromium (as Cr+6)                | mg/l | 0.05               | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 17        | Alkalinity as CaCO3               | mg/l | 200                | 600                  | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 18        | Aluminum (as Al)                  | mg/l | 0.03               | 0.2                  | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 19        | Copper (as Cu)                    | mg/l | 0.05               | 1.5                  | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 20        | Manganese (as Mn)                 | mg/l | 0.1                | 0.3                  | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 21        | Zinc (as Zn)                      | mg/l | 5                  | 15                   | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 22        | Ammonia (as NH <sub>3</sub> -N)   | mg/l | 0.5                | No<br>relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 23        | Anionic detergents (as MBAS)      | mg/l | 0.2                | 1                    | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 24        | Boron (as B)                      | mg/l | 0.5                | 1                    | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 25        | Mineral oil                       | mg/l | 0.5                | No<br>relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 26        | Phenolic compounds<br>(as C6H5OH) | mg/l | 0.001              | 0.002                | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 27        | Cadmium (as Cd)                   | mg/l | 0.003              | No<br>relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 28        | Cyanide (as CN)                   | mg/l | 0.05               | No<br>relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |
| 29        | Lead (as Pb)                      | mg/l | 0.01               | No relaxation        | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                    |

|           |                                              |      | Limit (IS-         | 10500:2012)          | DW7                                           | DW8                           | DW9                                                 | DW10                                               | DW11                                             | DW12                                                      |
|-----------|----------------------------------------------|------|--------------------|----------------------|-----------------------------------------------|-------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|
| S.<br>No. | Parameters                                   | Unit | Desirable<br>Limit | Permissible<br>Limit | Project site office, Batching plant at Ch 217 | NHSRCL<br>office at Ch<br>218 | Project site<br>office, labour<br>camp at Ch<br>232 | Project site<br>office,<br>Labour camp<br>at Ch243 | Project Site office,<br>Labour camp at Ch<br>254 | Project site office, Batching plant, Labour camp at Ch238 |
| 30        | Mercury (as Hg)                              | mg/l | 0.001              | No relaxation        | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 31        | Nickel (as Ni)                               | mg/l | 0.02               | No<br>relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 32        | Sulphide(H2S)                                | mg/l | 0.05               | No relaxation        | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 33        | Residual Free<br>Chlorine(RFC)               | mg/l | Min-0.2            | 1                    | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 34        | Total arsenic (as As),                       | mg/l | 0.01               | No relaxation        | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 35        | Barium (as Ba)                               | mg/l | 0.7                | No relaxation        | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 36        | Chloramines (as Cl2)                         | mg/l | 4                  | No relaxation        | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 37        | Silver(as Ag)                                | mg/l | 0.1                | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 38        | Molybdanium (as Mo)                          | mg/l | 0.07               | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 39        | Polynuclear Aromatic<br>Hydrocarbons(as PAH) | mg/l | 0.0001             | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 40        | Polychlorinated biphenyls                    | mg/l | 0.0001             | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 41        |                                              |      | _                  |                      | Trihalon                                      | nethanes                      |                                                     |                                                    |                                                  |                                                           |
| a)        | Bromoform                                    | mg/l | 0.1                | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| b)        | Dibromochloromethane                         | mg/l | 0.1                | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |

|           |                                                    |           | Limit (IS-         | 10500:2012)          | DW7                                           | DW8                           | DW9                                                 | DW10                                               | DW11                                             | DW12                                                       |
|-----------|----------------------------------------------------|-----------|--------------------|----------------------|-----------------------------------------------|-------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|
| S.<br>No. | Parameters                                         | Unit      | Desirable<br>Limit | Permissible<br>Limit | Project site office, Batching plant at Ch 217 | NHSRCL<br>office at Ch<br>218 | Project site<br>office, labour<br>camp at Ch<br>232 | Project site<br>office,<br>Labour camp<br>at Ch243 | Project Site office,<br>Labour camp at Ch<br>254 | Project site office, Batching plant, Labour camp at Ch 238 |
| c)        | Bromodichloromethane                               | mg/l      | 0.06               | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                        |
| d)        | Chloroform                                         | mg/l      | 0.2                | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                        |
|           |                                                    |           |                    |                      | Pesticide                                     | Residues                      |                                                     |                                                    |                                                  |                                                            |
| 42        | Alachor                                            | μg/l      | 20                 | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                        |
| 43        | Atrazine                                           | μg/l      | 20                 | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                        |
| 44        | Aldrin/Dialdrin                                    | μg/l      | 0.03               | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                        |
| 45        | Alpha HCH                                          | $\mu g/l$ | 0.01               | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                        |
| 46        | Beta HCH                                           | $\mu g/l$ | 0.04               | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                        |
| 47        | Butachlor                                          | μg/l      | 125                | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                        |
| 48        | Chlorpyriphos                                      | $\mu g/l$ | 30                 | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                        |
| 49        | Delta HCH                                          | $\mu g/l$ | 0.04               | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                        |
| 50        | 2,4-<br>Dichlorophenoxyacetic<br>acid              | μg/l      | 30                 | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                        |
| 51        | DDT(o,p and p,p-<br>isomers of DDT.DDE<br>and DDD) | μg/l      | 1                  | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                        |

|           |                                      |           | Limit (IS-1                    | 10500:2012)          | DW7                                           | DW8                           | DW9                                                 | DW10                                               | DW11                                             | DW12                                                      |
|-----------|--------------------------------------|-----------|--------------------------------|----------------------|-----------------------------------------------|-------------------------------|-----------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|
| S.<br>No. | Parameters                           | Unit      | Desirable<br>Limit             | Permissible<br>Limit | Project site office, Batching plant at Ch 217 | NHSRCL<br>office at Ch<br>218 | Project site<br>office, labour<br>camp at Ch<br>232 | Project site<br>office,<br>Labour camp<br>at Ch243 | Project Site office,<br>Labour camp at Ch<br>254 | Project site office, Batching plant, Labour camp at Ch238 |
| 52        | Endosuiphan(alpha,beta and sulphate) | μg/l      | 0.4                            | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 53        | Ethion                               | μg/l      | 3                              | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 54        | Gamma HCH(Lindane)                   | μg/l      | 2                              | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 55        | Isoproturon                          | μg/l      | 9                              | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 56        | Malathion                            | μg/l      | 190                            | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 57        | Methyl Parathion                     | μg/l      | 0.3                            | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 58        | Monocrotophos                        | μg/l      | 1                              | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
| 59        | Phorate                              | μg/l      | 2                              | No<br>Relaxation     | BDL                                           | BDL                           | BDL                                                 | BDL                                                | BDL                                              | BDL                                                       |
|           |                                      |           |                                |                      | Microbiologic                                 | al Parameter                  |                                                     |                                                    |                                                  |                                                           |
| 60        | Total Coliform                       | MPN/100ml | Should be absent/ 100 ml       |                      | Absent/100ml                                  | Absent/100ml                  | Absent/100ml                                        | Absent/100ml                                       | Absent/100ml                                     | Absent/100ml                                              |
| 61        | E.coli                               | MPN/100ml | Should be<br>absent/<br>100 ml |                      | Absent/100ml                                  | Absent/100ml                  | Absent/100ml                                        | Absent/100ml                                       | Absent/100ml                                     | Absent/100ml                                              |

### Drinking Water quality results contd...

|           |                                  |       |                        | nit (IS-<br>0:2012)      | DW13                                             | DW14                                      | DW15                                          | DW16                                                     | DW17               | DW18                                                 |
|-----------|----------------------------------|-------|------------------------|--------------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------|----------------------------------------------------------|--------------------|------------------------------------------------------|
| S.<br>No. | Parameters                       | Unit  | Desirabl<br>e<br>Limit | Permissibl<br>e<br>Limit | Surat<br>Station,<br>Labour<br>camp at<br>Ch 264 | Project site office, Labour Camp at Ch268 | Project site office,<br>Labour<br>Camp at ch. | Project site<br>office,<br>Labour<br>Camp at ch.<br>-290 | Zankhav<br>Crusher | Project Site<br>office<br>Labour<br>Camp at<br>Ch274 |
| 1         | Color                            | Hazen | 5                      | 15                       | BDL                                              | BDL                                       | BDL                                           | BDL                                                      | BDL                | BDL                                                  |
| 2         | Odour                            | -     | Agreeable              | Agreeable                | Agreeable                                        | Agreeable                                 | Agreeable                                     | Agreeable                                                | Agreeable          | Agreeable                                            |
| 3         | Taste                            | -     | Agreeable              | Agreeable                | Agreeable                                        | Agreeable                                 | Agreeable                                     | Agreeable                                                | Agreeable          | Agreeable                                            |
| 4         | Turbidity                        | NTU   | 1                      | 5                        | BDL                                              | BDL                                       | BDL                                           | BDL                                                      | BDL                | BDL                                                  |
| 5         | pH(Site)                         | ı     | 6.5-8.5                | No<br>Relaxation         | 7.6                                              | 7.8                                       | 7.3                                           | 7.8                                                      | 7.4                | 7.3                                                  |
| 6         | pH (Lab)                         | -     | 6.5-8.5                | No<br>Relaxation         | 7.66                                             | 7.82                                      | 7.34                                          | 7.31                                                     | 7.41               | 7.31                                                 |
| 7         | Total Hardness (as<br>CaCO3)     | mg/l  | 200                    | 600                      | 96                                               | 48.5                                      | 68                                            | 142                                                      | 33.4               | 34                                                   |
| 8         | Iron (as Fe)                     | mg/l  | 1                      | No<br>Relaxation         | 0.03                                             | BDL                                       | BDL                                           | BDL                                                      | BDL                | BDL                                                  |
| 9         | Chlorides (as Cl)                | mg/l  | 250                    | 1000                     | 24.50                                            | 17.50                                     | 16.50                                         | 45.90                                                    | 13.90              | 13.90                                                |
| 10        | Fluoride (as F)                  | mg/l  | 1                      | 1.5                      | BDL                                              | BDL                                       | BDL                                           | 0.03                                                     | BDL                | BDL                                                  |
| 11        | TDS                              | mg/l  | 500                    | 2000                     | 138                                              | 72                                        | 92                                            | 198                                                      | 55                 | 55                                                   |
| 12        | Calcium(as Ca <sup>2+</sup> )    | mg/l  | 75                     | 200                      | 24.4                                             | 8.8                                       | 11.6                                          | 28.6                                                     | 7.6                | 7.2                                                  |
| 13        | Magnesium (as Mg <sup>2+</sup> ) | mg/l  | 30                     | 100                      | 8.51                                             | 6.44                                      | 9.48                                          | 17.13                                                    | 3.50               | 3.89                                                 |
| 14        | Sulphate (as SO4)                | mg/l  | 200                    | 400                      | 15.8                                             | 7.2                                       | 7.9                                           | 15.4                                                     | 5.4                | 5.2                                                  |
| 15        | Nitrate(as NO3)                  | mg/l  | 45                     | No<br>Relaxation         | BDL                                              | BDL                                       | BDL                                           | BDL                                                      | BDL                | BDL                                                  |
| 16        | Chromium (as<br>Cr+6)            | mg/l  | 0.05                   | No<br>Relaxation         | BDL                                              | BDL                                       | BDL                                           | BDL                                                      | BDL                | BDL                                                  |
| 17        | Alkalinity as<br>CaCO3           | mg/l  | 200                    | 600                      | BDL                                              | BDL                                       | BDL                                           | BDL                                                      | BDL                | BDL                                                  |
| 18        | Aluminum (as Al)                 | mg/l  | 0.03                   | 0.2                      | BDL                                              | BDL                                       | BDL                                           | BDL                                                      | BDL                | BDL                                                  |

|           |                                      |      |                        | nit (IS-<br>0:2012)      | DW13                                             | DW14                                                  | DW15                                                     | DW16                                                     | DW17               | DW18                                     |
|-----------|--------------------------------------|------|------------------------|--------------------------|--------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------|------------------------------------------|
| S.<br>No. | Parameters                           | Unit | Desirabl<br>e<br>Limit | Permissibl<br>e<br>Limit | Surat<br>Station,<br>Labour<br>camp at<br>Ch 264 | Project site<br>office,<br>Labour<br>Camp at<br>Ch268 | Project site<br>office,<br>Labour<br>Camp at ch.<br>-281 | Project site<br>office,<br>Labour<br>Camp at ch.<br>-290 | Zankhav<br>Crusher | Project Site office Labour Camp at Ch274 |
| 19        | Copper (as Cu)                       | mg/l | 0.05                   | 1.5                      | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 20        | Manganese (as Mn)                    | mg/l | 0.1                    | 0.3                      | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 21        | Zinc (as Zn)                         | mg/l | 5                      | 15                       | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 22        | Ammonia (as NH <sub>3</sub> -N)      | mg/l | 0.5                    | No<br>relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 23        | Anionic detergents (as MBAS)         | mg/l | 0.2                    | 1                        | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 24        | Boron (as B)                         | mg/l | 0.5                    | 1                        | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 25        | Mineral oil                          | mg/l | 0.5                    | No<br>relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 26        | Phenolic<br>compounds (as<br>C6H5OH) | mg/l | 0.001                  | 0.002                    | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 27        | Cadmium (as Cd)                      | mg/l | 0.003                  | No<br>relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 28        | Cyanide (as CN)                      | mg/l | 0.05                   | No<br>relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 29        | Lead (as Pb)                         | mg/l | 0.01                   | No<br>relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 30        | Mercury (as Hg)                      | mg/l | 0.001                  | No<br>relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 31        | Nickel (as Ni)                       | mg/l | 0.02                   | No<br>relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 32        | Sulphide(H2S)                        | mg/l | 0.05                   | No<br>relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |
| 33        | Residual Free<br>Chlorine(RFC)       | mg/l | Min-0.2                | 1                        | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                      |

|           |                                                    |      |                        | nit (IS-<br>0:2012)      | DW13                                             | DW14                                                  | DW15                                                     | DW16                                                     | DW17               | DW18                                                 |
|-----------|----------------------------------------------------|------|------------------------|--------------------------|--------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------|------------------------------------------------------|
| S.<br>No. | Parameters                                         | Unit | Desirabl<br>e<br>Limit | Permissibl<br>e<br>Limit | Surat<br>Station,<br>Labour<br>camp at<br>Ch 264 | Project site<br>office,<br>Labour<br>Camp at<br>Ch268 | Project site<br>office,<br>Labour<br>Camp at ch.<br>-281 | Project site<br>office,<br>Labour<br>Camp at ch.<br>-290 | Zankhav<br>Crusher | Project Site<br>office<br>Labour<br>Camp at<br>Ch274 |
| 34        | Total arsenic (as As),                             | mg/l | 0.01                   | No<br>relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                                  |
| 35        | Barium (as Ba)                                     | mg/l | 0.7                    | No<br>relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                                  |
| 36        | Chloramines (as<br>Cl2)                            | mg/l | 4                      | No<br>relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                                  |
| 37        | Silver(as Ag)                                      | mg/l | 0.1                    | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                                  |
| 38        | Molybdanium (as<br>Mo)                             | mg/l | 0.07                   | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                                  |
| 39        | Polynuclear<br>Aromatic<br>Hydrocarbons(as<br>PAH) | mg/l | 0.0001                 | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                                  |
| 40        | Polychlorinated biphenyls                          | mg/l | 0.0001                 | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                                  |
| 41        |                                                    |      |                        |                          | Trihalo                                          | methanes                                              |                                                          |                                                          |                    |                                                      |
| a)        | Bromoform                                          | mg/l | 0.1                    | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                                  |
| b)        | Dibromochlorometh ane                              | mg/l | 0.1                    | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                                  |
| c)        | Bromodichlorometh ane                              | mg/l | 0.06                   | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                                  |
| d)        | Chloroform                                         | mg/l | 0.2                    | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                                  |
|           |                                                    |      |                        |                          | Pesticido                                        | e Residues                                            |                                                          |                                                          |                    |                                                      |
| 42        | Alachor                                            | μg/l | 20                     | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                                      | BDL                                                      | BDL                | BDL                                                  |

|           |                                                       |      |                        | nit (IS-<br>0:2012)      | DW13                                             | DW14                                                  | DW15                                      | DW16                                      | DW17               | DW18                                                 |
|-----------|-------------------------------------------------------|------|------------------------|--------------------------|--------------------------------------------------|-------------------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------|------------------------------------------------------|
| S.<br>No. | Parameters                                            | Unit | Desirabl<br>e<br>Limit | Permissibl<br>e<br>Limit | Surat<br>Station,<br>Labour<br>camp at<br>Ch 264 | Project site<br>office,<br>Labour<br>Camp at<br>Ch268 | Project site office, Labour Camp at ch281 | Project site office, Labour Camp at ch290 | Zankhav<br>Crusher | Project Site<br>office<br>Labour<br>Camp at<br>Ch274 |
| 43        | Atrazine                                              | μg/l | 20                     | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                       | BDL                                       | BDL                | BDL                                                  |
| 44        | Aldrin/Dialdrin                                       | μg/l | 0.03                   | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                       | BDL                                       | BDL                | BDL                                                  |
| 45        | Alpha HCH                                             | μg/l | 0.01                   | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                       | BDL                                       | BDL                | BDL                                                  |
| 46        | Beta HCH                                              | μg/l | 0.04                   | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                       | BDL                                       | BDL                | BDL                                                  |
| 47        | Butachlor                                             | μg/l | 125                    | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                       | BDL                                       | BDL                | BDL                                                  |
| 48        | Chlorpyriphos                                         | μg/l | 30                     | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                       | BDL                                       | BDL                | BDL                                                  |
| 49        | Delta HCH                                             | μg/l | 0.04                   | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                       | BDL                                       | BDL                | BDL                                                  |
| 50        | 2,4-<br>Dichlorophenoxyace<br>tic acid                | μg/l | 30                     | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                       | BDL                                       | BDL                | BDL                                                  |
| 51        | DDT(o,p and p,p-<br>isomers of<br>DDT.DDE and<br>DDD) | μg/l | 1                      | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                       | BDL                                       | BDL                | BDL                                                  |
| 52        | Endosuiphan(alpha, beta and sulphate)                 | μg/l | 0.4                    | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                       | BDL                                       | BDL                | BDL                                                  |
| 53        | Ethion                                                | μg/l | 3                      | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                       | BDL                                       | BDL                | BDL                                                  |
| 54        | Gamma<br>HCH(Lindane)                                 | μg/l | 2                      | No<br>Relaxation         | BDL                                              | BDL                                                   | BDL                                       | BDL                                       | BDL                | BDL                                                  |

|           |                  |           |                                | nit (IS-<br>0:2012)      | DW13                                             | DW14                                      | DW15                                      | DW16                                      | DW17               | DW18                                     |
|-----------|------------------|-----------|--------------------------------|--------------------------|--------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------|------------------------------------------|
| S.<br>No. | Parameters       | Unit      | Desirabl<br>e<br>Limit         | Permissibl<br>e<br>Limit | Surat<br>Station,<br>Labour<br>camp at<br>Ch 264 | Project site office, Labour Camp at Ch268 | Project site office, Labour Camp at ch281 | Project site office, Labour Camp at ch290 | Zankhav<br>Crusher | Project Site office Labour Camp at Ch274 |
| 55        | Isoproturon      | μg/l      | 9                              | No<br>Relaxation         | BDL                                              | BDL                                       | BDL                                       | BDL                                       | BDL                | BDL                                      |
| 56        | Malathion        | μg/l      | 190                            | No<br>Relaxation         | BDL                                              | BDL                                       | BDL                                       | BDL                                       | BDL                | BDL                                      |
| 57        | Methyl Parathion | μg/l      | 0.3                            | No<br>Relaxation         | BDL                                              | BDL                                       | BDL                                       | BDL                                       | BDL                | BDL                                      |
| 58        | Monocrotophos    | μg/l      | 1                              | No<br>Relaxation         | BDL                                              | BDL                                       | BDL                                       | BDL                                       | BDL                | BDL                                      |
| 59        | Phorate          | μg/l      | 2                              | No<br>Relaxation         | BDL                                              | BDL                                       | BDL                                       | BDL                                       | BDL                | BDL                                      |
|           |                  |           |                                |                          | Microbiolog                                      | ical Parametei                            | •                                         |                                           |                    |                                          |
| 60        | Total Coliform   | MPN/100ml | Should be absent/ 100 ml       |                          | Absent/100ml                                     | Absent/100m                               | Absent/100ml                              | Absent/100ml                              | Absent/100ml       | Absent/100ml                             |
| 61        | E.coli           | MPN/100ml | Should be<br>absent/<br>100 ml |                          | Absent/100ml                                     | Absent/100m                               | Absent/100ml                              | Absent/100ml                              | Absent/100ml       | Absent/100ml                             |

### Drinking Water quality results contd...

|          |                              |       | Limit (IS-<br>10500:2012) |                          | DW19                                                   | DW20                                      | DW21                       | DW22                                                       | DW23                                       | DW24                          |
|----------|------------------------------|-------|---------------------------|--------------------------|--------------------------------------------------------|-------------------------------------------|----------------------------|------------------------------------------------------------|--------------------------------------------|-------------------------------|
| S.<br>No | Parameters                   | Unit  | Desirab<br>le<br>Limit    | Permissibl<br>e<br>Limit | Project site<br>office,<br>Labour<br>camp at ch<br>306 | Project site office,<br>Labour camp at ch | Project Site office at ch. | Project Site<br>office<br>Fabrication<br>Yard at ch<br>321 | Project site office,<br>Labour camp at ch. | Project site office at ch 306 |
| 1        | Color                        | Hazen | 5                         | 15                       | BDL                                                    | BDL                                       | BDL                        | BDL                                                        | BDL                                        | BDL                           |
| 2        | Odour                        | -     | Agreeabl<br>e             | Agreeable                | Agreeable                                              | Agreeable                                 | Agreeable                  | Agreeable                                                  | Agreeable                                  | Agreeable                     |
| 3        | Taste                        | -     | Agreeabl<br>e             | Agreeable                | Agreeable                                              | Agreeable                                 | Agreeable                  | Agreeable                                                  | Agreeable                                  | Agreeable                     |
| 4        | Turbidity                    | NTU   | 1                         | 5                        | BDL                                                    | BDL                                       | BDL                        | BDL                                                        | BDL                                        | BDL                           |
| 5        | pH(Site)                     | -     | 6.5-8.5                   | No<br>Relaxation         | 7.3                                                    | 7.6                                       | 7.6                        | 7.6                                                        | 7.6                                        | 7.6                           |
| 6        | pH (Lab)                     | -     | 6.5-8.5                   | No<br>Relaxation         | 7.33                                                   | 7.61                                      | 7.62                       | 7.58                                                       | 7.62                                       | 7.62                          |
| 7        | Total Hardness (as<br>CaCO3) | mg/l  | 200                       | 600                      | 94                                                     | 67.5                                      | 84.5                       | 68                                                         | 98                                         | 92.5                          |
| 8        | Iron (as Fe)                 | mg/l  | 1                         | No<br>Relaxation         | 0.02                                                   | BDL                                       | BDL                        | BDL                                                        | BDL                                        | BDL                           |
| 9        | Chlorides (as Cl)            | mg/l  | 250                       | 1000                     | 22.50                                                  | 17.50                                     | 18.50                      | 16.00                                                      | 19.50                                      | 20.90                         |
| 10       | Fluoride (as F)              | mg/l  | 1                         | 1.5                      | BDL                                                    | BDL                                       | BDL                        | BDL                                                        | BDL                                        | BDL                           |
| 11       | TDS                          | mg/l  | 500                       | 2000                     | 133                                                    | 93                                        | 116                        | 93                                                         | 135                                        | 130                           |
| 12       | Calcium(as Ca2+)             | mg/l  | 75                        | 200                      | 18.6                                                   | 11.6                                      | 18.6                       | 12                                                         | 18.4                                       | 17.8                          |
| 13       | Magnesium (as<br>Mg2+)       | mg/l  | 30                        | 100                      | 11.54                                                  | 9.36                                      | 9.23                       | 9.23                                                       | 12.64                                      | 11.66                         |
| 14       | Sulphate (as SO4)            | mg/l  | 200                       | 400                      | 14.7                                                   | 8                                         | 12.1                       | 7.9                                                        | 14.9                                       | 14.5                          |
| 15       | Nitrate(as NO3)              | mg/l  | 45                        | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                                        | BDL                                        | BDL                           |
| 16       | Chromium (as<br>Cr+6)        | mg/l  | 0.05                      | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                                        | BDL                                        | BDL                           |

|          |                                      |      | Limit (IS-<br>10500:2012) |                          | DW19                                      | DW20                                      | DW21                       | DW22                                          | DW23                                      | DW24                          |
|----------|--------------------------------------|------|---------------------------|--------------------------|-------------------------------------------|-------------------------------------------|----------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------|
| S.<br>No | Parameters                           | Unit | Desirab<br>le<br>Limit    | Permissibl<br>e<br>Limit | Project site office,<br>Labour camp at ch | Project site office,<br>Labour camp at ch | Project Site office at ch. | Project Site office Fabrication Yard at ch321 | Project site office, Labour camp at ch331 | Project site office at ch 306 |
| 17       | Alkalinity as<br>CaCO3               | mg/l | 200                       | 600                      | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 18       | Aluminum (as Al)                     | mg/l | 0.03                      | 0.2                      | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 19       | Copper (as Cu)                       | mg/l | 0.05                      | 1.5                      | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 20       | Manganese (as Mn)                    | mg/l | 0.1                       | 0.3                      | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 21       | Zinc (as Zn)                         | mg/l | 5                         | 15                       | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 22       | Ammonia (as NH3-N)                   | mg/l | 0.5                       | No relaxation            | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 23       | Anionic detergents (as MBAS)         | mg/l | 0.2                       | 1                        | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 24       | Boron (as B)                         | mg/l | 0.5                       | 1                        | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 25       | Mineral oil                          | mg/l | 0.5                       | No relaxation            | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 26       | Phenolic<br>compounds (as<br>C6H5OH) | mg/l | 0.001                     | 0.002                    | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 27       | Cadmium (as Cd)                      | mg/l | 0.003                     | No relaxation            | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 28       | Cyanide (as CN)                      | mg/l | 0.05                      | No relaxation            | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 29       | Lead (as Pb)                         | mg/l | 0.01                      | No relaxation            | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 30       | Mercury (as Hg)                      | mg/l | 0.001                     | No relaxation            | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 31       | Nickel (as Ni)                       | mg/l | 0.02                      | No relaxation            | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 32       | Sulphide(H2S)                        | mg/l | 0.05                      | No relaxation            | BDL                                       | BDL                                       | BDL                        | BDL                                           | BDL                                       | BDL                           |

|          |                                                    |      |                        | nit (IS-<br>500:2012)    | DW19                                                   | DW20                                      | DW21                       | DW22                                          | DW23                                       | DW24                          |
|----------|----------------------------------------------------|------|------------------------|--------------------------|--------------------------------------------------------|-------------------------------------------|----------------------------|-----------------------------------------------|--------------------------------------------|-------------------------------|
| S.<br>No | Parameters                                         | Unit | Desirab<br>le<br>Limit | Permissibl<br>e<br>Limit | Project site<br>office,<br>Labour<br>camp at ch<br>306 | Project site office,<br>Labour camp at ch | Project Site office at ch. | Project Site office Fabrication Yard at ch321 | Project site office,<br>Labour camp at ch. | Project site office at ch 306 |
| 33       | Residual Free<br>Chlorine(RFC)                     | mg/l | Min-0.2                | 1                        | BDL                                                    | BDL                                       | BDL                        | BDL                                           | BDL                                        | BDL                           |
| 34       | Total arsenic (as As),                             | mg/l | 0.01                   | No relaxation            | BDL                                                    | BDL                                       | BDL                        | BDL                                           | BDL                                        | BDL                           |
| 35       | Barium (as Ba)                                     | mg/l | 0.7                    | No<br>relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                           | BDL                                        | BDL                           |
| 36       | Chloramines (as Cl2)                               | mg/l | 4                      | No relaxation            | BDL                                                    | BDL                                       | BDL                        | BDL                                           | BDL                                        | BDL                           |
| 37       | Silver(as Ag)                                      | mg/l | 0.1                    | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                           | BDL                                        | BDL                           |
| 38       | Molybdanium (as<br>Mo)                             | mg/l | 0.07                   | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                           | BDL                                        | BDL                           |
| 39       | Polynuclear<br>Aromatic<br>Hydrocarbons(as<br>PAH) | mg/l | 0.0001                 | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                           | BDL                                        | BDL                           |
| 40       | Polychlorinated biphenyls                          | mg/l | 0.0001                 | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                           | BDL                                        | BDL                           |
| 41       |                                                    |      |                        |                          | Trihalo                                                | methanes                                  |                            |                                               |                                            |                               |
| a)       | Bromoform                                          | mg/l | 0.1                    | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                           | BDL                                        | BDL                           |
| b)       | Dibromochlorometh ane                              | mg/l | 0.1                    | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                           | BDL                                        | BDL                           |
| c)       | Bromodichlorometh ane                              | mg/l | 0.06                   | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                           | BDL                                        | BDL                           |
| d)       | Chloroform                                         | mg/l | 0.2                    | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                           | BDL                                        | BDL                           |
|          |                                                    |      |                        |                          | Pesticide                                              | e Residues                                |                            |                                               |                                            | •                             |

|          |                                                       |           |                        | nit (IS-<br>500:2012)    | DW19                                                   | DW20                                      | DW21                       | DW22                                           | DW23                                      | DW24                          |
|----------|-------------------------------------------------------|-----------|------------------------|--------------------------|--------------------------------------------------------|-------------------------------------------|----------------------------|------------------------------------------------|-------------------------------------------|-------------------------------|
| S.<br>No | Parameters                                            | Unit      | Desirab<br>le<br>Limit | Permissibl<br>e<br>Limit | Project site<br>office,<br>Labour<br>camp at ch<br>306 | Project site office,<br>Labour camp at ch | Project Site office at ch. | Project Site office Fabrication Yard at ch 321 | Project site office, Labour camp at ch331 | Project site office at ch 306 |
| 42       | Alachor                                               | μg/l      | 20                     | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                            | BDL                                       | BDL                           |
| 43       | Atrazine                                              | $\mu g/l$ | 20                     | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                            | BDL                                       | BDL                           |
| 44       | Aldrin/Dialdrin                                       | μg/l      | 0.03                   | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                            | BDL                                       | BDL                           |
| 45       | Alpha HCH                                             | μg/l      | 0.01                   | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                            | BDL                                       | BDL                           |
| 46       | Beta HCH                                              | μg/l      | 0.04                   | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                            | BDL                                       | BDL                           |
| 47       | Butachlor                                             | $\mu g/l$ | 125                    | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                            | BDL                                       | BDL                           |
| 48       | Chlorpyriphos                                         | μg/l      | 30                     | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                            | BDL                                       | BDL                           |
| 49       | Delta HCH                                             | μg/l      | 0.04                   | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                            | BDL                                       | BDL                           |
| 50       | 2,4-<br>Dichlorophenoxyace<br>tic acid                | μg/l      | 30                     | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                            | BDL                                       | BDL                           |
| 51       | DDT(o,p and p,p-<br>isomers of<br>DDT.DDE and<br>DDD) | μg/l      | 1                      | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                            | BDL                                       | BDL                           |
| 52       | Endosuiphan(alpha, beta and sulphate)                 | μg/l      | 0.4                    | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                            | BDL                                       | BDL                           |
| 53       | Ethion                                                | μg/l      | 3                      | No<br>Relaxation         | BDL                                                    | BDL                                       | BDL                        | BDL                                            | BDL                                       | BDL                           |

|          |                       |               |                                   | nit (IS-<br>500:2012)    | DW19                                   | DW20                                   | DW21                       | DW22                                          | DW23                                      | DW24                          |
|----------|-----------------------|---------------|-----------------------------------|--------------------------|----------------------------------------|----------------------------------------|----------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------|
| S.<br>No | Parameters            | Unit          | Desirab<br>le<br>Limit            | Permissibl<br>e<br>Limit | Project site office, Labour camp at ch | Project site office, Labour camp at ch | Project Site office at ch. | Project Site office Fabrication Yard at ch321 | Project site office, Labour camp at ch331 | Project site office at ch 306 |
| 54       | Gamma<br>HCH(Lindane) | μg/l          | 2                                 | No<br>Relaxation         | BDL                                    | BDL                                    | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 55       | Isoproturon           | μg/l          | 9                                 | No<br>Relaxation         | BDL                                    | BDL                                    | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 56       | Malathion             | μg/l          | 190                               | No<br>Relaxation         | BDL                                    | BDL                                    | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 57       | Methyl Parathion      | μg/l          | 0.3                               | No<br>Relaxation         | BDL                                    | BDL                                    | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 58       | Monocrotophos         | μg/l          | 1                                 | No<br>Relaxation         | BDL                                    | BDL                                    | BDL                        | BDL                                           | BDL                                       | BDL                           |
| 59       | Phorate               | μg/l          | 2                                 | No<br>Relaxation         | BDL                                    | BDL                                    | BDL                        | BDL                                           | BDL                                       | BDL                           |
|          |                       |               |                                   |                          | Microbiolog                            | ical Parameter                         |                            |                                               |                                           |                               |
| 60       | Total Coliform        | MPN/100m      | Should<br>be<br>absent/<br>100 ml |                          | Absent/100ml                           | Absent/100m                            | Absent/100m                | Absent/100m                                   | Absent/100m                               | Absent/100ml                  |
| 61       | E.coli                | MPN/100m<br>1 | Should<br>be<br>absent/<br>100 ml |                          | Absent/100ml                           | Absent/100m                            | Absent/100m                | Absent/100m                                   | Absent/100m                               | Absent/100ml                  |

## Drinking Water quality results contd...

|           |                           |           | Limit (IS-10       | 500:2012)            | DW25                             | DW26                                      | DW27                                                               | DW28          |
|-----------|---------------------------|-----------|--------------------|----------------------|----------------------------------|-------------------------------------------|--------------------------------------------------------------------|---------------|
| S.<br>No. | Parameters                | Unit      | Desirable<br>Limit | Permissible<br>Limit | Project Director office at Ch359 | Project Site office, Labour camp at Ch359 | Project Site office,<br>Labour camp,<br>Batching plant at<br>Ch385 | Choki Crusher |
| 1         | Color                     | Haze<br>n | 5                  | 15                   | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 2         | Odour                     | -         | Agreeable          | Agreeable            | Agreeable                        | Agreeable                                 | Agreeable                                                          | Agreeable     |
| 3         | Taste                     | -         | Agreeable          | Agreeable            | Agreeable                        | Agreeable                                 | Agreeable                                                          | Agreeable     |
| 4         | Turbidity                 | NTU       | 1                  | 5                    | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 5         | pH(Site)                  | -         | 6.5-8.5            | No Relaxation        | 7.8                              | 7.6                                       | 7.7                                                                | 7.56          |
| 6         | pH (Lab)                  | -         | 6.5-8.5            | No Relaxation        | 7.79                             | 7.63                                      | 7.74                                                               | 7.5           |
| 7         | Total Hardness (as CaCO3) | mg/l      | 200                | 600                  | 96                               | 72                                        | 132.5                                                              | 32            |
| 8         | Iron (as Fe)              | mg/l      | 1                  | No Relaxation        | 0.05                             | BDL                                       | 0.04                                                               | BDL           |
| 9         | Chlorides (as Cl)         | mg/l      | 250                | 1000                 | 24.50                            | 18.00                                     | 36.50                                                              | 13.50         |
| 10        | Fluoride (as F)           | mg/l      | 1                  | 1.5                  | 0.03                             | BDL                                       | 0.03                                                               | BDL           |
| 11        | TDS                       | mg/l      | 500                | 2000                 | 144                              | 100                                       | 193                                                                | 49            |
| 12        | Calcium(as Ca2+)          | mg/l      | 75                 | 200                  | 25.6                             | 13.6                                      | 25.6                                                               | 4.8           |
| 13        | Magnesium (as<br>Mg2+)    | mg/l      | 30                 | 100                  | 7.78                             | 9.23                                      | 16.65                                                              | 4.86          |
| 14        | Sulphate (as SO4)         | mg/l      | 200                | 400                  | 15.6                             | 8.8                                       | 18.4                                                               | 4.5           |
| 15        | Nitrate(as NO3)           | mg/l      | 45                 | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 16        | Chromium (as Cr+6)        | mg/l      | 0.05               | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 17        | Alkalinity as CaCO3       | mg/l      | 200                | 600                  | 66                               | 46.5                                      | 88                                                                 | 15.5          |
| 18        | Aluminum (as Al)          | mg/l      | 0.03               | 0.2                  | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 19        | Copper (as Cu)            | mg/l      | 0.05               | 1.5                  | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 20        | Manganese (as Mn)         | mg/l      | 0.1                | 0.3                  | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 21        | Zinc (as Zn)              | mg/l      | 5                  | 15                   | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 22        | Ammonia (as NH3-<br>N)    | mg/l      | 0.5                | No relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |

|           |                                                    |      | Limit (IS-10       | 500:2012)            | DW25                             | DW26                                            | DW27                                                               | DW28          |
|-----------|----------------------------------------------------|------|--------------------|----------------------|----------------------------------|-------------------------------------------------|--------------------------------------------------------------------|---------------|
| S.<br>No. | Parameters                                         | Unit | Desirable<br>Limit | Permissible<br>Limit | Project Director office at Ch359 | Project Site office,<br>Labour camp at<br>Ch359 | Project Site office,<br>Labour camp,<br>Batching plant at<br>Ch385 | Choki Crusher |
| 23        | Anionic detergents (as MBAS)                       | mg/l | 0.2                | 1                    | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 24        | Boron (as B)                                       | mg/l | 0.5                | 1                    | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 25        | Mineral oil                                        | mg/l | 0.5                | No relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 26        | Phenolic compounds<br>(as C6H5OH)                  | mg/l | 0.001              | 0.002                | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 27        | Cadmium (as Cd)                                    | mg/l | 0.003              | No relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 28        | Cyanide (as CN)                                    | mg/l | 0.05               | No relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 29        | Lead (as Pb)                                       | mg/l | 0.01               | No relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 30        | Mercury (as Hg)                                    | mg/l | 0.001              | No relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 31        | Nickel (as Ni)                                     | mg/l | 0.02               | No relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 32        | Sulphide(H2S)                                      | mg/l | 0.05               | No relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 33        | Residual Free<br>Chlorine(RFC)                     | mg/l | Min-0.2            | 1                    | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 34        | Total arsenic (as As),                             | mg/l | 0.01               | No relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 35        | Barium (as Ba)                                     | mg/l | 0.7                | No relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 36        | Chloramines (as Cl2)                               | mg/l | 4                  | No relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 37        | Silver(as Ag)                                      | mg/l | 0.1                | No Relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 38        | Molybdanium (as<br>Mo)                             | mg/l | 0.07               | No Relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 39        | Polynuclear<br>Aromatic<br>Hydrocarbons(as<br>PAH) | mg/l | 0.0001             | No Relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 40        | Polychlorinated biphenyls                          | mg/l | 0.0001             | No Relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |
| 41        |                                                    |      |                    |                      | alomethanes                      |                                                 |                                                                    |               |
| a)        | Bromoform                                          | mg/l | 0.1                | No Relaxation        | BDL                              | BDL                                             | BDL                                                                | BDL           |

|           |                                                       |      | Limit (IS-10       | 500:2012)            | DW25                             | DW26                                      | DW27                                                               | DW28          |
|-----------|-------------------------------------------------------|------|--------------------|----------------------|----------------------------------|-------------------------------------------|--------------------------------------------------------------------|---------------|
| S.<br>No. | Parameters                                            | Unit | Desirable<br>Limit | Permissible<br>Limit | Project Director office at Ch359 | Project Site office, Labour camp at Ch359 | Project Site office,<br>Labour camp,<br>Batching plant at<br>Ch385 | Choki Crusher |
| b)        | Dibromochlorometha ne                                 | mg/l | 0.1                | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| c)        | Bromodichlorometha ne                                 | mg/l | 0.06               | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| d)        | Chloroform                                            | mg/l | 0.2                | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
|           |                                                       |      |                    | Pestic               | cide Residues                    |                                           |                                                                    |               |
| 42        | Alachor                                               | μg/l | 20                 | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 43        | Atrazine                                              | μg/l | 20                 | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 44        | Aldrin/Dialdrin                                       | μg/l | 0.03               | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 45        | Alpha HCH                                             | μg/l | 0.01               | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 46        | Beta HCH                                              | μg/l | 0.04               | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 47        | Butachlor                                             | μg/l | 125                | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 48        | Chlorpyriphos                                         | μg/l | 30                 | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 49        | Delta HCH                                             | μg/l | 0.04               | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 50        | 2,4-<br>Dichlorophenoxyace<br>tic acid                | μg/l | 30                 | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 51        | DDT(o,p and p,p-<br>isomers of<br>DDT.DDE and<br>DDD) | μg/l | 1                  | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 52        | Endosuiphan(alpha,b eta and sulphate)                 | μg/l | 0.4                | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 53        | Ethion                                                | μg/l | 3                  | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 54        | Gamma<br>HCH(Lindane)                                 | μg/l | 2                  | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 55        | Isoproturon                                           | μg/l | 9                  | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 56        | Malathion                                             | μg/l | 190                | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 57        | Methyl Parathion                                      | μg/l | 0.3                | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |

|           |                |                                      | Limit (IS-10                | 500:2012)            | DW25                             | DW26                                      | DW27                                                               | DW28          |
|-----------|----------------|--------------------------------------|-----------------------------|----------------------|----------------------------------|-------------------------------------------|--------------------------------------------------------------------|---------------|
| S.<br>No. | Parameters     | Unit                                 | Desirable<br>Limit          | Permissible<br>Limit | Project Director office at Ch359 | Project Site office, Labour camp at Ch359 | Project Site office,<br>Labour camp,<br>Batching plant at<br>Ch385 | Choki Crusher |
| 58        | Monocrotophos  | μg/l                                 | 1                           | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
| 59        | Phorate        | μg/l                                 | 2                           | No Relaxation        | BDL                              | BDL                                       | BDL                                                                | BDL           |
|           |                |                                      |                             | Microbiol            | logical Parameter                |                                           |                                                                    |               |
| 60        | Total Coliform | MPN<br>/100<br>ml                    | Should be absent/<br>100 ml |                      | Absent/100ml                     | Absent/100<br>ml                          | Absent/100ml                                                       | Absent/100ml  |
| 61        | E.coli         | MPN /100 ml Should be absent. 100 ml |                             |                      | Absent/100ml                     | Absent/100<br>ml                          | Absent/100ml                                                       | Absent/100ml  |

Table 36: Drinking Water Quality at C4 Package for February 2023

|          |                                  |       | Limit (IS-1        | 0500:2012)           | DW1                                                            | DW2                                               | DW3                                                  | DW4                                             | DW5                                               | DW6                        |
|----------|----------------------------------|-------|--------------------|----------------------|----------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------|
| S.<br>No | Parameters                       | Unit  | Desirable<br>Limit | Permissible<br>Limit | PSO, BP<br>LC,<br>Dadar<br>and<br>Nagar<br>Haveli at<br>Ch 159 | Project<br>Site<br>Office,<br>BP, LC at<br>Ch 165 | Vapi<br>Station,<br>office<br>building<br>at Ch. 168 | Project<br>site office,<br>BP, LC at<br>Ch. 188 | Project<br>Site office,<br>LC, resort<br>at Ch207 | Sondhalw<br>ada<br>Crusher |
|          |                                  |       |                    |                      | 02-02-<br>2023                                                 | 02-02-<br>2023                                    | 02-02-<br>2023                                       | 03-02-<br>2023                                  | 03-02-<br>2023                                    | 03-02-<br>2023             |
| 1        | Color                            | Hazen | 5                  | 15                   | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 2        | Odour                            | -     | Agreeable          | Agreeable            | Agreeable                                                      | Agreeable                                         | Agreeable                                            | Agreeable                                       | Agreeable                                         | Agreeable                  |
| 3        | Taste                            | -     | Agreeable          | Agreeable            | Agreeable                                                      | Agreeable                                         | Agreeable                                            | Agreeable                                       | Agreeable                                         | Agreeable                  |
| 4        | Turbidity                        | NTU   | 1                  | 5                    | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 5        | pH(Site)                         | -     | 6.5-8.5            | No relaxation        | 7.2                                                            | 7.5                                               | 7.5                                                  | 7.5                                             | 7.1                                               | 7.2                        |
| 6        | pH (Lab)                         | -     | 6.5-8.5            | No relaxation        | 7.23                                                           | 7.54                                              | 7.46                                                 | 7.48                                            | 7.12                                              | 7.21                       |
| 7        | Total Hardness (as<br>CaCO3)     | mg/l  | 200                | 600                  | 122                                                            | 62                                                | 58                                                   | 82                                              | 70                                                | 54                         |
| 8        | Iron (as Fe)                     | mg/l  | 1                  | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 9        | Chlorides (as Cl)                | mg/l  | 250                | 1000                 | 35.90                                                          | 15.50                                             | 14.90                                                | 25.90                                           | 18.50                                             | 12.90                      |
| 10       | Fluoride (as F)                  | mg/l  | 1                  | 1.5                  | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 11       | TDS                              | mg/l  | 500                | 2000                 | 174                                                            | 96                                                | 86                                                   | 136                                             | 102                                               | 82                         |
| 12       | Calcium(as Ca <sup>2+</sup> )    | mg/l  | 75                 | 200                  | 32.8                                                           | 12.8                                              | 13.4                                                 | 18.8                                            | 13.8                                              | 10.8                       |
| 13       | Magnesium (as Mg <sup>2+</sup> ) | mg/l  | 30                 | 100                  | 9.72                                                           | 7.29                                              | 5.95                                                 | 8.51                                            | 8.63                                              | 6.56                       |
| 14       | Sulphate (as SO4)                | mg/l  | 200                | 400                  | 16.5                                                           | 7.3                                               | 7.5                                                  | 10.8                                            | 7.9                                               | 6.4                        |
| 15       | Nitrate(as NO3)                  | mg/l  | 45                 | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 16       | Chromium (as Cr)                 | mg/l  | 0.05               | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 17       | Alkalinity as CaCO3              | mg/l  | 200                | 600                  | 76                                                             | 44                                                | 40                                                   | 56                                              | 52                                                | 38                         |
| 18       | Aluminum (as Al)                 | mg/l  | 0.03               | 0.2                  | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 19       | Copper (as Cu)                   | mg/l  | 0.05               | 1.5                  | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 20       | Manganese (as Mn)                | mg/l  | 0.1                | 0.3                  | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |

|          |                                   |      | Limit (IS-10       | 0500:2012)           | DW1                                                            | DW2                                               | DW3                                                  | DW4                                             | DW5                                               | DW6                        |
|----------|-----------------------------------|------|--------------------|----------------------|----------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------|
| S.<br>No | Parameters                        | Unit | Desirable<br>Limit | Permissible<br>Limit | PSO, BP<br>LC,<br>Dadar<br>and<br>Nagar<br>Haveli at<br>Ch 159 | Project<br>Site<br>Office,<br>BP, LC at<br>Ch 165 | Vapi<br>Station,<br>office<br>building<br>at Ch. 168 | Project<br>site office,<br>BP, LC at<br>Ch. 188 | Project<br>Site office,<br>LC, resort<br>at Ch207 | Sondhalw<br>ada<br>Crusher |
|          |                                   |      |                    |                      | 02-02-<br>2023                                                 | 02-02-<br>2023                                    | 02-02-<br>2023                                       | 03-02-<br>2023                                  | 03-02-<br>2023                                    | 03-02-<br>2023             |
| 21       | Zinc (as Zn)                      | mg/l | 5                  | 15                   | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 22       | Ammonia (as NH <sub>3</sub> -N)   | mg/l | 0.5                | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 23       | Anionic detergents (as MBAS)      | mg/l | 0.2                | 1                    | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 24       | Boron (as B)                      | mg/l | 0.5                | 1                    | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 25       | Mineral oil                       | mg/l | 0.5                | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 26       | Phenolic compounds<br>(as C6H5OH) | mg/l | 0.001              | 0.002                | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 27       | Cadmium (as Cd)                   | mg/l | 0.003              | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 28       | Cyanide (as CN)                   | mg/l | 0.05               | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 29       | Lead (as Pb)                      | mg/l | 0.01               | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 30       | Mercury (as Hg)                   | mg/l | 0.001              | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 31       | Nickel (as Ni)                    | mg/l | 0.02               | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 32       | Sulphide(H2S)                     | mg/l | 0.05               | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 33       | Residual Free<br>Chlorine(RFC)    | mg/l | Min-0.2            | 1                    | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 34       | Total arsenic (as As),            | mg/l | 0.01               | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 35       | Barium (as Ba)                    | mg/l | 0.7                | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 36       | Chloramines (as Cl2)              | mg/l | 4                  | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 37       | Silver(as Ag)                     | mg/l | 0.1                | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 38       | Molybdenum (as<br>Mo)             | mg/l | 0.07               | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 39       | Polynuclear<br>Aromatic           | mg/l | 0.0001             | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |

|          |                                        |      | Limit (IS-10       | 0500:2012)           | DW1                                                            | DW2                                               | DW3                                                  | DW4                                             | DW5                                               | DW6                        |
|----------|----------------------------------------|------|--------------------|----------------------|----------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------|
| S.<br>No | Parameters                             | Unit | Desirable<br>Limit | Permissible<br>Limit | PSO, BP<br>LC,<br>Dadar<br>and<br>Nagar<br>Haveli at<br>Ch 159 | Project<br>Site<br>Office,<br>BP, LC at<br>Ch 165 | Vapi<br>Station,<br>office<br>building<br>at Ch. 168 | Project<br>site office,<br>BP, LC at<br>Ch. 188 | Project<br>Site office,<br>LC, resort<br>at Ch207 | Sondhalw<br>ada<br>Crusher |
|          |                                        |      |                    |                      | 02-02-<br>2023                                                 | 02-02-<br>2023                                    | 02-02-<br>2023                                       | 03-02-<br>2023                                  | 03-02-<br>2023                                    | 03-02-<br>2023             |
| 40       | Hydrocarbons(as PAH) Polychlorinated   | Л    | 0.0001             | N 1 2                |                                                                |                                                   |                                                      |                                                 |                                                   |                            |
| 40       | biphenyls                              | mg/l | 0.0001             | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 41       |                                        |      |                    |                      | halomethane                                                    |                                                   | 1                                                    |                                                 |                                                   |                            |
| a)       | Bromoform                              | mg/l | 0.1                | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| b)       | Dibromochlorometha ne                  | mg/l | 0.1                | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| c)       | Bromodichlorometha ne                  | mg/l | 0.06               | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| d)       | Chloroform                             | mg/l | 0.2                | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
|          |                                        |      |                    | Pes                  | ticide Residu                                                  | es                                                |                                                      |                                                 |                                                   |                            |
| 42       | Alachor                                | μg/l | 20                 | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 43       | Atrazine                               | μg/l | 20                 | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 44       | Aldrin/Dialdrin                        | μg/l | 0.03               | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 45       | Alpha HCH                              | μg/l | 0.01               | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 46       | Beta HCH                               | μg/l | 0.04               | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 47       | Butachlor                              | μg/l | 125                | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 48       | Chlorpyriphos                          | μg/l | 30                 | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 49       | Delta HCH                              | μg/l | 0.04               | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 50       | 2,4-<br>Dichlorophenoxyacet<br>ic acid | μg/l | 30                 | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 51       | DDT(o,p and p,p-<br>isomers of         | μg/l | 1                  | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |

|          |                                       |               | Limit (IS-10             | 0500:2012)           | DW1                                                            | DW2                                               | DW3                                                  | DW4                                             | DW5                                               | DW6                        |
|----------|---------------------------------------|---------------|--------------------------|----------------------|----------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------|
| S.<br>No | Parameters                            | Unit          | Desirable<br>Limit       | Permissible<br>Limit | PSO, BP<br>LC,<br>Dadar<br>and<br>Nagar<br>Haveli at<br>Ch 159 | Project<br>Site<br>Office,<br>BP, LC at<br>Ch 165 | Vapi<br>Station,<br>office<br>building<br>at Ch. 168 | Project<br>site office,<br>BP, LC at<br>Ch. 188 | Project<br>Site office,<br>LC, resort<br>at Ch207 | Sondhalw<br>ada<br>Crusher |
|          |                                       |               |                          |                      | 02-02-<br>2023                                                 | 02-02-<br>2023                                    | 02-02-<br>2023                                       | 03-02-<br>2023                                  | 03-02-<br>2023                                    | 03-02-<br>2023             |
|          | DDT.DDE and<br>DDD)                   |               |                          |                      |                                                                |                                                   |                                                      |                                                 |                                                   |                            |
| 52       | Endosuiphan(alpha,b eta and sulphate) | μg/l          | 0.4                      | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 53       | Ethion                                | μg/l          | 3                        | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 54       | Gamma<br>HCH(Lindane)                 | μg/l          | 2                        | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 55       | Isoproturon                           | μg/l          | 9                        | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 56       | Malathion                             | μg/l          | 190                      | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 57       | Methyl Parathion                      | μg/l          | 0.3                      | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 58       | Monocrotophos                         | μg/l          | 1                        | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 59       | Phorate                               | μg/l          | 2                        | No relaxation        | BDL                                                            | BDL                                               | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
|          |                                       | _             | <del>,</del>             | Microbi              | ological Para                                                  | meter                                             |                                                      |                                                 |                                                   |                            |
| 60       | Total Coliform                        | MPN/100<br>ml | Should be absent/ 100 ml |                      | Absent/10<br>0ml                                               | Absent/10<br>0ml                                  | Absent/10<br>0ml                                     | Absent/10<br>0ml                                | Absent/10<br>0ml                                  | Absent/10<br>0ml           |
| 61       | E.coli                                | MPN/100<br>ml | Should be absent/ 100 ml |                      | Absent/10<br>0ml                                               | Absent/10<br>0ml                                  | Absent/10<br>0ml                                     | Absent/10<br>0ml                                | Absent/10<br>0ml                                  | Absent/10<br>0ml           |

# **Drinking Water Monitoring results contd...**

|           |                           |            | Limit (IS-1        | 0500:2012)           | DW7                                           | DW8                                           | DW9                                                         | DW10                                          | DW11                                          | DW12               |
|-----------|---------------------------|------------|--------------------|----------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------|
| S.<br>No. | Parameters                | Unit       | Desirable<br>Limit | Permissible<br>Limit | Project<br>site office,<br>BP, LC at<br>Ch217 | Project<br>site office,<br>BP, LC at<br>Ch243 | Project<br>site office,<br>Billimora<br>station at<br>Ch218 | Project<br>site office,<br>BP, LC at<br>Ch232 | Project<br>site office,<br>BP, LC at<br>Ch238 | Chikali<br>crusher |
|           |                           | Sampling D | ate                |                      | 03-02-2023                                    | 04-02-2023                                    | 04-02-2023                                                  | 06-02-2023                                    | 04-022023                                     | 07-022023          |
| 1         | Color                     | Hazen      | 5                  | 15                   | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 2         | Odour                     | -          | Agreeable          | Agreeable            | Agreeable                                     | Agreeable                                     | Agreeable                                                   | Agreeable                                     | Agreeable                                     | Agreeable          |
| 3         | Taste                     | -          | Agreeable          | Agreeable            | Agreeable                                     | Agreeable                                     | Agreeable                                                   | Agreeable                                     | Agreeable                                     | Agreeable          |
| 4         | Turbidity                 | NTU        | 1                  | 5                    | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 5         | pH(Site)                  | -          | 6.5-8.5            | No<br>relaxation     | 7.9                                           | 7.1                                           | 7.1                                                         | 7.1                                           | 7.2                                           | 7                  |
| 6         | pH (Lab)                  | -          | 6.5-8.5            | No relaxation        | 7.86                                          | 7.13                                          | 7.13                                                        | 7.13                                          | 7.23                                          | 7.1                |
| 7         | Total Hardness (as CaCO3) | mg/l       | 200                | 600                  | 60                                            | 54                                            | 98                                                          | 72                                            | 76                                            | 64                 |
| 8         | Iron (as Fe)              | mg/l       | 1                  | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 9         | Chlorides (as Cl)         | mg/l       | 250                | 1000                 | 14.90                                         | 13.50                                         | 26.90                                                       | 19.90                                         | 17.50                                         | 13.90              |
| 10        | Fluoride (as F)           | mg/l       | 1                  | 1.5                  | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 11        | TDS                       | mg/l       | 500                | 2000                 | 93                                            | 87                                            | 146                                                         | 108                                           | 116                                           | 97                 |
| 12        | Calcium(as Ca2+)          | mg/l       | 75                 | 200                  | 11.8                                          | 9.4                                           | 25.6                                                        | 14.6                                          | 12.8                                          | 11.2               |
| 13        | Magnesium (as<br>Mg2+)    | mg/l       | 30                 | 100                  | 7.41                                          | 7.41                                          | 8.26                                                        | 8.63                                          | 10.69                                         | 8.75               |
| 14        | Sulphate (as SO4)         | mg/l       | 200                | 400                  | 7.2                                           | 6.1                                           | 10.8                                                        | 8.8                                           | 8.2                                           | 6.3                |
| 15        | Nitrate(as NO3)           | mg/l       | 45                 | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 16        | Chromium (as Cr)          | mg/l       | 0.05               | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 17        | Alkalinity as CaCO3       | mg/l       | 200                | 600                  | 42                                            | 38                                            | 68                                                          | 46                                            | 54                                            | 46                 |
| 18        | Aluminum (as Al)          | mg/l       | 0.03               | 0.2                  | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 19        | Copper (as Cu)            | mg/l       | 0.05               | 1.5                  | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |

|           |                                |            | Limit (IS-1        | 0500:2012)           | DW7                                           | DW8                                           | DW9                                                         | DW10                                          | DW11                                          | DW12               |
|-----------|--------------------------------|------------|--------------------|----------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------|
| S.<br>No. | Parameters                     | Unit       | Desirable<br>Limit | Permissible<br>Limit | Project<br>site office,<br>BP, LC at<br>Ch217 | Project<br>site office,<br>BP, LC at<br>Ch243 | Project<br>site office,<br>Billimora<br>station at<br>Ch218 | Project<br>site office,<br>BP, LC at<br>Ch232 | Project<br>site office,<br>BP, LC at<br>Ch238 | Chikali<br>crusher |
|           |                                | Sampling D | ate                |                      | 03-02-2023                                    | 04-02-2023                                    | 04-02-2023                                                  | 06-02-2023                                    | 04-022023                                     | 07-022023          |
| 20        | Manganese (as Mn)              | mg/l       | 0.1                | 0.3                  | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 21        | Zinc (as Zn)                   | mg/l       | 5                  | 15                   | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 22        | Ammonia (as NH3-<br>N)         | mg/l       | 0.5                | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 23        | Anionic detergents (as MBAS)   | mg/l       | 0.2                | 1                    | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 24        | Boron (as B)                   | mg/l       | 0.5                | 1                    | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 25        | Mineral oil                    | mg/l       | 0.5                | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 26        | Phenolic compounds (as C6H5OH) | mg/l       | 0.001              | 0.002                | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 27        | Cadmium (as Cd)                | mg/l       | 0.003              | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 28        | Cyanide (as CN)                | mg/l       | 0.05               | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 29        | Lead (as Pb)                   | mg/l       | 0.01               | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 30        | Mercury (as Hg)                | mg/l       | 0.001              | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 31        | Nickel (as Ni)                 | mg/l       | 0.02               | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 32        | Sulphide(H2S)                  | mg/l       | 0.05               | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 33        | Residual Free<br>Chlorine(RFC) | mg/l       | Min-0.2            | 1                    | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 34        | Total arsenic (as As),         | mg/l       | 0.01               | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |

|           |                                                    |            | Limit (IS-1        | 0500:2012)           | DW7                                           | DW8                                           | DW9                                                         | DW10                                          | DW11                                          | DW12               |
|-----------|----------------------------------------------------|------------|--------------------|----------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------|
| S.<br>No. | Parameters                                         | Unit       | Desirable<br>Limit | Permissible<br>Limit | Project<br>site office,<br>BP, LC at<br>Ch217 | Project<br>site office,<br>BP, LC at<br>Ch243 | Project<br>site office,<br>Billimora<br>station at<br>Ch218 | Project<br>site office,<br>BP, LC at<br>Ch232 | Project<br>site office,<br>BP, LC at<br>Ch238 | Chikali<br>crusher |
|           |                                                    | Sampling D | ate                |                      | 03-02-2023                                    | 04-02-2023                                    | 04-02-2023                                                  | 06-02-2023                                    | 04-022023                                     | 07-022023          |
| 35        | Barium (as Ba)                                     | mg/l       | 0.7                | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 36        | Chloramines (as Cl2)                               | mg/l       | 4                  | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 37        | Silver(as Ag)                                      | mg/l       | 0.1                | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 38        | Molybdenum (as<br>Mo)                              | mg/l       | 0.07               | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 39        | Polynuclear<br>Aromatic<br>Hydrocarbons(as<br>PAH) | mg/l       | 0.0001             | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 40        | Polychlorinated biphenyls                          | mg/l       | 0.0001             | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 41        |                                                    |            |                    |                      | <b>'rihalomethan</b>                          | ies                                           |                                                             |                                               |                                               |                    |
| a)        | Bromoform                                          | mg/l       | 0.1                | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| b)        | Dibromochlorometh ane                              | mg/l       | 0.1                | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| c)        | Bromodichlorometha ne                              | mg/l       | 0.06               | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| d)        | Chloroform                                         | mg/l       | 0.2                | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
|           |                                                    |            |                    |                      | esticide Residi                               | ues                                           |                                                             |                                               |                                               |                    |
| 42        | Alachor                                            | μg/l       | 20                 | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 43        | Atrazine                                           | μg/l       | 20                 | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |

|           |                                                       |            | Limit (IS-1        | 0500:2012)           | DW7                                           | DW8                                           | DW9                                                         | DW10                                          | DW11                                          | DW12               |
|-----------|-------------------------------------------------------|------------|--------------------|----------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------|
| S.<br>No. | Parameters                                            | Unit       | Desirable<br>Limit | Permissible<br>Limit | Project<br>site office,<br>BP, LC at<br>Ch217 | Project<br>site office,<br>BP, LC at<br>Ch243 | Project<br>site office,<br>Billimora<br>station at<br>Ch218 | Project<br>site office,<br>BP, LC at<br>Ch232 | Project<br>site office,<br>BP, LC at<br>Ch238 | Chikali<br>crusher |
|           |                                                       | Sampling D | ate                |                      | 03-02-2023                                    | 04-02-2023                                    | 04-02-2023                                                  | 06-02-2023                                    | 04-022023                                     | 07-022023          |
| 44        | Aldrin/Dialdrin                                       | μg/l       | 0.03               | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 45        | Alpha HCH                                             | μg/l       | 0.01               | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 46        | Beta HCH                                              | μg/l       | 0.04               | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 47        | Butachlor                                             | μg/l       | 125                | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 48        | Chlorpyriphos                                         | μg/l       | 30                 | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 49        | Delta HCH                                             | μg/l       | 0.04               | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 50        | 2,4-<br>Dichlorophenoxyacet<br>ic acid                | μg/l       | 30                 | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 51        | DDT(o,p and p,p-<br>isomers of<br>DDT.DDE and<br>DDD) | μg/l       | 1                  | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 52        | Endosuiphan(alpha,b eta and sulphate)                 | μg/l       | 0.4                | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 53        | Ethion                                                | μg/l       | 3                  | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 54        | Gamma<br>HCH(Lindane)                                 | μg/l       | 2                  | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 55        | Isoproturon                                           | μg/l       | 9                  | No relaxation        | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |

|           |                  |               | Limit (IS-10                | 0500:2012)           | DW7                                           | DW8                                           | DW9                                                         | DW10                                          | DW11                                          | DW12               |
|-----------|------------------|---------------|-----------------------------|----------------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------|
| S.<br>No. | Parameters       | Unit          | Desirable<br>Limit          | Permissible<br>Limit | Project<br>site office,<br>BP, LC at<br>Ch217 | Project<br>site office,<br>BP, LC at<br>Ch243 | Project<br>site office,<br>Billimora<br>station at<br>Ch218 | Project<br>site office,<br>BP, LC at<br>Ch232 | Project<br>site office,<br>BP, LC at<br>Ch238 | Chikali<br>crusher |
|           |                  | Sampling D    | ate                         |                      | 03-02-2023                                    | 04-02-2023                                    | 04-02-2023                                                  | 06-02-2023                                    | 04-022023                                     | 07-022023          |
| 56        | Malathion        | μg/l          | 190                         | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 57        | Methyl Parathion | μg/l          | 0.3                         | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 58        | Monocrotophos    | μg/l          | 1                           | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
| 59        | Phorate          | μg/l          | 2                           | No<br>relaxation     | BDL                                           | BDL                                           | BDL                                                         | BDL                                           | BDL                                           | BDL                |
|           |                  |               |                             | Micro                | biological Par                                | rameter                                       |                                                             |                                               |                                               |                    |
| 60        | Total Coliform   | MPN/100       | Should be                   |                      | Absent/100                                    | Absent/100                                    | Absent/100                                                  | Absent/100                                    | Absent/100                                    | Absent/10          |
|           |                  | ml<br>MPN/100 | absent/ 100 ml<br>Should be |                      | ml Absent/100                                 | ml Absent/100                                 | ml Absent/100                                               | ml Absent/100                                 | ml Absent/100                                 | Oml Absent/10      |
| 61        | E.coli           | ml            | absent/ 100 ml              |                      | ml                                            | ml                                            | ml                                                          | ml                                            | ml                                            | Oml                |

# $Drinking\ Water\ Monitoring\ results\ contd...$

|         |                                 |       | Limit (IS-10       | 500:2012)                | DW13                                          | DW14                                          | DW15                                         | DW16                                          | DW17                                                | DW18                                         |
|---------|---------------------------------|-------|--------------------|--------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------|
| S. No.  | Parameters                      | Unit  | Desirable<br>Limit | Permissibl<br>e<br>Limit | Project<br>site office,<br>BP, LC at<br>Ch281 | Project<br>site office,<br>BP, LC at<br>Ch290 | Project<br>site office,<br>BP LC at<br>Ch274 | Project<br>Site office,<br>BP, LC at<br>Ch254 | Surat<br>Station,<br>office area<br>LC at Ch<br>264 | Project<br>site office,<br>BP LC at<br>Ch268 |
| Samplin | ng Date                         |       |                    |                          | 07-02-2023                                    | 08-02-2023                                    | 08-02-2023                                   | 08-02-2023                                    | 08-02-2023                                          | 08-02-2023                                   |
| 1       | Color                           | Hazen | 5                  | 15                       | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 2       | Odour                           | -     | Agreeable          | Agreeable                | Agreeable                                     | Agreeable                                     | Agreeable                                    | Agreeable                                     | Agreeable                                           | Agreeable                                    |
| 3       | Taste                           | -     | Agreeable          | Agreeable                | Agreeable                                     | Agreeable                                     | Agreeable                                    | Agreeable                                     | Agreeable                                           | Agreeable                                    |
| 4       | Turbidity                       | NTU   | 1                  | 5                        | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 5       | pH(Site)                        | -     | 6.5-8.5            | No relaxation            | 7.2                                           | 7.2                                           | 7.3                                          | 7.2                                           | 7                                                   | 7.1                                          |
| 6       | pH (Lab)                        | -     | 6.5-8.5            | No relaxation            | 7.22                                          | 7.24                                          | 7.31                                         | 7.21                                          | 7.08                                                | 7.11                                         |
| 7       | Total<br>Hardness (as<br>CaCO3) | mg/l  | 200                | 600                      | 80                                            | 64                                            | 78                                           | 72                                            | 62                                                  | 58                                           |
| 8       | Iron (as Fe)                    | mg/l  | 1                  | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 9       | Chlorides (as Cl)               | mg/l  | 250                | 1000                     | 18.90                                         | 14.50                                         | 18.90                                        | 17.50                                         | 14.50                                               | 13.50                                        |
| 10      | Fluoride (as F                  | mg/l  | 1                  | 1.5                      | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 11      | TDS                             | mg/l  | 500                | 2000                     | 104                                           | 95                                            | 106                                          | 110                                           | 96                                                  | 90                                           |
| 12      | Calcium(as<br>Ca2+)             | mg/l  | 75                 | 200                      | 17.2                                          | 13.6                                          | 15.8                                         | 13.4                                          | 11.4                                                | 12.4                                         |
| 13      | Magnesium<br>(as Mg2+)          | mg/l  | 30                 | 100                      | 8.99                                          | 7.29                                          | 9.36                                         | 9.36                                          | 8.14                                                | 6.56                                         |
| 14      | Sulphate (as SO4)               | mg/l  | 200                | 400                      | 8.1                                           | 6.9                                           | 8.3                                          | 8.9                                           | 7.1                                                 | 6.7                                          |
| 15      | Nitrate(as<br>NO3)              | mg/l  | 45                 | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |

|         |                                      |      | Limit (IS-10       | 500:2012)                | DW13                                          | DW14                                          | DW15                                         | DW16                                          | DW17                                                | DW18                                         |
|---------|--------------------------------------|------|--------------------|--------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------|
| S. No.  | Parameters                           | Unit | Desirable<br>Limit | Permissibl<br>e<br>Limit | Project<br>site office,<br>BP, LC at<br>Ch281 | Project<br>site office,<br>BP, LC at<br>Ch290 | Project<br>site office,<br>BP LC at<br>Ch274 | Project<br>Site office,<br>BP, LC at<br>Ch254 | Surat<br>Station,<br>office area<br>LC at Ch<br>264 | Project<br>site office,<br>BP LC at<br>Ch268 |
| Samplin | g Date                               |      |                    |                          | 07-02-2023                                    | 08-02-2023                                    | 08-02-2023                                   | 08-02-2023                                    | 08-02-2023                                          | 08-02-2023                                   |
| 16      | Chromium<br>(as Cr)                  | mg/l | 0.05               | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 17      | Alkalinity as<br>CaCO3               | mg/l | 200                | 600                      | 56                                            | 44                                            | 54                                           | 48                                            | 46                                                  | 42                                           |
| 18      | Aluminum<br>(as Al)                  | mg/l | 0.03               | 0.2                      | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 19      | Copper (as Cu)                       | mg/l | 0.05               | 1.5                      | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 20      | Manganese (as Mn)                    | mg/l | 0.1                | 0.3                      | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 21      | Zinc (as Zn)                         | mg/l | 5                  | 15                       | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 22      | Ammonia (as NH3-N)                   | mg/l | 0.5                | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 23      | Anionic<br>detergents<br>(as MBAS)   | mg/l | 0.2                | 1                        | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 24      | Boron (as B)                         | mg/l | 0.5                | 1                        | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 25      | Mineral oil                          | mg/l | 0.5                | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 26      | Phenolic<br>compounds<br>(as C6H5OH) | mg/l | 0.001              | 0.002                    | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 27      | Cadmium (as Cd)                      | mg/l | 0.003              | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 28      | Cyanide (as CN)                      | mg/l | 0.05               | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 29      | Lead (as Pb)                         | mg/l | 0.01               | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |

|         |                                                     |      | Limit (IS-10       | 500:2012)                | DW13                                          | DW14                                          | DW15                                         | DW16                                          | DW17                                                | DW18                                         |
|---------|-----------------------------------------------------|------|--------------------|--------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------|
| S. No.  | Parameters                                          | Unit | Desirable<br>Limit | Permissibl<br>e<br>Limit | Project<br>site office,<br>BP, LC at<br>Ch281 | Project<br>site office,<br>BP, LC at<br>Ch290 | Project<br>site office,<br>BP LC at<br>Ch274 | Project<br>Site office,<br>BP, LC at<br>Ch254 | Surat<br>Station,<br>office area<br>LC at Ch<br>264 | Project<br>site office,<br>BP LC at<br>Ch268 |
| Samplin | ng Date                                             |      |                    |                          | 07-02-2023                                    | 08-02-2023                                    | 08-02-2023                                   | 08-02-2023                                    | 08-02-2023                                          | 08-02-2023                                   |
| 30      | Mercury (as<br>Hg)                                  | mg/l | 0.001              | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 31      | Nickel (as Ni)                                      | mg/l | 0.02               | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 32      | Sulphide(H2S)                                       | mg/l | 0.05               | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 33      | Residual Free<br>Chlorine(RFC                       | mg/l | Min-0.2            | 1                        | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 34      | Total arsenic (as As),                              | mg/l | 0.01               | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 35      | Barium (as<br>Ba)                                   | mg/l | 0.7                | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 36      | Chloramines (as Cl2)                                | mg/l | 4                  | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 37      | Silver(as Ag)                                       | mg/l | 0.1                | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 38      | Molybdenum<br>(as Mo)                               | mg/l | 0.07               | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 39      | Polynuclear<br>Aromatic<br>Hydrocarbons<br>(as PAH) | mg/l | 0.0001             | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 40      | Polychlorinat ed biphenyls                          | mg/l | 0.0001             | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 41      |                                                     |      |                    |                          | Trihalome                                     | ethanes                                       |                                              |                                               |                                                     |                                              |
| a)      | Bromoform                                           | mg/l | 0.1                | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |

|         |                                        |           | Limit (IS-10       | 500:2012)                | DW13                                          | DW14                                          | DW15                                         | DW16                                          | DW17                                                | DW18                                         |
|---------|----------------------------------------|-----------|--------------------|--------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------|
| S. No.  | Parameters                             | Unit      | Desirable<br>Limit | Permissibl<br>e<br>Limit | Project<br>site office,<br>BP, LC at<br>Ch281 | Project<br>site office,<br>BP, LC at<br>Ch290 | Project<br>site office,<br>BP LC at<br>Ch274 | Project<br>Site office,<br>BP, LC at<br>Ch254 | Surat<br>Station,<br>office area<br>LC at Ch<br>264 | Project<br>site office,<br>BP LC at<br>Ch268 |
| Samplin | ng Date                                |           |                    |                          | 07-02-2023                                    | 08-02-2023                                    | 08-02-2023                                   | 08-02-2023                                    | 08-02-2023                                          | 08-02-2023                                   |
| b)      | Dibromochlor omethane                  | mg/l      | 0.1                | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| c)      | Bromodichlor omethane                  | mg/l      | 0.06               | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| d)      | Chloroform                             | mg/l      | 0.2                | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
|         |                                        |           |                    |                          | Pesticide R                                   | esidues                                       |                                              |                                               |                                                     |                                              |
| 42      | Alachor                                | $\mu g/l$ | 20                 | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 43      | Atrazine                               | $\mu g/l$ | 20                 | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 44      | Aldrin/Dialdr<br>in                    | μg/l      | 0.03               | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 45      | Alpha HCH                              | μg/l      | 0.01               | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 46      | Beta HCH                               | μg/l      | 0.04               | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 47      | Butachlor                              | μg/l      | 125                | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 48      | Chlorpyripho s                         | $\mu g/l$ | 30                 | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 49      | Delta HCH                              | $\mu g/l$ | 0.04               | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 50      | 2,4-<br>Dichlorophen<br>oxyacetic acid | μg/l      | 30                 | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 51      | DDT(o,p and p,p-isomers                | μg/l      | 1                  | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |

|         |                                             |               | Limit (IS-10             | 500:2012)                | DW13                                          | DW14                                          | DW15                                         | DW16                                          | DW17                                                | DW18                                         |
|---------|---------------------------------------------|---------------|--------------------------|--------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------|-----------------------------------------------------|----------------------------------------------|
| S. No.  | Parameters                                  | Unit          | Desirable<br>Limit       | Permissibl<br>e<br>Limit | Project<br>site office,<br>BP, LC at<br>Ch281 | Project<br>site office,<br>BP, LC at<br>Ch290 | Project<br>site office,<br>BP LC at<br>Ch274 | Project<br>Site office,<br>BP, LC at<br>Ch254 | Surat<br>Station,<br>office area<br>LC at Ch<br>264 | Project<br>site office,<br>BP LC at<br>Ch268 |
| Samplin | ng Date                                     |               |                          |                          | 07-02-2023                                    | 08-02-2023                                    | 08-02-2023                                   | 08-02-2023                                    | 08-02-2023                                          | 08-02-2023                                   |
|         | of DDT.DDE and DDD)                         |               |                          |                          |                                               |                                               |                                              |                                               |                                                     |                                              |
| 52      | Endosuiphan(<br>alpha,beta<br>and sulphate) | μg/l          | 0.4                      | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 53      | Ethion                                      | μg/l          | 3                        | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 54      | Gamma<br>HCH(Lindane                        | μg/l          | 2                        | No<br>relaxation         | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 55      | Isoproturon                                 | μg/l          | 9                        | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 56      | Malathion                                   | μg/l          | 190                      | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 57      | Methyl<br>Parathion                         | μg/l          | 0.3                      | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 58      | Monocrotoph<br>os                           | μg/l          | 1                        | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
| 59      | Phorate                                     | μg/l          | 2                        | No relaxation            | BDL                                           | BDL                                           | BDL                                          | BDL                                           | BDL                                                 | BDL                                          |
|         |                                             |               |                          | M                        | licrobiologica                                | l Parameter                                   |                                              |                                               |                                                     |                                              |
| 60      | Total<br>Coliform                           | MPN/100<br>ml | Should be absent/ 100 ml |                          | Absent/100 ml                                 | Absent/100 ml                                 | Absent/100 ml                                | Absent/100 ml                                 | Absent/100 ml                                       | Absent/100 ml                                |
| 61      | E.coli                                      | MPN/100<br>ml | Should be absent/ 100 ml | Absent/100 ml            | Absent/100 ml                                 | Absent/100 ml                                 | Absent/100 ml                                | Absent/100 ml                                 | Absent/100<br>ml                                    | Absent/100<br>ml                             |

### **Drinking Water Monitoring results contd...**

|        |                                  |       | Limit (IS-10       | 0500:2012)           | DW19                           | DW20                                                                      | DW21                                                     | DW22                                                     | DW23                                                                    | DW24                                                           |
|--------|----------------------------------|-------|--------------------|----------------------|--------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|
| S. No. | Parameters                       | Unit  | Desirable<br>Limit | Permissible<br>Limit | Zankhav<br>Crusher<br>Plant- I | Project<br>site<br>office,<br>Batching<br>plant, (PC<br>yard) at<br>Ch306 | Project Site office Batching plant, Labour camp at Ch306 | Project Site office Batching plant, Labour Camp at Ch321 | Project Site<br>office<br>Batching<br>plant (P.D<br>office) at<br>Ch321 | Project Site office, Batching plant Fabricatio n Yard at Ch321 |
| 1      | Color                            | Hazen | 5                  | 15                   | BDL                            | BDL                                                                       | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 2      | Odour                            | -     | Agreeable          | Agreeable            | Agreeable                      | Agreeable                                                                 | Agreeable                                                | Agreeable                                                | Agreeable                                                               | Agreeable                                                      |
| 3      | Taste                            | -     | Agreeable          | Agreeable            | Agreeable                      | Agreeable                                                                 | Agreeable                                                | Agreeable                                                | Agreeable                                                               | Agreeable                                                      |
| 4      | Turbidity                        | NTU   | 1                  | 5                    | BDL(MDL-<br>1)                 | BDL(MDL-<br>1)                                                            | BDL(MDL-1)                                               | BDL(MD<br>L-1)                                           | BDL(MDL-1)                                                              | BDL(MDL -1)                                                    |
| 5      | pH(Site )                        | -     | 6.5-8.5            | No<br>Relaxation     | 7.5                            | 7.4                                                                       | 7.1                                                      | 7.3                                                      | 7.3                                                                     | 7.1                                                            |
| 6      | pH (Lab)                         | -     | 6.5-8.5            | No<br>Relaxation     | 7.54                           | 7.38                                                                      | 7.14                                                     | 7.32                                                     | 7.31                                                                    | 7.14                                                           |
| 7      | Total Hardness<br>(as CaCO3)     | mg/l  | 200                | 600                  | 58                             | 62                                                                        | 78                                                       | 76                                                       | 64                                                                      | 88                                                             |
| 8      | Iron (as Fe)                     | mg/l  | 1                  | No<br>Relaxation     | BDL                            | BDL                                                                       | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 9      | Chlorides (as Cl)                | mg/l  | 250                | 1000                 | 13.9                           | 14.9                                                                      | 18.9                                                     | 18.5                                                     | 13.9                                                                    | 19.9                                                           |
| 10     | Fluoride (as F                   | mg/l  | 1                  | 1.5                  | BDL                            | BDL                                                                       | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 11     | TDS                              | mg/l  | 500                | 2000                 | 88                             | 98                                                                        | 104                                                      | 103                                                      | 92                                                                      | 120                                                            |
| 12     | Calcium(as<br>Ca <sup>2+</sup> ) | mg/l  | 75                 | 200                  | 9.6                            | 14.2                                                                      | 17.2                                                     | 16.8                                                     | 11.2                                                                    | 20.8                                                           |

|        |                                    |      | Limit (IS-1)       | 0500:2012)           | DW19                           | DW20                                                                      | DW21                                                     | DW22                                                     | DW23                                                                    | DW24                                                           |
|--------|------------------------------------|------|--------------------|----------------------|--------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|
| S. No. | Parameters                         | Unit | Desirable<br>Limit | Permissible<br>Limit | Zankhav<br>Crusher<br>Plant- I | Project<br>site<br>office,<br>Batching<br>plant, (PC<br>yard) at<br>Ch306 | Project Site office Batching plant, Labour camp at Ch306 | Project Site office Batching plant, Labour Camp at Ch321 | Project Site<br>office<br>Batching<br>plant (P.D<br>office) at<br>Ch321 | Project Site office, Batching plant Fabricatio n Yard at Ch321 |
| 13     | Magnesium (as Mg <sup>2+</sup> )   | mg/l | 30                 | 100                  | 8.26                           | 6.44                                                                      | 8.51                                                     | 8.26                                                     | 8.75                                                                    | 8.75                                                           |
| 14     | Sulphate (as SO4)                  | mg/l | 200                | 400                  | 6.3                            | 7.1                                                                       | 8.1                                                      | 8                                                        | 6.4                                                                     | 11.1                                                           |
| 15     | Nitrate(as<br>NO3)                 | mg/l | 45                 | No<br>Relaxation     | BDL                            | BDL                                                                       | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 16     | Chromium (as Cr)                   | mg/l | 0.05               | No<br>Relaxation     | BDL                            | BDL                                                                       | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 17     | Alkalinity as<br>CaCO3             | mg/l | 200                | 600                  | 40                             | 48                                                                        | 52                                                       | 50                                                       | 46                                                                      | 58                                                             |
| 18     | Aluminum (as Al)                   | mg/l | 0.03               | 0.2                  | BDL                            | BDL                                                                       | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 19     | Copper (as Cu)                     | mg/l | 0.05               | 1.5                  | BDL                            | BDL                                                                       | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 20     | Manganese (as Mn)                  | mg/l | 0.1                | 0.3                  | BDL                            | BDL                                                                       | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 21     | Zinc (as Zn)                       | mg/l | 5                  | 15                   | BDL                            | BDL                                                                       | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 22     | Ammonia (as NH <sub>3</sub> -N)    | mg/l | 0.5                | No relaxation        | BDL                            | BDL                                                                       | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 23     | Anionic<br>detergents<br>(as MBAS) | mg/l | 0.2                | 1                    | BDL                            | BDL                                                                       | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 24     | Boron (as B)                       | mg/l | 0.5                | 1                    | BDL                            | BDL                                                                       | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |

|        |                                      |      | Limit (IS-1        | 0500:2012)           | DW19                           | DW20                                                    | DW21                                                     | DW22                                                     | DW23                                                                    | DW24                                                           |
|--------|--------------------------------------|------|--------------------|----------------------|--------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|
| S. No. | Parameters                           | Unit | Desirable<br>Limit | Permissible<br>Limit | Zankhav<br>Crusher<br>Plant- I | Project site office, Batching plant, (PC yard) at Ch306 | Project Site office Batching plant, Labour camp at Ch306 | Project Site office Batching plant, Labour Camp at Ch321 | Project Site<br>office<br>Batching<br>plant (P.D<br>office) at<br>Ch321 | Project Site office, Batching plant Fabricatio n Yard at Ch321 |
| 25     | Mineral oil                          | mg/l | 0.5                | No relaxation        | BDL                            | BDL                                                     | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 26     | Phenolic<br>compounds (as<br>C6H5OH) | mg/l | 0.001              | 0.002                | BDL                            | BDL                                                     | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 27     | Cadmium (as<br>Cd)                   | mg/l | 0.003              | No relaxation        | BDL                            | BDL                                                     | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 28     | Cyanide (as CN)                      | mg/l | 0.05               | No relaxation        | BDL                            | BDL                                                     | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 29     | Lead (as Pb)                         | mg/l | 0.01               | No relaxation        | BDL                            | BDL                                                     | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 30     | Mercury (as<br>Hg)                   | mg/l | 0.001              | No relaxation        | BDL                            | BDL                                                     | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 31     | Nickel (as Ni)                       | mg/l | 0.02               | No relaxation        | BDL                            | BDL                                                     | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 32     | Sulphide(H2S)                        | mg/l | 0.05               | No relaxation        | BDL                            | BDL                                                     | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 33     | Residual Free<br>Chlorine(RFC)       | mg/l | Min-0.2            | 1                    | BDL                            | BDL                                                     | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 34     | Total arsenic (as As),               | mg/l | 0.01               | No relaxation        | BDL                            | BDL                                                     | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |
| 35     | Barium (as<br>Ba)                    | mg/l | 0.7                | No relaxation        | BDL                            | BDL                                                     | BDL                                                      | BDL                                                      | BDL                                                                     | BDL                                                            |

|        |                                                     |      | Limit (IS-1        | 0500:2012)           | DW19                           | DW20                                                                      | DW21                                                                       | DW22                                                     | DW23                                                                    | DW24                                                           |
|--------|-----------------------------------------------------|------|--------------------|----------------------|--------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|
| S. No. | Parameters                                          | Unit | Desirable<br>Limit | Permissible<br>Limit | Zankhav<br>Crusher<br>Plant- I | Project<br>site<br>office,<br>Batching<br>plant, (PC<br>yard) at<br>Ch306 | Project Site<br>office<br>Batching<br>plant,<br>Labour<br>camp at<br>Ch306 | Project Site office Batching plant, Labour Camp at Ch321 | Project Site<br>office<br>Batching<br>plant (P.D<br>office) at<br>Ch321 | Project Site office, Batching plant Fabricatio n Yard at Ch321 |
| 36     | Chloramines (as Cl2)                                | mg/l | 4                  | No relaxation        | BDL                            | BDL                                                                       | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 37     | Silver(as Ag)                                       | mg/l | 0.1                | No<br>Relaxation     | BDL                            | BDL                                                                       | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 38     | Molybdenum (as Mo)                                  | mg/l | 0.07               | No<br>Relaxation     | BDL                            | BDL                                                                       | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 39     | Polynuclear<br>Aromatic<br>Hydrocarbons(<br>as PAH) | mg/l | 0.0001             | No<br>Relaxation     | BDL                            | BDL                                                                       | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 40     | Polychlorinate d biphenyls                          | mg/l | 0.0001             | No<br>Relaxation     | BDL                            | BDL                                                                       | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 41     |                                                     |      |                    |                      | Trihalomet                     | hanes                                                                     |                                                                            |                                                          |                                                                         |                                                                |
| a)     | Bromoform                                           | mg/l | 0.1                | No<br>Relaxation     | BDL                            | BDL                                                                       | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| b)     | Dibromochlor omethane                               | mg/l | 0.1                | No<br>Relaxation     | BDL                            | BDL                                                                       | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| c)     | Bromodichlor omethane                               | mg/l | 0.06               | No<br>Relaxation     | BDL                            | BDL                                                                       | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| d)     | Chloroform                                          | mg/l | 0.2                | No<br>Relaxation     | BDL                            | BDL                                                                       | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
|        |                                                     |      |                    |                      | Pesticide Re                   | esidues                                                                   |                                                                            |                                                          |                                                                         |                                                                |
| 42     | Alachor                                             | μg/l | 20                 | No<br>Relaxation     | BDL(MDL-<br>10)                | BDL(MDL-<br>10)                                                           | BDL(MDL-<br>10)                                                            | BDL(MD<br>L-10)                                          | BDL(MDL-<br>10)                                                         | BDL(MDL<br>-10)                                                |

|        |                                                      |      | Limit (IS-1)       | 0500:2012)           | DW19                           | DW20                                                    | DW21                                                                       | DW22                                                     | DW23                                                                    | DW24                                                           |
|--------|------------------------------------------------------|------|--------------------|----------------------|--------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|
| S. No. | Parameters                                           | Unit | Desirable<br>Limit | Permissible<br>Limit | Zankhav<br>Crusher<br>Plant- I | Project site office, Batching plant, (PC yard) at Ch306 | Project Site<br>office<br>Batching<br>plant,<br>Labour<br>camp at<br>Ch306 | Project Site office Batching plant, Labour Camp at Ch321 | Project Site<br>office<br>Batching<br>plant (P.D<br>office) at<br>Ch321 | Project Site office, Batching plant Fabricatio n Yard at Ch321 |
| 43     | Atrazine                                             | μg/l | 20                 | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 44     | Aldrin/Dialdri<br>n                                  | μg/l | 0.03               | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 45     | Alpha HCH                                            | μg/l | 0.01               | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 46     | Beta HCH                                             | μg/l | 0.04               | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 47     | Butachlor                                            | μg/l | 125                | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 48     | Chlorpyriphos                                        | μg/l | 30                 | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 49     | Delta HCH                                            | μg/l | 0.04               | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 50     | 2,4-<br>Dichloropheno<br>xyacetic acid               | μg/l | 30                 | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 51     | DDT(o,p and<br>p,p-isomers of<br>DDT.DDE and<br>DDD) | μg/l | 1                  | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 52     | Endosuiphan(a<br>lpha,beta and<br>sulphate)          | μg/l | 0.4                | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |

|        |                       |               | Limit (IS-10                    | 0500:2012)           | DW19                           | DW20                                                    | DW21                                                                       | DW22                                                     | DW23                                                                    | DW24                                                           |
|--------|-----------------------|---------------|---------------------------------|----------------------|--------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------|
| S. No. | Parameters            | Unit          | Desirable<br>Limit              | Permissible<br>Limit | Zankhav<br>Crusher<br>Plant- I | Project site office, Batching plant, (PC yard) at Ch306 | Project Site<br>office<br>Batching<br>plant,<br>Labour<br>camp at<br>Ch306 | Project Site office Batching plant, Labour Camp at Ch321 | Project Site<br>office<br>Batching<br>plant (P.D<br>office) at<br>Ch321 | Project Site office, Batching plant Fabricatio n Yard at Ch321 |
| 53     | Ethion                | μg/l          | 3                               | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 54     | Gamma<br>HCH(Lindane) | μg/l          | 2                               | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 55     | Isoproturon           | μg/l          | 9                               | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 56     | Malathion             | μg/l          | 190                             | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 57     | Methyl<br>Parathion   | μg/l          | 0.3                             | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 58     | Monocrotopho<br>s     | μg/l          | 1                               | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
| 59     | Phorate               | μg/l          | 2                               | No<br>Relaxation     | BDL                            | BDL                                                     | BDL                                                                        | BDL                                                      | BDL                                                                     | BDL                                                            |
|        |                       |               |                                 | Mi                   | crobiological                  | Parameter                                               |                                                                            |                                                          |                                                                         |                                                                |
| 60     | Total Coliform        | MPN/100<br>ml | Should be<br>absent / 100<br>ml |                      | Absent/100 ml                  | Absent/10<br>0ml                                        | Absent/100m                                                                | Absent/10<br>0ml                                         | Absent/100 ml                                                           | Absent/100 ml                                                  |
| 61     | E.coli                | MPN/100<br>ml | Should be absent/100 ml         |                      | Absent/100 ml                  | Absent/10<br>0ml                                        | Absent/100m                                                                | Absent/10<br>0ml                                         | Absent/100<br>ml                                                        | Absent/100<br>ml                                               |

## **Drinking Water Monitoring results contd...**

|        |                                  |       | Limit (IS-         | 10500:2012)          | DW25                                                      | DW26             | DW27                | DW28                       | DW29                                      | DW30                                                  |
|--------|----------------------------------|-------|--------------------|----------------------|-----------------------------------------------------------|------------------|---------------------|----------------------------|-------------------------------------------|-------------------------------------------------------|
| S. No. | Parameters                       | Unit  | Desirable<br>Limit | Permissible<br>Limit | Project site office, Batching plant, Labour camp at Ch331 | Choki<br>Crusher | Canteen at<br>Ch359 | Labour<br>camp at<br>Ch359 | Project<br>Director<br>office at<br>Ch359 | Project site<br>office,<br>Labour<br>camp at<br>Ch385 |
| 1      | Color                            | Hazen | 5                  | 15                   | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 2      | Odour                            | -     | Agreeable          | Agreeable            | Agreeable                                                 | Agreeable        | Agreeable           | Agreeable                  | Agreeable                                 | Agreeable                                             |
| 3      | Taste                            | -     | Agreeable          | Agreeable            | Agreeable                                                 | Agreeable        | Agreeable           | Agreeable                  | Agreeable                                 | Agreeable                                             |
| 4      | Turbidity                        | NTU   | 1                  | 5                    | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 5      | pH(Site )                        | -     | 6.5-8.5            | No<br>Relaxation     | 7.1                                                       | 7.4              | 7.1                 | 7.4                        | 7.3                                       | 7.6                                                   |
| 6      | pH (Lab)                         | -     | 6.5-8.5            | No<br>Relaxation     | 7.13                                                      | 7.42             | 7.13                | 7.42                       | 7.31                                      | 7.58                                                  |
| 7      | Total Hardness<br>(as CaCO3)     | mg/l  | 200                | 600                  | 74                                                        | 58               | 86                  | 82                         | 74                                        | 96                                                    |
| 8      | Iron (as Fe)                     | mg/l  | 1                  | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 9      | Chlorides (as Cl)                | mg/l  | 250                | 1000                 | 18.9                                                      | 15.5             | 20.9                | 18.9                       | 17.9                                      | 27.5                                                  |
| 10     | Fluoride (as F                   | mg/l  | 1                  | 1.5                  | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 11     | TDS                              | mg/l  | 500                | 2000                 | 110                                                       | 84               | 120                 | 116                        | 104                                       | 148                                                   |
| 12     | Calcium(as<br>Ca <sup>2+</sup> ) | mg/l  | 75                 | 200                  | 15.8                                                      | 12.4             | 24.8                | 18.6                       | 17.2                                      | 24.4                                                  |
| 13     | Magnesium (as Mg <sup>2+</sup> ) | mg/l  | 30                 | 100                  | 8.38                                                      | 6.56             | 5.83                | 8.63                       | 7.53                                      | 8.51                                                  |
| 14     | Sulphate (as SO4)                | mg/l  | 200                | 400                  | 8.5                                                       | 7.2              | 8.6                 | 8.7                        | 7.8                                       | 10.5                                                  |

|        |                                      |      | Limit (IS-         | 10500:2012)          | DW25                                                      | DW26             | DW27                | DW28                       | DW29                                      | DW30                                                  |
|--------|--------------------------------------|------|--------------------|----------------------|-----------------------------------------------------------|------------------|---------------------|----------------------------|-------------------------------------------|-------------------------------------------------------|
| S. No. | Parameters                           | Unit | Desirable<br>Limit | Permissible<br>Limit | Project site office, Batching plant, Labour camp at Ch331 | Choki<br>Crusher | Canteen at<br>Ch359 | Labour<br>camp at<br>Ch359 | Project<br>Director<br>office at<br>Ch359 | Project site<br>office,<br>Labour<br>camp at<br>Ch385 |
| 15     | Nitrate(as<br>NO3)                   | mg/l | 45                 | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 16     | Chromium (as<br>Cr)                  | mg/l | 0.05               | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 17     | Alkalinity as<br>CaCO3               | mg/l | 200                | 600                  | 52                                                        | 38               | 60                  | 62                         | 54                                        | 72                                                    |
| 18     | Aluminum (as<br>Al)                  | mg/l | 0.03               | 0.2                  | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 19     | Copper (as Cu)                       | mg/l | 0.05               | 1.5                  | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 20     | Manganese (as Mn)                    | mg/l | 0.1                | 0.3                  | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 21     | Zinc (as Zn)                         | mg/l | 5                  | 15                   | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 22     | Ammonia (as NH <sub>3</sub> -N)      | mg/l | 0.5                | No<br>relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 23     | Anionic<br>detergents<br>(as MBAS)   | mg/l | 0.2                | 1                    | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 24     | Boron (as B)                         | mg/l | 0.5                | 1                    | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 25     | Mineral oil                          | mg/l | 0.5                | No<br>relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 26     | Phenolic<br>compounds (as<br>C6H5OH) | mg/l | 0.001              | 0.002                | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |

|        |                                |      | Limit (IS-         | 10500:2012)          | DW25                                                      | DW26             | DW27                | DW28                       | DW29                                      | DW30                                                  |
|--------|--------------------------------|------|--------------------|----------------------|-----------------------------------------------------------|------------------|---------------------|----------------------------|-------------------------------------------|-------------------------------------------------------|
| S. No. | Parameters                     | Unit | Desirable<br>Limit | Permissible<br>Limit | Project site office, Batching plant, Labour camp at Ch331 | Choki<br>Crusher | Canteen at<br>Ch359 | Labour<br>camp at<br>Ch359 | Project<br>Director<br>office at<br>Ch359 | Project site<br>office,<br>Labour<br>camp at<br>Ch385 |
| 27     | Cadmium (as Cd)                | mg/l | 0.003              | No<br>relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 28     | Cyanide (as CN)                | mg/l | 0.05               | No<br>relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 29     | Lead (as Pb)                   | mg/l | 0.01               | No<br>relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 30     | Mercury (as<br>Hg)             | mg/l | 0.001              | No<br>relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 31     | Nickel (as Ni)                 | mg/l | 0.02               | No<br>relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 32     | Sulphide(H2S)                  | mg/l | 0.05               | No<br>relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 33     | Residual Free<br>Chlorine(RFC) | mg/l | Min-0.2            | 1                    | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 34     | Total arsenic (as As),         | mg/l | 0.01               | No<br>relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 35     | Barium (as Ba)                 | mg/l | 0.7                | No relaxation        | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 36     | Chloramines<br>(as Cl2)        | mg/l | 4                  | No<br>relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 37     | Silver(as Ag)                  | mg/l | 0.1                | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 38     | Molybdenum (as Mo)             | mg/l | 0.07               | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |

|        |                                                     |      | Limit (IS-         | 10500:2012)          | DW25                                                      | DW26             | DW27                | DW28                       | DW29                                      | DW30                                                  |
|--------|-----------------------------------------------------|------|--------------------|----------------------|-----------------------------------------------------------|------------------|---------------------|----------------------------|-------------------------------------------|-------------------------------------------------------|
| S. No. | Parameters                                          | Unit | Desirable<br>Limit | Permissible<br>Limit | Project site office, Batching plant, Labour camp at Ch331 | Choki<br>Crusher | Canteen at<br>Ch359 | Labour<br>camp at<br>Ch359 | Project<br>Director<br>office at<br>Ch359 | Project site<br>office,<br>Labour<br>camp at<br>Ch385 |
| 39     | Polynuclear<br>Aromatic<br>Hydrocarbons(<br>as PAH) | mg/l | 0.0001             | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 40     | Polychlorinate<br>d biphenyls                       | mg/l | 0.0001             | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 41     |                                                     |      |                    |                      | Trihalom                                                  | ethanes          |                     |                            |                                           |                                                       |
| a)     | Bromoform                                           | mg/l | 0.1                | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| b)     | Dibromochloro methane                               | mg/l | 0.1                | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| c)     | Bromodichloro methane                               | mg/l | 0.06               | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| d)     | Chloroform                                          | mg/l | 0.2                | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
|        |                                                     |      |                    |                      | Pesticide I                                               | Residues         |                     |                            |                                           |                                                       |
| 42     | Alachor                                             | μg/l | 20                 | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 43     | Atrazine                                            | μg/l | 20                 | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 44     | Aldrin/Dialdri<br>n                                 | μg/l | 0.03               | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 45     | Alpha HCH                                           | μg/l | 0.01               | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 46     | Beta HCH                                            | μg/l | 0.04               | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |

|        |                                                      |      | Limit (IS-         | 10500:2012)          | DW25                                                      | DW26             | DW27                | DW28                       | DW29                                      | DW30                                      |
|--------|------------------------------------------------------|------|--------------------|----------------------|-----------------------------------------------------------|------------------|---------------------|----------------------------|-------------------------------------------|-------------------------------------------|
| S. No. | Parameters                                           | Unit | Desirable<br>Limit | Permissible<br>Limit | Project site office, Batching plant, Labour camp at Ch331 | Choki<br>Crusher | Canteen at<br>Ch359 | Labour<br>camp at<br>Ch359 | Project<br>Director<br>office at<br>Ch359 | Project site office, Labour camp at Ch385 |
| 47     | Butachlor                                            | μg/l | 125                | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                       |
| 48     | Chlorpyriphos                                        | μg/l | 30                 | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                       |
| 49     | Delta HCH                                            | μg/l | 0.04               | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                       |
| 50     | 2,4-<br>Dichloropheno<br>xyacetic acid               | μg/l | 30                 | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                       |
| 51     | DDT(o,p and<br>p,p-isomers of<br>DDT.DDE and<br>DDD) | μg/l | 1                  | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                       |
| 52     | Endosuiphan(a<br>lpha,beta and<br>sulphate)          | μg/l | 0.4                | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                       |
| 53     | Ethion                                               | μg/l | 3                  | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                       |
| 54     | Gamma<br>HCH(Lindane)                                | μg/l | 2                  | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                       |
| 55     | Isoproturon                                          | μg/l | 9                  | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                       |
| 56     | Malathion                                            | μg/l | 190                | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                       |

|        |                     |               | Limit (IS-                     | 10500:2012)          | DW25                                                      | DW26             | DW27                | DW28                       | DW29                                      | DW30                                                  |
|--------|---------------------|---------------|--------------------------------|----------------------|-----------------------------------------------------------|------------------|---------------------|----------------------------|-------------------------------------------|-------------------------------------------------------|
| S. No. | Parameters          | Unit          | Desirable<br>Limit             | Permissible<br>Limit | Project site office, Batching plant, Labour camp at Ch331 | Choki<br>Crusher | Canteen at<br>Ch359 | Labour<br>camp at<br>Ch359 | Project<br>Director<br>office at<br>Ch359 | Project site<br>office,<br>Labour<br>camp at<br>Ch385 |
| 57     | Methyl<br>Parathion | $\mu g/l$     | 0.3                            | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 58     | Monocrotopho<br>s   | μg/l          | 1                              | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
| 59     | Phorate             | μg/l          | 2                              | No<br>Relaxation     | BDL                                                       | BDL              | BDL                 | BDL                        | BDL                                       | BDL                                                   |
|        |                     |               |                                |                      | Microbiologica                                            | l Parameter      |                     |                            |                                           |                                                       |
| 60     | Total Coliform      | MPN/100<br>ml | Should be<br>absent/<br>100 ml |                      | Absent/100ml                                              | Absent/100 ml    | Absent/100 ml       | Absent/100 ml              | Absent/100 ml                             | Absent/100<br>ml                                      |
| 61     | E.coli              | MPN/100<br>ml | Should be<br>absent/<br>100 ml |                      | Absent/100ml                                              | Absent/100 ml    | Absent/100 ml       | Absent/100 ml              | Absent/100 ml                             | Absent/100<br>ml                                      |

Table 37: Drinking Water Quality at C4 Package for March 2023

|        |                                  |       |                     | it (IS-<br>500:2012)  | DW1                                                      | DW2                                            | DW3                                                  | DW4                                             | DW5                                               | DW6                        |
|--------|----------------------------------|-------|---------------------|-----------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------|
| S. No. | Parameters                       | Unit  | Desirabl<br>e Limit | Permissi<br>ble Limit | PSO, BP<br>LC, Dadar<br>and Nagar<br>Haveli at<br>Ch 159 | Project<br>Site Office,<br>BP, LC at<br>Ch 165 | Vapi<br>Station,<br>office<br>building<br>at Ch. 168 | Project<br>site office,<br>BP, LC at<br>Ch. 188 | Project<br>Site office,<br>LC, resort<br>at Ch207 | Sondhalwa<br>da<br>Crusher |
| 1      | Color                            | Hazen | 5                   | 15                    | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 2      | Odour                            | -     | Agreeab<br>le       | Agreeabl<br>e         | Agreeable                                                | Agreeable                                      | Agreeable                                            | Agreeable                                       | Agreeable                                         | Agreeable                  |
| 3      | Taste                            | -     | Agreeab<br>le       | Agreeabl<br>e         | Agreeable                                                | Agreeable                                      | Agreeable                                            | Agreeable                                       | Agreeable                                         | Agreeable                  |
| 4      | Turbidity                        | NTU   | 1                   | 5                     | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 5      | pH(Site)                         | -     | 6.5-8.5             | No relaxation         | 7.4                                                      | 7.5                                            | 7.4                                                  | 7.3                                             | 7.2                                               | 7.4                        |
| 6      | pH (Lab)                         | -     | 6.5-8.5             | No relaxation         | 7.41                                                     | 7.54                                           | 7.44                                                 | 7.31                                            | 7.24                                              | 7.41                       |
| 7      | Total Hardness (as<br>CaCO3)     | mg/l  | 200                 | 600                   | 72                                                       | 64                                             | 46                                                   | 54                                              | 56                                                | 88                         |
| 8      | Iron (as Fe)                     | mg/l  | 1                   | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 9      | Chlorides (as Cl)                | mg/l  | 250                 | 1000                  | 16.9                                                     | 14.9                                           | 12.5                                                 | 13.9                                            | 12.5                                              | 24.5                       |
| 10     | Fluoride (as F)                  | mg/l  | 1                   | 1.5                   | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 11     | TDS                              | mg/l  | 500                 | 2000                  | 102                                                      | 97                                             | 70                                                   | 87                                              | 84                                                | 135                        |
| 12     | Calcium(as Ca <sup>2+</sup> )    | mg/l  | 75                  | 200                   | 11.6                                                     | 13.6                                           | 10.2                                                 | 10.8                                            | 11.2                                              | 22.4                       |
| 13     | Magnesium (as Mg <sup>2+</sup> ) | mg/l  | 30                  | 100                   | 10.45                                                    | 7.29                                           | 4.98                                                 | 6.56                                            | 6.8                                               | 7.78                       |
| 14     | Sulphate (as SO4)                | mg/l  | 200                 | 400                   | 7.8                                                      | 7.1                                            | 6.7                                                  | 6.8                                             | 6.5                                               | 8.9                        |
| 15     | Nitrate(as NO3)                  | mg/l  | 45                  | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 16     | Chromium (as Cr)                 | mg/l  | 0.05                | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 17     | Alkalinity as CaCO3              | mg/l  | 200                 | 600                   | 52                                                       | 48                                             | 32                                                   | 42                                              | 44                                                | 58                         |
| 18     | Aluminum (as Al)                 | mg/l  | 0.03                | 0.2                   | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |

|        |                                   |      |                     | it (IS-<br>500:2012)  | DW1                                                      | DW2                                            | DW3                                                  | DW4                                             | DW5                                               | DW6                        |
|--------|-----------------------------------|------|---------------------|-----------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------|
| S. No. | Parameters                        | Unit | Desirabl<br>e Limit | Permissi<br>ble Limit | PSO, BP<br>LC, Dadar<br>and Nagar<br>Haveli at<br>Ch 159 | Project<br>Site Office,<br>BP, LC at<br>Ch 165 | Vapi<br>Station,<br>office<br>building<br>at Ch. 168 | Project<br>site office,<br>BP, LC at<br>Ch. 188 | Project<br>Site office,<br>LC, resort<br>at Ch207 | Sondhalwa<br>da<br>Crusher |
| 19     | Copper (as Cu)                    | mg/l | 0.05                | 1.5                   | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 20     | Manganese (as Mn)                 | mg/l | 0.1                 | 0.3                   | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 21     | Zinc (as Zn)                      | mg/l | 5                   | 15                    | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 22     | Ammonia (as NH <sub>3</sub> -N)   | mg/l | 0.5                 | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 23     | Anionic detergents (as MBAS)      | mg/l | 0.2                 | 1                     | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 24     | Boron (as B)                      | mg/l | 0.5                 | 1                     | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 25     | Mineral oil                       | mg/l | 0.5                 | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 26     | Phenolic compounds<br>(as C6H5OH) | mg/l | 0.001               | 0.002                 | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 27     | Cadmium (as Cd)                   | mg/l | 0.003               | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 28     | Cyanide (as CN)                   | mg/l | 0.05                | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 29     | Lead (as Pb)                      | mg/l | 0.01                | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 30     | Mercury (as Hg)                   | mg/l | 0.001               | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 31     | Nickel (as Ni)                    | mg/l | 0.02                | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 32     | Sulphide(H2S)                     | mg/l | 0.05                | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 33     | Residual Free<br>Chlorine(RFC)    | mg/l | Min-0.2             | 1                     | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 34     | Total arsenic (as As),            | mg/l | 0.01                | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |

|        |                                                 |      |                     | it (IS-<br>500:2012)  | DW1                                                      | DW2                                            | DW3                                                  | DW4                                             | DW5                                               | DW6                        |
|--------|-------------------------------------------------|------|---------------------|-----------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------|
| S. No. | Parameters                                      | Unit | Desirabl<br>e Limit | Permissi<br>ble Limit | PSO, BP<br>LC, Dadar<br>and Nagar<br>Haveli at<br>Ch 159 | Project<br>Site Office,<br>BP, LC at<br>Ch 165 | Vapi<br>Station,<br>office<br>building<br>at Ch. 168 | Project<br>site office,<br>BP, LC at<br>Ch. 188 | Project<br>Site office,<br>LC, resort<br>at Ch207 | Sondhalwa<br>da<br>Crusher |
| 35     | Barium (as Ba)                                  | mg/l | 0.7                 | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 36     | Chloramines (as Cl2)                            | mg/l | 4                   | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 37     | Silver(as Ag)                                   | mg/l | 0.1                 | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 38     | Molybdenum (as Mo)                              | mg/l | 0.07                | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 39     | Polynuclear Aromatic<br>Hydrocarbons(as<br>PAH) | mg/l | 0.0001              | No<br>relaxation      | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 40     | Polychlorinated<br>biphenyls                    | mg/l | 0.0001              | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 41     |                                                 |      |                     |                       | Trihalome                                                | thanes                                         | ,                                                    |                                                 |                                                   |                            |
| a)     | Bromoform                                       | mg/l | 0.1                 | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| b)     | Dibromochlorometha ne                           | mg/l | 0.1                 | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| c)     | Bromodichloromethan e                           | mg/l | 0.06                | No<br>relaxation      | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| d)     | Chloroform                                      | mg/l | 0.2                 | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
|        |                                                 |      |                     |                       | Pesticide R                                              | esidues                                        |                                                      |                                                 |                                                   |                            |
| 42     | Alachor                                         | μg/l | 20                  | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 43     | Atrazine                                        | μg/l | 20                  | No<br>relaxation      | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |

|        |                                                       |      |                     | it (IS-<br>500:2012)  | DW1                                                      | DW2                                            | DW3                                                  | DW4                                             | DW5                                               | DW6                        |
|--------|-------------------------------------------------------|------|---------------------|-----------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------|
| S. No. | Parameters                                            | Unit | Desirabl<br>e Limit | Permissi<br>ble Limit | PSO, BP<br>LC, Dadar<br>and Nagar<br>Haveli at<br>Ch 159 | Project<br>Site Office,<br>BP, LC at<br>Ch 165 | Vapi<br>Station,<br>office<br>building<br>at Ch. 168 | Project<br>site office,<br>BP, LC at<br>Ch. 188 | Project<br>Site office,<br>LC, resort<br>at Ch207 | Sondhalwa<br>da<br>Crusher |
| 44     | Aldrin/Dialdrin                                       | μg/l | 0.03                | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 45     | Alpha HCH                                             | μg/l | 0.01                | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 46     | Beta HCH                                              | μg/l | 0.04                | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 47     | Butachlor                                             | μg/l | 125                 | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 48     | Chlorpyriphos                                         | μg/l | 30                  | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 49     | Delta HCH                                             | μg/l | 0.04                | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 50     | 2,4-<br>Dichlorophenoxya<br>cetic acid                | μg/l | 30                  | No<br>relaxation      | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 51     | DDT(o,p and p,p-<br>isomers of<br>DDT.DDE and<br>DDD) | μg/l | 1                   | No<br>relaxation      | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 52     | Endosuiphan(alpha,be ta and sulphate)                 | μg/l | 0.4                 | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 53     | Ethion                                                | μg/l | 3                   | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 54     | Gamma<br>HCH(Lindane)                                 | μg/l | 2                   | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 55     | Isoproturon                                           | μg/l | 9                   | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |

|        |                  |               |                     | it (IS-<br>(00:2012)  | DW1                                                      | DW2                                            | DW3                                                  | DW4                                             | DW5                                               | DW6                        |
|--------|------------------|---------------|---------------------|-----------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----------------------------|
| S. No. | Parameters       | Unit          | Desirabl<br>e Limit | Permissi<br>ble Limit | PSO, BP<br>LC, Dadar<br>and Nagar<br>Haveli at<br>Ch 159 | Project<br>Site Office,<br>BP, LC at<br>Ch 165 | Vapi<br>Station,<br>office<br>building<br>at Ch. 168 | Project<br>site office,<br>BP, LC at<br>Ch. 188 | Project<br>Site office,<br>LC, resort<br>at Ch207 | Sondhalwa<br>da<br>Crusher |
| 56     | Malathion        | μg/l          | 190                 | No<br>relaxation      | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 57     | Methyl Parathion | μg/l          | 0.3                 | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 58     | Monocrotophos    | μg/l          | 1                   | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
| 59     | Phorate          | μg/l          | 2                   | No relaxation         | BDL                                                      | BDL                                            | BDL                                                  | BDL                                             | BDL                                               | BDL                        |
|        |                  |               |                     | M                     | icrobiological                                           | Parameter                                      |                                                      |                                                 |                                                   |                            |
| 60     | Total Coliform   | MPN/100<br>ml |                     | be absent/<br>0 ml    | Absent/100 ml                                            | Absent/100 ml                                  | Absent/100 ml                                        | Absent/100 ml                                   | Absent/100 ml                                     | Absent/100 ml              |
| 61     | E.coli           | MPN/100<br>ml |                     | be absent/<br>0 ml    | Absent/100 ml                                            | Absent/100 ml                                  | Absent/100 ml                                        | Absent/100 ml                                   | Absent/100 ml                                     | Absent/100 ml              |

|        |                                  |       |                     | it (IS-<br>500:2012)  | DW7                                           | DW8                                                         | DW9                                           | DW10             | DW11                                          | DW12               |
|--------|----------------------------------|-------|---------------------|-----------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|------------------|-----------------------------------------------|--------------------|
| S. No. | Parameters                       | Unit  | Desirabl<br>e Limit | Permissi<br>ble Limit | Project<br>site office,<br>BP, LC at<br>Ch217 | Project<br>site office,<br>Billimora<br>station at<br>Ch218 | Project<br>site office,<br>BP, LC at<br>Ch232 | Casting at Ch232 | Project<br>site office,<br>BP, LC at<br>Ch238 | Chikali<br>crusher |
| 1      | Color                            | Hazen | 5                   | 15                    | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 2      | Odour                            | -     | Agreeab<br>le       | Agreeable             | Agreeable                                     | Agreeable                                                   | Agreeable                                     | Agreeable        | Agreeable                                     | Agreeable          |
| 3      | Taste                            | -     | Agreeab<br>le       | Agreeable             | Agreeable                                     | Agreeable                                                   | Agreeable                                     | Agreeable        | Agreeable                                     | Agreeable          |
| 4      | Turbidity                        | NTU   | 1                   | 5                     | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 5      | pH(Site)                         | -     | 6.5-8.5             | No relaxation         | 7.2                                           | 7.2                                                         | 7.2                                           | 7.4              | 6.7                                           | 7.2                |
| 6      | pH (Lab)                         | -     | 6.5-8.5             | No relaxation         | 7.22                                          | 7.24                                                        | 7.21                                          | 7.41             | 6.72                                          | 7.18               |
| 7      | Total Hardness (as<br>CaCO3)     | mg/l  | 200                 | 600                   | 52                                            | 112                                                         | 70                                            | 66               | 48                                            | 50                 |
| 8      | Iron (as Fe)                     | mg/l  | 1                   | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 9      | Chlorides (as Cl)                | mg/l  | 250                 | 1000                  | 12.9                                          | 24.9                                                        | 16.5                                          | 14.9             | 10.5                                          | 11.9               |
| 10     | Fluoride (as F)                  | mg/l  | 1                   | 1.5                   | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 11     | TDS                              | mg/l  | 500                 | 2000                  | 79                                            | 168                                                         | 102                                           | 96               | 72                                            | 77                 |
| 12     | Calcium(as Ca <sup>2+</sup> )    | mg/l  | 75                  | 200                   | 11.2                                          | 24.2                                                        | 15.6                                          | 14.4             | 8.8                                           | 9.2                |
| 13     | Magnesium (as Mg <sup>2+</sup> ) | mg/l  | 30                  | 100                   | 5.83                                          | 12.51                                                       | 7.53                                          | 7.29             | 6.32                                          | 6.56               |
| 14     | Sulphate (as SO4)                | mg/l  | 200                 | 400                   | 6.6                                           | 10.5                                                        | 7.7                                           | 7.2              | 5.1                                           | 6                  |
| 15     | Nitrate(as NO3)                  | mg/l  | 45                  | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 16     | Chromium (as Cr)                 | mg/l  | 0.05                | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |

|        |                                   |      |                     | it (IS-<br>500:2012)  | DW7                                           | DW8                                                         | DW9                                           | DW10             | DW11                                          | DW12               |
|--------|-----------------------------------|------|---------------------|-----------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|------------------|-----------------------------------------------|--------------------|
| S. No. | Parameters                        | Unit | Desirabl<br>e Limit | Permissi<br>ble Limit | Project<br>site office,<br>BP, LC at<br>Ch217 | Project<br>site office,<br>Billimora<br>station at<br>Ch218 | Project<br>site office,<br>BP, LC at<br>Ch232 | Casting at Ch232 | Project<br>site office,<br>BP, LC at<br>Ch238 | Chikali<br>crusher |
| 17     | Alkalinity as CaCO3               | mg/l | 200                 | 600                   | 38                                            | 86                                                          | 54                                            | 52               | 36                                            | 38                 |
| 18     | Aluminum (as Al)                  | mg/l | 0.03                | 0.2                   | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 19     | Copper (as Cu)                    | mg/l | 0.05                | 1.5                   | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 20     | Manganese (as Mn)                 | mg/l | 0.1                 | 0.3                   | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 21     | Zinc (as Zn)                      | mg/l | 5                   | 15                    | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 22     | Ammonia (as NH <sub>3</sub> -N)   | mg/l | 0.5                 | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 23     | Anionic detergents (as MBAS)      | mg/l | 0.2                 | 1                     | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 24     | Boron (as B)                      | mg/l | 0.5                 | 1                     | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 25     | Mineral oil                       | mg/l | 0.5                 | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 26     | Phenolic compounds<br>(as C6H5OH) | mg/l | 0.001               | 0.002                 | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 27     | Cadmium (as Cd)                   | mg/l | 0.003               | No<br>relaxation      | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 28     | Cyanide (as CN)                   | mg/l | 0.05                | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 29     | Lead (as Pb)                      | mg/l | 0.01                | No<br>relaxation      | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 30     | Mercury (as Hg)                   | mg/l | 0.001               | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 31     | Nickel (as Ni)                    | mg/l | 0.02                | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |
| 32     | Sulphide(H2S)                     | mg/l | 0.05                | No<br>relaxation      | BDL                                           | BDL                                                         | BDL                                           | BDL              | BDL                                           | BDL                |

|        |                                                 |      |                     | it (IS-<br>500:2012)  | DW7                                           | DW8                                                         | DW9                                           | DW10                | DW11                                          | DW12               |
|--------|-------------------------------------------------|------|---------------------|-----------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|---------------------|-----------------------------------------------|--------------------|
| S. No. | Parameters                                      | Unit | Desirabl<br>e Limit | Permissi<br>ble Limit | Project<br>site office,<br>BP, LC at<br>Ch217 | Project<br>site office,<br>Billimora<br>station at<br>Ch218 | Project<br>site office,<br>BP, LC at<br>Ch232 | Casting at<br>Ch232 | Project<br>site office,<br>BP, LC at<br>Ch238 | Chikali<br>crusher |
| 33     | Residual Free<br>Chlorine(RFC)                  | mg/l | Min-0.2             | 1                     | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 34     | Total arsenic (as As),                          | mg/l | 0.01                | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 35     | Barium (as Ba)                                  | mg/l | 0.7                 | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 36     | Chloramines (as C12)                            | mg/l | 4                   | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 37     | Silver(as Ag)                                   | mg/l | 0.1                 | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 38     | Molybdenum (as Mo)                              | mg/l | 0.07                | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 39     | Polynuclear Aromatic<br>Hydrocarbons(as<br>PAH) | mg/l | 0.0001              | No<br>relaxation      | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 40     | Polychlorinated biphenyls                       | mg/l | 0.0001              | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 41     | Trihalomethanes                                 |      |                     |                       | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| a)     | Bromoform                                       | mg/l | 0.1                 | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| b)     | Dibromochlorometha ne                           | mg/l | 0.1                 | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| c)     | Bromodichloromethan e                           | mg/l | 0.06                | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| d)     | Chloroform                                      | mg/l | 0.2                 | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
|        |                                                 |      |                     |                       | Pesticide Re                                  | esidues                                                     |                                               |                     |                                               |                    |

|        |                                                       |      |                     | it (IS-<br>500:2012)  | DW7                                           | DW8                                                         | DW9                                           | DW10                | DW11                                          | DW12               |
|--------|-------------------------------------------------------|------|---------------------|-----------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|---------------------|-----------------------------------------------|--------------------|
| S. No. | Parameters                                            | Unit | Desirabl<br>e Limit | Permissi<br>ble Limit | Project<br>site office,<br>BP, LC at<br>Ch217 | Project<br>site office,<br>Billimora<br>station at<br>Ch218 | Project<br>site office,<br>BP, LC at<br>Ch232 | Casting at<br>Ch232 | Project<br>site office,<br>BP, LC at<br>Ch238 | Chikali<br>crusher |
| 42     | Alachor                                               | μg/l | 20                  | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 43     | Atrazine                                              | μg/l | 20                  | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 44     | Aldrin/Dialdrin                                       | μg/l | 0.03                | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 45     | Alpha HCH                                             | μg/l | 0.01                | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 46     | Beta HCH                                              | μg/l | 0.04                | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 47     | Butachlor                                             | μg/l | 125                 | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 48     | Chlorpyriphos                                         | μg/l | 30                  | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 49     | Delta HCH                                             | μg/l | 0.04                | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 50     | 2,4-<br>Dichlorophenoxya<br>cetic acid                | μg/l | 30                  | No<br>relaxation      | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 51     | DDT(o,p and p,p-<br>isomers of<br>DDT.DDE and<br>DDD) | μg/l | 1                   | No<br>relaxation      | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 52     | Endosuiphan(alpha,be ta and sulphate)                 | μg/l | 0.4                 | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 53     | Ethion                                                | μg/l | 3                   | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |

|        |                       |               |                     | it (IS-<br>(00:2012)  | DW7                                           | DW8                                                         | DW9                                           | DW10                | DW11                                          | DW12               |
|--------|-----------------------|---------------|---------------------|-----------------------|-----------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|---------------------|-----------------------------------------------|--------------------|
| S. No. | Parameters            | Unit          | Desirabl<br>e Limit | Permissi<br>ble Limit | Project<br>site office,<br>BP, LC at<br>Ch217 | Project<br>site office,<br>Billimora<br>station at<br>Ch218 | Project<br>site office,<br>BP, LC at<br>Ch232 | Casting at<br>Ch232 | Project<br>site office,<br>BP, LC at<br>Ch238 | Chikali<br>crusher |
| 54     | Gamma<br>HCH(Lindane) | μg/l          | 2                   | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 55     | Isoproturon           | μg/l          | 9                   | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 56     | Malathion             | μg/l          | 190                 | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 57     | Methyl Parathion      | μg/l          | 0.3                 | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 58     | Monocrotophos         | μg/l          | 1                   | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
| 59     | Phorate               | μg/l          | 2                   | No relaxation         | BDL                                           | BDL                                                         | BDL                                           | BDL                 | BDL                                           | BDL                |
|        |                       |               |                     | $\mathbf{M}$          | icrobiological                                | Parameter                                                   |                                               |                     |                                               |                    |
| 60     | Total Coliform        | MPN/100<br>ml |                     | be absent/<br>0 ml    | Absent/100 ml                                 | Absent/100<br>ml                                            | Absent/100<br>ml                              | Absent/100 ml       | Absent/100<br>ml                              | Absent/100<br>ml   |
| 61     | E.coli                | MPN/100<br>ml |                     | be absent/<br>0 ml    | Absent/100<br>ml                              | Absent/100<br>ml                                            | Absent/100<br>ml                              | Absent/100<br>ml    | Absent/100<br>ml                              | Absent/100<br>ml   |

|        | water Quanty result       |       |                     | it (IS-<br>00:2012)   | DW13                                           | DW14                                          | DW15                                                       | DW16                                             | DW17                                          | DW18                                          |
|--------|---------------------------|-------|---------------------|-----------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| S. No. | Parameters                | Unit  | Desirab<br>le Limit | Permissi<br>ble Limit | Project site<br>office, BP,<br>LC at Ch<br>243 | Project<br>Site office,<br>BP, LC at<br>Ch254 | Project<br>Site office,<br>casting<br>yard, LC<br>at Ch261 | Surat<br>Station,<br>office area<br>at Ch<br>264 | Project site<br>office, BP<br>LC at Ch<br>268 | Project site<br>office, BP<br>LC at Ch<br>274 |
| 1      | Color                     | Hazen | 5                   | 15                    | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 2      | Odour                     | 1     | Agreeab<br>le       | Agreeable             | Agreeable                                      | Agreeable                                     | Agreeable                                                  | Agreeable                                        | Agreeable                                     | Agreeable                                     |
| 3      | Taste                     | -     | Agreeab<br>le       | Agreeable             | Agreeable                                      | Agreeable                                     | Agreeable                                                  | Agreeable                                        | Agreeable                                     | Agreeable                                     |
| 4      | Turbidity                 | NTU   | 1                   | 5                     | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 5      | pH(Site)                  | -     | 6.5-8.5             | No relaxation         | 7.2                                            | 7.2                                           | 6.8                                                        | 6.9                                              | 7.3                                           | 6.7                                           |
| 6      | pH (Lab)                  | 1     | 6.5-8.5             | No relaxation         | 7.17                                           | 7.23                                          | 6.82                                                       | 6.94                                             | 7.28                                          | 6.71                                          |
| 7      | Total Hardness (as CaCO3) | mg/l  | 200                 | 600                   | 52                                             | 68                                            | 56                                                         | 48.5                                             | 48                                            | 52                                            |
| 8      | Iron (as Fe)              | mg/l  | 1                   | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 9      | Chlorides (as Cl)         | mg/l  | 250                 | 1000                  | 12.5                                           | 16.9                                          | 13.9                                                       | 10.5                                             | 9.9                                           | 11.5                                          |
| 10     | Fluoride (as F)           | mg/l  | 1                   | 1.5                   | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 11     | TDS                       | mg/l  | 500                 | 2000                  | 80                                             | 105                                           | 87                                                         | 74                                               | 72                                            | 78                                            |
| 12     | Calcium(as Ca2+)          | mg/l  | 75                  | 200                   | 10.2                                           | 12.2                                          | 12.2                                                       | 11.4                                             | 10.8                                          | 8.8                                           |
| 13     | Magnesium (as<br>Mg2+)    | mg/l  | 30                  | 100                   | 6.44                                           | 9.11                                          | 6.2                                                        | 4.86                                             | 5.1                                           | 7.29                                          |
| 14     | Sulphate (as SO4)         | mg/l  | 200                 | 400                   | 6.3                                            | 7.6                                           | 7                                                          | 5.3                                              | 4.3                                           | 5.9                                           |
| 15     | Nitrate(as NO3)           | mg/l  | 45                  | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 16     | Chromium (as Cr)          | mg/l  | 0.05                | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |

|        |                                      |      |                     | it (IS-<br>500:2012)  | DW13                                           | DW14                                          | DW15                                                       | DW16                                             | DW17                                          | DW18                                          |
|--------|--------------------------------------|------|---------------------|-----------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| S. No. | Parameters                           | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | Project site<br>office, BP,<br>LC at Ch<br>243 | Project<br>Site office,<br>BP, LC at<br>Ch254 | Project<br>Site office,<br>casting<br>yard, LC<br>at Ch261 | Surat<br>Station,<br>office area<br>at Ch<br>264 | Project site<br>office, BP<br>LC at Ch<br>268 | Project site<br>office, BP<br>LC at Ch<br>274 |
| 17     | Alkalinity as<br>CaCO3               | mg/l | 200                 | 600                   | 36                                             | 46                                            | 42                                                         | 38                                               | 38                                            | 40                                            |
| 18     | Aluminum (as Al)                     | mg/l | 0.03                | 0.2                   | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 19     | Copper (as Cu)                       | mg/l | 0.05                | 1.5                   | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 20     | Manganese (as Mn)                    | mg/l | 0.1                 | 0.3                   | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 21     | Zinc (as Zn)                         | mg/l | 5                   | 15                    | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 22     | Ammonia (as NH3-<br>N)               | mg/l | 0.5                 | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 23     | Anionic detergents (as MBAS)         | mg/l | 0.2                 | 1                     | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 24     | Boron (as B)                         | mg/l | 0.5                 | 1                     | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 25     | Mineral oil                          | mg/l | 0.5                 | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 26     | Phenolic<br>compounds (as<br>C6H5OH) | mg/l | 0.001               | 0.002                 | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 27     | Cadmium (as Cd)                      | mg/l | 0.003               | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 28     | Cyanide (as CN)                      | mg/l | 0.05                | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 29     | Lead (as Pb)                         | mg/l | 0.01                | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 30     | Mercury (as Hg)                      | mg/l | 0.001               | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 31     | Nickel (as Ni)                       | mg/l | 0.02                | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |

|        |                                                    |      |                     | it (IS-<br>500:2012)  | DW13                                           | DW14                                          | DW15                                                       | DW16                                             | DW17                                          | DW18                                          |
|--------|----------------------------------------------------|------|---------------------|-----------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| S. No. | Parameters                                         | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | Project site<br>office, BP,<br>LC at Ch<br>243 | Project<br>Site office,<br>BP, LC at<br>Ch254 | Project<br>Site office,<br>casting<br>yard, LC<br>at Ch261 | Surat<br>Station,<br>office area<br>at Ch<br>264 | Project site<br>office, BP<br>LC at Ch<br>268 | Project site<br>office, BP<br>LC at Ch<br>274 |
| 32     | Sulphide(H2S)                                      | mg/l | 0.05                | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 33     | Residual Free<br>Chlorine(RFC)                     | mg/l | Min-0.2             | 1                     | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 34     | Total arsenic (as As),                             | mg/l | 0.01                | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 35     | Barium (as Ba)                                     | mg/l | 0.7                 | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 36     | Chloramines (as<br>Cl2)                            | mg/l | 4                   | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 37     | Silver(as Ag)                                      | mg/l | 0.1                 | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 38     | Molybdenum (as<br>Mo)                              | mg/l | 0.07                | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 39     | Polynuclear<br>Aromatic<br>Hydrocarbons(as<br>PAH) | mg/l | 0.0001              | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 40     | Polychlorinated biphenyls                          | mg/l | 0.0001              | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 41     |                                                    |      |                     |                       | Trihalom                                       | ethanes                                       |                                                            |                                                  |                                               |                                               |
| a)     | Bromoform                                          | mg/l | 0.1                 | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| b)     | Dibromochlorometh ane                              | mg/l | 0.1                 | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| c)     | Bromodichlorometh ane                              | mg/l | 0.06                | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |

|        |                                                       |      |                     | it (IS-<br>500:2012)  | DW13                                           | DW14                                          | DW15                                                       | DW16                                             | DW17                                          | DW18                                          |
|--------|-------------------------------------------------------|------|---------------------|-----------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| S. No. | Parameters                                            | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | Project site<br>office, BP,<br>LC at Ch<br>243 | Project<br>Site office,<br>BP, LC at<br>Ch254 | Project<br>Site office,<br>casting<br>yard, LC<br>at Ch261 | Surat<br>Station,<br>office area<br>at Ch<br>264 | Project site<br>office, BP<br>LC at Ch<br>268 | Project site<br>office, BP<br>LC at Ch<br>274 |
| d)     | Chloroform                                            | mg/l | 0.2                 | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
|        |                                                       |      |                     |                       | Pesticide F                                    | Residues                                      |                                                            |                                                  |                                               |                                               |
| 42     | Alachor                                               | μg/l | 20                  | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 43     | Atrazine                                              | μg/l | 20                  | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 44     | Aldrin/Dialdrin                                       | μg/l | 0.03                | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 45     | Alpha HCH                                             | μg/l | 0.01                | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 46     | Beta HCH                                              | μg/l | 0.04                | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 47     | Butachlor                                             | μg/l | 125                 | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 48     | Chlorpyriphos                                         | μg/l | 30                  | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 49     | Delta HCH                                             | μg/l | 0.04                | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 50     | 2,4-<br>Dichlorophenoxyac<br>etic acid                | μg/l | 30                  | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 51     | DDT(o,p and p,p-<br>isomers of<br>DDT.DDE and<br>DDD) | μg/l | 1                   | No<br>relaxation      | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 52     | Endosuiphan(alpha, beta and sulphate)                 | μg/l | 0.4                 | No relaxation         | BDL                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |

|        |                       |               |                     | it (IS-<br>00:2012)   | DW13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DW14                                          | DW15                                                       | DW16                                             | DW17                                          | DW18                                          |
|--------|-----------------------|---------------|---------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------|-----------------------------------------------|
| S. No. | Parameters            | Unit          | Desirab<br>le Limit | Permissi<br>ble Limit | Project site<br>office, BP,<br>LC at Ch<br>243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Project<br>Site office,<br>BP, LC at<br>Ch254 | Project<br>Site office,<br>casting<br>yard, LC<br>at Ch261 | Surat<br>Station,<br>office area<br>at Ch<br>264 | Project site<br>office, BP<br>LC at Ch<br>268 | Project site<br>office, BP<br>LC at Ch<br>274 |
| 53     | Ethion                | μg/l          | 3                   | No relaxation         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 54     | Gamma<br>HCH(Lindane) | μg/l          | 2                   | No relaxation         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 55     | Isoproturon           | μg/l          | 9                   | No relaxation         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 56     | Malathion             | μg/l          | 190                 | No relaxation         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 57     | Methyl Parathion      | μg/l          | 0.3                 | No relaxation         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 58     | Monocrotophos         | μg/l          | 1                   | No relaxation         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
| 59     | Phorate               | μg/l          | 2                   | No relaxation         | BDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BDL                                           | BDL                                                        | BDL                                              | BDL                                           | BDL                                           |
|        |                       |               |                     | N                     | Aicrobiologica (Control of Control of Contro | l Parameter                                   |                                                            |                                                  |                                               |                                               |
| 60     | Total Coliform        | MPN/100<br>ml |                     | be absent/<br>0 ml    | Absent/100 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Absent/100 ml                                 | Absent/100 ml                                              | Absent/100 ml                                    | Absent/100 ml                                 | Absent/100 ml                                 |
| 61     | E.coli                | MPN/100<br>ml |                     | be absent/<br>0 ml    | Absent/100 ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Absent/100 ml                                 | Absent/100 ml                                              | Absent/100 ml                                    | Absent/100 ml                                 | Absent/100 ml                                 |

|        |                              |       |                     | it (IS-<br>00:2012)   | DW19                                           | DW20                                           | DW21                           | DW22                                                 | DW23                                         | DW24                                         |
|--------|------------------------------|-------|---------------------|-----------------------|------------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| S. No. | Parameters                   | Unit  | Desirab<br>le Limit | Permissi<br>ble Limit | Project site<br>office, BP,<br>LC at Ch<br>281 | Project site<br>office, BP,<br>LC at Ch<br>290 | Zankhav<br>Crusher<br>Plant- I | Project site<br>office, BP,<br>(PC yard)<br>at Ch306 | Project<br>Site office<br>BP, LC at<br>Ch306 | Project<br>Site office<br>BP, LC at<br>Ch321 |
| 1      | Color                        | Hazen | 5                   | 15                    | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 2      | Odour                        | -     | Agreeab<br>le       | Agreeable             | Agreeable                                      | Agreeable                                      | Agreeable                      | Agreeable                                            | Agreeable                                    | Agreeable                                    |
| 3      | Taste                        | 1     | Agreeab<br>le       | Agreeable             | Agreeable                                      | Agreeable                                      | Agreeable                      | Agreeable                                            | Agreeable                                    | Agreeable                                    |
| 4      | Turbidity                    | NTU   | 1                   | 5                     | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 5      | pH(Site)                     | -     | 6.5-8.5             | No relaxation         | 7.1                                            | 7.5                                            | 7.6                            | 7.3                                                  | 6.7                                          | 7.5                                          |
| 6      | pH (Lab)                     | -     | 6.5-8.5             | No relaxation         | 7.11                                           | 7.48                                           | 7.62                           | 7.31                                                 | 6.71                                         | 7.49                                         |
| 7      | Total Hardness (as<br>CaCO3) | mg/l  | 200                 | 600                   | 48                                             | 58                                             | 54                             | 52                                                   | 44                                           | 72                                           |
| 8      | Iron (as Fe)                 | mg/l  | 1                   | No<br>relaxation      | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 9      | Chlorides (as Cl)            | mg/l  | 250                 | 1000                  | 10.5                                           | 13.5                                           | 12.9                           | 10.9                                                 | 8.9                                          | 17.9                                         |
| 10     | Fluoride (as F)              | mg/l  | 1                   | 1.5                   | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 11     | TDS                          | mg/l  | 500                 | 2000                  | 71                                             | 89                                             | 81                             | 76                                                   | 60                                           | 98                                           |
| 12     | Calcium(as Ca2+)             | mg/l  | 75                  | 200                   | 11.8                                           | 11.4                                           | 10.8                           | 9.2                                                  | 8.2                                          | 18.6                                         |
| 13     | Magnesium (as<br>Mg2+)       | mg/l  | 30                  | 100                   | 4.5                                            | 7.17                                           | 6.56                           | 7.05                                                 | 5.71                                         | 6.2                                          |
| 14     | Sulphate (as SO4)            | mg/l  | 200                 | 400                   | 5                                              | 6.2                                            | 6                              | 5.8                                                  | 4.1                                          | 7.7                                          |
| 15     | Nitrate(as NO3)              | mg/l  | 45                  | No<br>relaxation      | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 16     | Chromium (as Cr)             | mg/l  | 0.05                | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |

|        |                                      |      |                     | it (IS-<br>500:2012)  | DW19                                           | DW20                                           | DW21                           | DW22                                                 | DW23                                         | DW24                                         |
|--------|--------------------------------------|------|---------------------|-----------------------|------------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| S. No. | Parameters                           | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | Project site<br>office, BP,<br>LC at Ch<br>281 | Project site<br>office, BP,<br>LC at Ch<br>290 | Zankhav<br>Crusher<br>Plant- I | Project site<br>office, BP,<br>(PC yard)<br>at Ch306 | Project<br>Site office<br>BP, LC at<br>Ch306 | Project<br>Site office<br>BP, LC at<br>Ch321 |
| 17     | Alkalinity as<br>CaCO3               | mg/l | 200                 | 600                   | 36                                             | 44                                             | 40                             | 40                                                   | 32                                           | 48                                           |
| 18     | Aluminum (as Al)                     | mg/l | 0.03                | 0.2                   | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 19     | Copper (as Cu)                       | mg/l | 0.05                | 1.5                   | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 20     | Manganese (as Mn)                    | mg/l | 0.1                 | 0.3                   | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 21     | Zinc (as Zn)                         | mg/l | 5                   | 15                    | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 22     | Ammonia (as NH3-N)                   | mg/l | 0.5                 | No<br>relaxation      | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 23     | Anionic detergents (as MBAS)         | mg/l | 0.2                 | 1                     | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 24     | Boron (as B)                         | mg/l | 0.5                 | 1                     | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 25     | Mineral oil                          | mg/l | 0.5                 | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 26     | Phenolic<br>compounds (as<br>C6H5OH) | mg/l | 0.001               | 0.002                 | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 27     | Cadmium (as Cd)                      | mg/l | 0.003               | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 28     | Cyanide (as CN)                      | mg/l | 0.05                | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 29     | Lead (as Pb)                         | mg/l | 0.01                | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 30     | Mercury (as Hg)                      | mg/l | 0.001               | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 31     | Nickel (as Ni)                       | mg/l | 0.02                | No<br>relaxation      | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |

|        |                                                    |      |                     | it (IS-<br>500:2012)  | DW19                                           | DW20                                           | DW21                           | DW22                                                 | DW23                                         | DW24                                         |
|--------|----------------------------------------------------|------|---------------------|-----------------------|------------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| S. No. | Parameters                                         | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | Project site<br>office, BP,<br>LC at Ch<br>281 | Project site<br>office, BP,<br>LC at Ch<br>290 | Zankhav<br>Crusher<br>Plant- I | Project site<br>office, BP,<br>(PC yard)<br>at Ch306 | Project<br>Site office<br>BP, LC at<br>Ch306 | Project<br>Site office<br>BP, LC at<br>Ch321 |
| 32     | Sulphide(H2S)                                      | mg/l | 0.05                | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 33     | Residual Free<br>Chlorine(RFC)                     | mg/l | Min-0.2             | 1                     | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 34     | Total arsenic (as As),                             | mg/l | 0.01                | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 35     | Barium (as Ba)                                     | mg/l | 0.7                 | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 36     | Chloramines (as Cl2)                               | mg/l | 4                   | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 37     | Silver(as Ag)                                      | mg/l | 0.1                 | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 38     | Molybdenum (as<br>Mo)                              | mg/l | 0.07                | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 39     | Polynuclear<br>Aromatic<br>Hydrocarbons(as<br>PAH) | mg/l | 0.0001              | No<br>relaxation      | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 40     | Polychlorinated biphenyls                          | mg/l | 0.0001              | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 41     |                                                    |      |                     |                       | Trihalom                                       | ethanes                                        |                                |                                                      |                                              |                                              |
| a)     | Bromoform                                          | mg/l | 0.1                 | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| b)     | Dibromochlorometh ane                              | mg/l | 0.1                 | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| c)     | Bromodichlorometh ane                              | mg/l | 0.06                | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |

|        |                                                       |      |                     | it (IS-<br>00:2012)   | DW19                                           | DW20                                           | DW21                           | DW22                                                 | DW23                                         | DW24                                         |
|--------|-------------------------------------------------------|------|---------------------|-----------------------|------------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| S. No. | Parameters                                            | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | Project site<br>office, BP,<br>LC at Ch<br>281 | Project site<br>office, BP,<br>LC at Ch<br>290 | Zankhav<br>Crusher<br>Plant- I | Project site<br>office, BP,<br>(PC yard)<br>at Ch306 | Project<br>Site office<br>BP, LC at<br>Ch306 | Project<br>Site office<br>BP, LC at<br>Ch321 |
| d)     | Chloroform                                            | mg/l | 0.2                 | No<br>relaxation      | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
|        |                                                       |      |                     |                       | Pesticide I                                    | Residues                                       |                                |                                                      |                                              |                                              |
| 42     | Alachor                                               | μg/l | 20                  | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 43     | Atrazine                                              | μg/l | 20                  | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 44     | Aldrin/Dialdrin                                       | μg/l | 0.03                | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 45     | Alpha HCH                                             | μg/l | 0.01                | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 46     | Beta HCH                                              | μg/l | 0.04                | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 47     | Butachlor                                             | μg/l | 125                 | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 48     | Chlorpyriphos                                         | μg/l | 30                  | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 49     | Delta HCH                                             | μg/l | 0.04                | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 50     | 2,4-<br>Dichlorophenoxyac<br>etic acid                | μg/l | 30                  | No<br>relaxation      | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 51     | DDT(o,p and p,p-<br>isomers of<br>DDT.DDE and<br>DDD) | μg/l | 1                   | No<br>relaxation      | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 52     | Endosuiphan(alpha, beta and sulphate)                 | μg/l | 0.4                 | No<br>relaxation      | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |

|        |                       |               |                             | it (IS-<br>500:2012)  | DW19                                           | DW20                                           | DW21                           | DW22                                                 | DW23                                         | DW24                                         |
|--------|-----------------------|---------------|-----------------------------|-----------------------|------------------------------------------------|------------------------------------------------|--------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------|
| S. No. | Parameters            | Unit          | Desirab<br>le Limit         | Permissi<br>ble Limit | Project site<br>office, BP,<br>LC at Ch<br>281 | Project site<br>office, BP,<br>LC at Ch<br>290 | Zankhav<br>Crusher<br>Plant- I | Project site<br>office, BP,<br>(PC yard)<br>at Ch306 | Project<br>Site office<br>BP, LC at<br>Ch306 | Project<br>Site office<br>BP, LC at<br>Ch321 |
| 53     | Ethion                | μg/l          | 3                           | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 54     | Gamma<br>HCH(Lindane) | μg/l          | 2                           | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 55     | Isoproturon           | μg/l          | 9                           | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 56     | Malathion             | μg/l          | 190                         | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 57     | Methyl Parathion      | μg/l          | 0.3                         | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 58     | Monocrotophos         | μg/l          | 1                           | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
| 59     | Phorate               | μg/l          | 2                           | No relaxation         | BDL                                            | BDL                                            | BDL                            | BDL                                                  | BDL                                          | BDL                                          |
|        |                       |               |                             | I                     | Microbiologica                                 | al Parameter                                   |                                |                                                      |                                              |                                              |
| 60     | Total Coliform        | MPN/100<br>ml |                             | be absent/<br>0 ml    | Absent/100 ml                                  | Absent/100 ml                                  | Absent/100 ml                  | Absent/100 ml                                        | Absent/100 ml                                | Absent/100 ml                                |
| 61     | E.coli                | MPN/100<br>ml | Should be absent/<br>100 ml |                       | Absent/100 ml                                  | Absent/100 ml                                  | Absent/100 ml                  | Absent/100 ml                                        | Absent/100 ml                                | Absent/100 ml                                |

|           |                              |       |                        | it (IS-<br>):2012)       | DW25                                                        | DW26                                                | DW27                                                 | DW28             | DW29                                     | DW30           | DW31                                  | DW32                                                 |
|-----------|------------------------------|-------|------------------------|--------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------|------------------------------------------|----------------|---------------------------------------|------------------------------------------------------|
| S.<br>No. | Parameters                   | Unit  | Desira<br>ble<br>Limit | Permiss<br>ible<br>Limit | Project<br>Site<br>office BP<br>(P.D<br>office) at<br>Ch321 | Project Site office, BP Fabricati on Yard at Ch 321 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>331 | Choki<br>Crusher | RO tank<br>of<br>Canteen<br>at Ch<br>359 | LC at<br>Ch359 | Project<br>site<br>office at<br>Ch359 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>385 |
| 1         | Color                        | Hazen | 5                      | 15                       | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 2         | Odour                        | _     | Agree                  | Agreeab                  | Agreeabl                                                    | Agreeabl                                            | Agreeabl                                             | Agreeabl         | Agreeabl                                 | Agreeabl       | Agreeabl                              | Agreeabl                                             |
|           | Odoui                        |       | able                   | le                       | e                                                           | e                                                   | e                                                    | e                | e                                        | e              | e                                     | e                                                    |
| 3         | Taste                        | _     | Agree                  | Agreeab                  | Agreeabl                                                    | Agreeabl                                            | Agreeabl                                             | Agreeabl         | Agreeabl                                 | Agreeabl       | Agreeabl                              | Agreeabl                                             |
|           |                              |       | able                   | le                       | e                                                           | e                                                   | e                                                    | e                | e                                        | e              | e                                     | e                                                    |
| 4         | Turbidity                    | NTU   | 1                      | 5                        | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 5         | pH(Site)                     | -     | 6.5-8.5                | No<br>relaxati<br>on     | 6.8                                                         | 7.3                                                 | 6.7                                                  | 7.1              | 7.2                                      | 7.3            | 7.4                                   | 6.5                                                  |
| 6         | pH (Lab)                     | -     | 6.5-8.5                | No<br>relaxati<br>on     | 6.81                                                        | 7.32                                                | 6.72                                                 | 7.11             | 7.23                                     | 7.31           | 7.44                                  | 6.51                                                 |
| 7         | Total Hardness<br>(as CaCO3) | mg/l  | 200                    | 600                      | 52                                                          | 108                                                 | 82                                                   | 56               | 84                                       | 90             | 62                                    | 80                                                   |
| 8         | Iron (as Fe)                 | mg/l  | 1                      | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 9         | Chlorides (as Cl)            | mg/l  | 250                    | 1000                     | 13.9                                                        | 24.9                                                | 19.5                                                 | 14.9             | 21.5                                     | 35.4           | 16.5                                  | 21.9                                                 |
| 10        | Fluoride (as F)              | mg/l  | 1                      | 1.5                      | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 11        | TDS                          | mg/l  | 500                    | 2000                     | 76                                                          | 160                                                 | 114                                                  | 84               | 120                                      | 135            | 94                                    | 129                                                  |
| 12        | Calcium(as<br>Ca2+)          | mg/l  | 75                     | 200                      | 11.6                                                        | 22.6                                                | 16.6                                                 | 13.4             | 22.4                                     | 20             | 16.2                                  | 18.6                                                 |

|           |                                    |      |                        | it (IS-<br>):2012)       | DW25                                                        | DW26                                                | DW27                                                 | DW28             | DW29                                     | DW30           | DW31                                  | DW32                                                 |
|-----------|------------------------------------|------|------------------------|--------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------|------------------------------------------|----------------|---------------------------------------|------------------------------------------------------|
| S.<br>No. | Parameters                         | Unit | Desira<br>ble<br>Limit | Permiss<br>ible<br>Limit | Project<br>Site<br>office BP<br>(P.D<br>office) at<br>Ch321 | Project Site office, BP Fabricati on Yard at Ch 321 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>331 | Choki<br>Crusher | RO tank<br>of<br>Canteen<br>at Ch<br>359 | LC at<br>Ch359 | Project<br>site<br>office at<br>Ch359 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>385 |
| 13        | Magnesium (as Mg2+)                | mg/l | 30                     | 100                      | 5.59                                                        | 12.51                                               | 9.84                                                 | 5.47             | 6.8                                      | 9.72           | 5.22                                  | 8.14                                                 |
| 14        | Sulphate (as SO4)                  | mg/l | 200                    | 400                      | 6.1                                                         | 11.2                                                | 8.1                                                  | 7.4              | 8.9                                      | 11.1           | 7.6                                   | 9.6                                                  |
| 15        | Nitrate(as NO3)                    | mg/l | 45                     | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 16        | Chromium (as<br>Cr)                | mg/l | 0.05                   | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 17        | Alkalinity as<br>CaCO3             | mg/l | 200                    | 600                      | 36                                                          | 86                                                  | 58                                                   | 40               | 58                                       | 44             | 46                                    | 56                                                   |
| 18        | Aluminum (as<br>Al)                | mg/l | 0.03                   | 0.2                      | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 19        | Copper (as Cu)                     | mg/l | 0.05                   | 1.5                      | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 20        | Manganese (as Mn)                  | mg/l | 0.1                    | 0.3                      | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 21        | Zinc (as Zn)                       | mg/l | 5                      | 15                       | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 22        | Ammonia (as<br>NH3-N)              | mg/l | 0.5                    | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 23        | Anionic<br>detergents (as<br>MBAS) | mg/l | 0.2                    | 1                        | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 24        | Boron (as B)                       | mg/l | 0.5                    | 1                        | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |

|           |                                      |      |                        | it (IS-<br>):2012)       | DW25                                                        | DW26                                                | DW27                                                 | DW28             | DW29                                     | DW30           | DW31                                  | DW32                                                 |
|-----------|--------------------------------------|------|------------------------|--------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------|------------------------------------------|----------------|---------------------------------------|------------------------------------------------------|
| S.<br>No. | Parameters                           | Unit | Desira<br>ble<br>Limit | Permiss<br>ible<br>Limit | Project<br>Site<br>office BP<br>(P.D<br>office) at<br>Ch321 | Project Site office, BP Fabricati on Yard at Ch 321 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>331 | Choki<br>Crusher | RO tank<br>of<br>Canteen<br>at Ch<br>359 | LC at<br>Ch359 | Project<br>site<br>office at<br>Ch359 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>385 |
| 25        | Mineral oil                          | mg/l | 0.5                    | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 26        | Phenolic<br>compounds (as<br>C6H5OH) | mg/l | 0.001                  | 0.002                    | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 27        | Cadmium (as<br>Cd)                   | mg/l | 0.003                  | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 28        | Cyanide (as CN)                      | mg/l | 0.05                   | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 29        | Lead (as Pb)                         | mg/l | 0.01                   | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 30        | Mercury (as Hg)                      | mg/l | 0.001                  | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 31        | Nickel (as Ni)                       | mg/l | 0.02                   | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 32        | Sulphide(H2S)                        | mg/l | 0.05                   | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |

|           |                                                    |      |                        | it (IS-<br>):2012)       | DW25                                                        | DW26                                                | DW27                                                 | DW28             | DW29                                     | DW30           | DW31                                  | DW32                                                 |
|-----------|----------------------------------------------------|------|------------------------|--------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------|------------------------------------------|----------------|---------------------------------------|------------------------------------------------------|
| S.<br>No. | Parameters                                         | Unit | Desira<br>ble<br>Limit | Permiss<br>ible<br>Limit | Project<br>Site<br>office BP<br>(P.D<br>office) at<br>Ch321 | Project Site office, BP Fabricati on Yard at Ch 321 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>331 | Choki<br>Crusher | RO tank<br>of<br>Canteen<br>at Ch<br>359 | LC at<br>Ch359 | Project<br>site<br>office at<br>Ch359 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>385 |
| 33        | Residual Free<br>Chlorine(RFC)                     | mg/l | Min-<br>0.2            | 1                        | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 34        | Total arsenic (as As),                             | mg/l | 0.01                   | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 35        | Barium (as Ba)                                     | mg/l | 0.7                    | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 36        | Chloramines (as Cl2)                               | mg/l | 4                      | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 37        | Silver(as Ag)                                      | mg/l | 0.1                    | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 38        | Molybdenum (as<br>Mo)                              | mg/l | 0.07                   | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 39        | Polynuclear<br>Aromatic<br>Hydrocarbons(as<br>PAH) | mg/l | 0.0001                 | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 40        | Polychlorinated biphenyls                          | mg/l | 0.0001                 | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 41        |                                                    |      |                        |                          |                                                             | Trihalome                                           | ethanes                                              |                  |                                          |                |                                       |                                                      |

|           |                          |      |                        | it (IS-<br>):2012)       | DW25                                                        | DW26                                                | DW27                                                 | DW28             | DW29                                     | DW30           | DW31                                  | DW32                                                 |
|-----------|--------------------------|------|------------------------|--------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------|------------------------------------------|----------------|---------------------------------------|------------------------------------------------------|
| S.<br>No. | Parameters               | Unit | Desira<br>ble<br>Limit | Permiss<br>ible<br>Limit | Project<br>Site<br>office BP<br>(P.D<br>office) at<br>Ch321 | Project Site office, BP Fabricati on Yard at Ch 321 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>331 | Choki<br>Crusher | RO tank<br>of<br>Canteen<br>at Ch<br>359 | LC at<br>Ch359 | Project<br>site<br>office at<br>Ch359 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>385 |
| a)        | Bromoform                | mg/l | 0.1                    | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| b)        | Dibromochloro<br>methane | mg/l | 0.1                    | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| c)        | Bromodichlorom ethane    | mg/l | 0.06                   | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| d)        | Chloroform               | mg/l | 0.2                    | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
|           |                          |      | _                      |                          |                                                             | Pesticide I                                         | Residues                                             |                  |                                          |                |                                       |                                                      |
| 42        | Alachor                  | μg/l | 20                     | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 43        | Atrazine                 | μg/l | 20                     | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 44        | Aldrin/Dialdrin          | μg/l | 0.03                   | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 45        | Alpha HCH                | μg/l | 0.01                   | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |

|           |                                                      |      |                        | it (IS-<br>):2012)       | DW25                                                        | DW26                                                | DW27                                                 | DW28             | DW29                                     | DW30           | DW31                                  | DW32                                                 |
|-----------|------------------------------------------------------|------|------------------------|--------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------|------------------------------------------|----------------|---------------------------------------|------------------------------------------------------|
| S.<br>No. | Parameters                                           | Unit | Desira<br>ble<br>Limit | Permiss<br>ible<br>Limit | Project<br>Site<br>office BP<br>(P.D<br>office) at<br>Ch321 | Project Site office, BP Fabricati on Yard at Ch 321 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>331 | Choki<br>Crusher | RO tank<br>of<br>Canteen<br>at Ch<br>359 | LC at<br>Ch359 | Project<br>site<br>office at<br>Ch359 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>385 |
| 46        | Beta HCH                                             | μg/l | 0.04                   | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 47        | Butachlor                                            | μg/l | 125                    | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 48        | Chlorpyriphos                                        | μg/l | 30                     | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 49        | Delta HCH                                            | μg/l | 0.04                   | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 50        | 2,4-<br>Dichlorophenox<br>yacetic acid               | μg/l | 30                     | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 51        | DDT(o,p and<br>p,p-isomers of<br>DDT.DDE and<br>DDD) | μg/l | 1                      | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 52        | Endosuiphan(alp<br>ha,beta and<br>sulphate)          | μg/l | 0.4                    | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |
| 53        | Ethion                                               | μg/l | 3                      | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL            | BDL                                   | BDL                                                  |

|           |                       |               |                        | it (IS-<br>):2012)       | DW25                                                        | DW26                                                | DW27                                                 | DW28             | DW29                                     | DW30             | DW31                                  | DW32                                                 |
|-----------|-----------------------|---------------|------------------------|--------------------------|-------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------|------------------------------------------|------------------|---------------------------------------|------------------------------------------------------|
| S.<br>No. | Parameters            | Unit          | Desira<br>ble<br>Limit | Permiss<br>ible<br>Limit | Project<br>Site<br>office BP<br>(P.D<br>office) at<br>Ch321 | Project Site office, BP Fabricati on Yard at Ch 321 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>331 | Choki<br>Crusher | RO tank<br>of<br>Canteen<br>at Ch<br>359 | LC at<br>Ch359   | Project<br>site<br>office at<br>Ch359 | Project<br>site<br>office,<br>BP, LC<br>at Ch<br>385 |
| 54        | Gamma<br>HCH(Lindane) | μg/l          | 2                      | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL              | BDL                                   | BDL                                                  |
| 55        | Isoproturon           | μg/l          | 9                      | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL              | BDL                                   | BDL                                                  |
| 56        | Malathion             | μg/l          | 190                    | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL              | BDL                                   | BDL                                                  |
| 57        | Methyl<br>Parathion   | μg/l          | 0.3                    | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL              | BDL                                   | BDL                                                  |
| 58        | Monocrotophos         | μg/l          | 1                      | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL              | BDL                                   | BDL                                                  |
| 59        | Phorate               | μg/l          | 2                      | No<br>relaxati<br>on     | BDL                                                         | BDL                                                 | BDL                                                  | BDL              | BDL                                      | BDL              | BDL                                   | BDL                                                  |
|           |                       |               |                        |                          | Mi                                                          | crobiologica                                        | al Paramete                                          | r                |                                          |                  |                                       |                                                      |
| 60        | Total Coliform        | MPN/10<br>0ml |                        | be absent/<br>0 ml       | Absent/1<br>00ml                                            | Absent/1<br>00ml                                    | Absent/1<br>00ml                                     | Absent/1<br>00ml | Absent/1<br>00ml                         | Absent/1<br>00ml | Absent/1<br>00ml                      | Absent/1<br>00ml                                     |
| 61        | E.coli                | MPN/10<br>0ml |                        | be absent/<br>0 ml       | Absent/1<br>00ml                                            | Absent/1 00ml                                       | Absent/1<br>00ml                                     | Absent/1<br>00ml | Absent/1 00ml                            | Absent/1 00ml    | Absent/1<br>00ml                      | Absent/1<br>00ml                                     |

# **Appendix 2.5: Surface Water Quality Monitoring Data for C4 Package**

Table 38: Surface Water Quality Monitoring Data for C4 Package in January 2023

|           |                            |            | MDI                        | Toleranc           | SW-0                    | 1 US               | SW-0                    | 1 DS               | SW                 | <b>7-02</b>        |
|-----------|----------------------------|------------|----------------------------|--------------------|-------------------------|--------------------|-------------------------|--------------------|--------------------|--------------------|
| S.<br>No. | Parameters                 | Unit       | MDL<br>(Method<br>Detectio | e Limit as<br>per  | Daman Ga<br>Achchhar Va | ,                  | Daman Ga<br>Achchhar Va | ,                  |                    | nd Valsad<br>173   |
|           |                            |            | n Limit)                   | IS:2296<br>Class-C | Baseline                | Cons. Jan-<br>2023 | Baseline                | Cons. Jan-<br>2023 | Baseline           | Cons. Jan-<br>2023 |
| 1         | Temperature                | c          | 1                          |                    | 28.6                    | 28                 | 31                      | 28                 | 28.9               | 25                 |
| 2         | Salinity                   | %          | 0.0003                     |                    | 0.0065                  | 0.0043             | 0.0058                  | 0.0052             | 0.0112             | 0.0117             |
| 3         | Nitrite(as No2)            | mg/l       | 0.1                        |                    | BDL(MDL-<br>0.1)        | BDL(MDL -0.1)      | BDL(MDL-<br>0.1)        | BDL(MDL -0.1)      | BDL(MDL -0.1)      | BDL(MDL -0.1)      |
| 4         | Total Suspended<br>Solid   | mg/l       | 5                          |                    | BDL(MDL-<br>5)          | 5.4                | BDL(MDL-<br>5)          | 5.8                | BDL(MDL -5)        | 11.6               |
| 5         | Sodium<br>Absorbance Ratio | (meq/l)1/2 |                            |                    | 0.109                   | 0.13               | 0.1087                  | 0.1371             | 0.2137             | 0.3107             |
| 6         | Boron (as B)               | mg/l       | 0.05                       |                    | 0.14                    | 0.13               | 0.12                    | 0.14               | 0.16               | 0.19               |
| 7         | Free Ammonia               | mg/l       | 0.1                        |                    | BDL(MDL-                | BDL(MDL            | BDL(MDL-                | BDL(MDL            | BDL(MDL            | BDL(MDL            |
| ,         | Tice i minioma             |            | 0.1                        |                    | 0.1)                    | -0.1)              | 0.1)                    | -0.1)              | -0.1)              | -0.1)              |
| 8         | Mangnese (as Mn)           | mg/l       | 0.01                       |                    | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL -0.01)     | BDL(MDL -0.01)     |
| 9         | Mercury (as Hg)            | mg/l       | 0.001                      |                    | BDL(MDL-<br>0.001)      | BDL(MDL -0.001)    | BDL(MDL-<br>0.001)      | BDL(MDL -0.001)    | BDL(MDL -0.001)    | BDL(MDL -0.001)    |
| 10        | Selenium (as Se)           | mg/l       | 0.001                      |                    | BDL(MDL-<br>0.001)      | BDL(MDL<br>-0.001) | BDL(MDL-<br>0.001)      | BDL(MDL<br>-0.001) | BDL(MDL<br>-0.001) | BDL(MDL<br>-0.001) |
| 11        | Cyanide (as CN)            | mg/l       | 0.001                      |                    | BDL(MDL-<br>0.001)      | BDL(MDL<br>-0.001) | BDL(MDL-<br>0.001)      | BDL(MDL -0.001)    | BDL(MDL -0.001)    | BDL(MDL -0.001)    |
| 12        | Nickel ( as Ni)            | mg/l       | 0.01                       |                    | BDL(MDL-<br>0.01)       | BDL(MDL<br>-0.01)  | BDL(MDL-<br>0.01)       | BDL(MDL<br>-0.01)  | BDL(MDL<br>-0.01)  | BDL(MDL<br>-0.01)  |
| 13        | Silver (as Ag)             | mg/l       | 0.01                       |                    | BDL(MDL-<br>0.01)       | BDL(MDL<br>-0.01)  | BDL(MDL-<br>0.01)       | BDL(MDL<br>-0.01)  | BDL(MDL<br>-0.01)  | BDL(MDL<br>-0.01)  |
| 14        | Barium (As Ba)             | mg/l       | 0.01                       |                    | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL -0.01)     | BDL(MDL<br>-0.01)  |

|           |                              |         | 1.50.5                     | Toleranc           | SW-0                    | 1 US               | SW-0                    | 1 DS               | SW              | -02                |
|-----------|------------------------------|---------|----------------------------|--------------------|-------------------------|--------------------|-------------------------|--------------------|-----------------|--------------------|
| S.<br>No. | Parameters                   | Unit    | MDL<br>(Method<br>Detectio | e Limit as<br>per  | Daman Ga<br>Achchhar Va |                    | Daman Ga<br>Achchhar Va |                    | Rata Pon<br>Ch. | d Valsad<br>173    |
|           |                              |         | n Limit)                   | IS:2296<br>Class-C | Baseline                | Cons. Jan-<br>2023 | Baseline                | Cons. Jan-<br>2023 | Baseline        | Cons. Jan-<br>2023 |
| 15        | Colour                       | Hazen   | 5                          | 300                | BDL(MDL-<br>5)          | BDL(MDL -5)        | BDL(MDL-<br>5)          | BDL(MDL -5)        | BDL(MDL -5)     | BDL(MDL -5)        |
| 16        | Turbidity                    | NTU     | 1                          |                    | 1                       | 2                  | 1                       | 2                  | 1               | 12                 |
| 17        | pH(Lab)                      | -       | 1                          | 6.5-8.5            | 8.91                    | 8.41               | 8.7                     | 8.43               | 7.72            | 7.83               |
| 17        | pH(site)                     |         |                            |                    | 8.9                     | 8.4                | 8.7                     | 8.4                | 7.7             | 7.8                |
| 18        | DO                           | mg/l    | 0.1                        | Minimum<br>-4      | 7.8                     | 7.1                | 7.6                     | 7                  | 7.5             | 6.7                |
| 19        | BOD                          | mg/l    | 0.2                        | 3                  | BDL(MDL-<br>0.2)        | BDL(MDL -0.2)      | BDL(MDL-<br>0.2)        | 0.8                | BDL(MDL -0.2)   | 1.8                |
| 20        | COD                          | mg/l    | 0.4                        |                    | BDL(MDL-<br>0.4)        | BDL(MDL -0.4)      | BDL(MDL-<br>0.4)        | 4                  | BDL(MDL -0.4)   | 8                  |
| 21        | Total Hardness (as<br>CaCO3) | mg/l    | 5                          |                    | 76                      | 72                 | 84                      | 76                 | 140             | 146                |
| 22        | Iron (as Fe)                 | mg/l    | 0.01                       | 50                 | 0.04                    | 0.05               | 0.05                    | 0.06               | 0.01            | 0.03               |
| 23        | Chlorides (as Cl)            | mg/l    | 2                          | 600                | 36                      | 23.9               | 32                      | 28.9               | 62              | 64.9               |
| 24        | Fluoride (as F)              | mg/l    | 0.1                        | 1.5                | 0.14                    | 0.14               | 0.15                    | 0.16               | 0.12            | 0.13               |
| 25        | Conductivity                 | umho/cm | 2                          |                    | 246                     | 175                | 225                     | 198                | 402             | 412                |
| 26        | TDS                          | mg/l    | 5                          | 1500               | 150                     | 105                | 137                     | 119                | 245             | 247                |
| 27        | Calcium(as Ca2+)             | mg/l    | 2                          |                    | 18                      | 12.6               | 16                      | 14.8               | 28              | 28.6               |
| 28        | Magnesium (as<br>Mg2+)       | mg/l    | 2                          |                    | 7.53                    | 9.84               | 10.69                   | 9.48               | 17.01           | 18.1               |
| 29        | Cadmium                      | mg/l    | 0.002                      | 0.01               | BDL(MDL-<br>0.002)      | BDL(MDL -0.002)    | BDL(MDL-<br>0.002)      | BDL(MDL -0.002)    | BDL(MDL -0.002) | BDL(MDL -0.002)    |
| 30        | Copper (as Cu)               | mg/l    | 0.01                       | 1.5                | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL -0.01)  | BDL(MDL -0.01)     |
| 31        | Sulphate (as SO4)            | mg/l    | 2                          | 400                | 8.8                     | 9.9                | 11.2                    | 10.5               | 18.8            | 20.5               |
| 32        | Nitrate(as NO3)              | mg/l    | 0.5                        | 50                 | 0.2                     | 0.6                | 0.4                     | 0.8                | 0.4             | 0.9                |

|           |                                                |      | 1.55.                      | Toleranc           | SW-0                    | 1 US               | SW-0                    | 1 DS               | SW              | <b>-02</b>         |
|-----------|------------------------------------------------|------|----------------------------|--------------------|-------------------------|--------------------|-------------------------|--------------------|-----------------|--------------------|
| S.<br>No. | Parameters                                     | Unit | MDL<br>(Method<br>Detectio | e Limit as<br>per  | Daman Ga<br>Achchhar Va | · · · · ·          | Daman Ga<br>Achchhar Va | ,                  | Rata Pon<br>Ch. |                    |
|           |                                                |      | n Limit)                   | IS:2296<br>Class-C | Baseline                | Cons. Jan-<br>2023 | Baseline                | Cons. Jan-<br>2023 | Baseline        | Cons. Jan-<br>2023 |
| 33        | Zinc (as Zn)                                   | mg/l | 0.01                       | 15                 | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL -0.01)  | BDL(MDL -0.01)     |
| 34        | Total Chromium (as Cr)                         | mg/l | 0.01                       | 0.05               | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL -0.01)  | BDL(MDL<br>-0.01)  |
| 35        | Oil & Grease                                   | mg/l | 0.1                        | 0.1                | BDL(MDL-<br>0.1)        | BDL(MDL -0.1)      | BDL(MDL-<br>0.1)        | BDL(MDL -0.1)      | BDL(MDL -0.1)   | BDL(MDL -0.1)      |
| 36        | Alkalinity (as<br>CaCO3)                       | mg/l | 5                          |                    | 62                      | 38                 | 58                      | 46                 | 88              | 90                 |
| 37        | Lead (as Pb)                                   | mg/l | 0.01                       | 0.1                | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL -0.01)  | 0.02               |
| 38        | Total Arsenic (as As)                          | mg/l | 0.001                      | 0.2                | BDL(MDL-<br>0.001)      | BDL(MDL -0.001)    | BDL(MDL-<br>0.001)      | BDL(MDL -0.001)    | BDL(MDL -0.001) | BDL(MDL -0.001)    |
| 39        | Phenolic<br>Compound                           | mg/l | 0.001                      | 0.005              | BDL(MDL-<br>0.001)      | BDL(MDL -0.001)    | BDL(MDL-<br>0.001)      | BDL(MDL -0.001)    | BDL(MDL -0.001) | BDL(MDL -0.001)    |
| 40        | Anionic Surface<br>Active Detergent<br>as MBAS | mg/l | 0.05                       |                    | BDL(MDL-<br>0.001)      | BDL(MDL -0.001)    | BDL(MDL-<br>0.05)       | BDL(MDL -0.05)     | BDL(MDL -0.001) | BDL(MDL<br>-0.001) |
| 41        | Sodium                                         | mg/l | 1                          |                    | 6.2                     | 7.2                | 6.5                     | 7.8                | 16.5            | 24.5               |
| 42        | Potasium                                       | mg/l | 1                          |                    | 2.4                     | 4.5                | 2.5                     | 4.9                | 7.8             | 9.9                |
| 43        | Total Kjheldal<br>Nitrogen (as N)              | mg/l | 1                          |                    | 3.2                     | 3.4                | 3.5                     | 3.8                | 6.8             | 8.8                |
| 44        | Mineral Oil                                    | mg/l | 0.1                        |                    | BDL(MDL-<br>0.1)        | BDL(MDL -0.1)      | BDL(MDL-<br>0.1)        | BDL(MDL -0.1)      | BDL(MDL -0.1)   | BDL(MDL -0.1)      |
| 45        | Total Petroleum<br>Hydrocarbon                 | mg/l | 0.01                       |                    | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)       | BDL(MDL -0.01)     | BDL(MDL -0.01)  | BDL(MDL<br>-0.01)  |
| 46        | Odour                                          |      |                            |                    | Odorless                | Odorless           | Odorless                | Odorless           | Odorless        | Odorless           |
|           |                                                |      | •                          | N                  | Iicrobiological         | Parameter          |                         |                    |                 |                    |

|           |                |               | MDI                        | Toleranc           | SW-0                    | 1 US               | SW-0                    | 1 DS                       | SW       | <b>7-02</b>        |
|-----------|----------------|---------------|----------------------------|--------------------|-------------------------|--------------------|-------------------------|----------------------------|----------|--------------------|
| S.<br>No. | Parameters     | Unit          | MDL<br>(Method<br>Detectio | e Limit as<br>per  | Daman Ga<br>Achchhar Va |                    | Daman Ga<br>Achchhar Va | nga River,<br>alsad Ch.166 |          | nd Valsad<br>173   |
|           |                |               | n Limit)                   | IS:2296<br>Class-C | Baseline                | Cons. Jan-<br>2023 | Baseline                | Cons. Jan-<br>2023         | Baseline | Cons. Jan-<br>2023 |
| 47        | Total Coliform | MPN/100<br>ML | 1                          | 5000               | 18                      | 24                 | 20                      | 28                         | 84       | 124                |
| 48        | Fecal Coliform | MPN/100<br>ML | 1                          |                    | 10                      | 11                 | 12                      | 14                         | 60       | 68                 |

**Surface Water Quality Monitoring Contd...** 

|           |                            | ,          | MDI                        | Tolerance          | SW-2               | 5 DS               | SW-0            | 03 US              | SW-0             | 3 DS               |
|-----------|----------------------------|------------|----------------------------|--------------------|--------------------|--------------------|-----------------|--------------------|------------------|--------------------|
| S.<br>No. | Parameters                 | Unit       | MDL<br>(Method<br>Detectio | Limit as per       | Darotha Ri         | ver Ch.158         |                 | er, Valsad<br>.174 | Kolak Riv<br>Ch. |                    |
|           |                            |            | n Limit)                   | IS:2296<br>Class-C | Cons. Jan-<br>2023 | Cons. Jan-<br>2023 | Baseline        | Cons. Jan-<br>2023 | Baseline         | Cons. Jan-<br>2023 |
| 1         | Temperature                | c          | 1                          |                    | 22                 | 22                 | 27              | 27.1               | 30               | 27.1               |
| 2         | Salinity                   | %          | 0.0003                     |                    | 0.0052             | 0.0047             | 0.0079          | 0.0076             | 0.0076           | 0.0079             |
| 3         | Nitrite(as No2)            | mg/l       | 0.1                        |                    | BDL(MDL-<br>0.1)   | BDL(MDL -0.1)      | BDL(MDL -0.1)   | BDL(MDL-<br>0.1)   | BDL(MDL -0.1)    | BDL(MDL -0.1)      |
| 4         | Total Suspended<br>Solid   | mg/l       | 5                          |                    | BDL(MDL-<br>5)     | BDL(MDL -5)        | BDL(MDL -5)     | BDL(MDL-<br>5)     | BDL(MDL -5)      | 6.6                |
| 5         | Sodium<br>Absorbance Ratio | (meq/l)1/2 |                            |                    | 0.2326             | 0.2787             | 0.0722          | 0.0844             | 0.0695           | 0.0789             |
| 6         | Boron (as B)               | mg/l       | 0.05                       |                    | 0.08               | 0.07               | 0.13            | 0.14               | 0.14             | 0.15               |
| 7         | Free Ammonia               | mg/l       | 0.1                        |                    | BDL(MDL-<br>0.1)   | BDL(MDL -0.1)      | BDL(MDL -0.1)   | BDL(MDL-<br>0.1)   | BDL(MDL -0.1)    | BDL(MDL -0.1)      |
| 8         | Mangnese (as Mn)           | mg/l       | 0.01                       |                    | 0.11               | 0.09               | BDL(MDL -0.01)  | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)   | BDL(MDL -0.01)     |
| 9         | Mercury (as Hg)            | mg/l       | 0.001                      |                    | BDL(MDL-<br>0.001) | BDL(MDL -0.001)    | BDL(MDL -0.001) | BDL(MDL-<br>0.001) | BDL(MDL -0.001)  | BDL(MDL -0.001)    |
| 10        | Selenium (as Se)           | mg/l       | 0.001                      |                    | BDL(MDL-<br>0.001) | BDL(MDL -0.001)    | BDL(MDL -0.001) | BDL(MDL-<br>0.001) | BDL(MDL -0.001)  | BDL(MDL -0.001)    |

|           |                              |         | 1.50-                      | Tolerance          | SW-2               | 5 DS               | SW-0            | 03 US              | SW-0             | 03 DS              |
|-----------|------------------------------|---------|----------------------------|--------------------|--------------------|--------------------|-----------------|--------------------|------------------|--------------------|
| S.<br>No. | Parameters                   | Unit    | MDL<br>(Method<br>Detectio | Limit as per       | Darotha Ri         | ver Ch.158         |                 | er, Valsad<br>.174 | Kolak Riv<br>Ch. |                    |
|           |                              |         | n Limit)                   | IS:2296<br>Class-C | Cons. Jan-<br>2023 | Cons. Jan-<br>2023 | Baseline        | Cons. Jan-<br>2023 | Baseline         | Cons. Jan-<br>2023 |
| 11        | Cyanide (as CN)              | mg/l    | 0.001                      |                    | BDL(MDL-<br>0.001) | BDL(MDL -0.001)    | BDL(MDL -0.001) | BDL(MDL-<br>0.001) | BDL(MDL -0.001)  | BDL(MDL -0.001)    |
| 12        | Nickel ( as Ni)              | mg/l    | 0.01                       |                    | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     | BDL(MDL -0.01)  | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)   | BDL(MDL<br>-0.01)  |
| 13        | Silver (as Ag)               | mg/l    | 0.01                       |                    | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     | BDL(MDL -0.01)  | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)   | BDL(MDL<br>-0.01)  |
| 14        | Barium (As Ba)               | mg/l    | 0.01                       |                    | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     | BDL(MDL -0.01)  | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)   | BDL(MDL<br>-0.01)  |
| 15        | Colour                       | Hazen   | 5                          | 300                | BDL(MDL-<br>5)     | BDL(MDL -5)        | BDL(MDL -5)     | BDL(MDL-<br>5)     | BDL(MDL -5)      | BDL(MDL -5)        |
| 16        | Turbidity                    | NTU     | 1                          |                    | 2                  | 2                  | 1               | 2                  | 2                | 3                  |
| 17        | pH(Lab)                      | -       | 1                          | 6.5-8.5            | 8.22               | 8.19               | 8.5             | 8.61               | 8.5              | 8.62               |
| 17        | pH(site)                     |         |                            |                    | 8.2                | 8.2                | 8.5             | 8.6                | 8.51             | 8.6                |
| 18        | DO                           | mg/l    | 0.1                        | Minimum<br>-4      | 7.5                | 7.6                | 7.1             | 7                  | 6.9              | 6.8                |
| 19        | BOD                          | mg/l    | 0.2                        | 3                  | 1.2                | 1                  | 1.8             | 2                  | 2                | 2.8                |
| 20        | COD                          | mg/l    | 0.4                        |                    | 4                  | 3.6                | 8               | 8                  | 8                | 14                 |
| 21        | Total Hardness<br>(as CaCO3) | mg/l    | 5                          |                    | 114                | 108                | 168             | 166                | 164              | 180                |
| 22        | Iron (as Fe)                 | mg/l    | 0.01                       | 50                 | 0.18               | 0.16               | 0.01            | 0.01               | 0.01             | 0.03               |
| 23        | Chlorides (as Cl)            | mg/l    | 2                          | 600                | 28.9               | 25.9               | 44              | 41.9               | 42               | 43.9               |
| 24        | Fluoride (as F)              | mg/l    | 0.1                        | 1.5                | 0.38               | 0.32               | 0.21            | 0.22               | 0.25             | 0.18               |
| 25        | Conductivity                 | umho/cm | 2                          |                    | 316                | 310                | 356             | 400                | 345              | 403                |
| 26        | TDS                          | mg/l    | 5                          | 1500               | 190                | 186                | 220             | 240                | 220              | 242                |
| 27        | Calcium(as Ca2+)             | mg/l    | 2                          |                    | 24.6               | 20.8               | 46              | 32.6               | 44               | 43.6               |
| 28        | Magnesium (as<br>Mg2+)       | mg/l    | 2                          |                    | 12.76              | 13.61              | 12.88           | 20.53              | 13.12            | 17.25              |

|           |                                                |      | MDI                        | Tolerance          | SW-2               | 5 DS               | SW-             | 03 US              | SW-0             | 03 DS              |
|-----------|------------------------------------------------|------|----------------------------|--------------------|--------------------|--------------------|-----------------|--------------------|------------------|--------------------|
| S.<br>No. | Parameters                                     | Unit | MDL<br>(Method<br>Detectio | Limit as per       | Darotha Ri         | ver Ch.158         |                 | er, Valsad<br>.174 | Kolak Riv<br>Ch. | er, Valsad<br>174  |
|           |                                                |      | n Limit)                   | IS:2296<br>Class-C | Cons. Jan-<br>2023 | Cons. Jan-<br>2023 | Baseline        | Cons. Jan-<br>2023 | Baseline         | Cons. Jan-<br>2023 |
| 29        | Cadmium                                        | mg/l | 0.002                      | 0.01               | BDL(MDL-<br>0.002) | BDL(MDL -0.002)    | BDL(MDL -0.002) | BDL(MDL-<br>0.002) | BDL(MDL -0.002)  | BDL(MDL -0.002)    |
| 30        | Copper (as Cu)                                 | mg/l | 0.01                       | 1.5                | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     | BDL(MDL -0.01)  | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)   | BDL(MDL -0.01)     |
| 31        | Sulphate (as SO4)                              | mg/l | 2                          | 400                | 12.8               | 11.2               | 6.5             | 7.1                | 6.2              | 7.2                |
| 32        | Nitrate(as NO3)                                | mg/l | 0.5                        | 50                 | 2.3                | 2.1                | 0.4             | 0.7                | 0.5              | 0.9                |
| 33        | Zinc (as Zn)                                   | mg/l | 0.01                       | 15                 | 0.02               | 0.02               | BDL(MDL -0.01)  | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)   | BDL(MDL<br>-0.01)  |
| 34        | Total Chromium<br>(as Cr)                      | mg/l | 0.01                       | 0.05               | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     | BDL(MDL -0.01)  | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)   | BDL(MDL -0.01)     |
| 35        | Oil & Grease                                   | mg/l | 0.1                        | 0.1                | BDL(MDL-<br>0.1)   | BDL(MDL -0.1)      | BDL(MDL -0.1)   | BDL(MDL-<br>0.1)   | BDL(MDL -0.1)    | BDL(MDL -0.1)      |
| 36        | Alkalinity (as<br>CaCO3)                       | mg/l | 5                          |                    | 82                 | 78                 | 152             | 138                | 145              | 138                |
| 37        | Lead (as Pb)                                   | mg/l | 0.01                       | 0.1                | 0.06               | 0.04               | 0.32            | BDL(MDL-<br>0.01)  | 0.36             | BDL(MDL -0.01)     |
| 38        | Total Arsenic (as As)                          | mg/l | 0.001                      | 0.2                | BDL(MDL-<br>0.001) | BDL(MDL -0.001)    | BDL(MDL -0.001) | BDL(MDL-<br>0.001) | BDL(MDL -0.001)  | BDL(MDL -0.001)    |
| 39        | Phenolic<br>Compound                           | mg/l | 0.001                      | 0.005              | BDL(MDL-<br>0.001) | BDL(MDL -0.001)    | BDL(MDL -0.001) | BDL(MDL-<br>0.001) | BDL(MDL -0.001)  | BDL(MDL -0.001)    |
| 40        | Anionic Surface<br>Active Detergent<br>as MBAS | mg/l | 0.05                       |                    | BDL(MDL-<br>0.05)  | BDL(MDL -0.05)     | BDL(MDL -0.001) | BDL(MDL-<br>0.001) | BDL(MDL -0.001)  | BDL(MDL -0.001)    |
| 41        | Sodium                                         | mg/l | 1                          |                    | 16.2               | 18.9               | 6.1             | 7.1                | 5.8              | 6.9                |
| 42        | Potasium                                       | mg/l | 1                          |                    | 7.3                | 8.3                | 1.8             | 2.6                | 2.1              | 3.1                |
| 43        | Total Kjheldal<br>Nitrogen (as N)              | mg/l | 1                          |                    | 8.6                | 7.6                | 4.8             | 5                  | 5.1              | 5.4                |

| S. De     |                                |               | MDI                        | Tolerance          | SW-2               | 5 DS               | SW-0           | 03 US              | SW-0             | 03 DS              |
|-----------|--------------------------------|---------------|----------------------------|--------------------|--------------------|--------------------|----------------|--------------------|------------------|--------------------|
| S.<br>No. | Parameters                     | Unit          | MDL<br>(Method<br>Detectio | Limit as per       | Darotha Ri         | ver Ch.158         |                | er, Valsad<br>.174 | Kolak Riv<br>Ch. |                    |
|           |                                |               | n Limit)                   | IS:2296<br>Class-C | Cons. Jan-<br>2023 | Cons. Jan-<br>2023 | Baseline       | Cons. Jan-<br>2023 | Baseline         | Cons. Jan-<br>2023 |
| 44        | Mineral Oil                    | mg/l          | 0.1                        |                    | BDL(MDL-<br>0.1)   | BDL(MDL -0.1)      | BDL(MDL -0.1)  | BDL(MDL-<br>0.1)   | BDL(MDL -0.1)    | BDL(MDL -0.1)      |
| 45        | Total Petroleum<br>Hydrocarbon | mg/l          | 0.01                       |                    | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     | BDL(MDL -0.01) | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)   | BDL(MDL -0.01)     |
| 46        | Odour                          |               |                            |                    | odourless          | odourless          | odourless      | odourless          | odourless        | odourless          |
|           |                                |               |                            |                    | Microbiologic      | al Parameter       |                |                    |                  |                    |
| 47        | Total Coliform                 | MPN/100<br>ML | 1                          | 5000               | 256                | 212                | 36             | 48                 | 32               | 58                 |
| 48        | Fecal Coliform                 | MPN/100<br>ML | 1                          |                    | 102                | 98                 | 24             | 24                 | 20               | 26                 |

### **Surface Water Quality Monitoring Contd...**

|           |                            |            | 1.657                      | Tolerance          | SW                           | <b>7-04</b>        | SW-0             | 5 US               | SW-0                   | 5 DS               |
|-----------|----------------------------|------------|----------------------------|--------------------|------------------------------|--------------------|------------------|--------------------|------------------------|--------------------|
| S.<br>No. | Parameters                 | Unit       | MDL<br>(Method<br>Detectio | Limit as per       | Valda Pond, valsad<br>Ch.188 |                    | Par River, V     | api Ch.190         | Par River, Vapi Ch.190 |                    |
|           |                            |            | n Limit)                   | IS:2296<br>Class-C | Baseline                     | Cons. Jan-<br>2023 | Baseline         | Cons. Jan-<br>2023 | Baseline               | Cons. Jan-<br>2023 |
| 1         | Temperature                | c          | 1                          |                    | 31.5                         | 26                 | 28.4             | 25.5               | 28.3                   | 25                 |
| 2         | Salinity                   | %          | 0.0003                     |                    | 0.0054                       | 0.0054             | 0.004            | 0.0033             | 0.0038                 | 0.0036             |
| 3         | Nitrite(as No2)            | mg/l       | 0.1                        |                    | BDL(MDL -0.1)                | BDL(MDL -0.1)      | BDL(MDL-<br>0.1) | BDL(MDL -0.1)      | BDL(MDL-<br>0.1)       | BDL(MDL -0.1)      |
| 4         | Total Suspended<br>Solid   | mg/l       | 5                          |                    | BDL(MDL -5)                  | 6                  | BDL(MDL-<br>5)   | 5.6                | BDL(MDL-<br>5)         | 6.2                |
| 5         | Sodium<br>Absorbance Ratio | (meq/l)1/2 |                            |                    | 0.1359                       | 0.1662             | 0.121            | 0.1257             | 0.1129                 | 0.1213             |
| 6         | Boron (as B)               | mg/l       | 0.05                       |                    | 0.08                         | 0.11               | 0.08             | 0.08               | 0.09                   | 0.09               |

|           |                              |       | MDI                        | Tolerance          | SW                 | <b>'-04</b>        | SW-0               | 5 US                    | SW-0               | 5 DS               |
|-----------|------------------------------|-------|----------------------------|--------------------|--------------------|--------------------|--------------------|-------------------------|--------------------|--------------------|
| S.<br>No. | Parameters                   | Unit  | MDL<br>(Method<br>Detectio | Limit as<br>per    |                    | nd, valsad<br>188  | Par River, V       | <sup>7</sup> api Ch.190 | Par River, V       | api Ch.190         |
|           |                              |       | n Limit)                   | IS:2296<br>Class-C | Baseline           | Cons. Jan-<br>2023 | Baseline           | Cons. Jan-<br>2023      | Baseline           | Cons. Jan-<br>2023 |
| 7         | Free Ammonia                 | mg/l  | 0.1                        |                    | BDL(MDL            | BDL(MDL            | BDL(MDL-           | BDL(MDL                 | BDL(MDL-           | BDL(MDL            |
|           |                              |       |                            |                    | -0.1)              | -0.1)              | 0.1)               | -0.1)                   | 0.1)               | -0.1)              |
| 8         | Mangnese (as Mn)             | mg/l  | 0.01                       |                    | BDL(MDL -0.01)     | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)          | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     |
| 9         | Mercury (as Hg)              | mg/l  | 0.001                      |                    | BDL(MDL -0.001)    | BDL(MDL -0.001)    | BDL(MDL-<br>0.001) | BDL(MDL -0.001)         | BDL(MDL-<br>0.001) | BDL(MDL<br>-0.001) |
| 10        | Selenium (as Se)             | mg/l  | 0.001                      |                    | BDL(MDL<br>-0.001) | BDL(MDL<br>-0.001) | BDL(MDL-<br>0.001) | BDL(MDL<br>-0.001)      | BDL(MDL-<br>0.001) | BDL(MDL<br>-0.001) |
| 11        | Cyanide (as CN)              | mg/l  | 0.001                      |                    | BDL(MDL -0.001)    | BDL(MDL<br>-0.001) | BDL(MDL-<br>0.001) | BDL(MDL<br>-0.001)      | BDL(MDL-<br>0.001) | BDL(MDL<br>-0.001) |
| 12        | Nickel ( as Ni)              | mg/l  | 0.01                       |                    | BDL(MDL -0.01)     | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)          | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     |
| 13        | Silver (as Ag)               | mg/l  | 0.01                       |                    | BDL(MDL -0.01)     | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)          | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     |
| 14        | Barium (As Ba)               | mg/l  | 0.01                       |                    | BDL(MDL -0.01)     | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)          | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     |
| 15        | Colour                       | Hazen | 5                          | 300                | BDL(MDL -5)        | BDL(MDL -5)        | BDL(MDL-<br>5)     | BDL(MDL -5)             | BDL(MDL-<br>5)     | BDL(MDL -5)        |
| 16        | Turbidity                    | NTU   | 1                          |                    | 2                  | 4                  | 5                  | 4                       | 1                  | 4                  |
| 17        | pH(Lab)                      | -     | 1                          | 6.5-8.5            | 8.9                | 8.13               | 8.92               | 8.01                    | 8.52               | 8.22               |
| 17        | pH(site)                     |       |                            |                    | 8.92               | 8.1                | 8.9                | 8                       | 8.5                | 8.2                |
| 18        | DO                           | mg/l  | 0.1                        | Minimum<br>-4      | 7.2                | 7.1                | 10.2               | 7.4                     | 9.9                | 7.2                |
| 19        | BOD                          | mg/l  | 0.2                        | 3                  | 1                  | 1                  | BDL(MDL-<br>0.2)   | 0.8                     | BDL(MDL-<br>0.2)   | 1.4                |
| 20        | COD                          | mg/l  | 0.4                        |                    | 4                  | 4                  | BDL(MDL-<br>0.4)   | 6                       | BDL(MDL-<br>0.4)   | 7.2                |
| 21        | Total Hardness (as<br>CaCO3) | mg/l  | 5                          |                    | 66                 | 72                 | 142                | 118                     | 140                | 124                |

|           |                           |         |                            | Tolerance          | SW              | <b>7-04</b>        | SW-0               | 5 US               | SW-0               | 5 DS               |
|-----------|---------------------------|---------|----------------------------|--------------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| S.<br>No. | Parameters                | Unit    | MDL<br>(Method<br>Detectio | Limit as<br>per    |                 | nd, valsad<br>188  | Par River, V       | api Ch.190         | Par River, V       | api Ch.190         |
|           |                           |         | n Limit)                   | IS:2296<br>Class-C | Baseline        | Cons. Jan-<br>2023 | Baseline           | Cons. Jan-<br>2023 | Baseline           | Cons. Jan-<br>2023 |
| 22        | Iron (as Fe)              | mg/l    | 0.01                       | 50                 | 0.05            | 0.05               | 0.42               | 0.3                | 0.36               | 0.32               |
| 23        | Chlorides (as Cl)         | mg/l    | 2                          | 600                | 30              | 32.9               | 22                 | 18.5               | 21                 | 19.9               |
| 24        | Fluoride (as F)           | mg/l    | 0.1                        | 1.5                | 0.19            | 0.2                | 0.26               | 0.29               | 0.25               | 0.32               |
| 25        | Conductivity              | umho/cm | 2                          |                    | 160             | 220                | 232                | 260                | 224                | 266                |
| 26        | TDS                       | mg/l    | 5                          | 1500               | 112             | 132                | 152                | 156                | 146                | 160                |
| 27        | Calcium(as Ca2+)          | mg/l    | 2                          |                    | 16              | 16.8               | 38                 | 32.4               | 44                 | 38.6               |
| 28        | Magnesium (as<br>Mg2+)    | mg/l    | 2                          |                    | 6.32            | 7.29               | 11.42              | 8.99               | 7.29               | 6.68               |
| 29        | Cadmium                   | mg/l    | 0.002                      | 0.01               | BDL(MDL -0.002) | BDL(MDL -0.002)    | BDL(MDL-<br>0.002) | BDL(MDL -0.002)    | BDL(MDL-<br>0.002) | BDL(MDL -0.002)    |
| 30        | Copper (as Cu)            | mg/l    | 0.01                       | 1.5                | BDL(MDL -0.01)  | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     |
| 31        | Sulphate (as SO4)         | mg/l    | 2                          | 400                | 8.5             | 6.9                | 9.2                | 8.5                | 8.5                | 8.9                |
| 32        | Nitrate(as NO3)           | mg/l    | 0.5                        | 50                 | 1.1             | 1.3                | 1.5                | 1.6                | 1.1                | 1.9                |
| 33        | Zinc (as Zn)              | mg/l    | 0.01                       | 15                 | BDL(MDL -0.01)  | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     |
| 34        | Total Chromium<br>(as Cr) | mg/l    | 0.01                       | 0.05               | BDL(MDL -0.01)  | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     |
| 35        | Oil & Grease              | mg/l    | 0.1                        | 0.1                | BDL(MDL -0.1)   | BDL(MDL -0.1)      | BDL(MDL-<br>0.1)   | BDL(MDL -0.1)      | BDL(MDL-<br>0.1)   | BDL(MDL -0.1)      |
| 36        | Alkalinity (as<br>CaCO3)  | mg/l    | 5                          |                    | 52              | 56                 | 98                 | 98                 | 96                 | 102                |
| 37        | Lead (as Pb)              | mg/l    | 0.01                       | 0.1                | 0.28            | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL<br>-0.01)  |
| 38        | Total Arsenic (as<br>As)  | mg/l    | 0.001                      | 0.2                | BDL(MDL -0.001) | BDL(MDL -0.001)    | BDL(MDL-<br>0.001) | BDL(MDL -0.001)    | BDL(MDL-<br>0.001) | BDL(MDL -0.001)    |

|           |                                                |               | MDI                        | Tolerance          | SW              | <b>'-04</b>        | SW-0               | 5 US               | SW-0               | 5 DS               |
|-----------|------------------------------------------------|---------------|----------------------------|--------------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| S.<br>No. | Parameters                                     | Unit          | MDL<br>(Method<br>Detectio | Limit as<br>per    |                 | nd, valsad<br>188  | Par River, V       | api Ch.190         | Par River, V       | api Ch.190         |
|           |                                                |               | n Limit)                   | IS:2296<br>Class-C | Baseline        | Cons. Jan-<br>2023 | Baseline           | Cons. Jan-<br>2023 | Baseline           | Cons. Jan-<br>2023 |
| 39        | Phenolic<br>Compound                           | mg/l          | 0.001                      | 0.005              | BDL(MDL -0.001) | BDL(MDL -0.001)    | BDL(MDL-<br>0.001) | BDL(MDL -0.001)    | BDL(MDL-<br>0.001) | BDL(MDL -0.001)    |
| 40        | Anionic Surface<br>Active Detergent<br>as MBAS | mg/l          | 0.05                       |                    | BDL(MDL -0.001) | BDL(MDL -0.001)    | BDL(MDL-<br>0.001) | BDL(MDL -0.001)    | BDL(MDL-<br>0.001) | BDL(MDL<br>-0.001) |
| 41        | Sodium                                         | mg/l          | 1                          |                    | 7.2             | 9.2                | 9.4                | 8.9                | 8.7                | 8.8                |
| 42        | Potasium                                       | mg/l          | 1                          |                    | 2.5             | 4.1                | 2.8                | 3.1                | 2.4                | 2.9                |
| 43        | Total Kjheldal<br>Nitrogen (as N)              | mg/l          | 1                          |                    | 6.9             | 4.8                | 3.1                | 3.2                | 3.4                | 3.4                |
| 44        | Mineral Oil                                    | mg/l          | 0.1                        |                    | BDL(MDL -0.1)   | BDL(MDL -0.1)      | BDL(MDL-<br>0.1)   | BDL(MDL -0.1)      | BDL(MDL-<br>0.1)   | BDL(MDL -0.1)      |
| 45        | Total Petroleum<br>Hydrocarbon                 | mg/l          | 0.01                       |                    | BDL(MDL -0.01)  | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     | BDL(MDL-<br>0.01)  | BDL(MDL -0.01)     |
| 46        | Odour                                          |               |                            |                    | Odorless        | Odorless           | Odorless           | Odorless           | Odorless           | Odorless           |
|           |                                                |               |                            | ]                  | Microbiologic   | al Parameter       |                    |                    |                    |                    |
| 47        | Total Coliform                                 | MPN/100<br>ML | 1                          | 5000               | 32              | 68                 | 42                 | 44                 | 44                 | 48                 |
| 48        | Fecal Coliform                                 | MPN/100<br>ML | 1                          |                    | 22              | 34                 | 26                 | 28                 | 28                 | 30                 |

# **Surface Water Quality Monitoring Contd...**

|           | Parameters                   | Unit           | MDL<br>(Method<br>Detectio<br>n Limit) | Toleran<br>ce Limit<br>as per<br>IS:2296 | SW-06 US<br>Auranga River,<br>Vapi Ch.198 |                       | SW-06 DS<br>Auranga River, Vapi<br>Ch.198 |                    | SW-20 DS<br>Kharera River<br>Ch.212 |                    | SW-20 US<br>Kharera River<br>Ch.212 |                       |
|-----------|------------------------------|----------------|----------------------------------------|------------------------------------------|-------------------------------------------|-----------------------|-------------------------------------------|--------------------|-------------------------------------|--------------------|-------------------------------------|-----------------------|
| S.<br>No. |                              |                |                                        |                                          |                                           |                       |                                           |                    |                                     |                    |                                     |                       |
|           |                              |                |                                        |                                          | Baseline                                  | Cons.<br>Jan-<br>2023 | Baseline                                  | Cons. Jan-<br>2023 | Baseline                            | Cons. Jan-<br>2023 | Baseline                            | Cons.<br>Jan-<br>2023 |
| 1         | Temperature                  | c              | 1                                      | -                                        | 27.4                                      | 26                    | 27.4                                      | 25.5               | 30                                  | 30                 | 30                                  | 30                    |
| 2         | Salinity                     | %              | 0.0003                                 | -                                        | 0.0098                                    | 0.0098                | 0.0094                                    | 0.0042             | 0.0113                              | 0.0083             | 0.0111                              | 0.0074                |
| 3         | Nitrite(as No2)              | mg/l           | 0.1                                    |                                          | BDL                                       | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 4         | Total Suspended<br>Solid     | mg/l           | 5                                      |                                          | BDL                                       | BDL                   | BDL                                       | 5.8000             | BDL                                 | BDL                | BDL                                 | BDL                   |
| 5         | Sodium Absorbance Ratio      | (meq/l<br>)1/2 |                                        | 26                                       | 0.0903                                    | 0.1241                | 0.0861                                    | 0.1164             | 0.2137                              | 0.2155             | 0.2179                              | 0.2447                |
| 6         | Boron (as B)                 | mg/l           | 0.05                                   | 2                                        | 0.19                                      | 0.15                  | 0.15                                      | 0.16               | 0.0144                              | 0.09               | 0.1124                              | 0.08                  |
| 7         | Free Ammonia                 | mg/l           | 0.1                                    | 1.2                                      | BDL                                       | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                |                                     | BDL                   |
| 8         | Mangnese (as Mn)             | mg/l           | 0.01                                   | -                                        | BDL                                       | BDL                   | BDL                                       | BDL                | BDL                                 | 0.06               | BDL                                 | 0.04                  |
| 9         | Mercury (as Hg)              | mg/l           | 0.001                                  | -                                        | BDL                                       | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 10        | Selenium (as Se)             | mg/l           | 0.001                                  | 0.05                                     | BDL                                       | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 11        | Cyanide (as CN)              | mg/l           | 0.001                                  | 0.05                                     | BDL                                       | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 12        | Nickel (as Ni)               | mg/l           | 0.01                                   | -                                        | BDL                                       | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 13        | Silver (as Ag)               | mg/l           | 0.01                                   | -                                        | BDL                                       | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 14        | Barium (As Ba)               | mg/l           | 0.01                                   | -                                        | BDL                                       | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 15        | Colour                       | Hazen          | 5                                      | -                                        | BDL                                       | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 16        | Turbidity                    | NTU            | 1                                      | -                                        | 1                                         | 3                     | BDL                                       | 5                  | 4                                   | 3                  | 4                                   | 3                     |
| 17        | pH(Lab)                      | -              | 1                                      | 8.5                                      | 8.61                                      | 7.92                  | 8.9                                       | 8.12               | 8.03                                | 8.51               | 8.02                                | 8.46                  |
| 17        | pH(site)                     |                |                                        | 8.5                                      | 8.5                                       | 7.9                   | 8.92                                      | 8.1                | 8                                   | 8.5                | 8                                   | 8.5                   |
| 18        | DO                           | mg/l           | 0.1                                    | Minimu<br>m-4                            | 9.1                                       | 8.1                   | 8.8                                       | 7.6                | 7.3                                 | 7.2                | 7.2                                 | 7.4                   |
| 19        | BOD                          | mg/l           | 0.2                                    | 3                                        | BDL                                       | BDL                   | BDL                                       | 1.8                | BDL                                 | 1.2                | BDL                                 | 0.8                   |
| 20        | COD                          | mg/l           | 0.4                                    | -                                        | BDL                                       | BDL                   | BDL                                       | 8.8                | BDL                                 | 6                  | BDL                                 | 4                     |
| 21        | Total Hardness (as<br>CaCO3) | mg/l           | 5                                      | -                                        | 244                                       | 138                   | 240                                       | 144                | 140                                 | 138                | 130                                 | 130                   |
| 22        | Iron (as Fe)                 | mg/l           | 0.01                                   | 50                                       | 0.49                                      | 0.49                  | 0.52                                      | 0.39               | 0.12                                | 0.15               | 0.14                                | 0.13                  |

|           | Parameters                                     | Unit        | MDL<br>(Method<br>Detectio<br>n Limit) | Toleran<br>ce Limit<br>as per<br>IS:2296 | SW-06 US Auranga River, Vapi Ch.198 |                       | SW-06 DS<br>Auranga River, Vapi<br>Ch.198 |                    | SW-20 DS<br>Kharera River<br>Ch,212 |                    | SW-20 US<br>Kharera River<br>Ch.212 |                       |
|-----------|------------------------------------------------|-------------|----------------------------------------|------------------------------------------|-------------------------------------|-----------------------|-------------------------------------------|--------------------|-------------------------------------|--------------------|-------------------------------------|-----------------------|
| S.<br>No. |                                                |             |                                        |                                          |                                     |                       |                                           |                    |                                     |                    |                                     |                       |
|           |                                                |             |                                        |                                          | Baseline                            | Cons.<br>Jan-<br>2023 | Baseline                                  | Cons. Jan-<br>2023 | Baseline                            | Cons. Jan-<br>2023 | Baseline                            | Cons.<br>Jan-<br>2023 |
| 23        | Chlorides (as Cl)                              | mg/l        | 2                                      | 600                                      | 54                                  | 21.9                  | 52                                        | 23.5               | 62.5                                | 45.9               | 61.5                                | 40.9                  |
| 24        | Fluoride (as F)                                | mg/l        | 0.1                                    | 1.5                                      | 0.15                                | 0.28                  | 0.19                                      | 0.34               | 0.25                                | 0.36               | 0.24                                | 0.31                  |
| 25        | Conductivity                                   | umho/<br>cm | 2                                      | -                                        | 412                                 | 287                   | 398                                       | 300                | 502                                 | 403                | 500                                 | 392                   |
| 26        | TDS                                            | mg/l        | 5                                      | 1500                                     | 298                                 | 172                   | 242                                       | 180                | 305                                 | 242                | 302                                 | 235                   |
| 27        | Calcium(as Ca2+)                               | mg/l        | 2                                      | -                                        | 62                                  | 36.8                  | 60                                        | 42                 | 30                                  | 36.4               | 32                                  | 28.9                  |
| 28        | Magnesium (as<br>Mg2+)                         | mg/l        | 2                                      | -                                        | 21.63                               | 11.18                 | 21.87                                     | 9.48               | 15.8                                | 11.42              | 12.15                               | 14.03                 |
| 29        | Cadmium                                        | mg/l        | 0.002                                  | 0.01                                     | BDL                                 | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 30        | Copper (as Cu)                                 | mg/l        | 0.01                                   | 1.5                                      | BDL                                 | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 31        | Sulphate (as SO4)                              | mg/l        | 2                                      | 400                                      | 8.2                                 | 9.1                   | 7.5                                       | 9.2                | 16.5                                | 23.4               | 19.5                                | 20.4                  |
| 32        | Nitrate(as NO3)                                | mg/l        | 0.5                                    | 50                                       | 2.7                                 | 2                     | 2.2                                       | 2.1                | 5.6                                 | 4.2                | 5.2                                 | 3.8                   |
| 33        | Zinc (as Zn)                                   | mg/l        | 0.01                                   | 15                                       | BDL                                 | BDL                   | BDL                                       | BDL                | 0.02                                | BDL                | 0.03                                | BDL                   |
| 34        | Total Chromium<br>(as Cr)                      | mg/l        | 0.01                                   | 0.05                                     | BDL                                 | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 35        | Oil & Grease                                   | mg/l        | 0.1                                    | 0.1                                      | BDL                                 | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 36        | Alkalinity (as<br>CaCO3)                       | mg/l        | 5                                      | -                                        | 148                                 | 104                   | 144                                       | 110                | 54                                  | 98                 | 56                                  | 102                   |
| 37        | Lead (as Pb)                                   | mg/l        | 0.01                                   | 0.1                                      | BDL                                 | BDL                   | BDL                                       | BDL                | BDL                                 | 0.06               | BDL                                 | 0.04                  |
| 38        | Total Arsenic (as<br>As)                       | mg/l        | 0.001                                  | 0.2                                      | BDL                                 | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 39        | Phenolic<br>Compound                           | mg/l        | 0.001                                  | 0.005                                    | BDL                                 | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 40        | Anionic Surface<br>Active Detergent<br>as MBAS | mg/l        | 0.05                                   |                                          | BDL                                 | BDL                   | BDL                                       | BDL                | BDL                                 | BDL                | BDL                                 | BDL                   |
| 41        | Sodium                                         | mg/l        | 1                                      |                                          | 9.2                                 | 9.5                   | 8.7                                       | 9.1                | 16.5                                | 16.5               | 16.2                                | 18.2                  |
| 42        | Potasium                                       | mg/l        | 1                                      |                                          | 2.8                                 | 3.6                   | 2.1                                       | 3.4                | 8.4                                 | 7.3                | 8.2                                 | 8.6                   |

|     |                                   |                   |                      |                     | SW-0              | 6 US                  | SW-         | 06 DS               | SW-      | 20 DS              | SW-2          | 20 US                 |
|-----|-----------------------------------|-------------------|----------------------|---------------------|-------------------|-----------------------|-------------|---------------------|----------|--------------------|---------------|-----------------------|
| S.  | Donomotous                        | T7:4              | MDL<br>(Method       | Toleran<br>ce Limit | Auranga<br>Vapi C |                       | 0           | River, Vapi<br>.198 |          | ra River<br>1.212  | Kharer<br>Ch. | a River<br>212        |
| No. | Parameters                        | Unit              | Detectio<br>n Limit) | as per<br>IS:2296   | Baseline          | Cons.<br>Jan-<br>2023 | Baseline    | Cons. Jan-<br>2023  | Baseline | Cons. Jan-<br>2023 | Baseline      | Cons.<br>Jan-<br>2023 |
| 43  | Total Kjheldal<br>Nitrogen (as N) | mg/l              | 1                    |                     | 4.1               | 4.3                   | 4.5         | 3.9                 | 4.2      | 12.2               | 4.1           | 10.2                  |
| 44  | Mineral Oil                       | mg/l              | 0.1                  |                     | BDL               | BDL                   | BDL         | BDL                 | BDL      | BDL                | BDL           | BDL                   |
| 45  | Total Petroleum<br>Hydrocarbon    | mg/l              | 0.01                 |                     | BDL               | BDL                   | BDL         | BDL                 | BDL      | BDL                | BDL           | BDL                   |
| 46  | Odour                             |                   |                      |                     | Odorless          | Odorle<br>ss          | Odorless    | Odorless            | Odorless | Odorless           | Odorless      | Odorless              |
|     |                                   |                   |                      |                     | Micr              | obiologic             | al Paramete | r                   |          |                    |               |                       |
| 47  | Total Coliform                    | MPN/<br>100<br>ML | 1                    | 500                 | 54                | 58                    | 60          | 62                  | 78       | 322                | 72            | 298                   |
| 48  | Fecal Coliform                    | MPN/<br>100<br>ML | 1                    | -                   | 38                | 28                    | 48          | 30                  | 43       | 202                | 36            | 156                   |

## **Surface Water Quality Contd...**

| S.  | Paramete           | Unit | MDL<br>(Metho<br>d      | Toleran<br>ce Limit | Kaveri Ri | 07 US<br>ver, valsad<br>214 | Kaveri Ri | 07 DS<br>ver, valsad<br>214 | SW-0<br>Ambica<br>Ch. | River,            | Ambica   | 08 US<br>a River,<br>228 |
|-----|--------------------|------|-------------------------|---------------------|-----------|-----------------------------|-----------|-----------------------------|-----------------------|-------------------|----------|--------------------------|
| No. | rs                 | Omt  | Detecti<br>on<br>Limit) | as per<br>IS:2296   | Baseline  | Cons.<br>Jan-2023           | Baseline  | Cons.<br>Jan-2023           | Baseline              | Cons.<br>Jan-2023 | Baseline | Cons.<br>Jan-2023        |
| 1   | Temperatu<br>re    | С    | 1                       | -                   | 28.1      | 33                          | 27.9      | 33                          | 29.8                  | 27                | 30       | 27                       |
| 2   | Salinity           | %    | 0.0003                  | -                   | 0.0131    | 0.0038                      | 0.0135    | 0.004                       | 0.0076                | 0.0059            | 0.0082   | 0.0058                   |
| 3   | Nitrite(as<br>No2) | mg/l | 0.1                     |                     | BDL       | BDL                         | BDL       | BDL                         | BDL                   | BDL               | BDL      | BDL                      |

| S.  | Paramete                       | Unit           | MDL<br>(Metho<br>d      | Toleran<br>ce Limit | SW-0<br>Kaveri Riv<br>Ch. | ver, valsad       | Kaveri Riv | 07 DS<br>ver, valsad<br>214 |          | 08 DS<br>a River,<br>228 | SW-0<br>Ambica<br>Ch. | River,            |
|-----|--------------------------------|----------------|-------------------------|---------------------|---------------------------|-------------------|------------|-----------------------------|----------|--------------------------|-----------------------|-------------------|
| No. | rs                             | Cint           | Detecti<br>on<br>Limit) | as per<br>IS:2296   | Baseline                  | Cons.<br>Jan-2023 | Baseline   | Cons.<br>Jan-2023           | Baseline | Cons.<br>Jan-2023        | Baseline              | Cons.<br>Jan-2023 |
| 4   | Total<br>Suspended<br>Solid    | mg/l           | 5                       |                     | BDL                       | 5.2               | BDL        | 5.4                         | BDL      | BDL                      | BDL                   | BDL               |
| 5   | Sodium<br>Absorbanc<br>e Ratio | (meq/l)1<br>/2 |                         | 26                  | 0.3489                    | 0.27              | 0.398      | 0.2582                      | 0.1607   | 0.1527                   | 0.1686                | 0.1614            |
| 6   | Boron (as<br>B)                | mg/l           | 0.05                    | 2                   | 0.16                      | 0.13              | 0.12       | 0.14                        | 0.05     | 0.06                     | 0.06                  | 0.05              |
| 7   | Free<br>Ammonia                | mg/l           | 0.1                     | 1.2                 | BDL                       | BDL               | BDL        | BDL                         | BDL      | BDL                      | BDL                   | BDL               |
| 8   | Mangnese (as Mn)               | mg/l           | 0.01                    | -                   | BDL                       | BDL               | BDL        | BDL                         | BDL      | BDL                      | BDL                   | BDL               |
| 9   | Mercury<br>(as Hg)             | mg/l           | 0.001                   | -                   | BDL                       | BDL               | BDL        | BDL                         | BDL      | BDL                      | BDL                   | BDL               |
| 10  | Selenium<br>(as Se)            | mg/l           | 0.001                   | 0.05                | BDL                       | BDL               | BDL        | BDL                         | BDL      | BDL                      | BDL                   | BDL               |
| 11  | Cyanide (as CN)                | mg/l           | 0.001                   | 0.05                | BDL                       | BDL               | BDL        | BDL                         | BDL      | BDL                      | BDL                   | BDL               |
| 12  | Nickel ( as<br>Ni)             | mg/l           | 0.01                    | -                   | BDL                       | BDL               | BDL        | BDL                         | BDL      | BDL                      | BDL                   | BDL               |
| 13  | Silver (as<br>Ag)              | mg/l           | 0.01                    | -                   | BDL                       | BDL               | BDL        | BDL                         | BDL      | BDL                      | BDL                   | BDL               |
| 14  | Barium<br>(As Ba)              | mg/l           | 0.01                    | -                   | BDL                       | BDL               | BDL        | BDL                         | BDL      | BDL                      | BDL                   | BDL               |
| 15  | Colour                         | Hazen          | 5                       | -                   | BDL                       | BDL               | BDL        | BDL                         | BDL      | BDL                      | BDL                   | BDL               |
| 16  | Turbidity                      | NTU            | 1                       | -                   | 2                         | 2                 | 2          | 3                           | 3        | 4                        | 2                     | 4                 |
| 17  | pH(Lab)                        | -              | 1                       | 8.5                 | 8.24                      | 8.31              | 8.22       | 8.33                        | 8.44     | 8.19                     | 8.42                  | 8.02              |
| 17  | pH(site)                       |                |                         | 8.5                 | 8.2                       | 8.3               | 8.2        | 8.3                         | 8.4      | 8.2                      | 8.4                   | 8                 |

| C         | Donomoto                           |             | MDL<br>(Metho                | Toleran                       | SW-0             | ver, valsad       | SW-0             | ver, valsad       | SW-0             | River,            | SW-0             | River,            |
|-----------|------------------------------------|-------------|------------------------------|-------------------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|------------------|-------------------|
| S.<br>No. | Paramete<br>rs                     | Unit        | d<br>Detecti<br>on<br>Limit) | ce Limit<br>as per<br>IS:2296 | Ch. Baseline     | Cons.<br>Jan-2023 | Ch. Baseline     | Cons.<br>Jan-2023 | Ch. Baseline     | Cons.<br>Jan-2023 | Ch.<br>Baseline  | Cons.<br>Jan-2023 |
| 18        | DO                                 | mg/l        | 0.1                          | Minimu<br>m-4                 | 8.2              | 7.6               | 8.2              | 7.4               | 7.4              | 7.3               | 7.6              | 7.4               |
| 19        | BOD                                | mg/l        | 0.2                          | 3                             | BDL              | BDL               | BDL              | BDL               | BDL              | BDL               | BDL              | BDL               |
| 20        | COD                                | mg/l        | 0.4                          | -                             | BDL(MD<br>L-0.4) | BDL(MD<br>L-0.4)  | BDL(MD<br>L-0.4) | BDL(MD<br>L-0.4)  | BDL(MD<br>L-0.4) | BDL(MD<br>L-0.4)  | BDL(MD<br>L-0.4) | BDL(MD<br>L-0.4)  |
| 21        | Total<br>Hardness<br>(as<br>CaCO3) | mg/l        | 5                            | -                             | 188              | 120               | 184              | 122               | 142              | 168               | 144              | 162               |
| 22        | Iron (as<br>Fe)                    | mg/l        | 0.01                         | 50                            | 0.14             | 0.1               | 0.15             | 0.12              | 0.03             | 0.05              | 0.03             | 0.04              |
| 23        | Chlorides<br>(as Cl)               | mg/l        | 2                            | 600                           | 72.5             | 20.9              | 74.5             | 21.9              | 42.2             | 32.9              | 45.2             | 31.9              |
| 24        | Fluoride<br>(as F)                 | mg/l        | 0.1                          | 1.5                           | 0.29             | 0.21              | 0.35             | 0.24              | 0.15             | 0.15              | 0.16             | 0.15              |
| 25        | Conductivi<br>ty                   | umho/c<br>m | 2                            | -                             | 540              | 317               | 520              | 325               | 332              | 387               | 354              | 384               |
| 26        | TDS                                | mg/l        | 5                            | 1500                          | 340              | 190               | 322              | 195               | 197              | 232               | 212              | 230               |
| 27        | Calcium(a s Ca2+)                  | mg/l        | 2                            | 1                             | 44               | 24.8              | 48               | 28.8              | 28               | 44.4              | 32               | 36.4              |
| 28        | Magnesiu<br>m (as<br>Mg2+)         | mg/l        | 2                            | -                             | 18.95            | 14.09             | 15.55            | 12.15             | 17.5             | 13.85             | 15.55            | 17.25             |
| 29        | Cadmium                            | mg/l        | 0.002                        | 0.01                          | BDL              | BDL               | BDL              | BDL               | BDL              | BDL               | BDL              | BDL               |
| 30        | Copper (as Cu)                     | mg/l        | 0.01                         | 1.5                           | BDL              | BDL               | BDL              | BDL               | BDL              | BDL               | BDL              | BDL               |
| 31        | Sulphate (as SO4)                  | mg/l        | 2                            | 400                           | 42.5             | 12.2              | 36.5             | 12.1              | 12.5             | 14.8              | 14.5             | 14.6              |

| G         | <b>D</b>                                             |      | MDL<br>(Metho       | Toleran                       | SW-0         | ver, valsad       | Kaveri Riv | 07 DS<br>ver, valsad     |          | River,                   | SW-(     | a River,                 |
|-----------|------------------------------------------------------|------|---------------------|-------------------------------|--------------|-------------------|------------|--------------------------|----------|--------------------------|----------|--------------------------|
| S.<br>No. | Paramete<br>rs                                       | Unit | d Detecti on Limit) | ce Limit<br>as per<br>IS:2296 | Ch. Baseline | Cons.<br>Jan-2023 | Baseline   | 214<br>Cons.<br>Jan-2023 | Baseline | 228<br>Cons.<br>Jan-2023 | Baseline | 228<br>Cons.<br>Jan-2023 |
| 32        | Nitrate(as NO3)                                      | mg/l | 0.5                 | 50                            | 4.2          | 1.2               | 4.8        | 1.6                      | 1.5      | 1.7                      | 2.1      | 1.5                      |
| 33        | Zinc (as<br>Zn)                                      | mg/l | 0.01                | 15                            | 0.21         | 0.12              | 0.25       | 0.15                     | 0.01     | 0.02                     | 0.01     | 0.02                     |
| 34        | Total<br>Chromium<br>(as Cr)                         | mg/l | 0.01                | 0.05                          | BDL          | BDL               | BDL        | BDL                      | BDL      | BDL                      | BDL      | BDL                      |
| 35        | Oil &<br>Grease                                      | mg/l | 0.1                 | 0.1                           | BDL          | BDL               | BDL        | BDL                      | BDL      | BDL                      | BDL      | BDL                      |
| 36        | Alkalinity<br>(as<br>CaCO3)                          | mg/l | 5                   | -                             | 142          | 114               | 144        | 116                      | 112      | 132                      | 116      | 130                      |
| 37        | Lead (as<br>Pb)                                      | mg/l | 0.01                | 0.1                           | BDL          | BDL               | BDL        | BDL                      | BDL      | BDL                      | BDL      | BDL                      |
| 38        | Total<br>Arsenic<br>(as As)                          | mg/l | 0.001               | 0.2                           | BDL          | BDL               | BDL        | BDL                      | BDL      | BDL                      | BDL      | BDL                      |
| 39        | Phenolic<br>Compound                                 | mg/l | 0.001               | 0.005                         | BDL          | BDL               | BDL        | BDL                      | BDL      | BDL                      | BDL      | BDL                      |
| 40        | Anionic<br>Surface<br>Active<br>Detergent<br>as MBAS | mg/l | 0.05                |                               | BDL          | BDL               | BDL        | BDL                      | BDL      | BDL                      | BDL      | BDL                      |
| 41        | Sodium                                               | mg/l | 1                   |                               | 31.2         | 19.3              | 35.2       | 18.6                     | 12.5     | 12.9                     | 13.2     | 13.4                     |
| 42        | Potasium                                             | mg/l | 1                   |                               | 19.5         | 10.2              | 14.5       | 9.6                      | 6.4      | 7.1                      | 6.2      | 7.4                      |
| 43        | Total<br>Kjheldal                                    | mg/l | 1                   |                               | 2.9          | 2.6               | 3.2        | 2.8                      | 3.5      | 3.6                      | 3.2      | 3.6                      |

|     |                              |                | MDL                     |                     | SW-0     | 07 US              | SW-(        | 07 DS              | SW-0     | 08 DS             | SW-0     | 08 US             |
|-----|------------------------------|----------------|-------------------------|---------------------|----------|--------------------|-------------|--------------------|----------|-------------------|----------|-------------------|
| S.  | Paramete                     | Unit           | (Metho<br>d             | Toleran<br>ce Limit |          | ver, valsad<br>214 |             | ver, valsad<br>214 |          | a River,<br>228   |          | a River,<br>228   |
| No. | rs                           | Omt            | Detecti<br>on<br>Limit) | as per<br>IS:2296   | Baseline | Cons.<br>Jan-2023  | Baseline    | Cons.<br>Jan-2023  | Baseline | Cons.<br>Jan-2023 | Baseline | Cons.<br>Jan-2023 |
|     | Nitrogen (as N)              |                |                         |                     |          |                    |             |                    |          |                   |          |                   |
| 44  | Mineral<br>Oil               | mg/l           | 0.1                     |                     | BDL      | BDL                | BDL         | BDL                | BDL      | BDL               | BDL      | BDL               |
| 45  | Total Petroleum Hydrocarb on | mg/l           | 0.01                    |                     | BDL      | BDL                | BDL         | BDL                | BDL      | BDL               | BDL      | BDL               |
| 46  | Odour                        |                |                         |                     | Odorless | Odorless           | Odorless    | Odorless           | Odorless | Odorless          | Odorless | Odorless          |
|     |                              |                |                         |                     |          | Microbiolog        | ical Parame | ter                |          |                   |          |                   |
| 47  | Total<br>Coliform            | MPN/10<br>0 ML | 1                       | 500                 | 40       | 32                 | 44          | 36                 | 24       | 62                | 22       | 58                |
| 48  | Fecal<br>Coliform            | MPN/10<br>0 ML | 1                       | -                   | 26       | 12                 | 12          | 14                 | 14       | 24                | 10       | 22                |

#### **Surface Water Quality Monitoring....**

| S.  |                    |      | MDL<br>(Meth            | Toleran<br>ce              |              | 9 US<br>River,<br>239 | SW-0<br>Purna<br>Ch. | River,       | SW<br>Kachol Vill<br>Ch.2 | lage Pond             | SW-12<br>Mindola<br>Ch.2 | River                | SW-1<br>Mindols<br>Ch.: | a River               |
|-----|--------------------|------|-------------------------|----------------------------|--------------|-----------------------|----------------------|--------------|---------------------------|-----------------------|--------------------------|----------------------|-------------------------|-----------------------|
| No. | Parameters         | Unit | Detect<br>ion<br>Limit) | Limit<br>as per<br>IS:2296 | Baselin<br>e | Cons.<br>Jan-<br>2023 | Baselin<br>e         | Baseli<br>ne | Baseline                  | Cons.<br>Jan-<br>2023 | Baselin<br>e             | Cons<br>Jan-<br>2023 | Baseli<br>ne            | Cons.<br>Jan-<br>2023 |
| 1   | Temperature        | С    | 1                       | -                          | 28.4         | 31                    | 29.4                 | 27.6         | 30                        | 31                    | 28.9                     | 27                   | 28.2                    | 30                    |
| 2   | Salinity           | %    | 0.0003                  | -                          | 0.0065       | 0.0074                | 0.0059               | 0.0202       | 0.0269                    | 0.0110                | 0.0046                   | 0.004<br>7           | 0.0262                  | 0.028                 |
| 3   | Nitrite(as<br>No2) | mg/l | 0.1                     |                            | BDL          | BDL                   | BDL                  | BDL          | BDL                       | BDL                   | BDL                      | BDL                  | BDL                     | BDL                   |

|     |                               |                | MDL                     | Toleran                    | SW-(<br>Purna | 9 US<br>River,        | SW-0         |              | SW<br>Kachol Vil |                       | SW-12<br>Mindola |                      | SW-1         |                       |
|-----|-------------------------------|----------------|-------------------------|----------------------------|---------------|-----------------------|--------------|--------------|------------------|-----------------------|------------------|----------------------|--------------|-----------------------|
| S.  |                               |                | (Meth od                | ce                         | Ch.           |                       | Ch.          |              | Ch.2             | 232                   | Ch.2             | 50                   | Ch.          | 250                   |
| No. | Parameters                    | Unit           | Detect<br>ion<br>Limit) | Limit<br>as per<br>IS:2296 | Baselin<br>e  | Cons.<br>Jan-<br>2023 | Baselin<br>e | Baseli<br>ne | Baseline         | Cons.<br>Jan-<br>2023 | Baselin<br>e     | Cons<br>Jan-<br>2023 | Baseli<br>ne | Cons.<br>Jan-<br>2023 |
| 4   | Total<br>Suspended<br>Solid   | mg/l           | 5                       |                            | BDL           | BDL                   | BDL          | BDL          | 6.0000           | 5.8000                | BDL              | 5.200                | BDL          | 6.400                 |
| 5   | Sodium<br>Absorbance<br>Ratio | (meq/l<br>)1/2 |                         | 26                         | 0.0826        | 0.0832                | 0.0881       | 0.4223       | 0.6322           | 0.0916                | 0.1256           | 0.151<br>9           | 0.7320       | 0.593<br>8            |
| 6   | Boron (as B)                  | mg/l           | 0.05                    | 2                          | 0.0600        | 0.0900                | 0.0500       | 0.14         | 0.16             | 0.1200                | 0.0600           | 0.080                | 0.15         | 0.17                  |
| 7   | Free<br>Ammonia               | mg/l           | 0.1                     | 1.2                        | BDL           | BDL                   | BDL          | BDL          | BDL              | BDL                   | BDL              | BDL                  | BDL          | BDL                   |
| 8   | Mangnese (as Mn)              | mg/l           | 0.01                    | -                          | BDL           | BDL                   | BDL          | BDL          | 1.04             | BDL                   | BDL              | BDL                  | 1.32         | 1.09                  |
| 9   | Mercury (as<br>Hg)            | mg/l           | 0.001                   | -                          | BDL           | BDL                   | BDL          | BDL          | BDL              | BDL                   | BDL              | BDL                  | BDL          | BDL                   |
| 10  | Selenium (as<br>Se)           | mg/l           | 0.001                   | 0.05                       | BDL           | BDL                   | BDL          | BDL          | BDL              | BDL                   | BDL              | BDL                  | BDL          | BDL                   |
| 11  | Cyanide (as CN)               | mg/l           | 0.001                   | 0.05                       | BDL           | BDL                   | BDL          | BDL          | BDL              | BDL                   | BDL              | BDL                  | BDL          | BDL                   |
| 12  | Nickel (as Ni)                | mg/l           | 0.01                    | -                          | BDL           | BDL                   | BDL          | BDL          | BDL              | BDL                   | BDL              | BDL                  | BDL          | BDL                   |
| 13  | Silver (as Ag)                | mg/l           | 0.01                    | -                          | BDL           | BDL                   | BDL          | BDL          | BDL              | BDL                   | BDL              | BDL                  | BDL          | BDL                   |
| 14  | Barium (As<br>Ba)             | mg/l           | 0.01                    | ı                          | BDL           | BDL                   | BDL          | BDL          | BDL              | BDL                   | BDL              | BDL                  | BDL          | BDL                   |
| 15  | Colour                        | Hazen          | 5                       | -                          | BDL           | BDL                   | BDL          | BDL          | BDL              | BDL                   | BDL              | BDL                  | BDL          | BDL                   |
| 16  | Turbidity                     | NTU            | 1                       | -                          | 2             | 4                     | 3            | 3            | 7                | 5                     | 2                | 5                    | 4            | 8                     |
| 17  | pH(Lab)                       | -              | 1                       | 8.5                        | 8.01          | 7.43                  | 8.5          | 7.91         | 7.91             | 7.41                  | 8.31             | 8.58                 | 7.52         | 7.91                  |
| 17  | pH(site)                      |                |                         | 8.5                        | 8             | 7.4                   | 8.5          | 7.9          | 7                | 7.4                   | 8.3              | 8.6                  | 7.5          | 6.9                   |

|     |                                 |             | MOL                     |                   | SW-(         | 09 US                 | SW-0         | 9 DS         | SW         | -11                   | SW-12        | 2 US         | SW-1         | 2 DS                  |
|-----|---------------------------------|-------------|-------------------------|-------------------|--------------|-----------------------|--------------|--------------|------------|-----------------------|--------------|--------------|--------------|-----------------------|
|     |                                 |             | MDL<br>(Meth            | Toleran           |              | River,                | Purna        |              | Kachol Vil |                       | Mindola      |              | Mindol       |                       |
| S.  | Parameters                      | Unit        | od                      | ce<br>Limit       | Ch.          | 239                   | Ch.          | 239          | Ch.2       | 232                   | Ch.2         | 50<br>Cons   | Ch.          | 250                   |
| No. | Farameters                      | Omt         | Detect<br>ion<br>Limit) | as per<br>IS:2296 | Baselin<br>e | Cons.<br>Jan-<br>2023 | Baselin<br>e | Baseli<br>ne | Baseline   | Cons.<br>Jan-<br>2023 | Baselin<br>e | Jan-<br>2023 | Baseli<br>ne | Cons.<br>Jan-<br>2023 |
| 18  | DO                              | mg/l        | 0.1                     | Minimu<br>m-4     | 7.7          | 7.1                   | 7.5          | 7.2          | 6.6        | 6.9                   | 8.3          | 7.8          | 7.1          | 6.4                   |
| 19  | BOD                             | mg/l        | 0.2                     | 3                 | BDL          | BDL                   | < 0.2        | 2.5          | 3.2        | BDL                   | BDL          | BDL          | 2.9          | 3.8                   |
| 20  | COD                             | mg/l        | 0.4                     | -                 | BDL          | BDL                   | < 0.4        | 26           | 24         | BDL                   | BDL          | BDL          | 24           | 26                    |
| 21  | Total<br>Hardness (as<br>CaCO3) | mg/l        | 5                       | -                 | 128          | 224                   | 124          | 420          | 398        | 232                   | 84           | 98           | 268          | 416                   |
| 22  | Iron (as Fe)                    | mg/l        | 0.01                    | 50                | 0.02         | 0.04                  | 0.02         | 0.46         | 0.51       | 0.06                  | 0.05         | 0.06         | 0.48         | 0.55                  |
| 23  | Chlorides (as Cl)               | mg/l        | 2                       | 600               | 36.2         | 58.9                  | 32.5         | 112          | 148.9      | 60.9                  | 25.6         | 25.9         | 145          | 156.9                 |
| 24  | Fluoride (as F                  | mg/l        | 0.1                     | 1.5               | 0.14         | 0.19                  | 0.15         | 0.43         | 0.49       | 0.21                  | 0.12         | 0.13         | 0.45         | 0.52                  |
| 25  | Conductivity                    | umho/<br>cm | 2                       | -                 | 294          | 563                   | 271          | 1142         | 1257       | 570                   | 194          | 255          | 1258         | 1275                  |
| 26  | TDS                             | mg/l        | 5                       | 1500              | 174          | 338                   | 164          | 680          | 754        | 342                   | 116          | 153          | 756          | 765                   |
| 27  | Calcium(as<br>Ca2+)             | mg/l        | 2                       | -                 | 26           | 56.6                  | 24           | 70           | 112.6      | 59.4                  | 24           | 26.4         | 98           | 128                   |
| 28  | Magnesium (as Mg2+)             | mg/l        | 2                       | -                 | 15.31        | 20.05                 | 15.55        | 59.54        | 28.31      | 20.29                 | 5.83         | 7.78         | 5.59         | 23.33                 |
| 29  | Cadmium                         | mg/l        | 0.002                   | 0.01              | BDL          | BDL                   | BDL          | BDL          | BDL        | BDL                   | BDL          | BDL          | BDL          | BDL                   |
| 30  | Copper (as<br>Cu)               | mg/l        | 0.01                    | 1.5               | BDL          | BDL                   | BDL          | 0.01         | BDL        | BDL                   | BDL          | BDL          | 0.02         | BDL                   |
| 31  | Sulphate (as SO4)               | mg/l        | 2                       | 400               | 16.2         | 24.8                  | 14.8         | 25.5         | 39.1       | 26.5                  | 4.7          | 9.4          | 35.2         | 42.3                  |
| 32  | Nitrate(as NO3)                 | mg/l        | 0.5                     | 50                | 3.8          | 3.9                   | 2.8          | 4.5          | 8.5        | 3.1                   | 2.4          | 2.5          | 6.5          | 9.6                   |
| 33  | Zinc (as Zn)                    | mg/l        | 0.01                    | 15                | 0.01         | 0.02                  | 0.01         | 0.06         | 0.06       | 0.03                  | 0.01         | 0.01         | 0.02         | 0.07                  |

| S.  |                                                      |      | MDL<br>(Meth            | Toleran<br>ce              | Purna        | 09 US<br>River,<br>.239 | SW-(<br>Purna<br>Ch. | River,       | SW<br>Kachol Vil<br>Ch.: | lage Pond             | SW-12<br>Mindola<br>Ch.2 | River                | SW-1<br>Mindol<br>Ch. | a River               |
|-----|------------------------------------------------------|------|-------------------------|----------------------------|--------------|-------------------------|----------------------|--------------|--------------------------|-----------------------|--------------------------|----------------------|-----------------------|-----------------------|
| No. | Parameters                                           | Unit | Detect<br>ion<br>Limit) | Limit<br>as per<br>IS:2296 | Baselin<br>e | Cons.<br>Jan-<br>2023   | Baselin<br>e         | Baseli<br>ne | Baseline                 | Cons.<br>Jan-<br>2023 | Baselin<br>e             | Cons<br>Jan-<br>2023 | Baseli<br>ne          | Cons.<br>Jan-<br>2023 |
| 34  | Total<br>Chromium (as<br>Cr)                         | mg/l | 0.01                    | 0.05                       | BDL          | BDL                     | BDL                  | 0.03         | BDL                      | BDL                   | BDL                      | BDL                  | 0.02                  | BDL                   |
| 35  | Oil & Grease                                         | mg/l | 0.1                     | 0.1                        | BDL          | BDL                     | BDL                  | BDL          | BDL                      | BDL                   | BDL                      | BDL                  | BDL                   | BDL                   |
| 36  | Alkalinity (as CaCO3)                                | mg/l | 5                       | -                          | 88           | 172                     | 84                   | 388          | 368                      | 176                   | 64                       | 84                   | 400                   | 380                   |
| 37  | Lead (as Pb)                                         | mg/l | 0.01                    | 0.1                        | BDL          | BDL                     | BDL                  | 0.02         | BDL                      | BDL                   | BDL                      | BDL                  | 0.02                  | BDL                   |
| 38  | Total Arsenic<br>(as As)                             | mg/l | 0.001                   | 0.2                        | BDL          | BDL                     | BDL                  | BDL          | BDL                      | BDL                   | BDL                      | BDL                  | BDL                   | BDL                   |
| 39  | Phenolic<br>Compound                                 | mg/l | 0.001                   | 0.005                      | BDL          | BDL                     | BDL                  | BDL          | BDL                      | BDL                   | BDL                      | BDL                  | BDL                   | BDL                   |
| 40  | Anionic<br>Surface<br>Active<br>Detergent as<br>MBAS | mg/l | 0.05                    |                            | BDL          | BDL                     | BDL                  | BDL          | BDL                      | BDL                   | BDL                      | BDL                  | BDL                   | BDL                   |
| 41  | Sodium                                               | mg/l | 1                       |                            | 6.1          | 9.7                     | 6.4                  | 56.5         | 82.2                     | 9.1                   | 7.5                      | 9.8                  | 78                    | 78.9                  |
| 42  | Potasium                                             | mg/l | 1                       |                            | 2.4          | 6.6                     | 2.1                  | 25.4         | 38.6                     | 6.1                   | 1.8                      | 4.6                  | 28.5                  | 33.4                  |
| 43  | Total Kjheldal<br>Nitrogen (as<br>N)                 | mg/l | 1                       |                            | 3.1          | 4.6                     | 3.2                  | 24.2         | 24.8                     | 5.2                   | 4.7                      | 5.1                  | 26.7                  | 28.4                  |
| 44  | Mineral Oil                                          | mg/l | 0.1                     |                            | BDL          | BDL                     | BDL                  | BDL          | BDL                      | BDL                   | BDL                      | BDL                  | BDL                   | BDL                   |
| 45  | Total<br>Petroleum<br>Hydrocarbon                    | mg/l | 0.01                    |                            | BDL          | BDL                     | BDL                  | BDL          | BDL                      | BDL                   | BDL                      | BDL                  | BDL                   | BDL                   |
| 46  | Odour                                                |      |                         |                            | Odorles<br>s | Odorles<br>s            | Odorles<br>s         | Odorles<br>s | Odorless                 | Odorless              | Odorles<br>s             | Odorl<br>ess         | Odorle<br>ss          | Odorl<br>ess          |
|     |                                                      |      |                         |                            |              | Microl                  | biological           | Parameter    | r                        |                       |                          |                      |                       |                       |

| C         |                   |                   | MDL<br>(Meth            | Toleran<br>ce              | Purna        | 09 US<br>River,<br>239 | SW-0<br>Purna<br>Ch.: | River,       | SW Kachol Vill Ch.2 | lage Pond             | SW-12<br>Mindola<br>Ch.2 | River                | SW-1<br>Mindols<br>Ch. | a River               |
|-----------|-------------------|-------------------|-------------------------|----------------------------|--------------|------------------------|-----------------------|--------------|---------------------|-----------------------|--------------------------|----------------------|------------------------|-----------------------|
| S.<br>No. | Parameters        | Unit              | Detect<br>ion<br>Limit) | Limit<br>as per<br>IS:2296 | Baselin<br>e | Cons.<br>Jan-<br>2023  | Baselin<br>e          | Baseli<br>ne | Baseline            | Cons.<br>Jan-<br>2023 | Baselin<br>e             | Cons<br>Jan-<br>2023 | Baseli<br>ne           | Cons.<br>Jan-<br>2023 |
|           |                   |                   |                         |                            |              |                        |                       |              |                     |                       |                          |                      |                        |                       |
| 47        | Total<br>Coliform | MPN/<br>100<br>ML | 1                       | 500                        | 20           | 72                     | 24                    | 1600         | 968                 | 88                    | 30                       | 44                   | 1680                   | 1998                  |
| 48        | Fecal<br>Coliform | MPN/<br>100<br>ML | 1                       | -                          | 14           | 36                     | 16                    | 1202         | 456                 | 46                    | 16                       | 20                   | 1244                   | 1356                  |

# **Surface Water Quality Monitoring Contd...**

|     |                            |            |                     |                       | SW-1     | 13 US             | SW-1     | 13 DS             | SW                   | SW-1     | 14 DS             | SW-14<br>US             |
|-----|----------------------------|------------|---------------------|-----------------------|----------|-------------------|----------|-------------------|----------------------|----------|-------------------|-------------------------|
| S.  | Parameters                 | Unit       | MDL<br>(Method      | Tolerance<br>Limit as | Tapi Riv | er Ch.276         | Tapi Riv | er Ch.276         | Mohni Pond<br>Ch.260 | Kim Rive | er, Ch.293        | Kim<br>River,<br>Ch.293 |
| No. |                            |            | Detection<br>Limit) | per<br>IS:2296        | Baseline | Cons.<br>Jan-2023 | Baseline | Cons.<br>Jan-2023 | Baseline             | Baseline | Cons.<br>Jan-2023 | Baseline                |
| 1   | Temperature                | С          | 1                   | -                     | 27.6     | 29                | 27.4     | 29                | 28.1                 | 19.8     | 25                | 25                      |
| 2   | Salinity                   | %          | 0.0003              | -                     | 0.0119   | 0.0123            | 0.0117   | 0.0128            | 0.0124               | 0.1122   | 0.0963            | 0.0945                  |
| 3   | Nitrite(as No2)            | mg/l       | 0.1                 |                       | BDL      | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 4   | Total Suspended<br>Solid   | mg/l       | 5                   |                       | BDL      | BDL               | BDL      | BDL               | 5.8                  | 7.7      | 8.2               | 8                       |
| 5   | Sodium Absorbance<br>Ratio | (meq/l)1/2 |                     | 26                    | 0.3025   | 0.3673            | 0.3151   | 0.347             | 0.1251               | 1.726    | 1.6942            | 1.6857                  |
| 6   | Boron (as B)               | mg/l       | 0.05                | 2                     | 0.08     | 0.1               | 0.09     | 0.12              | 0.12                 | 0.68     | 0.72              | 0.71                    |
| 7   | Free Ammonia               | mg/l       | 0.1                 | 1.2                   | BDL      | BDL               | BDL      | BDL               | BDL                  | 0.24     | 0.26              | 0.27                    |

|           |                           |         |                             |                       | SW-1      | 13 US             | SW-1     | 13 DS             | sw                   | SW-1     | 14 DS             | SW-14<br>US             |
|-----------|---------------------------|---------|-----------------------------|-----------------------|-----------|-------------------|----------|-------------------|----------------------|----------|-------------------|-------------------------|
| S.<br>No. | Parameters                | Unit    | MDL<br>(Method<br>Detection | Tolerance<br>Limit as | Tapi Rive | er Ch.276         | Tapi Riv | er Ch.276         | Mohni Pond<br>Ch.260 | Kim Rive | er, Ch.293        | Kim<br>River,<br>Ch.293 |
| 140.      |                           |         | Limit)                      | per<br>IS:2296        | Baseline  | Cons.<br>Jan-2023 | Baseline | Cons.<br>Jan-2023 | Baseline             | Baseline | Cons.<br>Jan-2023 | Baseline                |
| 8         | Mangnese (as Mn)          | mg/l    | 0.01                        | -                     | 0.12      | 0.12              | 0.14     | 0.13              | BDL                  | BDL      | BDL               | BDL                     |
| 9         | Mercury (as Hg)           | mg/l    | 0.001                       | 1                     | BDL       | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 10        | Selenium (as Se)          | mg/l    | 0.001                       | 0.05                  | BDL       | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 11        | Cyanide (as CN)           | mg/l    | 0.001                       | 0.05                  | BDL       | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 12        | Nickel (as Ni)            | mg/l    | 0.01                        | 1                     | BDL       | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 13        | Silver (as Ag)            | mg/l    | 0.01                        | 1                     | BDL       | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 14        | Barium (As Ba)            | mg/l    | 0.01                        | 1                     | BDL       | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 15        | Colour                    | Hazen   | 5                           | 1                     | BDL       | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 16        | Turbidity                 | NTU     | 1                           | 1                     | 2         | 3                 | 2        | 4                 | 3                    | 13       | 9                 | 6                       |
| 17        | pH(Lab)                   | ı       | 1                           | 8.5                   | 8.42      | 7.81              | 8.21     | 7.74              | 7.81                 | 7.01     | 6.93              | 7.09                    |
| 17        | pH(site)                  |         |                             | 8.5                   | 8.4       | 7.8               | 8.3      | 7.7               | 7.8                  | 7.1      | 6.9               | 7.1                     |
| 18        | DO                        | mg/l    | 0.1                         | Minimum-<br>4         | 8.1       | 7.5               | 7.9      | 7.4               | 7.3                  | 3.2      | 4.4               | 4.6                     |
| 19        | BOD                       | mg/l    | 0.2                         | 3                     | 1.8       | 2.2               | 2.1      | 2.8               | 1.2                  | 19.5     | 24.8              | 22.4                    |
| 20        | COD                       | mg/l    | 0.4                         | -                     | 4         | 5.4               | 6        | 8                 | 8                    | 88       | 160               | 152                     |
| 21        | Total Hardness (as CaCO3) | mg/l    | 5                           | 1                     | 266       | 236               | 244      | 256               | 246                  | 640      | 688               | 676                     |
| 22        | Iron (as Fe)              | mg/l    | 0.01                        | 50                    | 0.31      | 0.33              | 0.32     | 0.35              | 0.06                 | 0.11     | 0.15              | 0.13                    |
| 23        | Chlorides (as Cl)         | mg/l    | 2                           | 600                   | 66        | 67.9              | 65       | 70.9              | 68.9                 | 621      | 532.9             | 522.9                   |
| 24        | Fluoride (as F)           | mg/l    | 0.1                         | 1.5                   | 0.41      | 0.43              | 0.46     | 0.48              | 0.29                 | 0.65     | 0.66              | 0.59                    |
| 25        | Conductivity              | umho/cm | 2                           | -                     | 624       | 710               | 685      | 730               | 618                  | 2859     | 2890              | 2883                    |
| 26        | TDS                       | mg/l    | 5                           | 1500                  | 387       | 426               | 425      | 438               | 371                  | 1773     | 1754              | 1730                    |
| 27        | Calcium(as Ca2+)          | mg/l    | 2                           | -                     | 52        | 54.2              | 56       | 62.8              | 56.4                 | 120      | 136.6             | 136                     |

|           |                                          |      |                             |                       | SW-1     | 13 US             | SW-1     | 13 DS             | SW                   | SW-      | 14 DS             | SW-14<br>US             |
|-----------|------------------------------------------|------|-----------------------------|-----------------------|----------|-------------------|----------|-------------------|----------------------|----------|-------------------|-------------------------|
| S.<br>No. | Parameters                               | Unit | MDL<br>(Method<br>Detection | Tolerance<br>Limit as | Tapi Riv | er Ch.276         | Tapi Riv | er Ch.276         | Mohni Pond<br>Ch.260 | Kim Riv  | er, Ch.293        | Kim<br>River,<br>Ch.293 |
| 140.      |                                          |      | Limit)                      | per<br>IS:2296        | Baseline | Cons.<br>Jan-2023 | Baseline | Cons.<br>Jan-2023 | Baseline             | Baseline | Cons.<br>Jan-2023 | Baseline                |
| 28        | Magnesium (as<br>Mg2+)                   | mg/l | 2                           | -                     | 33.05    | 24.42             | 25.27    | 24.06             | 25.52                | 82.62    | 84.2              | 81.65                   |
| 29        | Cadmium                                  | mg/l | 0.002                       | 0.01                  | BDL      | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 30        | Copper (as Cu)                           | mg/l | 0.01                        | 1.5                   | BDL      | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 31        | Sulphate (as SO4)                        | mg/l | 2                           | 400                   | 32.1     | 34.9              | 36.5     | 36.8              | 37.4                 | 98.5     | 132.4             | 128.9                   |
| 32        | Nitrate(as NO3)                          | mg/l | 0.5                         | 50                    | 5.8      | 6.5               | 5.5      | 6.8               | 2.4                  | 9.5      | 16.8              | 14.9                    |
| 33        | Zinc (as Zn)                             | mg/l | 0.01                        | 15                    | 0.01     | 0.02              | 0.02     | 0.03              | 0.04                 | 0.12     | 0.15              | 0.13                    |
| 34        | Total Chromium (as<br>Cr)                | mg/l | 0.01                        | 0.05                  | BDL      | BDL               | BDL      | BDL               | 0.01                 | 0.02     | 0.02              | 0.01                    |
| 35        | Oil & Grease                             | mg/l | 0.1                         | 0.1                   | BDL      | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 36        | Alkalinity (as<br>CaCO3)                 | mg/l | 5                           | -                     | 202      | 228               | 220      | 230               | 168                  | 480      | 540               | 536                     |
| 37        | Lead (as Pb)                             | mg/l | 0.01                        | 0.1                   | 0.08     | 0.11              | 0.1      | 0.12              | BDL(MDL-<br>0.01)    | 0.05     | 0.06              | 0.04                    |
| 38        | Total Arsenic (as As)                    | mg/l | 0.001                       | 0.2                   | BDL      | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 39        | Phenolic Compound                        | mg/l | 0.001                       | 0.005                 | BDL      | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 40        | Anionic Surface Active Detergent as MBAS | mg/l | 0.05                        |                       | BDL      | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |
| 41        | Sodium                                   | mg/l | 1                           |                       | 32.2     | 36.8              | 32.1     | 36.2              | 12.8                 | 285      | 290               | 286                     |
| 42        | Potassium                                | mg/l | 1                           |                       | 4.2      | 6.9               | 14.5     | 16.4              | 4.8                  | 144      | 146               | 142                     |
| 43        | Total Kjheldal<br>Nitrogen (as N)        | mg/l | 1                           |                       | 13.2     | 13.8              | 15.2     | 15.8              | 2.2                  | 38.8     | 28.2              | 26.4                    |
| 44        | Mineral Oil                              | mg/l | 0.1                         |                       | BDL      | BDL               | BDL      | BDL               | BDL                  | BDL      | BDL               | BDL                     |

|           |                                |               |                             |                       | SW-1        | 13 US             | SW-1      | 13 DS             | SW                   | SW-1      | 14 DS             | SW-14<br>US             |
|-----------|--------------------------------|---------------|-----------------------------|-----------------------|-------------|-------------------|-----------|-------------------|----------------------|-----------|-------------------|-------------------------|
| S.<br>No. | Parameters                     | Unit          | MDL<br>(Method<br>Detection | Tolerance<br>Limit as | Tapi Rive   | er Ch.276         | Tapi Riv  | er Ch.276         | Mohni Pond<br>Ch.260 | Kim Rive  | er, Ch.293        | Kim<br>River,<br>Ch.293 |
| NO.       |                                |               | Limit)                      | per<br>IS:2296        | Baseline    | Cons.<br>Jan-2023 | Baseline  | Cons.<br>Jan-2023 | Baseline             | Baseline  | Cons.<br>Jan-2023 | Baseline                |
| 45        | Total Petroleum<br>Hydrocarbon | mg/l          | 0.01                        |                       | BDL         | BDL               | BDL       | BDL               | BDL                  | BDL       | BDL               | BDL                     |
| 46        | Odour                          |               |                             |                       | Odourless   | Odourless         | Odourless | Odourless         | Odourless            | Odourless | Odourless         | Odourless               |
|           |                                |               |                             | M                     | licrobiolog | ical Parar        | neter     |                   |                      |           |                   |                         |
| 47        | Total Coliform                 | MPN/100<br>ML | 1                           | 500                   | 420         | 468               | 460       | 490               | 196                  | 4800      | 5210              | 5080                    |
| 48        | Fecal Coliform                 | MPN/100<br>ML | 1                           | -                     | 322         | 328               | 340       | 336               | 72                   | 3640      | 3730              | 3650                    |

## **Surface water Quality Monitoring contd...**

|         |                            |                | MDL                     | Tolera                | SW-               | 15                    | SW-            | 16                    | SW-            | 17                    | SW                | -18                   |
|---------|----------------------------|----------------|-------------------------|-----------------------|-------------------|-----------------------|----------------|-----------------------|----------------|-----------------------|-------------------|-----------------------|
| S.      | D.                         | <b>T</b> T •4  | (Metho<br>d             | nce<br>Limit          | Navi Nagi<br>Ch.2 |                       | Hoziwa<br>Ch.2 |                       | Kimaml<br>Ch.2 |                       | Kuwardi<br>Pond ( |                       |
| N<br>0. | Parameters                 | Unit           | Detecti<br>on<br>Limit) | as per<br>IS:229<br>6 | Baseline          | Cons.<br>Jan-<br>2023 | Baseline       | Cons.<br>Jan-<br>2023 | Baseline       | Cons.<br>Jan-<br>2023 | Baseline          | Cons.<br>Jan-<br>2023 |
| 1       | Temperature                | С              | 1                       | -                     | 29.8              | 30                    | 30.1           | 29                    | 29.9           | 26                    | 26.2              | 25                    |
| 2       | Salinity                   | %              | 0.0003                  | -                     | 0.0350            | 0.0356                | 0.0083         | 0.0106                | 0.0153         | 0.0157                | 0.0253            | 0.0263                |
| 3       | Nitrite(as No2)            | mg/l           | 0.1                     |                       | BDL               | BDL                   | BDL            | BDL                   | BDL            | BDL                   | BDL               | BDL                   |
| 4       | Total Suspended Solid      | mg/l           | 5                       |                       | 8.5               | 12.8                  | BDL            | 5.8000                | BDL            | BDL                   | BDL               | BDL                   |
| 5       | Sodium Absorbance<br>Ratio | (meq/l)<br>1/2 |                         | 26                    | 0.2549            | 0.2699                | 0.1478         | 0.1520                | 0.5136         | 0.4918                | 0.7274            | 0.7467                |
| 6       | Boron (as B)               | mg/l           | 0.05                    | 2                     | 0.21              | 0.36                  | 0.05           | 0.06                  | 0.11           | 0.14                  | 0.12              | 0.12                  |
| 7       | Free Ammonia               | mg/l           | 0.1                     | 1.2                   | 0.3200            | 0.4800                | BDL            | BDL                   | BDL            | BDL                   | 0.2600            | 0.2800                |
| 8       | Mangnese (as Mn)           | mg/l           | 0.01                    | -                     | BDL               | BDL                   | BDL            | BDL                   | BDL            | BDL                   | BDL               | BDL                   |

| S. |                              |             | MDL<br>(Metho | Tolera<br>nce   | SW-1     | ri Pond      | SW-<br>Hoziwal | Pond         | SW-<br>Kimaml | i Pond       | SW<br>Kuwardi | na Gram         |
|----|------------------------------|-------------|---------------|-----------------|----------|--------------|----------------|--------------|---------------|--------------|---------------|-----------------|
| N  | Parameters                   | Unit        | d<br>Detecti  | Limit<br>as per | Ch.2     | Cons.        | Ch.2           | Cons.        | Ch.2          | Cons.        | Pond (        | Ch.295<br>Cons. |
| 0. |                              |             | on<br>Limit)  | IS:229<br>6     | Baseline | Jan-<br>2023 | Baseline       | Jan-<br>2023 | Baseline      | Jan-<br>2023 | Baseline      | Jan-<br>2023    |
| 9  | Mercury (as Hg)              | mg/l        | 0.001         | -               | BDL      | BDL          | BDL            | BDL          | BDL           | BDL          | BDL           | BDL             |
| 10 | Selenium (as Se)             | mg/l        | 0.001         | 0.05            | BDL      | BDL          | BDL            | BDL          | BDL           | BDL          | BDL           | BDL             |
| 11 | Cyanide (as CN)              | mg/l        | 0.001         | 0.05            | BDL      | BDL          | BDL            | BDL          | BDL           | BDL          | BDL           | BDL             |
| 12 | Nickel ( as Ni)              | mg/l        | 0.01          | -               | BDL      | BDL          | BDL            | BDL          | BDL           | BDL          | BDL           | BDL             |
| 13 | Silver (as Ag)               | mg/l        | 0.01          | -               | BDL      | BDL          | BDL            | BDL          | BDL           | BDL          | BDL           | BDL             |
| 14 | Barium (As Ba)               | mg/l        | 0.01          | -               | BDL      | BDL          | BDL            | BDL          | BDL           | BDL          | BDL           | BDL             |
| 15 | Colour                       | Hazen       | 5             | -               | BDL      | BDL          | BDL            | BDL          | BDL           | BDL          | BDL           | BDL             |
| 16 | Turbidity                    | NTU         | 1             | -               | 11       | 30           | 2              | 3            | 2             | 3            | 16            | 18              |
| 17 | pH(Lab)                      | -           | 1             | 8.5             | 7.31     | 8.86         | 8.02           | 8.21         | 7.1           | 7.44         | 7.52          | 7.73            |
| 17 | pH(site)                     |             |               | 8.5             | 7.3      | 8.9          | 8              | 8.2          | 7.1           | 7.4          | 7.5           | 7.7             |
| 18 | DO                           | mg/l        | 0.1           | Minim<br>um-4   | 4.9      | 1.2          | 7.1            | 7.4          | 7             | 7.2          | 2.9           | 3.9             |
| 19 | BOD                          | mg/l        | 0.2           | 3               | 11.5     | 18.4         | 9.8            | 2            | 2.6           | 1.8          | 19.9          | 20              |
| 20 | COD                          | mg/l        | 0.4           | -               | 44       | 76           | 32             | 8            | 12            | 10           | 88            | 92              |
| 21 | Total Hardness (as<br>CaCO3) | mg/l        | 5             | -               | 522      | 558          | 160            | 188          | 200           | 230          | 210           | 222             |
| 22 | Iron (as Fe)                 | mg/l        | 0.01          | 50              | 0.19     | 0.38         | 0.65           | 0.68         | 3.1           | 3.2          | 0.15          | 0.18            |
| 23 | Chlorides (as Cl)            | mg/l        | 2             | 600             | 194      | 196.9        | 46             | 58.9         | 84.5          | 86.9         | 140           | 145.5           |
| 24 | Fluoride (as F)              | mg/l        | 0.1           | 1.5             | 0.45     | 0.49         | 0.59           | 0.61         | 0.62          | 0.65         | 0.95          | 0.96            |
| 25 | Conductivity                 | umho/c<br>m | 2             | -               | 1302     | 1400         | 384            | 455          | 644           | 687          | 778           | 818             |
| 26 | TDS                          | mg/l        | 5             | 1500            | 807      | 840          | 238            | 273          | 399           | 412          | 482           | 491             |
| 27 | Calcium(as Ca2+)             | mg/l        | 2             | -               | 112      | 116.4        | 32             | 36.6         | 40            | 68.6         | 60            | 64.6            |
| 28 | Magnesium (as Mg2+)          | mg/l        | 2             | -               | 58.81    | 64.88        | 19.44          | 23.45        | 24.30         | 14.22        | 14.58         | 14.70           |
| 29 | Cadmium                      | mg/l        | 0.002         | 0.01            | BDL      | BDL          | BDL            | BDL          | BDL           | BDL          | BDL           | BDL             |
| 30 | Copper (as Cu)               | mg/l        | 0.01          | 1.5             | BDL      | BDL          | BDL            | BDL          | BDL           | BDL          | BDL           | BDL             |
| 31 | Sulphate (as SO4)            | mg/l        | 2             | 400             | 94.2     | 96.4         | 24.2           | 26.8         | 36.2          | 38.2         | 29.5          | 30.1            |
| 32 | Nitrate(as NO3)              | mg/l        | 0.5           | 50              | 7.8      | 8.2          | 6.1            | 6.3          | 2.5           | 2.7          | 3.1           | 3.2             |

|         |                                                |                | MDL                     | Tolera                | SW-              | 15                    | SW            | -16                   | SW           | -17                   | SW             | <b>-18</b>            |
|---------|------------------------------------------------|----------------|-------------------------|-----------------------|------------------|-----------------------|---------------|-----------------------|--------------|-----------------------|----------------|-----------------------|
| S.<br>N | Parameters                                     | Unit           | (Metho<br>d             | nce<br>Limit          | Navi Nag<br>Ch.2 |                       | Hoziwa<br>Ch. |                       | Kimam<br>Ch. |                       | Kuward<br>Pond | ha Gram<br>Ch.295     |
| 0.      | 1 at affects                                   | Cint           | Detecti<br>on<br>Limit) | as per<br>IS:229<br>6 | Baseline         | Cons.<br>Jan-<br>2023 | Baseline      | Cons.<br>Jan-<br>2023 | Baseline     | Cons.<br>Jan-<br>2023 | Baseline       | Cons.<br>Jan-<br>2023 |
| 33      | Zinc (as Zn)                                   | mg/l           | 0.01                    | 15                    | 0.12             | 0.26                  | 0.14          | 0.15                  | 0.18         | 0.19                  | 0.14           | 0.16                  |
| 34      | Total Chromium (as<br>Cr)                      | mg/l           | 0.01                    | 0.05                  | 0.02             | 0.06                  | 0.01          | BDL                   | 0.02         | 0.02                  | 0.01           | 0.01                  |
| 35      | Oil & Grease                                   | mg/l           | 0.1                     | 0.1                   | BDL              | BDL                   | BDL           | BDL                   | BDL          | BDL                   | BDL            | BDL                   |
| 36      | Alkalinity (as CaCO3)                          | mg/l           | 5                       | -                     | 266              | 298                   | 122           | 126                   | 192          | 188                   | 180            | 182                   |
| 37      | Lead (as Pb)                                   | mg/l           | 0.01                    | 0.1                   | 0.07             | 0.09                  | 0.13          | 0.1                   | BDL          | BDL                   | 0.09           | 0.1                   |
| 38      | Total Arsenic (as As)                          | mg/l           | 0.001                   | 0.2                   | BDL              | BDL                   | BDL           | BDL                   | BDL          | BDL                   | BDL            | BDL                   |
| 39      | Phenolic Compound                              | mg/l           | 0.001                   | 0.005                 | BDL              | BDL                   | BDL           | BDL                   | BDL          | BDL                   | BDL            | BDL                   |
| 40      | Anionic Surface<br>Active Detergent as<br>MBAS | mg/l           | 0.05                    |                       | BDL              | BDL                   | BDL           | BDL                   | BDL          | BDL                   | BDL            | BDL                   |
| 41      | Sodium                                         | mg/l           | 1                       |                       | 38               | 41.6                  | 12.2          | 13.6                  | 47.4         | 48.6                  | 68.7           | 72.5                  |
| 42      | Potassium                                      | mg/l           | 1                       |                       | 16               | 19.6                  | 5.2           | 6.8                   | 19.5         | 22.3                  | 28.4           | 32.6                  |
| 43      | Total Kjheldal<br>Nitrogen (as N)              | mg/l           | 1                       |                       | 35.8             | 42.8                  | 9.9           | 9.6                   | 12.2         | 12                    | 59.5           | 59.8                  |
| 44      | Mineral Oil                                    | mg/l           | 0.1                     |                       | BDL              | BDL                   | BDL           | BDL                   | BDL          | BDL                   | BDL            | BDL                   |
| 45      | Total Petroleum<br>Hydrocarbon                 | mg/l           | 0.01                    |                       | BDL              | BDL                   | BDL           | BDL                   | BDL          | BDL                   | BDL            | BDL                   |
| 46      | Odour                                          |                |                         |                       | Odorless         | Odorless              | Odorless      | Odorless              | Odorless     | Odorless              | Odorless       | Odorless              |
|         |                                                |                |                         |                       | Microb           | iological Pa          | arameter      |                       |              |                       |                |                       |
| 47      | Total Coliform                                 | MPN/1<br>00 ML | 1                       | 500                   | 3400             | 4140                  | 480           | 486                   | 560          | 590                   | 5650           | 5740                  |
| 48      | Fecal Coliform                                 | MPN/1<br>00 ML | 1                       | -                     | 2440             | 2668                  | 280           | 282                   | 320          | 340                   | 4840           | 4910                  |

**Surface Water quality Monitoring Contd...** 

|          | rtace Water qual              | ity ivionit    | oring C | ontu                          | SW-1          | .9 US                 | SW-                   | 19 DS             | SW-21 US                        | SW-          | 21 DS                 | SW           | -22 DS               | SW-22<br>US                     |
|----------|-------------------------------|----------------|---------|-------------------------------|---------------|-----------------------|-----------------------|-------------------|---------------------------------|--------------|-----------------------|--------------|----------------------|---------------------------------|
| S.<br>No | Parameters                    | Unit           | MDL     | Toleranc<br>e Limit<br>as per | Narmad<br>Ch. | /                     |                       | la River,<br>.320 | Vishwamitr<br>a River<br>Ch.376 |              | vamitra<br>Ch.376     |              | nitra River<br>h.380 | Vishwami<br>tra River<br>Ch.380 |
| •        |                               |                |         | IS:2296                       | Baselin<br>e  | Cons.<br>Jan-<br>2023 | Cons.<br>Jan-<br>2023 | Baselin<br>e      | Cons. Jan-<br>2023              | Baseli<br>ne | Cons.<br>Jan-<br>2023 | Baseli<br>ne | Cons.<br>Jan-2023    | Cons.<br>Jan-2023               |
| 1        | Temperature                   | С              | 1       | -                             | 28.4          | 29.1                  | 29.6                  | 28.6              | 29.2                            | 26           | 29.5                  | 36.1         | 29.4                 | 29.5                            |
| 2        | Salinity                      | %              | 0.000   | -                             | 0.0095        | 0.0150                | 0.0257                | 0.0087            | 0.0161                          | 0.038        | 0.0265                | 0.033        | 0.0316               | 0.0305                          |
| 3        | Nitrite(as No2)               | mg/l           | 0.1     |                               | BDL           | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | 0.16         | BDL                  | BDL                             |
| 4        | Total Suspended<br>Solid      | mg/l           | 5       |                               | BDL           | 6.2000                | 12.2000               | BDL               | 6.8000                          | 9            | 12.4000               | 8            | 9.6000               | 9.2000                          |
| 5        | Sodium<br>Absorbance<br>Ratio | (meq/l)<br>1/2 |         | 26                            | 0.2508        | 0.1831                | 0.5596                | 0.2686            | 0.1870                          | 1.0866       | 0.5404                | 1.4589       | 0.5665               | 0.5757                          |
| 6        | Boron (as B)                  | mg/l           | 0.05    | 2                             | 0.1200        | 0.1800                | 0.16                  | 0.12              | 0.21                            | 0.11         | 0.18                  | 0.09         | 0.17                 | 0.15                            |
| 7        | Free Ammonia                  | mg/l           | 0.1     | 1.2                           | BDL           | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 8        | Mangnese (as Mn)              | mg/l           | 0.01    | -                             | BDL           | BDL                   | 0.11                  | BDL               | 0.05                            | 0.06         | 0.12                  | 11.2         | 0.13                 | 0.12                            |
| 9        | Mercury (as Hg)               | mg/l           | 0.001   | -                             | BDL           | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 10       | Selenium (as<br>Se)           | mg/l           | 0.001   | 0.05                          | BDL           | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 11       | Cyanide (as CN)               | mg/l           | 0.001   | 0.05                          | BDL           | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 12       | Nickel (as Ni)                | mg/l           | 0.01    | -                             | BDL           | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 13       | Silver (as Ag)                | mg/l           | 0.01    | -                             | BDL           | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 14       | Barium (As Ba)                | mg/l           | 0.01    | -                             | BDL           | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 15       | 0                             | Hazen          | 5       | -                             | BDL           | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 16<br>17 | Turbidity                     | NTU            | 1       | - 0 5                         | 0.42          | 7.56                  | 81                    | 2                 | 5                               | 16<br>7.82   | 109                   | 7.72         | 81                   | 80<br>7.11                      |
| 17       | pH(Lab)<br>pH(site)           | -              | 1       | 8.5<br>8.5                    | 8.42<br>8.4   | 7.56                  | 6.93<br>6.9           | 8.53<br>8.5       | 7.44<br>7.5                     | 7.82         | 7.05<br>7.1           | 7.7          | 6.82<br>6.8          | 7.11                            |
| 18       | DO                            | mg/l           | 0.1     | Minimu<br>m-4                 | 8.6           | 7.2                   | 4.2                   | 8.5               | 7.1                             | 6.2          | 4.1                   | 6.3          | 4.3                  | 4.1                             |
| 19       | BOD                           | mg/l           | 0.2     | 3                             | BDL           | 1.6                   | 36.4                  | BDL               | 2.2                             | 24           | 38.6                  | 26           | 42                   | 38.8                            |

|          |                           |             |       |                               | SW-1             | 9 US                  | SW-                   | 19 DS             | SW-21 US                        | SW-          | 21 DS                 | SW           | -22 DS               | SW-22<br>US                     |
|----------|---------------------------|-------------|-------|-------------------------------|------------------|-----------------------|-----------------------|-------------------|---------------------------------|--------------|-----------------------|--------------|----------------------|---------------------------------|
| S.<br>No | Parameters                | Unit        | MDL   | Toleranc<br>e Limit<br>as per | Narmad<br>Ch.    |                       |                       | da River,<br>.320 | Vishwamitr<br>a River<br>Ch.376 |              | vamitra<br>Ch.376     |              | nitra River<br>h.380 | Vishwami<br>tra River<br>Ch.380 |
| •        |                           |             |       | IS:2296                       | Baselin<br>e     | Cons.<br>Jan-<br>2023 | Cons.<br>Jan-<br>2023 | Baselin<br>e      | Cons. Jan-<br>2023              | Baseli<br>ne | Cons.<br>Jan-<br>2023 | Baseli<br>ne | Cons.<br>Jan-2023    | Cons.<br>Jan-2023               |
| 20       | COD                       | mg/l        | 0.4   | -                             | BDL(M<br>DL-0.4) | 8                     | 196                   | BDL(M<br>DL-0.4)  | 12                              | 120          | 208                   | 128          | 296                  | 280                             |
| 21       | Total Hardness (as CaCO3) | mg/l        | 5     | -                             | 128              | 656                   | 352                   | 124               | 710                             | 296          | 360                   | 290          | 386                  | 384                             |
| 22       | Iron (as Fe)              | mg/l        | 0.01  | 50                            | 0.08             | 0.04                  | 0.28                  | 0.06              | 0.03                            | 0.65         | 0.32                  | 0.45         | 0.36                 | 0.35                            |
| 23       | Chlorides (as<br>Cl)      | mg/l        | 2     | 600                           | 52.5             | 82.9                  | 142.5                 | 48.2              | 88.9                            | 212          | 146.8                 | 188          | 174.9                | 168.9                           |
| 24       | Fluoride (as F)           | mg/l        | 0.1   | 1.5                           | 0.18             | 0.1                   | 0.82                  | 0.15              | 0.12                            | 0.68         | 0.84                  | 0.75         | 0.78                 | 0.72                            |
| 25       | Conductivity              | umho/c<br>m | 2     | -                             | 328              | 1927                  | 1014                  | 326               | 1992                            | 1088         | 1023                  | 1184         | 1005                 | 1002                            |
| 26       | TDS                       | mg/l        | 5     | 1500                          | 198              | 1156                  | 610                   | 195               | 1195                            | 643          | 613                   | 718          | 603                  | 601                             |
| 27       | Calcium(as<br>Ca2+)       | mg/l        | 2     | -                             | 32               | 138.4                 | 74.6                  | 32                | 156.4                           | 57.7         | 76.8                  | 72           | 86.4                 | 82.6                            |
| 28       | Magnesium (as Mg2+)       | mg/l        | 2     | -                             | 11.66            | 75.33                 | 40.22                 | 10.69             | 77.52                           | 36.87        | 40.82                 | 26.73        | 41.31                | 43.13                           |
| 29       | Cadmium                   | mg/l        | 0.002 | 0.01                          | BDL              | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 30       | Copper (as Cu)            | mg/l        | 0.01  | 1.5                           | BDL              | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 31       | Sulphate (as SO4)         | mg/l        | 2     | 400                           | 19.9             | 34.6                  | 92.4                  | 22.5              | 36.5                            | 19.5         | 95.6                  | 22.5         | 86.2                 | 82.3                            |
| 32       | Nitrate(as NO3)           | mg/l        | 0.5   | 50                            | 4.9              | 7.8                   | 13.9                  | 4.5               | 8.3                             | 9.5          | 14.5                  | 11.2         | 12.6                 | 9.8                             |
| 33       | Zinc (as Zn)              | mg/l        | 0.01  | 15                            | 0.03             | 0.12                  | 0.13                  | 0.02              | 0.15                            | 0.12         | 0.15                  | 0.16         | 0.18                 | 0.14                            |
| 34       | Total Chromium (as Cr)    | mg/l        | 0.01  | 0.05                          | BDL              | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 35       | Oil & Grease              | mg/l        | 0.1   | 0.1                           | BDL              | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 36       | Alkalinity (as<br>CaCO3)  | mg/l        | 5     | -                             | 84               | 598                   | 218                   | 88                | 616                             | 228          | 220                   | 240          | 256                  | 244                             |
| 37       | Lead (as Pb)              | mg/l        | 0.01  | 0.1                           | BDL              | BDL                   | 0.09                  | BDL               | BDL                             | BDL          | 0.11                  | BDL          | 0.18                 | 0.05                            |
| 38       | Total Arsenic<br>(as As)  | mg/l        | 0.001 | 0.2                           | BDL              | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |

|          |                                                   |                |       |                               | SW-1         | 19 US                 | SW-                   | 19 DS             | SW-21 US                        | SW-          | 21 DS                 | SW           | -22 DS               | SW-22<br>US                     |
|----------|---------------------------------------------------|----------------|-------|-------------------------------|--------------|-----------------------|-----------------------|-------------------|---------------------------------|--------------|-----------------------|--------------|----------------------|---------------------------------|
| S.<br>No | Parameters                                        | Unit           | MDL   | Toleranc<br>e Limit<br>as per |              | la River,<br>320      |                       | la River,<br>.320 | Vishwamitr<br>a River<br>Ch.376 |              | vamitra<br>Ch.376     |              | nitra River<br>1.380 | Vishwami<br>tra River<br>Ch.380 |
| ٠        |                                                   |                |       | IS:2296                       | Baselin<br>e | Cons.<br>Jan-<br>2023 | Cons.<br>Jan-<br>2023 | Baselin<br>e      | Cons. Jan-<br>2023              | Baseli<br>ne | Cons.<br>Jan-<br>2023 | Baseli<br>ne | Cons.<br>Jan-2023    | Cons.<br>Jan-2023               |
| 39       | Phenolic<br>Compound                              | mg/l           | 0.001 | 0.005                         | BDL          | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 40       | Anionic<br>Surface Active<br>Detergent as<br>MBAS | mg/l           | 0.05  |                               | BDL          | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 41       | Sodium                                            | mg/l           | 1     |                               | 18.5         | 30.6                  | 68.5                  | 19.5              | 32.5                            | 122          | 66.9                  | 162          | 72.6                 | 73.6                            |
| 42       | Potassium                                         | mg/l           | 1     |                               | 8.7          | 15.1                  | 40.2                  | 9.4               | 16.3                            | 39.5         | 38.7                  | 38.4         | 36.9                 | 38.7                            |
| 43       | Total Kjheldal<br>Nitrogen (as N)                 | mg/l           | 1     |                               | 2.8          | 9.8                   | 20.8                  | 2.4               | 12.6                            | 86.5         | 21.6                  | 74.2         | 22.8                 | 20.6                            |
| 44       | Mineral Oil                                       | mg/l           | 0.1   |                               | BDL          | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 45       | Total Petroleum<br>Hydrocarbon                    | mg/l           | 0.01  |                               | BDL          | BDL                   | BDL                   | BDL               | BDL                             | BDL          | BDL                   | BDL          | BDL                  | BDL                             |
| 46       | Odour                                             |                |       |                               | Odorles<br>s | Odorles<br>s          | Unplea sant           | Odorles<br>s      | Odorless                        | Odorle<br>ss | Unpleasa<br>nt        | Odorle<br>ss | Unpleasa<br>nt       | Unpleasan<br>t                  |
|          |                                                   |                | •     |                               |              | M                     | icrobiolog            | ical Param        | eter                            |              |                       |              |                      |                                 |
| 47       | Total Coliform                                    | MPN/1<br>00 ML | 1     | 500                           | 32           | 482                   | 3426                  | 36                | 560                             | 2200         | 3684                  | 1800         | 3810                 | 3650                            |
| 48       | Fecal Coliform                                    | MPN/1<br>00 ML | 1     | -                             | 20           | 194                   | 1050                  | 22                | 298                             | 1400         | 1156                  | 1200         | 2130                 | 1980                            |

## **Surface Water Quality Monitoring contd...**

|         |                              |                |                            | T. 1                   | SW-2     | 23 DS              | SW-23 US                       | SW-      | 24 DS              | SW-      | 24 US              |
|---------|------------------------------|----------------|----------------------------|------------------------|----------|--------------------|--------------------------------|----------|--------------------|----------|--------------------|
| S.<br>N | Parameters                   | Unit           | MDL<br>(Method<br>Detectio | Toleran<br>ce<br>Limit |          | itra River<br>.388 | Vishwamitra<br>River<br>Ch.388 |          | iver Ch.373        | Dharda R | iver Ch.373        |
| 0.      |                              |                | n Limit)                   | as per<br>IS:2296      | Baseline | Cons. Jan-<br>2023 | Cons. Jan-<br>2023             | Baseline | Cons. Jan-<br>2023 | Baseline | Cons. Jan-<br>2023 |
| 1       | Temperature                  | С              | 1                          | -                      | 35       | 29.6               | 29.5                           | 28.7     | 26                 | 27.9     | 26                 |
| 2       | Salinity                     | %              | 0.0003                     | -                      | 0.053    | 0.0156             | 0.0146                         | 0.0195   | 0.0211             | 0.0202   | 0.0208             |
| 3       | Nitrite(as No2)              | mg/l           | 0.1                        |                        | 0.12     | BDL                | BDL                            | BDL      | BDL                | BDL      | BDL                |
| 4       | Total Suspended<br>Solid     | mg/l           | 5                          |                        | 92       | BDL                | BDL                            | BDL      | 12.0000            | BDL      | 10.0000            |
| 5       | Sodium<br>Absorbance Ratio   | (meq/<br>1)1/2 |                            | 26                     | 1.1222   | 0.2568             | 0.2908                         | 0.3626   | 0.3410             | 0.3428   | 0.3433             |
| 6       | Boron (as B)                 | mg/l           | 0.05                       | 2                      | 0.46     | 0.09               | 0.07                           | 0.12     | 0.14               | 0.11     | 0.12               |
| 7       | Free Ammonia                 | mg/l           | 0.1                        | 1.2                    | BDL      | BDL                | BDL                            | BDL      | BDL                | BDL      | BDL                |
| 8       | Mangnese (as Mn)             | mg/l           | 0.01                       | -                      | 0.25     | 0.08               | 0.05                           | BDL      | BDL                | BDL      | BDL                |
| 9       | Mercury (as Hg)              | mg/l           | 0.001                      | -                      | BDL      | BDL                | BDL                            | BDL      | BDL                | BDL      | BDL                |
| 10      | Selenium (as Se)             | mg/l           | 0.001                      | 0.05                   | BDL      | BDL                | BDL                            | BDL      | BDL                | BDL      | BDL                |
| 11      | Cyanide (as CN)              | mg/l           | 0.001                      | 0.05                   | BDL      | BDL                | BDL                            | BDL      | BDL                | BDL      | BDL                |
| 12      | Nickel (as Ni)               | mg/l           | 0.01                       | -                      | BDL      | BDL                | BDL                            | BDL      | BDL                | BDL      | BDL                |
| 13      | Silver (as Ag)               | mg/l           | 0.01                       | -                      | BDL      | BDL                | BDL                            | BDL      | BDL                | BDL      | BDL                |
| 14      | Barium (As Ba)               | mg/l           | 0.01                       | -                      | BDL      | BDL                | BDL                            | BDL      | BDL                | BDL      | BDL                |
| 15      | Colour                       | Haze<br>n      | 5                          | -                      | BDL      | BDL                | BDL                            | BDL      | BDL                | BDL      | BDL                |
| 16      | Turbidity                    | NTU            | 1                          | -                      | 192      | 2                  | 2                              | 3        | 6                  | 2        | 5                  |
| 17      | pH(Lab)                      | -              | 1                          | 8.5                    | 7.92     | 7.81               | 7.71                           | 8.51     | 7.75               | 8.53     | 7.65               |
| 17      | pH(site)                     |                |                            | 8.5                    | 7.9      | 7.8                | 7.7                            | 8.5      | 7.8                | 8.5      | 7.7                |
| 18      | DO                           | mg/l           | 0.1                        | Minimu<br>m-4          | BDL      | 7.2                | 7.3                            | 7.8      | 7                  | 8.1      | 7.1                |
| 19      | BOD                          | mg/l           | 0.2                        | 3                      | 142      | 1.2                | 0.8                            | 1.2      | 1.6                | 1.1      | 1.2                |
| 20      | COD                          | mg/l           | 0.4                        | -                      | 402      | 6                  | 5.6                            | 6        | 8                  | 4        | 6                  |
| 21      | Total Hardness (as<br>CaCO3) | mg/l           | 5                          | -                      | 392      | 452                | 440                            | 420      | 442                | 432      | 438                |

|         |                                                |             |                            | Tolonon                          | SW-2     | 23 DS              | SW-23 US                       | SW-       | 24 DS              | SW-      | 24 US              |
|---------|------------------------------------------------|-------------|----------------------------|----------------------------------|----------|--------------------|--------------------------------|-----------|--------------------|----------|--------------------|
| S.<br>N | Parameters                                     | Unit        | MDL<br>(Method<br>Detectio | Toleran<br>ce<br>Limit<br>as per |          | itra River<br>.388 | Vishwamitra<br>River<br>Ch.388 | Dharda Ri | iver Ch.373        | Dharda R | iver Ch.373        |
| 0.      |                                                |             | n Limit)                   | IS:2296                          | Baseline | Cons. Jan-<br>2023 | Cons. Jan-<br>2023             | Baseline  | Cons. Jan-<br>2023 | Baseline | Cons. Jan-<br>2023 |
| 22      | Iron (as Fe)                                   | mg/l        | 0.01                       | 50                               | 1.2      | 0.41               | 0.39                           | 0.62      | 0.65               | 0.58     | 0.61               |
| 23      | Chlorides (as Cl)                              | mg/l        | 2                          | 600                              | 196      | 86.5               | 80.9                           | 108       | 116.9              | 112      | 114.9              |
| 24      | Fluoride (as F)                                | mg/l        | 0.1                        | 1.5                              | 0.07     | 0.42               | 0.39                           | 0.28      | 0.31               | 0.26     | 0.28               |
| 25      | Conductivity                                   | umho<br>/cm | 2                          | -                                | 1025     | 1262               | 1238                           | 1029      | 1055               | 998      | 1042               |
| 26      | TDS                                            | mg/l        | 5                          | 1500                             | 614      | 757                | 743                            | 622       | 633                | 598      | 625                |
| 27      | Calcium(as Ca2+)                               | mg/l        | 2                          | -                                | 77       | 108.6              | 96.8                           | 80        | 82.4               | 84       | 78.6               |
| 28      | Magnesium (as Mg2+)                            | mg/l        | 2                          | -                                | 48.47    | 43.86              | 48.11                          | 53.46     | 57.35              | 53.95    | 58.68              |
| 29      | Cadmium                                        | mg/l        | 0.002                      | 0.01                             | BDL      | BDL                | BDL                            | BDL       | BDL                | BDL      | BDL                |
| 30      | Copper (as Cu)                                 | mg/l        | 0.01                       | 1.5                              | BDL      | BDL                | BDL                            | BDL       | BDL                | BDL      | BDL                |
| 31      | Sulphate (as SO4)                              | mg/l        | 2                          | 400                              | 44.5     | 38.1               | 37.1                           | 41.2      | 42.6               | 42.9     | 42.2               |
| 32      | Nitrate(as NO3)                                | mg/l        | 0.5                        | 50                               | 16.5     | 5.2                | 4.6                            | 9.6       | 9.8                | 9.8      | 9.9                |
| 33      | Zinc (as Zn)                                   | mg/l        | 0.01                       | 15                               | 1.4      | 0.06               | 0.04                           | 0.12      | 0.16               | 0.16     | 0.15               |
| 34      | Total Chromium (as Cr)                         | mg/l        | 0.01                       | 0.05                             | BDL      | BDL                | BDL                            | BDL       | BDL                | BDL      | BDL                |
| 35      | Oil & Grease                                   | mg/l        | 0.1                        | 0.1                              | BDL      | BDL                | BDL                            | BDL       | BDL                | BDL      | BDL                |
| 36      | Alkalinity (as<br>CaCO3)                       | mg/l        | 5                          | -                                | 266      | 386                | 376                            | 364       | 376                | 346      | 348                |
| 37      | Lead (as Pb)                                   | mg/l        | 0.01                       | 0.1                              | BDL      | 0.08               | 0.05                           | BDL       | BDL                | BDL      | BDL                |
| 38      | Total Arsenic (as As)                          | mg/l        | 0.001                      | 0.2                              | BDL      | BDL                | BDL                            | BDL       | BDL                | BDL      | BDL                |
| 39      | Phenolic<br>Compound                           | mg/l        | 0.001                      | 0.005                            | BDL      | BDL                | BDL                            | BDL       | BDL                | BDL      | BDL                |
| 40      | Anionic Surface<br>Active Detergent<br>as MBAS | mg/l        | 0.05                       |                                  | BDL      | BDL                | BDL                            | BDL       | BDL                | BDL      | BDL                |
| 41      | Sodium                                         | mg/l        | 1                          |                                  | 145      | 35.6               | 39.8                           | 48.5      | 46.8               | 46.5     | 46.9               |
| 42      | Potasium                                       | mg/l        | 1                          |                                  | 36.5     | 17.3               | 13.4                           | 14.5      | 22.3               | 12.5     | 12.9               |

|         |                                   |                   |                            | TD 1                   | SW-2     | 23 DS              | SW-23 US                       | SW-       | 24 DS              | SW-       | 24 US              |
|---------|-----------------------------------|-------------------|----------------------------|------------------------|----------|--------------------|--------------------------------|-----------|--------------------|-----------|--------------------|
| S.<br>N | Parameters                        | Unit              | MDL<br>(Method<br>Detectio | Toleran<br>ce<br>Limit |          | itra River<br>.388 | Vishwamitra<br>River<br>Ch.388 | Dharda Ri | ver Ch.373         | Dharda Ri | iver Ch.373        |
| 0.      |                                   |                   | n Limit)                   | as per<br>IS:2296      | Baseline | Cons. Jan-<br>2023 | Cons. Jan-<br>2023             | Baseline  | Cons. Jan-<br>2023 | Baseline  | Cons. Jan-<br>2023 |
| 43      | Total Kjheldal<br>Nitrogen (as N) | mg/l              | 1                          |                        | 144.2    | 11.6               | 10.6                           | 9.8       | 10.2               | 8.7       | 8.9                |
| 44      | Mineral Oil                       | mg/l              | 0.1                        |                        | BDL      | BDL                | BDL                            | BDL       | BDL                | BDL       | BDL                |
| 45      | Total Petroleum<br>Hydrocarbon    | mg/l              | 0.01                       |                        | BDL      | BDL                | BDL                            | BDL       | BDL                | BDL       | BDL                |
| 46      | Odour                             |                   |                            |                        | Odorless | Odorless           | Odorless                       | Odorless  | Odorless           | Odorless  | Odorless           |
|         |                                   |                   |                            |                        | Micr     | obiological Pa     | arameter                       |           |                    |           |                    |
| 47      | Total Coliform                    | MPN<br>/100<br>ML | 1                          | 500                    | 18000    | 566                | 512                            | 180       | 212                | 160       | 206                |
| 48      | Fecal Coliform                    | MPN<br>/100<br>ML | 1                          | -                      | 12000    | 388                | 320                            | 110       | 112                | 90        | 96                 |

# Appendix 2.6: Bottom Sediment Quality Monitoring Data for C4 Package Table 39 Bottom Sediment Quality Monitoring C4 package in Jan 23

|      |                                  |            |      | Daman Gar | nga River, Val     | sad Ch. 166 | Kolak R   | iver, Rata, Valsa  | d Ch. 174 |
|------|----------------------------------|------------|------|-----------|--------------------|-------------|-----------|--------------------|-----------|
| S.No | Parameter                        | Unit       | MDL  | Baseline  | Cons. Jan-<br>2023 | Change %    | Baseline  | Cons. Jan-<br>2023 | Change %  |
| 1    | Color                            |            |      | Brown     | Brown              |             | Brown     | Brown              |           |
| 2    | pH (2:5<br>Suspension)           | -          | 1    | 8.12      | 8.23               | 1%          | 7.62      | 7.69               | 1%        |
| 3    | Electrical<br>Conductivity (2:5) | μmhos/cm   | 5    | 302       | 318                | 5%          | 349       | 354                | 1%        |
| 4    | Bulk Density                     | gm/cc      | 0.1  | 1.25      | 1.28               | 2%          | 1.25      | 1.27               | 2%        |
| 5    | Texture                          |            |      | clay      | clay               |             | Clay Loam | clay loam          |           |
| I.   | Sand                             | %(w/w)     | 1    | 25.5      | 25.6               | 0%          | 32.1      | 32.3               | 1%        |
| II.  | Clay                             | %(w/w)     | 1    | 42.5      | 41.8               | -2%         | 29.5      | 29.9               | 1%        |
| III. | Silt                             | %(w/w)     | 1    | 32        | 32.6               | 2%          | 38.4      | 37.8               | -2%       |
| 6    | Organic Carbon                   | %          | 0.1  | 1.65      | 1.71               | 4%          | 2.59      | 2.6                | 0%        |
| 7    | Organic Matter                   | %          | 0.1  | 2.845     | 2.948              | 4%          | 4.465     | 4.482              | 0%        |
| 8    | Total Nitrogen as N              | mg/kg      | 5    | 256       | 288                | 13%         | 244       | 248                | 2%        |
| 9    | Total Phosphorus<br>as P         | mg/kg      | 0.05 | 42.5      | 44.8               | 5%          | 28.5      | 32.5               | 14%       |
| 10   | Exchangeable<br>Potassium as K   | mg/kg      | 10   | 57.4      | 59.6               | 4%          | 471.7     | 488.3              | 4%        |
| 11   | Exchangeable<br>Sodium as Na     | mg/kg      | 10   | 472.76    | 478.5              | 1%          | 51.4      | 54.9               | 7%        |
| 12   | Exchangeable Calcium as Ca       | mg/kg      | 10   | 8131.2    | 8166.3             | 0%          | 6761.2    | 8443.2             | 25%       |
| 13   | Exchangeable<br>Magnesium as Mg  | mg/kg      | 5    | 1038.2    | 1186.2             | 14%         | 767.2     | 773.2              | 1%        |
| 14   | Cation exchange capacity         | meq/100 gm | 0.5  | 51.5      | 52.9               | 3%          | 41.6      | 50.2               | 21%       |
| 15   | Total Iron (as Fe)               | mg/kg      | 50   | 2071.05   | 2089.5             | 1%          | 2241      | 2248               | 0%        |
| 16   | Total Zinc (as Zn)               | mg/kg      | 20   | 96        | 97.9               | 2%          | 144       | 147.3              | 2%        |

|      |                  |       |      | Daman Gar | nga River, Val     | sad Ch. 166 | Kolak River, Rata, Valsad Ch. 174 |                    |          |  |
|------|------------------|-------|------|-----------|--------------------|-------------|-----------------------------------|--------------------|----------|--|
| S.No | Parameter        | Unit  | MDL  | Baseline  | Cons. Jan-<br>2023 | Change %    | Baseline                          | Cons. Jan-<br>2023 | Change % |  |
| 17   | Total Copper     | mg/kg | 20   | 45        | 46.8               | 4%          | 43.12                             | 45.9               | 6%       |  |
| 18   | Total Boron      | mg/kg | 10   | 15.5      | 16.4               | 6%          | 16.4                              | 17.6               | 7%       |  |
| 19   | Total Chromium   | mg/kg | 10   | BDL       | BDL                |             | BDL                               | BDL                |          |  |
| 20   | Lead             | mg/kg | 10   | 68.94     | 71.1               | 3%          | 108.45                            | 112.5              | 4%       |  |
| 21   | Cadmium          | mg/kg | 2    | 4.2       | 4.3                | 2%          | BDL(MDL-<br>20)                   | BDL(MDL-<br>20)    |          |  |
| 22   | Mercury          | mg/kg | 1    | BDL       | BDL                |             | BDL                               | BDL                |          |  |
| 23   | Cyanide          | mg/kg | 1    | BDL       | BDL                |             | BDL                               | BDL                |          |  |
| 24   | Nickel           | mg/kg | 10   | 25.2      | 26.8               | 6%          | 15.6                              | 16.3               | 4%       |  |
| 25   | Arsenic          | mg/kg | 1    | BDL       | BDL                |             | BDL                               | BDL                |          |  |
| 26   | Sulphate as SO4  | mg/kg | 0.05 | 165.5     | 179.4              | 8%          | 78.4                              | 81.9               | 4%       |  |
| 27   | Phosphate as PO4 | mg/kg | 0.1  | 131.75    | 138.88             | 5%          | 88.35                             | 100.75             | 14%      |  |
| 28   | Chloride as Cl   | mg/kg | 0.04 | 215.5     | 220.9              | 3%          | 142.5                             | 143.6              | 1%       |  |

#### **Bottom Sediment monitoring Continues....**

|      |                               |          |     | Ta       | pi River Ch. 2    | 76       | Narmada River, Ch. 320 |               |          |  |
|------|-------------------------------|----------|-----|----------|-------------------|----------|------------------------|---------------|----------|--|
| S.No | Parameter                     | Unit     | MDL | Baseline | Cons. Jan -<br>23 | Change % | Baseline               | Cons. Jan -23 | Change % |  |
| 1    | Color                         |          |     | Brown    | Brown             |          | Brown                  | Brown         |          |  |
| 2    | pH (2:5<br>Suspension)        | -        | 1   | 8.99     | 8.96              | 0%       | 8.06                   | 8.12          | 1%       |  |
| 3    | Electrical Conductivity (2:5) | µmhos/cm | 5   | 329      | 330               | 0%       | 359                    | 362           | 1%       |  |
| 4    | Bulk Density                  | gm/cc    | 0.1 | 1.22     | 1.21              | -1%      | 1.21                   | 1.25          | 3%       |  |
| 5    | Texture                       |          |     | Loam     | loam              |          | clay                   | clay          |          |  |
| I.   | Sand                          | %(w/w)   | 1   | 38.5     | 38.9              | 1%       | 32.2                   | 33.9          | 5%       |  |
| II.  | Clay                          | %(w/w)   | 1   | 26.5     | 27.6              | 4%       | 42.5                   | 43.5          | 2%       |  |
| III. | Silt                          | %(w/w)   | 1   | 35       | 33.5              | -4%      | 25.3                   | 22.6          | -11%     |  |

|      |                              |            |      | Ta              | pi River Ch. 2'   | 76       | Na              | rmada River, Ch | . 320    |
|------|------------------------------|------------|------|-----------------|-------------------|----------|-----------------|-----------------|----------|
| S.No | Parameter                    | Unit       | MDL  | Baseline        | Cons. Jan -<br>23 | Change % | Baseline        | Cons. Jan -23   | Change % |
| 6    | Organic Carbon               | %          | 0.1  | 0.89            | 0.92              | 3%       | 0.85            | 0.93            | 9%       |
| 7    | Organic Matter               | %          | 0.1  | 1.534           | 1.586             | 3%       | 1.465           | 1.603           | 9%       |
| 8    | Total Nitrogen as<br>N       | mg/kg      | 5    | 122             | 136               | 11%      | 202             | 206             | 2%       |
| 9    | Total Phosphorus<br>as P     | mg/kg      | 0.05 | 24.2            | 26.8              | 11%      | 35.7            | 37.5            | 5%       |
| 10   | Exchangeable Potassium as K  | mg/kg      | 10   | 298.5           | 321.6             | 8%       | 468.5           | 478.3           | 2%       |
| 11   | Exchangeable Sodium as Na    | mg/kg      | 10   | 152.5           | 148.3             | -3%      | 240.4           | 246.9           | 3%       |
| 12   | Exchangeable Calcium as Ca   | mg/kg      | 10   | 4008            | 5182.5            | 29%      | 5248.9          | 5826.4          | 11%      |
| 13   | Exchangeable Magnesium as Mg | mg/kg      | 5    | 973             | 976.4             | 0%       | 997.1           | 1022.4          | 3%       |
| 14   | Cation exchange capacity     | meq/100 gm | 0.5  | 29.6            | 35.5              | 20%      | 36.8            | 40              | 9%       |
| 15   | Total Iron (as Fe)           | mg/kg      | 50   | 2110.5          | 2116.1            | 0%       | 2075            | 2130            | 3%       |
| 16   | Total Zinc (as Zn)           | mg/kg      | 20   | 69.5            | 71.8              | 3%       | 81              | 83.6            | 3%       |
| 17   | Total Copper                 | mg/kg      | 20   | 22.5            | 22.9              | 2%       | 44.72           | 45.8            | 2%       |
| 18   | Total Boron                  | mg/kg      | 10   | 14.5            | 16.5              | 14%      | 16.4            | 16.9            | 3%       |
| 19   | Total Chromium               | mg/kg      | 10   | BDL             | 11.2              |          | BDL             | BDL             |          |
| 20   | Lead                         | mg/kg      | 10   | 21.2            | 21.3              | 0%       | 44.72           | 45.6            | 2%       |
| 21   | Cadmium                      | mg/kg      | 2    | BDL(MDL-<br>20) | BDL(MDL-<br>20)   |          | BDL(MDL-<br>20) | BDL(MDL-<br>20) |          |
| 22   | Mercury                      | mg/kg      | 1    | BDL             | BDL               |          | BDL             | BDL             |          |
| 23   | Cyanide                      | mg/kg      | 1    | BDL             | BDL               |          | BDL             | BDL             |          |
| 24   | Nickel                       | mg/kg      | 10   | 36.5            | 38.3              | 5%       | 16.2            | 17.1            | 6%       |
| 25   | Arsenic                      | mg/kg      | 1    | BDL             | BDL               |          | BDL             | BDL             |          |

|      |                  |       |      |          | pi River Ch. 2    | 76       | Narmada River, Ch. 320 |               |          |  |
|------|------------------|-------|------|----------|-------------------|----------|------------------------|---------------|----------|--|
| S.No | Parameter        | Unit  | MDL  | Baseline | Cons. Jan -<br>23 | Change % | Baseline               | Cons. Jan -23 | Change % |  |
| 26   | Sulphate as SO4  | mg/kg | 0.05 | 129.5    | 138.9             | 7%       | 132.5                  | 145.4         | 10%      |  |
| 27   | Phosphate as PO4 | mg/kg | 0.1  | 75.02    | 83.08             | 11%      | 110.67                 | 116.25        | 5%       |  |
| 28   | Chloride as Cl   | mg/kg | 0.04 | 95.5     | 98.9              | 4%       | 142.2                  | 151.9         | 7%       |  |

#### **Bottom Sediment monitoring Continues....**

|      |                                  |          |      | Dha      | rdha River Ch.    | 373      | M                  | indola River Ch.   | . 250    |
|------|----------------------------------|----------|------|----------|-------------------|----------|--------------------|--------------------|----------|
| S.No | Parameter                        | Unit     | MDL  | Baseline | Cons. Jan -<br>23 | Change % | Baseline           | Cons. Jan -<br>23  | Change % |
| 1    | Color                            |          |      | Brown    | Brown             |          | Brown              | Brown              |          |
| 2    | pH (2:5<br>Suspension)           | -        | 1    | 7.89     | 7.82              | -1%      | 8.37               | 8.41               | 0%       |
| 3    | Electrical<br>Conductivity (2:5) | μmhos/cm | 5    | 389      | 392               | 1%       | 476                | 482                | 1%       |
| 4    | Bulk Density                     | gm/cc    | 0.1  | 1.34     | 1.36              | 1%       | 1.34               | 1.35               | 1%       |
| 5    | Texture                          |          |      | Clay     | Clay              |          | Sandy Clay<br>Loam | sandy clay<br>loam |          |
| I.   | Sand                             | %(w/w)   | 1    | 33.9     | 33.8              | 0%       | 33.9               | 37.2               | 10%      |
| II.  | Clay                             | %(w/w)   | 1    | 41.1     | 41.5              | 1%       | 43.1               | 43.1               | 0%       |
| III. | Silt                             | %(w/w)   | 1    | 25       | 24.7              | -1%      | 23                 | 19.7               | -14%     |
| 6    | Organic Carbon                   | %        | 0.1  | 0.85     | 0.88              | 4%       | 0.78               | 0.85               | 9%       |
| 7    | Organic Matter                   | %        | 0.1  | 1.465    | 1.517             | 4%       | 1.345              | 1.465              | 9%       |
| 8    | Total Nitrogen as<br>N           | mg/kg    | 5    | 246      | 252               | 2%       | 285                | 292                | 2%       |
| 9    | Total Phosphorus<br>as P         | mg/kg    | 0.05 | 25.2     | 25.8              | 2%       | 26.5               | 27.9               | 5%       |
| 10   | Exchangeable<br>Potassium as K   | mg/kg    | 10   | 478      | 484               | 1%       | 398.5              | 399.1              | 0%       |
| 11   | Exchangeable<br>Sodium as Na     | mg/kg    | 10   | 198.4    | 202.6             | 2%       | 112.5              | 115.6              | 3%       |

|      |                                 |            |      | Dhai            | rdha River Ch.    | . 373       | Mindola River Ch. 250 |                   |          |  |
|------|---------------------------------|------------|------|-----------------|-------------------|-------------|-----------------------|-------------------|----------|--|
| S.No | Parameter                       | Unit       | MDL  | Baseline        | Cons. Jan -<br>23 | Change<br>% | Baseline              | Cons. Jan -<br>23 | Change % |  |
| 12   | Exchangeable Calcium as Ca      | mg/kg      | 10   | 5029            | 5106              | 2%          | 10180                 | 8961.2            | -12%     |  |
| 13   | Exchangeable<br>Magnesium as Mg | mg/kg      | 5    | 1005            | 1024.4            | 2%          | 2474                  | 1566.4            | -37%     |  |
| 14   | Cation exchange capacity        | meq/100 gm | 0.5  | 35.6            | 36.2              | 2%          | 73                    | 59.4              | -19%     |  |
| 15   | Total Iron (as Fe)              | mg/kg      | 50   | 2161            | 2184              | 1%          | 3025.5                | 2598.3            | -14%     |  |
| 16   | Total Zinc (as Zn)              | mg/kg      | 20   | 68              | 70.4              | 4%          | 78.5                  | 78.9              | 1%       |  |
| 17   | Total Copper                    | mg/kg      | 20   | 47.46           | 48.6              | 2%          | 25.5                  | 26.5              | 4%       |  |
| 18   | Total Boron                     | mg/kg      | 10   | 12.5            | 13.2              | 6%          | 19.5                  | 20.9              | 7%       |  |
| 19   | Total Chromium                  | mg/kg      | 10   | BDL             | BDL               |             | BDL                   | BDL               |          |  |
| 20   | Lead                            | mg/kg      | 10   | 103.84          | 104.2             | 0%          | 29.5                  | 31.8              | 8%       |  |
| 21   | Cadmium                         | mg/kg      | 2    | BDL(MDL-<br>20) | BDL(MDL-<br>20)   |             | BDL(MDL-<br>20)       | 16.5              |          |  |
| 22   | Mercury                         | mg/kg      | 1    | BDL             | BDL               |             | BDL                   | BDL               |          |  |
| 23   | Cyanide                         | mg/kg      | 1    | BDL             | BDL               |             | BDL                   | BDL               |          |  |
| 24   | Nickel                          | mg/kg      | 10   | 14.8            | 15.1              | 2%          | 58.5                  | 63.4              | 8%       |  |
| 25   | Arsenic                         | mg/kg      | 1    | BDL             | BDL               |             | BDL                   | BDL               |          |  |
| 26   | Sulphate as SO4                 | mg/kg      | 0.05 | 142.1           | 146.7             | 3%          | 144.4                 | 146.5             | 1%       |  |
| 27   | Phosphate as PO4                | mg/kg      | 0.1  | 78.12           | 79.98             | 2%          | 82.15                 | 86.49             | 5%       |  |
| 28   | Chloride as Cl                  | mg/kg      | 0.04 | 109.2           | 112.9             | 3%          | 125.2                 | 139.9             | 12%      |  |

#### **Bottom Sediment monitoring Continues.....**

|      |                                 |            |      | Aurang             | a River, Vapi (    | Ch. 198     | Kharera River Ch. 212 |             |          |  |
|------|---------------------------------|------------|------|--------------------|--------------------|-------------|-----------------------|-------------|----------|--|
| S.No | Parameter                       | Unit       | MDL  | Baseline           | Cons. Jan-<br>2023 | Change<br>% | Baseline              | Con. Jan-23 | Change % |  |
| 1    | Color                           |            |      | Brown              | Brown              |             | Brown                 | Brown       |          |  |
| 2    | pH (2:5<br>Suspension)          | -          | 1    | 7.35               | 7.41               | 1%          | 7.45                  | 7.56        | 1%       |  |
| 3    | Electrical Conductivity (2:5)   | µmhos/cm   | 5    | 896                | 908                | 1%          | 405                   | 410         | 1%       |  |
| 4    | Bulk Density                    | gm/cc      | 0.1  | 1.24               | 1.26               | 2%          | 1.22                  | 1.23        | 1%       |  |
| 5    | Texture                         |            |      | Sandy Clay<br>Loam | sandy clay<br>loam |             | clay                  | Clay        |          |  |
| I.   | Sand                            | %(w/w)     | 1    | 31.2               | 32.1               | 3%          | 32.4                  | 33.9        | 5%       |  |
| II.  | Clay                            | %(w/w)     | 1    | 42.2               | 42.8               | 1%          | 42.3                  | 41.5        | -2%      |  |
| III. | Silt                            | %(w/w)     | 1    | 26.6               | 25.1               | -6%         | 25.3                  | 24.6        | -3%      |  |
| 6    | Organic Carbon                  | %          | 0.1  | 0.92               | 0.96               | 4%          | 0.94                  | 0.97        | 3%       |  |
| 7    | Organic Matter                  | %          | 0.1  | 1.586              | 1.655              | 4%          | 1.457                 | 1.672       | 15%      |  |
| 8    | Total Nitrogen as<br>N          | mg/kg      | 5    | 342                | 346                | 1%          | 211                   | 218         | 3%       |  |
| 9    | Total Phosphorus<br>as P        | mg/kg      | 0.05 | 22.5               | 25.8               | 15%         | 34.2                  | 35.3        | 3%       |  |
| 10   | Exchangeable Potassium as K     | mg/kg      | 10   | 648.7              | 658.5              | 2%          | 489.3                 | 496.5       | 1%       |  |
| 11   | Exchangeable Sodium as Na       | mg/kg      | 10   | 153.5              | 157.3              | 2%          | 250.1                 | 262.8       | 5%       |  |
| 12   | Exchangeable<br>Calcium as Ca   | mg/kg      | 10   | 7316               | 7786.2             | 6%          | 6105.2                | 6023.4      | -1%      |  |
| 13   | Exchangeable<br>Magnesium as Mg | mg/kg      | 5    | 1668.7             | 1812.6             | 9%          | 1078                  | 1122.6      | 4%       |  |
| 14   | Cation exchange capacity        | meq/100 gm | 0.5  | 52.8               | 54.9               | 4%          | 41.9                  | 41.9        | 0%       |  |
| 15   | Total Iron (as Fe)              | mg/kg      | 50   | 2073               | 2095.2             | 1%          | 2293                  | 2308        | 1%       |  |

|      |                    |       |      | Aurang          | a River, Vapi (    | Ch. 198     | Kharera River Ch. 212 |                 |          |  |
|------|--------------------|-------|------|-----------------|--------------------|-------------|-----------------------|-----------------|----------|--|
| S.No | Parameter          | Unit  | MDL  | Baseline        | Cons. Jan-<br>2023 | Change<br>% | Baseline              | Con. Jan-23     | Change % |  |
| 16   | Total Zinc (as Zn) | mg/kg | 20   | 140             | 156.8              | 12%         | 89                    | 91.2            | 2%       |  |
| 17   | Total Copper       | mg/kg | 20   | 74.31           | 76.1               | 2%          | 45.3                  | 46.8            | 3%       |  |
| 18   | Total Boron        | mg/kg | 10   | 24.5            | 24.6               | 0%          | 17.3                  | 18.6            | 8%       |  |
| 19   | Total Chromium     | mg/kg | 10   | BDL             | 14.6               |             | BDL                   | BDL             |          |  |
| 20   | Lead               | mg/kg | 10   | 65.51           | 62.3               | -5%         | 52.7                  | 53.4            | 1%       |  |
| 21   | Cadmium            | mg/kg | 2    | BDL(MDL-<br>20) | BDL(MDL-<br>20)    |             | BDL(MDL-<br>20)       | BDL(MDL-<br>20) |          |  |
| 22   | Mercury            | mg/kg | 1    | BDL             | BDL                |             | BDL                   | BDL             |          |  |
| 23   | Cyanide            | mg/kg | 1    | BDL             | BDL                |             | BDL                   | BDL             |          |  |
| 24   | Nickel             | mg/kg | 10   | 19.2            | 19.5               | 2%          | 20.6                  | 21.5            | 4%       |  |
| 25   | Arsenic            | mg/kg | 1    | BDL             | BDL                |             | BDL                   | BDL             |          |  |
| 26   | Sulphate as SO4    | mg/kg | 0.05 | 74.5            | 76.5               | 3%          | 146.3                 | 168.9           | 15%      |  |
| 27   | Phosphate as PO4   | mg/kg | 0.1  | 69.75           | 79.98              | 15%         | 106.02                | 109.43          | 3%       |  |
| 28   | Chloride as Cl     | mg/kg | 0.04 | 98.5            | 106.9              | 9%          | 191.6                 | 196.5           | 3%       |  |

#### **Bottom Sediment monitoring Continues.....**

|      |                                  |          |     | Par I    | River, Vapi Ch     | . 190       | Kaveri River, valsad Ch. 212 |             |          |  |
|------|----------------------------------|----------|-----|----------|--------------------|-------------|------------------------------|-------------|----------|--|
| S.NO | Parameter                        | Unit     | MDL | Baseline | Cons. Jan-<br>2023 | Change<br>% | Baseline                     | Con. Jan-23 | Change % |  |
| 1    | Color                            |          |     | Brown    | Brown              |             | Brown                        | Brown       |          |  |
| 2    | pH (2:5<br>Suspension)           | -        | 1   | 7.48     | 7.49               | 0%          | 7.01                         | 7.05        | 1%       |  |
| 3    | Electrical<br>Conductivity (2:5) | μmhos/cm | 5   | 473      | 477                | 1%          | 376                          | 381         | 1%       |  |
| 4    | Bulk Density                     | gm/cc    | 0.1 | 1.19     | 1.2                | 1%          | 1.11                         | 1.16        | 5%       |  |

|      |                                 |            |      | Par I              | River, Vapi Ch     | . 190       | Kave            | ri River, valsad Cl | n. 212   |
|------|---------------------------------|------------|------|--------------------|--------------------|-------------|-----------------|---------------------|----------|
| S.NO | Parameter                       | Unit       | MDL  | Baseline           | Cons. Jan-<br>2023 | Change<br>% | Baseline        | Con. Jan-23         | Change % |
| 5    | Texture                         |            |      | Sandy Clay<br>Loam | sandy clay<br>loam |             | Clay Loam       | clay loam           |          |
| I.   | Sand                            | %(w/w)     | 1    | 34.5               | 34.7               | 1%          | 29.5            | 29.6                | 0%       |
| II.  | Clay                            | %(w/w)     | 1    | 41.1               | 41.5               | 1%          | 36.5            | 35.6                | -2%      |
| III. | Silt                            | %(w/w)     | 1    | 24.4               | 23.8               | -2%         | 34              | 34.8                | 2%       |
| 6    | Organic Carbon                  | %          | 0.1  | 2.31               | 2.28               | -1%         | 2.84            | 2.93                | 3%       |
| 7    | Organic Matter                  | %          | 0.1  | 3.982              | 3.931              | -1%         | 4.896           | 5.051               | 3%       |
| 8    | Total Nitrogen as<br>N          | mg/kg      | 5    | 152                | 156.2              | 3%          | 265             | 276                 | 4%       |
| 9    | Total Phosphorus<br>as P        | mg/kg      | 0.05 | 37.4               | 39.2               | 5%          | 48.5            | 51.6                | 6%       |
| 10   | Exchangeable Potassium as K     | mg/kg      | 10   | 341.8              | 376.1              | 10%         | 499.9           | 512                 | 2%       |
| 11   | Exchangeable<br>Sodium as Na    | mg/kg      | 10   | 124.4              | 126.9              | 2%          | 185.5           | 196.2               | 6%       |
| 12   | Exchangeable<br>Calcium as Ca   | mg/kg      | 10   | 9899.3             | 9863.5             | 0%          | 8241            | 8266.1              | 0%       |
| 13   | Exchangeable<br>Magnesium as Mg | mg/kg      | 5    | 622                | 696.4              | 12%         | 2018            | 2056                | 2%       |
| 14   | Cation exchange capacity        | meq/100 gm | 0.5  | 56.1               | 56.6               | 1%          | 60.1            | 60.6                | 1%       |
| 15   | Total Iron (as Fe)              | mg/kg      | 50   | 2179               | 2210               | 1%          | 1238            | 1249                | 1%       |
| 16   | Total Zinc (as Zn)              | mg/kg      | 20   | 110                | 116.5              | 6%          | 89              | 91.6                | 3%       |
| 17   | Total Copper                    | mg/kg      | 20   | 122.64             | 128.3              | 5%          | 74.04           | 76.5                | 3%       |
| 18   | Total Boron                     | mg/kg      | 10   | 18.5               | 18.6               | 1%          | 14.1            | 15.4                | 9%       |
| 19   | Total Chromium                  | mg/kg      | 10   | BDL                | BDL                |             | BDL             | BDL                 |          |
| 20   | Lead                            | mg/kg      | 10   | 84.75              | 92.4               | 9%          | 25.3            | 26.4                | 4%       |
| 21   | Cadmium                         | mg/kg      | 2    | BDL(MDL-<br>20)    | BDL(MDL-<br>20)    |             | BDL(MDL-<br>20) | BDL(MDL-20)         |          |

|      |                  |       |      | Par I    | River, Vapi Ch     | . 190       | Kaveri River, valsad Ch. 212 |             |          |  |
|------|------------------|-------|------|----------|--------------------|-------------|------------------------------|-------------|----------|--|
| S.NO | Parameter        | Unit  | MDL  | Baseline | Cons. Jan-<br>2023 | Change<br>% | Baseline                     | Con. Jan-23 | Change % |  |
| 22   | Mercury          | mg/kg | 1    | BDL      | BDL                |             | BDL                          | BDL         |          |  |
| 23   | Cyanide          | mg/kg | 1    | BDL      | BDL                |             | BDL                          | BDL         |          |  |
| 24   | Nickel           | mg/kg | 10   | 17.5     | 18.6               | 6%          | 16.4                         | 17.3        | 5%       |  |
| 25   | Arsenic          | mg/kg | 1    | BDL      | BDL                |             | BDL                          | BDL         |          |  |
| 26   | Sulphate as SO4  | mg/kg | 0.05 | 124.5    | 128.8              | 3%          | 184.5                        | 192         | 4%       |  |
| 27   | Phosphate as PO4 | mg/kg | 0.1  | 115.94   | 121.52             | 5%          | 150.35                       | 159.96      | 6%       |  |
| 28   | Chloride as Cl   | mg/kg | 0.04 | 168.5    | 172.9              | 3%          | 175.5                        | 179.9       | 3%       |  |

#### **Bottom Sediment monitoring Continues.....**

|      |                                  |          |     |           | ica River, Ch.  | 228         | Purna River, Ch. 239 |             |          |
|------|----------------------------------|----------|-----|-----------|-----------------|-------------|----------------------|-------------|----------|
| S.No | Parameter                        | Unit     | MDL | Baseline  | Con. Jan-<br>23 | Change<br>% | Baseline             | Con. Jan-23 | Change % |
| 1    | Color                            |          |     | Brown     | Brown           |             | Brown                | Brown       |          |
| 2    | pH (2:5<br>Suspension)           | -        | 1   | 7.75      | 7.78            | 0%          | 7.02                 | 7.05        | 0%       |
| 3    | Electrical<br>Conductivity (2:5) | μmhos/cm | 5   | 396       | 398             | 1%          | 586                  | 590         | 1%       |
| 4    | Bulk Density                     | gm/cc    | 0.1 | 1.62      | 1.65            | 2%          | 1.15                 | 1.18        | 3%       |
| 5    | Texture                          |          |     | Clay Loam | clay loam       |             | Clay Loam            | clay loam   |          |
| I.   | Sand                             | %(w/w)   | 1   | 29.5      | 31.4            | 6%          | 31.5                 | 31.6        | 0%       |
| II.  | Clay                             | %(w/w)   | 1   | 36.5      | 36.5            | 0%          | 34.7                 | 34.9        | 1%       |
| III. | Silt                             | %(w/w)   | 1   | 34        | 32.1            | -6%         | 33.8                 | 33.5        | -1%      |
| 6    | Organic Carbon                   | %        | 0.1 | 2.57      | 2.36            | -8%         | 0.95                 | 0.97        | 2%       |
| 7    | Organic Matter                   | %        | 0.1 | 4.431     | 4.069           | -8%         | 1.638                | 1.672       | 2%       |

|      |                                 |            |      | Amb             | oica River, Ch. | 228         | Purna River, Ch. 239 |                                                                                        |          |  |
|------|---------------------------------|------------|------|-----------------|-----------------|-------------|----------------------|----------------------------------------------------------------------------------------|----------|--|
| S.No | Parameter                       | Unit       | MDL  | Baseline        | Con. Jan-<br>23 | Change<br>% | Baseline             | 238 42.9 392.5 163.4 9163.2 1846.5 62.9 2018 134.6 26.9 17.6 12.6 16.5 BDL(MDL-20) BDL | Change % |  |
| 8    | Total Nitrogen as<br>N          | mg/kg      | 5    | 248             | 252             | 2%          | 233                  | 238                                                                                    | 2%       |  |
| 9    | Total Phosphorus as P           | mg/kg      | 0.05 | 35.4            | 36.8            | 4%          | 41.1                 | 42.9                                                                                   | 4%       |  |
| 10   | Exchangeable<br>Potassium as K  | mg/kg      | 10   | 216.38          | 217.5           | 1%          | 386.7                | 392.5                                                                                  | 1%       |  |
| 11   | Exchangeable Sodium as Na       | mg/kg      | 10   | 133.64          | 135.8           | 2%          | 161.2                | 163.4                                                                                  | 1%       |  |
| 12   | Exchangeable<br>Calcium as Ca   | mg/kg      | 10   | 5596.1          | 7226.4          | 29%         | 9073                 | 9163.2                                                                                 | 1%       |  |
| 13   | Exchangeable<br>Magnesium as Mg | mg/kg      | 5    | 624.4           | 669.5           | 7%          | 1978                 | 1846.5                                                                                 | -7%      |  |
| 14   | Cation exchange capacity        | meq/100 gm | 0.5  | 34.3            | 42.9            | 25%         | 63.5                 | 62.9                                                                                   | -1%      |  |
| 15   | Total Iron (as Fe)              | mg/kg      | 50   | 2078.22         | 2112.2          | 2%          | 2017                 | 2018                                                                                   | 0%       |  |
| 16   | Total Zinc (as Zn)              | mg/kg      | 20   | 99              | 99.6            | 1%          | 133                  | 134.6                                                                                  | 1%       |  |
| 17   | Total Copper                    | mg/kg      | 20   | 86.83           | 38.9            | -55%        | 42.16                | 26.9                                                                                   | -36%     |  |
| 18   | Total Boron                     | mg/kg      | 10   | 18.4            | 26.5            | 44%         | 15.4                 | 17.6                                                                                   | 14%      |  |
| 19   | Total Chromium                  | mg/kg      | 10   | BDL             | 15.2            |             | BDL                  | 12.6                                                                                   |          |  |
| 20   | Lead                            | mg/kg      | 10   | 48.55           | 16.8            | -65%        | 90.88                | 16.5                                                                                   | -82%     |  |
| 21   | Cadmium                         | mg/kg      | 2    | BDL(MDL-<br>20) | BDL(MDL-<br>20) |             | BDL(MDL-<br>20)      | `                                                                                      |          |  |
| 22   | Mercury                         | mg/kg      | 1    | BDL             | BDL             |             | BDL                  | BDL                                                                                    |          |  |
| 23   | Cyanide                         | mg/kg      | 1    | BDL             | BDL             |             | BDL                  | BDL                                                                                    |          |  |
| 24   | Nickel                          | mg/kg      | 10   | 18.5            | 18.9            | 2%          | 14.5                 | 16.3                                                                                   | 12%      |  |
| 25   | Arsenic                         | mg/kg      | 1    | BDL             | BDL             |             | BDL                  | BDL                                                                                    |          |  |
| 26   | Sulphate as SO4                 | mg/kg      | 0.05 | 124.2           | 132.6           | 7%          | 185.5                | 189.3                                                                                  | 2%       |  |

|      |                  |       |      | Amb      | oica River, Ch. | 228         | P        | urna River, Ch. | 239      |
|------|------------------|-------|------|----------|-----------------|-------------|----------|-----------------|----------|
| S.No | Parameter        | Unit  | MDL  | Baseline | Con. Jan-<br>23 | Change<br>% | Baseline | Con. Jan-23     | Change % |
| 27   | Phosphate as PO4 | mg/kg | 0.1  | 109.74   | 114.08          | 4%          | 127.41   | 132.99          | 4%       |
| 28   | Chloride as Cl   | mg/kg | 0.04 | 142.2    | 150.9           | 6%          | 136.5    | 196.9           | 44%      |

# **Appendix 2.7: STP treated water Quality Monitoring at C4 Package**

Table 40: STP treated water Quality Monitoring at C4 Package in the Quarter

|        |                        |      |         | STP1         | STP2         | STP3         | STP4         | STP5         | STP6         | STP7         | STP8         |
|--------|------------------------|------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| S. No. | Parameters             | Unit | Limits  | LC Ch<br>188 | LC Ch<br>207 | LC Ch<br>306 | LC Ch<br>385 | LC Ch<br>359 | LC Ch<br>321 | LC Ch<br>232 | LC Ch<br>217 |
| 1      | Colour                 |      | -       | <5           | <5           | <5           | <5           | <5           | <5           | <5           | <5           |
| 2      | pH (Lab)               |      | 5.5-9.0 | 7.51         | 6.29         | 7.19         | 7.89         | 7.52         | 7.42         | 7.32         | 7.45         |
| 3      | TSS                    | mg/l | 50      | 32           | 86           | 22.6         | 28           | 39.6         | 14.5         | <5           | 16.4         |
| 4      | BOD                    | mg/l | 30      | 24.8         | 28.6         | 17.6         | 14.8         | 20.4         | 16.4         | <2           | 12.8         |
| 5      | COD                    | mg/l | 150     | 144          | 240          | 112          | 92           | 136          | 140          | <6           | 72           |
| 6      | Oil & Grease           | mg/l | 10      | <5           | 7.2          | <5           | <5           | <5           | <5           | <5           | <5           |
| 7      | Ammoniacal<br>Nitrogen | mg/l | 15      | 8.4          | 22.6         | 6.8          | 5.2          | 8.9          | 6.1          | <2           | 2.6          |
| 8      | Phosphate              | mg/l | 1       | 1.9          | 4.8          | 1.56         | 1.1          | 2.7          | 1.2          | <0.1         | 0.13         |

# **Appendix 2.8: Vibration Monitoring Data for C4 Package**

Table 41: Vibration Monitoring Data for C4 Package for January 2023

| S.<br>No. | Location<br>Code                       | Monitoring Location                       | Co-ordinate                     | Date of    | Maximum    | Minimum                                                                                                                                                                                                                                                                                                                 | Average |
|-----------|----------------------------------------|-------------------------------------------|---------------------------------|------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| NO.       | Code                                   | - C                                       |                                 | Monitoring | PPV (mm/s) |                                                                                                                                                                                                                                                                                                                         | (mm/s)  |
|           |                                        | During City office DD LC Dellar           | 20015142 22UNI                  | 01-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |
| 1         | V1                                     | Project Site office, BP, LC, Dadar        | 20°15'43.22"N,<br>72°55'20.39"E | 09-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |
|           |                                        | and Nagar Haveli, at Ch. 159/000          | 72°33 20.39 E                   | 16-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |
|           |                                        |                                           |                                 | 23-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |
|           |                                        | D 1 G1 00 DD 1 G                          | 2004.012.00113.4                | 01-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |
| 2         | V2                                     | Project Site office, BP, LC at            | 20°18'2.80"N,                   | 09-Jan-23  | 0.100      |                                                                                                                                                                                                                                                                                                                         | 0.003   |
|           |                                        | Ch.165/000                                | 72°56'16.40"E                   | 16-Jan-23  | 0.300      |                                                                                                                                                                                                                                                                                                                         | 0.001   |
|           |                                        |                                           |                                 | 23-Jan-23  | 0.000      | Minimum PPV (mm/s)  0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                   | 0.000   |
|           |                                        |                                           |                                 | 02-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |
| 3         | V3                                     | Vapi Station, Office / Residential        | 20°19'41.30"N,                  | 09-Jan-23  | 0.100      |                                                                                                                                                                                                                                                                                                                         | 0.001   |
| 3         | <b>V</b> 3                             | Building at Ch. 168/000                   | 72°56'56.30"E                   | 16-Jan-23  | 0.000      | 0.000                                                                                                                                                                                                                                                                                                                   | 0.000   |
|           |                                        |                                           |                                 | 23-Jan-23  | 0.200      | PPV (mm/s)  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000        | 0.003   |
|           |                                        | Vapi Depot, Vapi Ambach Road,             | 20°21'21.70"N,                  | 03-Jan-23  | 0.000      | 0.000                                                                                                                                                                                                                                                                                                                   | 0.000   |
| 4         | V4                                     |                                           |                                 | 09-Jan-23  | 0.000      | 0.000                                                                                                                                                                                                                                                                                                                   | 0.000   |
| 4         | V 4                                    | Koparli Road, Village Vapi at Ch. 170/300 | 72°57'37.70"E                   | 16-Jan-23  | 0.000      | 0.000                                                                                                                                                                                                                                                                                                                   | 0.000   |
|           |                                        | 170/300                                   |                                 | 23-Jan-23  | 0.000      | 0.000                                                                                                                                                                                                                                                                                                                   | 0.000   |
|           |                                        | Vapi Ambach Rd at Ch. 171                 | 20°22'43.25"N,                  | 03-Jan-23  | 0.000      | 0.000                                                                                                                                                                                                                                                                                                                   | 0.000   |
| _         | ************************************** |                                           |                                 | 09-Jan-23  | 0.000      | 0.000                                                                                                                                                                                                                                                                                                                   | 0.000   |
| 5         | V5                                     | (Village Habitation, MDR Vapi             | 72°57'38.83"E                   | 16-Jan-23  | 0.000      | 0.000                                                                                                                                                                                                                                                                                                                   | 0.000   |
|           |                                        | Ambach Road)                              |                                 | 23-Jan-23  | 0.000      | PPV (mm/s)  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 | 0.000   |
|           |                                        |                                           |                                 | 03-Jan-23  | 0.000      | 0.000                                                                                                                                                                                                                                                                                                                   | 0.000   |
| _         |                                        | Crossing of Vapi Koparli Road,            | 20°22'42.89"N,                  | 09-Jan-23  | 0.000      | 0.000                                                                                                                                                                                                                                                                                                                   | 0.000   |
| 6         | V6                                     | Near Prathmik Arogya Kendra               | 72°57'33.38"E                   | 16-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |
|           |                                        | Valsad, Near Ch. 172                      |                                 | 23-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |
|           |                                        |                                           |                                 | 03-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |
|           |                                        | Paria Gaon - Residential at Ch. 181       | 20°26'45.40"N,                  | 09-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |
| 7         | V7                                     | ( Habitation, MAHSR Construction          | 72°57'52.50"E                   | 16-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |
|           |                                        | Site)                                     | 14 31 34.30 E                   | 23-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |
| 8         | V8                                     |                                           |                                 | 03-Jan-23  | 0.000      |                                                                                                                                                                                                                                                                                                                         | 0.000   |

| S.<br>No. | Location<br>Code              | Monitoring Location                  | Co-ordinate                     | Date of<br>Monitoring | Maximum<br>PPV (mm/s) | Minimum<br>PPV (mm/s) | Average<br>(mm/s) |
|-----------|-------------------------------|--------------------------------------|---------------------------------|-----------------------|-----------------------|-----------------------|-------------------|
|           |                               | Project Site office, BP, LC at Ch.   | 20022147 201121                 | 09-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               | 192/400 Hospital AXN Resort,         | 20°32'47.30"N,                  | 16-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               | commercial complex,                  | 72°58'17.40"E                   | 23-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               | LC D (N Cl 200 D )                   |                                 | 04-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 9         | 1/0                           | LC, Resort Near Ch. 206, Project     | 20°36'12.90"N,                  | 09-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 9         | V9                            | Working Area (Habitation,            | 72°58'46.32"E                   | 16-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           | Farmland, Hazrat Prim Dargah) |                                      | 23-Jan-23                       | 0.000                 | 0.000                 | 0.000                 |                   |
|           |                               |                                      |                                 | 04-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 10        | 3711                          | Project Site Office, at Ch. 211      | 20°42'32.40"N,                  | 09-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 10        | V I I                         | (Dental College, Farmland)           | 72°59'43.30"E                   | 16-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               | -                                    |                                 | 23-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               | Project Site office, BP, LC,         |                                 | 06-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 10        | 3714                          | Commercial Shed, factory Bilimora    | 20°45'51.20"N, 73°              | 10-Jan-23             | 0.100                 | 0.000                 | 0.001             |
| 12        | V14                           | Near at Ch 217/300 (Factory,         | 0'30.20"E                       | 17-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               | Billimora, Gujarat)                  |                                 | 24-Jan-23             | 0.300                 | 0.000                 | 0.001             |
|           |                               | Bilimora station and office Building |                                 | 06-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 10        | X71.6                         | at Ch. 218/500 (Habitation,          | 20°46'36.19"N, 73°              | 10-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 13        | V16                           | construction site MAHSR              | 0'38.97"E                       | 17-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               | construction site.                   |                                 | 24-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               |                                      |                                 | 07-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 1.4       | V14 V16 V17 V18               | Factory change and village changa    | 20°48'57.40"N, 73°              | 10-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 14        | V1/                           | at ch. 222/700 (habitation, temple)  | 1'0.10"E                        | 17-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               |                                      |                                 | 24-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               |                                      |                                 | 07-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 1.5       | ¥710                          | Habitation area, Chacga village      | 20°49'39.70"N, 73°              | 10-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 15        | V18                           | (habitation, Temple) 223/700         | 0'51.50"E                       | 17-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               |                                      |                                 | 24-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               | Ganesh temple, sensitive location,   |                                 | 08-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               | farmland Construction,               | 20051120 001INI 720             | 10-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 16        | V19                           | Sensitive location manikpur          | 20°51'38.90"N, 73°<br>0'21.90"E | 17-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                               | site at Ch. 236 (Habitation, Temple) | U 21.90 E                       | 24-Jan-23             | 0.000                 | 0.000                 | 0.000             |
| 17        | V20                           |                                      |                                 | 07-Jan-23             | 0.000                 | 0.000                 | 0.000             |

| S.<br>No. | Location<br>Code | Monitoring Location                                | Co-ordinate                    | Date of<br>Monitoring | Maximum<br>PPV (mm/s) | Minimum<br>PPV (mm/s)                                                                                                                                                                                                                                                                                                                                                                  | Average<br>(mm/s) |
|-----------|------------------|----------------------------------------------------|--------------------------------|-----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|           |                  | Project Site office, BP, LC at                     | 2005 (I20 OIIN)                | 10-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
|           |                  | Ch.232/000 (                                       | 20°56'29.8"N,                  | 17-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
|           |                  | Habitation)                                        | 72°59'08.10"E                  | 24-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
|           |                  | CIDCL 1 COLD N                                     |                                | 08-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
| 10        | 3/01             | GIDC Industrial Area Navsari,                      | 20°56'57.0"N,                  | 10-Jan-23             | 0.100                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.002             |
| 18        | V21              | Sensitive location, temple,<br>Gurukul, at Ch. 239 | 72°58'49.8"E                   | 17-Jan-23             | 0.100                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.001             |
|           |                  | Gurukui, at Cn. 239                                |                                | 24-Jan-23             | 0.000                 | PPV (mm/s) 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           |                  | D : (G) CC DD I C (C)                              |                                | 08-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
| 10        | 1100             | Project Site office, BP, LC at Ch.                 | 20°57'38.30"N,                 | 10-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
| 19        | V22              | 238/000 (Village habitation,                       | 72°58'35.3"E                   | 17-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
|           |                  | Farmland)                                          |                                | 24-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
|           |                  | Project Site Near Ch. 242                          |                                | 01-Jan-23             | 0.100                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.002             |
| 20        | 3704             | (Commercial Building,<br>Farmland, NH, MAHSR       | 20°58'47.00"N,<br>72°57'54.6"E | 10-Jan-23             | 0.100                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.001             |
| 20        | V24              |                                                    |                                | 15-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
|           |                  | Construction Site)                                 |                                | 29-Jan-23             | 0.200                 | PPV (mm/s)  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 | 0.001             |
|           |                  | D :                                                |                                | 01-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
| 21        | 1105             | Project Site office Near Ch. 254/500               | 21°05'09.40"N,                 | 10-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
| 21        | V25              | (MAHSR Batching Yard,                              | 72°55'23.4"E                   | 18-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
|           |                  | Industrial Area)                                   |                                | 29-Jan-23             | 0.000                 | PPV (mm/s)  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000        | 0.000             |
|           |                  | G '.' A G1 260 G 1 1                               |                                | 05-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
| 22        | V26              | Sensitive Area Ch. 260 School,                     | 21°08'11.5"N,                  | 11-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
| 22        | V 20             | village habitation (School,<br>Habitation)         | 72°55'43.83"E                  | 18-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
|           |                  | наонацоп)                                          |                                | 25-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
|           |                  | G + G+ +; SE 264/000                               |                                | 04-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
| 23        | V27              | Surat Station office area 264/000                  | 21°10'57.9"N,                  | 12-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
| 23        | V 2 /            | (Urban Habitation, MAHSR<br>Construction Site)     | 72°55'56.2"E                   | 18-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
|           |                  | Construction Site)                                 |                                | 25-Jan-23             | 0.000                 | PPV (mm/s)  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000                                                         | 0.000             |
|           |                  |                                                    |                                | 02-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
| 24        | V28              | Project Site office, BP, LC at Ch.                 | 21°12'50.5"N,                  | 12-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
| 24        | V 28             | 268/000 (Habitation)                               | 72°56'14.6"E                   | 18-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
|           |                  |                                                    |                                | 25-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |
| 25        | V29              |                                                    |                                | 03-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                  | 0.000             |

| S.<br>No. | Location<br>Code | Monitoring Location                              | Co-ordinate    | Date of<br>Monitoring | Maximum<br>PPV (mm/s) | Minimum<br>PPV (mm/s)                                                                                                                                                                                                                                                                                                                                                                         | Average<br>(mm/s) |
|-----------|------------------|--------------------------------------------------|----------------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2100      | 0000             | Hindu temple near slum area in                   |                | 13-Jan-23             | 0.000                 |                                                                                                                                                                                                                                                                                                                                                                                               | 0.000             |
|           |                  | Kholvad, Surat (Temple,                          | 21°16'39.8"N,  | 18-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           |                  | Habitation) Ch. 276                              | 72°56'21.2"E   | 25-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           |                  |                                                  |                | 03-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
| 26        | 1120             | Project Site office, BP, LC at Ch.               | 21°16'47.4"N,  | 13-Jan-23             | 0.100                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.001             |
| 26        | V30              | 281/000 (School, Majjid,                         | 72°56'15.5"E   | 18-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           |                  | Habitation)                                      |                | 25-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           |                  |                                                  |                | 07-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           | ****             | Project Site office, BP, LC at Ch.               | 21°24'47.8" N, | 14-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
| 27        | V31              | 290/000                                          | 72°54"46.9"E   | 18-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           |                  |                                                  |                | 25-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           |                  |                                                  |                | 01-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
| 20        | ***              | Project Site office, BP, LC at                   | 21°33'21.20"N, | 12-Jan-23             | 0.200                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.001             |
| 28        | V34              | Ch.307/600 (Temple, Majjid,                      | 72°57'04.5"É   | 19-Jan-23             | 0.300                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.002             |
|           |                  | habitation)                                      |                | 27-Jan-23             | 0.200                 | PPV (mm/s)  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000                                                                                                                                                                                                                                                                           | 0.001             |
|           |                  |                                                  |                | 06-Jan-23             | 0.000                 | 0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                       | 0.000             |
| 20        | ***              | Project Site office, BP, LC at Ch.               | 21°44'22.8"N,  | 12-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
| 29        | V35              | 321 (Habitation, Sensitive                       | 72°56'57.1"E   | 19-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           |                  | Location, majjid)                                |                | 27-Jan-23             | 0.000                 | PPV (mm/s)  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 | 0.000             |
|           |                  | Bharuch Depot and Station and                    |                | 05-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           |                  | office area Ch. 322/800                          | 24044127 01124 | 12-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
| 30        | V36              | (MAHSR Bharuch Site office,                      | 21°41'35.0"N,  | 19-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           |                  | Commercial Area SH, Retail<br>Shop, Residential) | 72°57'02.5"E   | 27-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           |                  | •                                                |                | 05-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
| 2.1       | ¥146             | Project Site Area, ROW At Tham                   | 21°44'22.8"N,  | 12-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
| 31        | V46              | Village Ch.328                                   | 72°56'57.1"E   | 19-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
|           |                  |                                                  |                | 27-Jan-23             | 0.000                 | PPV (mm/s)  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000        | 0.000             |
|           |                  |                                                  |                | 04-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
| 22        | 1120             | Sensitive Locations Ch. 346/500                  | 21°53′54.3″N,  | 13-Jan-23             | 0.000                 |                                                                                                                                                                                                                                                                                                                                                                                               | 0.000             |
| 32        | V39              | (Habitation, Majjid)                             | 72°59'05.1"E   | 20-Jan-23             | 0.000                 |                                                                                                                                                                                                                                                                                                                                                                                               | 0.000             |
|           |                  |                                                  |                | 28-Jan-23             | 0.000                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                         | 0.000             |
| 33        | V40              |                                                  |                | 03-Jan-23             | 0.000                 |                                                                                                                                                                                                                                                                                                                                                                                               | 0.000             |

| S.<br>No. | Location<br>Code | Monitoring Location                                                                              | Co-ordinate                   | Date of<br>Monitoring | Maximum<br>PPV (mm/s) | Minimum<br>PPV (mm/s) | Average<br>(mm/s) |
|-----------|------------------|--------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|-----------------------|-----------------------|-------------------|
|           |                  | Sensitive Locations Ch.348/500                                                                   | 2105515 2"NI                  | 13-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                  | (Village Habitation, Majjid                                                                      | 21°55'5.3"N,<br>72°59'27.6"E  | 20-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                  | kothy , Madarsa)                                                                                 | 72 39 21.0 E                  | 28-Jan-23             | 0.000                 | 0.000                 | 0.000             |
|           |                  | Sansitive Leastion Ch. 200/200                                                                   |                               | 01-Jan-23             | 0.200                 | 0.000                 | 0.003             |
| 34        | V43              | Sensitive Location Ch. 390/300,<br>Active Construction Site (Urban<br>Habitation, Railway track) | 21°15'02.1"N,<br>73°10'32.9"E | 13-Jan-23             | 0.300                 | 0.000                 | 0.002             |
| 34        | V 43             |                                                                                                  |                               | 20-Jan-23             | 0.100                 | 0.000                 | 0.003             |
|           |                  |                                                                                                  |                               | 28-Jan-23             | 0.200                 | 0.000                 | 0.002             |
|           |                  |                                                                                                  |                               | 01-Jan-23             | 1.200                 | 0.000                 | 0.012             |
| 35        | 3744             | Sensitive Location Ch. 393/500                                                                   | 22°16'40.7"N,                 | 13-Jan-23             | 1.100                 | 0.000                 | 0.031             |
| 33        | V 44             | V44 Near Railway Track                                                                           | 73°10'41.4"E                  | 20-Jan-23             | 1.100                 | 0.000                 | 0.023             |
|           |                  |                                                                                                  |                               | 28-Jan-23             | 1.300                 | 0.000                 | 0.037             |

Table 42: Vibration Monitoring Data for C4 Package for February 2023

| S.  | Location   |                                                     |                | Date of    | Maximum PPV | Minimum PPV | Average |
|-----|------------|-----------------------------------------------------|----------------|------------|-------------|-------------|---------|
| No. | Code       | Monitoring Location                                 | Co-ordinate    | Monitoring | (mm/s)      | (mm/s)      | (mm/s)  |
|     |            |                                                     |                | 02-Feb-23  | 0.000       | 0.000       | 0.000   |
| 1   | 771        | Project Site office, BP, LC, Dadar                  | 20°15'43.22"N, | 08-Feb-23  | 0.000       | 0.000       | 0.000   |
| 1   | V1         | and Nagar Haveli, at Ch. 159/000                    | 72°55'20.39"E  | 15-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |            |                                                     |                | 22-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |            |                                                     |                | 02-Feb-23  | 0.000       | 0.000       | 0.000   |
|     | MO         | Project Site office, BP, LC at                      | 20°18'2.80"N,  | 08-Feb-23  | 0.000       | 0.000       | 0.000   |
| 2   | V2         | Ch.165/000                                          | 72°56'16.40"E  | 15-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |            |                                                     |                | 22-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |            |                                                     |                | 02-Feb-23  | 0.100       | 0.000       | 0.001   |
|     | 112        | Vapi Station, Office / Residential                  | 20°19'41.30"N, | 08-Feb-23  | 0.200       | 0.000       | 0.001   |
| 3   | V3         | Building at Ch. 168/000                             | 72°56'56.30"E  | 15-Feb-23  | 0.100       | 0.000       | 0.002   |
|     |            |                                                     |                | 22-Feb-23  | 0.200       | 0.000       | 0.001   |
|     |            | W.D. W.A. L.D. L                                    |                | 02-Feb-23  | 0.000       | 0.000       | 0.000   |
| 4   | V4         | Vapi Depot, Vapi Ambach Road,                       | 20°21'21.70"N, | 08-Feb-23  | 0.000       | 0.000       | 0.000   |
| 4   | <b>V</b> 4 | Koparli Road, Village Vapi at Ch.<br>170/300        | 72°57'37.70"E  | 15-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |            |                                                     |                | 22-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |            | Wast Austral Dilat Ch. 171                          |                | 02-Feb-23  | 0.000       | 0.000       | 0.000   |
| 5   | V5         | Vapi Ambach Rd at Ch. 171                           | 20°22'43.25"N, | 08-Feb-23  | 0.000       | 0.000       | 0.000   |
| 3   | V 5        | (Village Habitation, MDR Vapi<br>Ambach Road)       | 72°57'38.83"E  | 15-Feb-23  | 0.100       | 0.000       | 0.001   |
|     |            | Ambach Koau)                                        |                | 22-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |            | Consider of West Westerli Deed                      |                | 02-Feb-23  | 0.000       | 0.000       | 0.000   |
| 6   | V6         | Crossing of Vapi Koparli Road,                      | 20°22'42.89"N, | 08-Feb-23  | 0.000       | 0.000       | 0.000   |
| 6   | VO         | Near Prathmik Arogya Kendra<br>Valsad, Near Ch. 172 | 72°57'33.38"E  | 15-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |            | vaisau, Near Cii. 172                               |                | 22-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |            | Devis Comp. Devidential at Ch. 101 (                |                | 02-Feb-23  | 0.000       | 0.000       | 0.000   |
| 7   | V7         | Paria Gaon - Residential at Ch. 181 (               | 20°26'45.40"N, | 08-Feb-23  | 0.000       | 0.000       | 0.000   |
| /   | <b>V</b> / | Habitation, MAHSR Construction                      | 72°57'52.50"E  | 15-Feb-23  | 0.100       | 0.000       | 0.001   |
|     |            | Site)                                               |                | 22-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |            | Project Site office, BP, LC at Ch.                  | 20°32'47.30"N, | 02-Feb-23  | 0.000       | 0.000       | 0.000   |
| 8   | V8         | 192/400 Hospital AXN Resort,                        | 72°58'17.40"E  | 08-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |            | commercial complex,                                 | 12 3011.40 E   | 15-Feb-23  | 0.000       | 0.000       | 0.000   |

| S.  | Location | Manifesta T. andian                                                 | C1:4-                           | Date of    | Maximum PPV | Minimum PPV | Average |
|-----|----------|---------------------------------------------------------------------|---------------------------------|------------|-------------|-------------|---------|
| No. | Code     | Monitoring Location                                                 | Co-ordinate                     | Monitoring | (mm/s)      | (mm/s)      | (mm/s)  |
|     |          |                                                                     |                                 | 22-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |          | LC D AN CLOSE D                                                     |                                 | 02-Feb-23  | 0.000       | 0.000       | 0.000   |
| 0   | MO       | LC, Resort Near Ch. 206, Project                                    | 20°36'12.90"N,                  | 08-Feb-23  | 0.000       | 0.000       | 0.000   |
| 9   | V9       | Working Area (Habitation,                                           | 72°58'46.32"E                   | 15-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |          | Farmland, Hazrat Prim Dargah)                                       |                                 | 22-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |          |                                                                     |                                 | 03-Feb-23  | 0.200       | 0.000       | 0.001   |
| 10  | V11      | Project Site Office, at Ch. 211                                     | 20°42'32.40"N,                  | 14-Feb-23  | 0.000       | 0.000       | 0.000   |
| 10  | V 1 1    | (Dental College, Farmland)                                          | 72°59'43.30"E                   | 20-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |          |                                                                     |                                 | 25-Feb-23  | 0.000       | 0.000       | 0.000   |
| 11  | V13      | Near at Ch. 214 (Civil Structure Undach Vaniya Faliya), habitation, | 20°44'19.40"N,<br>73° 0'10.10"E |            | No Wor      | k Started   |         |
|     |          | Project Site office, BP, LC,                                        |                                 | 03-Feb-23  | 0.100       | 0.000       | 0.001   |
| 12  | V14      | Commercial Shed, factory Bilimora                                   | 20°45'51.20"N,                  | 14-Feb-23  | 0.200       | 0.000       | 0.001   |
| 12  | V 14     | Near at Ch 217/300 (Factory,                                        | 73° 0'30.20"E                   | 20-Feb-23  | 0.100       | 0.000       | 0.002   |
|     |          | Billimora, Gujarat)                                                 |                                 | 25-Feb-23  | 0.100       | 0.000       | 0.001   |
|     |          | Bilimora station and office Building                                |                                 | 03-Feb-23  | 0.000       | 0.000       | 0.000   |
| 13  | V16      | at Ch. 218/500 (Habitation,                                         | 20°46'36.19"N,                  | 14-Feb-23  | 0.000       | 0.000       | 0.000   |
| 13  | V 10     | construction site MAHSR                                             | 73° 0'38.97"E                   | 20-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |          | construction site.                                                  |                                 | 25-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |          |                                                                     |                                 | 03-Feb-23  | 0.000       | 0.000       | 0.000   |
| 14  | V17      | Factory change and village changa                                   | 20°48'57.40"N,                  | 14-Feb-23  | 0.000       | 0.000       | 0.000   |
| 14  | V 1 /    | at ch. 222/700 (habitation, temple)                                 | 73° 1'0.10"E                    | 20-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |          |                                                                     |                                 | 25-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |          |                                                                     |                                 | 03-Feb-23  | 0.000       | 0.000       | 0.000   |
| 15  | V18      | Habitation area, Chacga village                                     | 20°49'39.70"N,                  | 14-Feb-23  | 0.000       | 0.000       | 0.000   |
| 13  | V 10     | (habitation, Temple) 223/700                                        | 73° 0'51.50"E                   | 20-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |          |                                                                     |                                 | 25-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |          | Ganesh temple, sensitive location,                                  |                                 | 03-Feb-23  | 0.000       | 0.000       | 0.000   |
| 16  | V19      | farmland Construction, Sensitive                                    | 20°51'38.90"N,                  | 14-Feb-23  | 0.000       | 0.000       | 0.000   |
| 10  | V 19     | location manikpur site at Ch. 236                                   | 73° 0'21.90"E                   | 20-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |          | (Habitation, Temple)                                                |                                 | 25-Feb-23  | 0.000       | 0.000       | 0.000   |
| 17  | V20      |                                                                     |                                 | 03-Feb-23  | 0.000       | 0.000       | 0.000   |

| S.  | Location     | Manifestor Taradian                                                   | C14-                           | Date of    | Maximum PPV | Minimum PPV | Average |
|-----|--------------|-----------------------------------------------------------------------|--------------------------------|------------|-------------|-------------|---------|
| No. | Code         | Monitoring Location                                                   | Co-ordinate                    | Monitoring | (mm/s)      | (mm/s)      | (mm/s)  |
|     |              | Project Site office, BP, LC at                                        | 2005 (120 0!INI                | 14-Feb-23  | 0.100       | 0.000       | 0.001   |
|     |              | Ch.232/000 (                                                          | 20°56'29.8"N,<br>72°59'08.10"E | 20-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |              | Habitation)                                                           | 72 39 08.10 E                  | 25-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |              | CIDC In heater 1 Ame Normani                                          |                                | 03-Feb-23  | 0.000       | 0.000       | 0.000   |
| 18  | V21          | GIDC Industrial Area Navsari,                                         | 20°56'57.0"N,                  | 14-Feb-23  | 0.200       | 0.000       | 0.002   |
| 16  | V Z 1        | Sensitive location, temple, Gurukul, at Ch. 239                       | 72°58'49.8"E                   | 20-Feb-23  | 0.100       | 0.000       | 0.001   |
|     |              | at Cli. 239                                                           |                                | 25-Feb-23  | 0.100       | 0.000       | 0.001   |
|     |              | Desired City office DD I C of Ch                                      |                                | 03-Feb-23  | 0.000       | 0.000       | 0.000   |
| 19  | V22          | Project Site office, BP, LC at Ch.                                    | 20°57'38.30"N,                 | 14-Feb-23  | 0.000       | 0.000       | 0.000   |
| 19  | <b>V</b> 22  | 238/000 (Village habitation, Farmland)                                | 72°58'35.3"E                   | 20-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |              | Farmiand)                                                             |                                | 25-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |              | Durings Gise Name Cl. 242                                             |                                | 01-Feb-23  | 0.100       | 0.000       | 0.002   |
| 20  | V24          | Project Site Near Ch. 242 (Commercial Building, Farmland,             | 20°58'47.00"N,                 | 07-Feb-23  | 0.100       | 0.000       | 0.001   |
| 20  | <b>V</b> 24  | NH, MAHSR Construction Site)                                          | 72°57'54.6"E                   | 21-Feb-23  | 0.200       | 0.000       | 0.002   |
|     |              | NH, WAHSK Construction Site)                                          |                                | 26-Feb-23  | 0.200       | 0.000       | 0.001   |
|     |              | During City off a Name Cl. 254/500                                    |                                | 01-Feb-23  | 0.000       | 0.000       | 0.000   |
| 21  | V25          | Project Site office Near Ch. 254/500 (MAHSR Batching Yard, Industrial | 21°05'09.40"N,                 | 07-Feb-23  | 0.000       | 0.000       | 0.000   |
| 21  | V 23         | Area)                                                                 | 72°55'23.4"E                   | 21-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |              | Alea)                                                                 |                                | 26-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |              | Canaiting Ama Ch 260 Cabaal                                           |                                | 01-Feb-23  | 0.000       | 0.000       | 0.000   |
| 22  | V26          | Sensitive Area Ch. 260 School, village habitation (School,            | 21°08'11.5"N,                  | 07-Feb-23  | 0.000       | 0.000       | 0.000   |
| 22  | V 20         | Habitation)                                                           | 72°55'43.83"E                  | 21-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |              | Traditation)                                                          |                                | 26-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |              | Surat Station office area 264/000                                     |                                | 01-Feb-23  | 0.200       | 0.000       | 0.001   |
| 23  | V27          | (Urban Habitation, MAHSR                                              | 21°10'57.9"N,                  | 07-Feb-23  | 0.100       | 0.000       | 0.001   |
| 23  | <b>V</b> Z I | Construction Site)                                                    | 72°55'56.2"E                   | 21-Feb-23  | 0.300       | 0.000       | 0.002   |
|     |              | Construction Site)                                                    |                                | 26-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |              |                                                                       |                                | 01-Feb-23  | 0.000       | 0.000       | 0.000   |
| 24  | V28          | Project Site office, BP, LC at Ch.                                    | 21°12'50.5"N,                  | 07-Feb-23  | 0.000       | 0.000       | 0.000   |
| 24  | V 20         | 268/000 (Habitation)                                                  | 72°56'14.6"E                   | 16-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |              |                                                                       |                                | 24-Feb-23  | 0.000       | 0.000       | 0.000   |
| 25  | V29          |                                                                       |                                | 01-Feb-23  | 0.000       | 0.000       | 0.000   |

| S.  | Location    | Monitoring Location                                                                    | Co andinata                   | Date of    | Maximum PPV | Minimum PPV | Average |
|-----|-------------|----------------------------------------------------------------------------------------|-------------------------------|------------|-------------|-------------|---------|
| No. | Code        | Monitoring Location                                                                    | Co-ordinate                   | Monitoring | (mm/s)      | (mm/s)      | (mm/s)  |
|     |             | Hindu temple near slum area in                                                         | 2101620 0"N                   | 08-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             | Kholvad, Surat (Temple,                                                                | 21°16'39.8"N,<br>72°56'21.2"E | 16-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             | Habitation) Ch. 276                                                                    | 72 30 21.2 E                  | 24-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             | D : (C: CC DD I C (C)                                                                  |                               | 01-Feb-23  | 0.000       | 0.000       | 0.000   |
| 26  | V30         | Project Site office, BP, LC at Ch. 281/000 (School, Majjid,                            | 21°16'47.4"N,                 | 08-Feb-23  | 0.000       | 0.000       | 0.000   |
| 20  | <b>V</b> 30 | Habitation)                                                                            | 72°56'15.5"E                  | 16-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             | Habitation)                                                                            |                               | 24-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             |                                                                                        |                               | 01-Feb-23  | 0.000       | 0.000       | 0.000   |
| 27  | X/21        | Project Site office, BP, LC at Ch.                                                     | 21°24'47.8"N,                 | 08-Feb-23  | 0.000       | 0.000       | 0.000   |
| 27  | V31         | 290/000                                                                                | 72°54"46.9"E                  | 16-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             |                                                                                        |                               | 24-Feb-23  | 0.000       | 0.000       | 0.000   |
| 28  | V32         | Sensitive location, village kimabli construction area at Ch. 292 (.Habitation, Temple) | 21°25'26.9"N,<br>72°55'01.9"E |            | No V        | Work        |         |
|     |             | Desired Side office DD I Cod                                                           |                               | 04-Feb-23  | 0.000       | 0.000       | 0.000   |
| 29  | V34         | Project Site office, BP, LC at Ch.307/600 (Temple, Majjid,                             | 21°33'21.20"N,                | 09-Feb-23  | 0.000       | 0.000       | 0.000   |
| 29  | V 34        | habitation)                                                                            | 72°57'04.5"E                  | 18-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             | Habitation)                                                                            |                               | 23-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             | Drainet Site office DD I C at Ch                                                       |                               | 04-Feb-23  | 0.000       | 0.000       | 0.000   |
| 30  | V35         | Project Site office, BP, LC at Ch. 321 (Habitation, Sensitive                          | 21°44'22.8"N,                 | 09-Feb-23  | 0.000       | 0.000       | 0.000   |
| 30  | V 33        | Location, majjid)                                                                      | 72°56'57.1"E                  | 18-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             | Location, majjid)                                                                      |                               | 23-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             | Bharuch Depot and Station and                                                          |                               | 04-Feb-23  | 0.000       | 0.000       | 0.000   |
| 31  | V36         | office area Ch. 322/800 (MAHSR                                                         | 21°41'35.0"N,                 | 09-Feb-23  | 0.000       | 0.000       | 0.000   |
| 31  | <b>V</b> 30 | Bharuch Site office, Commercial                                                        | 72°57'02.5"E                  | 18-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             | Area SH, Retail Shop, Residential)                                                     |                               | 23-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             |                                                                                        |                               | 04-Feb-23  | 0.000       | 0.000       | 0.000   |
| 32  | V46         | Project Site Area, ROW At Tham                                                         | 21°44'22.8"N,                 | 09-Feb-23  | 0.000       | 0.000       | 0.000   |
| 32  | V 40        | Village Ch.328                                                                         | 72°56'57.1"E                  | 18-Feb-23  | 0.000       | 0.000       | 0.000   |
|     |             |                                                                                        |                               | 23-Feb-23  | 0.000       | 0.000       | 0.000   |
| 33  | V39         | Sensitive Locations Ch. 346/500                                                        | 21°53'54.3"N,                 | 05-Feb-23  | 0.000       | 0.000       | 0.000   |
| 33  | v 39        | (Habitation, Majjid)                                                                   | 72°59'05.1"E                  | 09-Feb-23  | 0.000       | 0.000       | 0.000   |

| S.<br>No. | Location<br>Code | Monitoring Location                                                | Co-ordinate   | Date of<br>Monitoring | Maximum PPV<br>(mm/s) | Minimum PPV<br>(mm/s) | Average<br>(mm/s) |
|-----------|------------------|--------------------------------------------------------------------|---------------|-----------------------|-----------------------|-----------------------|-------------------|
|           |                  |                                                                    |               | 17-Feb-23             | 0.000                 | 0.000                 | 0.000             |
|           |                  |                                                                    |               | 27-Feb-23             | 0.000                 | 0.000                 | 0.000             |
|           |                  | Sensitive Locations Ch.348/500                                     |               | 05-Feb-23             | 0.000                 | 0.000                 | 0.000             |
| 34        | V40              | (Village Habitation, Majjid kothy,                                 | 21°55'5.3"N,  | 09-Feb-23             | 0.000                 | 0.000                 | 0.000             |
| 34        | <b>V</b> 40      | (Vinage Habitation, Majjid Kothy, Madarsa)                         | 72°59'27.6"E  | 17-Feb-23             | 0.000                 | 0.000                 | 0.000             |
|           |                  | Wadarsa)                                                           |               | 27-Feb-23             | 0.000                 | 0.000                 | 0.000             |
|           |                  | Sansitive Leastion Ch. 200/200                                     |               | 06-Feb-23             | 0.100                 | 0.000                 | 0.002             |
| 35        | V43              | Sensitive Location Ch. 390/300,<br>Active Construction Site (Urban | 21°15'02.1"N, | 10-Feb-23             | 0.400                 | 0.000                 | 0.002             |
| 33        | V 43             | Habitation, Railway track)                                         | 73°10'32.9"E  | 17-Feb-23             | 0.300                 | 0.000                 | 0.003             |
|           |                  | Habitation, Kanway track)                                          |               | 27-Feb-23             | 0.100                 | 0.000                 | 0.001             |
|           |                  |                                                                    |               | 06-Feb-23             | 1.500                 | 0.000                 | 0.021             |
| 36        | 3744             | Sensitive Location Ch. 393/500                                     | 22°16'40.7"N, | 10-Feb-23             | 0.900                 | 0.000                 | 0.011             |
| 30        | V44              | Near Railway Track                                                 | 73°10'41.4"E  | 17-Feb-23             | 1.200                 | 0.000                 | 0.021             |
|           |                  |                                                                    |               | 27-Feb-23             | 1.100                 | 0.000                 | 0.040             |

Table 43 Vibration Monitoring Data for C4 Package for March 2023

| S.<br>No. | Location<br>Code | Monitoring Location                                                          | Baseline<br>Maximum<br>PPV (mm/s) | Baseline<br>Average<br>(mm/s)       | Maximum PPV<br>Mar'23 (mm/s) | Cons. (March-2023)<br>Minimum PPV<br>(mm/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Average<br>Mar'23<br>(mm/s) |
|-----------|------------------|------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|           |                  |                                                                              |                                   |                                     | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
|           |                  | Project Site office, BP, LC, DNH, at Ch.                                     |                                   |                                     | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
| 1         | V1               | 159/000 (Industry, Habitation, MAHSR Construction Site)                      | 0.000                             | 0.000                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
|           |                  | Construction Site)                                                           |                                   | Average (mm/s)   Maximum PPV (mm/s) | 0.000                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
|           |                  |                                                                              |                                   |                                     | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
| 2         | V2               | Project Site office, BP, LC at Ch. 165/000 (MAHSR Construction Site, Village | 0.900                             | 0.031                               | 0.100                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.003                       |
| 2         | V Z              | Habitation)                                                                  | 0.900                             | 0.031                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
|           |                  |                                                                              |                                   |                                     | 0.300                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001                       |
|           |                  |                                                                              |                                   |                                     | 0.200                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                       |
| 2         | V3               | Vapi Station, Office Building at Ch.                                         | 0.000                             | 0.041                               | 0.200                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001                       |
| 3         | V 3              | 168/00 (Habitation, MAHSR Vapi<br>Station Construction Site)                 | 0.900                             | 0.041                               | 0.300                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001                       |
|           |                  | Station Constitueion Site)                                                   |                                   |                                     | 0.100                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.002                       |
|           |                  |                                                                              |                                   |                                     | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
| 4         | <b>X</b> 7 4     | Vapi Depot, Sensitive Location, Village                                      | 0.000                             | 0.000                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
| 4         | V4               | Vapi at Ch. 170/300 (Habitation, MAHSR Construction Site)                    | 0.000                             | 0.000                               | 0.100                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.001                       |
|           |                  | with this is construction site)                                              |                                   |                                     | 0.000                        | 0.100         0.000           0.000         0.000           0.300         0.000           0.200         0.000           0.200         0.000           0.300         0.000           0.300         0.000           0.100         0.000           0.000         0.000           0.100         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000 | 0.000                       |
|           |                  |                                                                              |                                   |                                     | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
| ~         | 375              | Vapi Ambach Rd at Ch. 171 (Village                                           | 0.000                             | 0.000                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
| 5         | V5               | Habitation, Vapi Ambach Road)                                                | 0.000                             | 0.000                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
|           |                  |                                                                              |                                   |                                     | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
|           |                  |                                                                              |                                   |                                     | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
| _         | ***              | Crossing of Vapi Koparli Road, Near                                          | 0.000                             | 0.000                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
| 6         | V6               | Prathmik Arogya Kendra Valsad, Near<br>Ch. 172                               | 0.000                             | 0.000                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |
|           |                  | CII. 172                                                                     |                                   |                                     | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000                       |

| S.<br>No. | Location<br>Code | Monitoring Location                                                        | Baseline<br>Maximum<br>PPV (mm/s) | Baseline<br>Average<br>(mm/s) | Maximum PPV<br>Mar'23 (mm/s) | Cons. (March-2023)<br>Minimum PPV<br>(mm/s) | Average<br>Mar'23<br>(mm/s) |
|-----------|------------------|----------------------------------------------------------------------------|-----------------------------------|-------------------------------|------------------------------|---------------------------------------------|-----------------------------|
|           |                  |                                                                            |                                   |                               | 0.300                        | 0.000                                       | 0.003                       |
| 7         | <b>V</b> 7       | Paria Gaon - Residential at Ch. 181                                        | 1.300                             | 0.024                         | 0.100                        | 0.000                                       | 0.002                       |
| /         | <b>V</b> /       | (Habitation, MAHSR Construction Site)                                      | 1.300                             | 0.024                         | 0.100                        | 0.000                                       | 0.002                       |
|           |                  |                                                                            |                                   |                               | 0.100                        | 0.000                                       | 0.001                       |
|           |                  |                                                                            |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
| 8         | V8               | Project Site office, BP, LC at Ch. 192/400                                 | 0.000                             | 0.000                         | 0.100                        | 0.000                                       | 0.001                       |
| 8         | V 8              | Hospital AXN Resort, commercial complex                                    | 0.000                             | 0.000                         | 0.200                        | 0.000                                       | 0.004                       |
|           |                  | complex                                                                    |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                                            |                                   |                               | 0.100                        | 0.000                                       | 0.002                       |
| 0         | V/O              | LC, Resort Near Ch. 206, Project                                           | 0.000                             | 0.000                         | 0.200                        | 0.000                                       | 0.001                       |
| 9         | V9               | Working Area (Village Habitation,<br>Farmland, Hazrat Prim Dargah)         | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
|           |                  | Turmuna, Tuzkat Timi Daigani)                                              |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                                            |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
| 10        | V11              | Project Site Office, at Ch. 211 (Dental                                    | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
| 10        | V 1 1            | College, Farmland )                                                        | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                                            |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                                            |                                   |                               | 0.300                        | 0.000                                       | 0.002                       |
| 10        | V14              | Project Site office, BP, LC, Commercial Shed, factory Bilimora Near at Ch. | 0.400                             | 0.001                         | 0.400                        | 0.000                                       | 0.021                       |
| 12        | V 14             | 217/300 (Factory, Billimora, Gujarat)                                      | 0.400                             | 0.001                         | 0.100                        | 0.000                                       | 0.002                       |
|           |                  | 2177300 (Lactory, Billiniora, Gajarac)                                     |                                   |                               | 0.200                        | 0.000                                       | 0.002                       |
|           |                  | Bilimora station and office Building at                                    |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
| 12        | V116             | Ch. 218/500 (Village Habitation,                                           | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
| 13        | V16              | construction site MAHSR construction                                       | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
|           |                  | site.)                                                                     |                                   | -                             | 0.000                        | 0.000                                       | 0.000                       |
| 14        | V17              |                                                                            | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |

| S.<br>No. | Location<br>Code | Monitoring Location                                                   | Baseline<br>Maximum<br>PPV (mm/s) | Baseline<br>Average<br>(mm/s) | Maximum PPV<br>Mar'23 (mm/s) | Cons. (March-2023)<br>Minimum PPV<br>(mm/s)                                                                                                                 | Average<br>Mar'23<br>(mm/s) |
|-----------|------------------|-----------------------------------------------------------------------|-----------------------------------|-------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|           |                  |                                                                       |                                   |                               | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
|           |                  | Factory changa and village changa at Ch. 222/700 (habitation, temple) |                                   |                               | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
|           |                  | 222/700 (natitation , temple )                                        |                                   |                               | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
|           |                  |                                                                       |                                   |                               | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
| 1.5       | V18              | Habitation area, Changa village (Changa                               | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
| 15        | V 18             | village, village habitation, Temple)  223/700                         | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
|           |                  | 223, 7 00                                                             |                                   |                               | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
|           |                  | Ganesh temple, sensitive location,                                    |                                   |                               | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
| 1.0       | ¥710             | farmland Construction, Sensitive location                             | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
| 16        | V19              | manikpur site at Ch. 236 (Habitation,                                 | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
|           |                  | Temple)                                                               |                                   |                               | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
|           |                  |                                                                       |                                   |                               | 0.100                        | 0.000                                                                                                                                                       | 0.001                       |
| 17        | 1120             | Project Site office, BP, LC at Ch. 232/000                            | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
| 1/        | 17 V20           | (Village<br>Habitation)                                               | 0.000                             | 0.000                         | 0.200                        | 0.000                                                                                                                                                       | 0.001                       |
|           |                  | Thubliation)                                                          |                                   |                               | 0.000                        | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 0.000                       |
|           |                  |                                                                       |                                   |                               | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
| 10        | 1701             | GIDC Industrial Area Navsari, Sensitive                               | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
| 18        | V21              | location, temple, Gurukul, at Ch. 239 (Industrial Area)               | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
|           |                  | (massian i nea)                                                       |                                   |                               | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
|           |                  |                                                                       |                                   |                               | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
| 10        | V/22             | Project Site office, BP, LC at Ch. 238/000                            | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
| 19        | V 22             | (Village habitation)                                                  | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
|           | 19 V22           |                                                                       |                                   |                               | 0.000                        | 0.000                                                                                                                                                       | 0.000                       |
| 20        | VIZA             |                                                                       | 0.000                             | 0.000                         | 0.300                        | 0.000                                                                                                                                                       | 0.001                       |
| 20        | V24              |                                                                       | 0.000                             | 0.000                         | 0.100                        | 0.000                                                                                                                                                       | 0.002                       |

| S.<br>No. | Location<br>Code | Monitoring Location                                                         | Baseline<br>Maximum<br>PPV (mm/s) | Baseline<br>Average<br>(mm/s) | Maximum PPV<br>Mar'23 (mm/s) | Cons. (March-2023)<br>Minimum PPV<br>(mm/s) | Average<br>Mar'23<br>(mm/s) |
|-----------|------------------|-----------------------------------------------------------------------------|-----------------------------------|-------------------------------|------------------------------|---------------------------------------------|-----------------------------|
|           |                  | Project Site Near Ch. 242 (Commercial                                       |                                   |                               | 0.100                        | 0.000                                       | 0.001                       |
|           |                  | Building, Farmland, NH, MAHSR<br>Construction Site)                         |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                                             |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
| 21        | V25              | Project Site office Near Ch. 254/500 (MAHSR Batching Yard, Industrial       | 0.900                             | 0.002                         | 0.000                        | 0.000                                       | 0.000                       |
| 21        | V 25             | (MAHSK Batching Yard, Industrial Area)                                      | 0.900                             | 0.002                         | 0.000                        | 0.000                                       | 0.000                       |
|           |                  | i nou)                                                                      |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                                             |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
| 22        | V26              | Sensitive Area Ch. 260 School, village                                      | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
| 22        | V 20             | habitation (School, Village Habitation,<br>Farmland, MDR road)              | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
|           |                  | ,                                                                           |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                                             |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
| 23        | V27              | Surat Station office area 264/000                                           | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
| 23        | V 2.1            | (Habitation, MAHSR Construction Site)                                       | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                                             |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                                             |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
| 24        | V28              | Project Site office, BP, LC at Ch.268/000                                   | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
| 24        | V 20             | (Habitation)                                                                | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                                             |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                                             |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
| 25        | V29              | Hindu temple near slum area in Kholvad,<br>Surat (Temple, Farmland, Village | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
| 23        | V 29             | Habitation) Ch. 276                                                         | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
|           | _                |                                                                             |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
|           |                  | Project Site office, BP, LC at Ch. 281/000                                  |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
| 26        | V30              | (School, Majjid Farmland, Village                                           | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
|           |                  | Habitation)                                                                 |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |

| S.<br>No. | Location<br>Code | Monitoring Location                                                           | Baseline<br>Maximum<br>PPV (mm/s) | Baseline<br>Average<br>(mm/s) | Maximum PPV<br>Mar'23 (mm/s) | Cons. (March-2023)<br>Minimum PPV<br>(mm/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Average<br>Mar'23<br>(mm/s) |
|-----------|------------------|-------------------------------------------------------------------------------|-----------------------------------|-------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|           |                  |                                                                               |                                   |                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
|           |                  |                                                                               |                                   |                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
| 27        | V31              | Project Site of Sico PR L C at Ch 200/000                                     | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
| 21        | V 31             | Project Site office, BP, LC at Ch. 290/000                                    | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
|           |                  |                                                                               |                                   |                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
|           |                  |                                                                               |                                   |                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
| 28        | V32              | Sensitive location, village kimabli                                           | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
| 28        | V 32             | construction area at Ch. 292 (Village Habitation, Temple, Farmland)           | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
|           |                  | Thereare, Temple, Luminality                                                  |                                   |                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
|           |                  |                                                                               |                                   |                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
| 20        | V34              | Project Site office, BP, LC at Ch.307/600                                     | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
| 29        | V 34             | (Temple, Majjid, Village habitation, Farmland)                                | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
|           |                  | 2 4333414)                                                                    |                                   |                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
|           |                  |                                                                               |                                   |                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
| 30        | V35              | Project Site office, BP, LC at Ch.321 (Village Habitation, Sensitive Location | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
| 30        | V 33             | Farmland, majjid)                                                             | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
|           |                  |                                                                               |                                   |                               | 0.000                        | 0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000           0.000         0.000 | 0.000                       |
|           |                  | Bharuch Depot and Station and office                                          |                                   |                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
| 31        | V36              | area Ch. 322/800 (MAHSR bharuch Site                                          | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
| 31        | V 30             | office, Commercial Area SH, Retail                                            | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
|           |                  | Shop, Residential)                                                            |                                   |                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
|           |                  |                                                                               |                                   |                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
| 22        | V46              | Project Site Area, ROW At Tham Village                                        | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
| 32        | V 40             | Ch.328                                                                        | 0.000                             | 0.000                         | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |
|           | _                |                                                                               |                                   |                               | 0.000                        | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000                       |

| S.<br>No. | Location<br>Code | Monitoring Location                             | Baseline<br>Maximum<br>PPV (mm/s) | Baseline<br>Average<br>(mm/s) | Maximum PPV<br>Mar'23 (mm/s) | Cons. (March-2023)<br>Minimum PPV<br>(mm/s) | Average<br>Mar'23<br>(mm/s) |
|-----------|------------------|-------------------------------------------------|-----------------------------------|-------------------------------|------------------------------|---------------------------------------------|-----------------------------|
|           |                  |                                                 |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
| 33        | V/20             | Sensitive Locations Ch. 346/500 (Village        | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
| 33        | V 39             | Habitation , Majjid, farmland )                 | 0.000                             | 0.000                         | 0.000                        | 0.000                                       | 0.000                       |
|           | 4 V40            |                                                 |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                 |                                   |                               | 0.000                        | 0.000                                       | 0.000                       |
| 34        | <b>V</b> /40     | Sensitive Locations Ch. 348/500 (Village        | 0.000                             | 0.000                         | 0.100                        | 0.000                                       | 0.001                       |
| 34        | V 40             | Habitation, Majjid kothy, Madarsa)              | 0.000                             | 0.000<br>0.000<br>0.000       | 0.000                        | 0.000                                       | 0.000                       |
|           |                  |                                                 |                                   |                               | 0.000                        | 0.002                                       |                             |
|           |                  |                                                 |                                   |                               | 0.500                        | 0.000                                       | 0.002                       |
| 25        | <b>V</b> /42     | Sensitive Location Ch. 390/300, Active          | 0.000                             | 0.000                         | 0.100                        | 0.000                                       | 0.003                       |
| 35        | V43              | Construction Site (. Habitation, Railway track) | 0.000                             | 0.000                         | 0.100                        | 0.000                                       | 0.001                       |
|           |                  | truck)                                          |                                   |                               | 0.060                        | 0.000                                       | 0.002                       |
|           |                  |                                                 |                                   |                               | 0.400                        | 0.000                                       | 0.011                       |
| 26        | <b>X</b> 744     | Sensitive Location Ch. 393/500 Active           | 0.400                             | 0.002                         | 0.200                        | 0.000                                       | 0.031                       |
| 36        | V44              | Construction Site Near Railway Track            | 0.400                             | 0.400 0.002                   | 0.500                        | 0.000                                       | 0.030                       |
|           |                  |                                                 |                                   |                               | 0.900                        | 0.000                                       | 0.021                       |

# **Annexure 3: Env Monitoring Data of C5 Package**

## Appendix 3.1: Ambient Air Quality Monitoring Data for C5 Package

Table 44: Ambient air quality monitoring locations for C5 Package

| Sr. No | <b>Location Code</b>                          | Location                                                    |  |
|--------|-----------------------------------------------|-------------------------------------------------------------|--|
| 1      | AAQ 1                                         | Commercial, Pandya Bridge - P403- P405/Ch398.406- Ch398.491 |  |
| 2      | AAQ 2                                         | 2 Residential, Shagun Society -Ch 398.100- Ch 398.200       |  |
| 3      | AAQ 3                                         | AQ 3 Conformation Cae Base -p136-p142/ch 395.067-Ch 395.287 |  |
| 4      | AAQ 4 Chhani P 540-P 542 (temple/Residential) |                                                             |  |
| 5      | AAQ 5                                         | Vishwamitri (In sun/Temple)-P116-P120/Ch 394.300- Ch394.445 |  |
| 6      | AAQ 6                                         | Akota res. /Madarsa/Temple/P 143-P149/Ch 396.327-Ch 395.552 |  |
| 7      | AAQ 7                                         | Punjab Steel -P401/CH 398.321                               |  |
| 8      | AAQ 8                                         | Vadodara Railway station and traffic area TP 03             |  |
| 9      | AAQ 9                                         | PC yard-Khalipur                                            |  |
| 10     | AAQ 10                                        | Quarry Crusher-Khervadi                                     |  |

Table 45: Ambient Air quality Monitoring data for C5 Package

| Sr. | Location |                   |          | PM10                         |                              |                   |          | PM2.5                        |                              |
|-----|----------|-------------------|----------|------------------------------|------------------------------|-------------------|----------|------------------------------|------------------------------|
| No  | Code     | NAAQS<br>standard | Baseline | Construction<br>Phase Feb 23 | Construction<br>Phase Mar 23 | NAAQS<br>standard | Baseline | Construction<br>Phase Feb 23 | Construction<br>Phase Mar 23 |
| 1   | AAQ 1    | 100               | 151.38   | 298.5                        | 264.64                       | 60                | 55.41    | 143.3                        | 153.3                        |
| 2   | AAQ 2    | 100               | 136.81   | 268.15                       | 259.08                       | 60                | 46.87    | 126.85                       | 128.31                       |
| 3   | AAQ 3    | 100               | 122.03   | 199.19                       |                              | 60                | 38.95    | 97.9                         |                              |
| 4   | AAQ 4    | 100               | 118      | 272.75                       |                              | 60                | 39.16    | 146.015                      |                              |
| 5   | AAQ 5    | 100               | 86.64    | 238.11                       | 78.11                        | 60                | 36.24    | 103.94                       | 52.07                        |
| 6   | AAQ 6    | 100               | 108.4    | 238.24                       |                              | 60                | 41.03    | 124.98                       |                              |
| 7   | AAQ 7    | 100               | 146.62   | 327.9                        | 81.15                        | 60                | 50.51    | 157.885                      | 46.24                        |
| 8   | AAQ 8    | 100               | 126.4    | 209.88                       | 185.4                        | 60                | 42.6     | 93.73                        | 97.06                        |
| 9   | AAQ 9    | 100               | 98.29    | 112.15                       |                              | 60                | 37.91    | 52.91                        |                              |
| 10  | AAQ 10   | 100               | 104.57   | 272.88                       |                              | 60                | 39.68    | 130.81                       |                              |

|           |                  |                | SO2      |                              |                              | Nox            |          |                              |                              | СО             |          |                              |                              |
|-----------|------------------|----------------|----------|------------------------------|------------------------------|----------------|----------|------------------------------|------------------------------|----------------|----------|------------------------------|------------------------------|
| Sr.<br>No | Location<br>Code | NAAQS standard | Baseline | Construction Phase<br>Feb 23 | Construction Phase<br>Mar 23 | NAAQS standard | Baseline | Construction Phase<br>Feb 23 | Construction Phase<br>Mar 23 | NAAQS standard | Baseline | Construction Phase<br>Feb 23 | Construction Phase<br>Mar 23 |
| 1         | AAQ 1            | 80             | 18.5     | 18.34                        | 17.2                         | 80             | 26.76    | 28.64                        | 25.87                        | 4              | 0.78     | 0.92                         | 0.97                         |
| 2         | AAQ 2            | 80             | 15.76    | 19.05                        | 18.07                        | 80             | 23.61    | 26.465                       | 25.92                        | 4              | 0.73     | 0.89                         | 1.03                         |
| 3         | AAQ 3            | 80             | 14.67    | 17.6                         |                              | 80             | 21.31    | 24.2                         |                              | 4              | 0.67     | 0.78                         |                              |
| 4         | AAQ 4            | 80             | 14.86    | 18.11                        |                              | 80             | 21.8     | 27.19                        |                              | 4              | 0.68     | 0.975                        |                              |
| 5         | AAQ 5            | 80             | 13.56    | 15.93                        | 16.69                        | 80             | 19.65    | 24.945                       | 23.44                        | 4              | 0.58     | 0.795                        | 0.66                         |
| 6         | AAQ 6            | 80             | 15.51    | 17.31                        |                              | 80             | 22.35    | 25.35                        |                              | 4              | 0.68     | 0.93                         |                              |
| 7         | AAQ 7            | 80             | 16.63    | 19.245                       | 14.09                        | 80             | 25.28    | 27.72                        | 24.95                        | 4              | 0.72     | 1.01                         | 0.68                         |
| 8         | AAQ 8            | 80             | 15.01    | 17.68                        | 16.37                        | 80             | 23.83    | 28.64                        | 26.44                        | 4              | 0.7      | 0.97                         | 0.92                         |
| 9         | AAQ 9            | 80             | 13.24    | 15.78                        |                              | 80             | 20.11    | 24.82                        |                              | 4              | 0.68     | 0.86                         |                              |
| 10        | AAQ 10           | 80             | 14.02    | 19.24                        |                              | 80             | 20.52    | 28.33                        |                              | 4              | 0.7      | 0.96                         |                              |

## **Appendix 3.2: Ambient Noise Quality Data for C5 Package**

Table 46: Ambient noise quality monitoring locations for C5 Package

| Sr. No | Code   | Location                                                                                                   |  |
|--------|--------|------------------------------------------------------------------------------------------------------------|--|
| 1      | ANQ 1  | Residential, Shagun Society - Ch 398.100- Ch 398.200                                                       |  |
| 2      | ANQ 2  | Industrial, Punjab Steel P401/Ch.398.321                                                                   |  |
| 3      | ANQ 3  | ANQ 3 Residential/Sensitive, Vishwamitri (incl. Slum/Temple) – P116 P120/Ch394.300 - Ch394.445(incl. Slum) |  |
| 4      | ANQ 4  | Chhani P 540-P542 (temple/Residential)                                                                     |  |
| 5      | ANQ 5  | Commercial, PC yard – Khalipur                                                                             |  |
| 6      | ANQ 6  | Commercial, Quarry Crusher - Khervadi                                                                      |  |
| 7      | ANQ 7  | Pandya Bridge -P403/Ch 398.406 -ch 398.491                                                                 |  |
| 8      | ANQ 8  | CCB-P136-P142/CH 395.067-Ch 395.287                                                                        |  |
| 9      | ANQ 9  | Akota res. /Madarsa/Temple/P 143-P149/Ch 396.327-Ch 396.552                                                |  |
| 10     | ANQ 10 | Vadodara Railway station TP03                                                                              |  |

Table 47: Ambient Noise quality monitoring data for C5 Package

| Sr. No | Code   | ANQM<br>Standard | Baseline | Leq Day on<br>Feb 23 | Leq Day on<br>Mar 23 | ANQM<br>Standard | Baseline | Leq Night on<br>Feb 23 | Leq Night<br>on Mar 23 |
|--------|--------|------------------|----------|----------------------|----------------------|------------------|----------|------------------------|------------------------|
| 1      | ANQ 1  | 55               | 70.6     | 69.6                 | 63                   | 45               | 61.6     | 59.3                   | 60                     |
| 2      | ANQ 2  | 75               | 76.3     | 74.2                 | 70.1                 | 70               | 62       | 65.9                   | 62.6                   |
| 3      | ANQ 3  | 55               | 68.3     | 66.3                 | 65                   | 45               | 57.7     | 57.5                   | 57                     |
| 4      | ANQ 4  | 50               | 75.7     | 68.8                 |                      | 40               | 75.4     | 67.8                   |                        |
| 5      | ANQ 5  | 65               | 54.5     | 54.7                 | 55.1                 | 55               | 49       | 50.6                   | 48.5                   |
| 6      | ANQ 6  | 65               | 60.5     | 67.6                 | 64.5                 | 55               | 47.8     | 52.1                   | 52.8                   |
| 7      | ANQ 7  | 65               | 75.4     | 71.4                 | 65.5                 | 55               | 61       | 58.5                   | 61.5                   |
| 8      | ANQ 8  | 65               | 71.8     | 68.9                 |                      | 55               | 69.6     | 63                     |                        |
| 9      | ANQ 9  | 55               | 68.3     | 68.6                 |                      | 45               | 57.7     | 62.6                   |                        |
| 10     | ANQ 10 | 65               | 82       | 73.2                 | 69.5                 | 55               | 81.8     | 65                     | 60.1                   |

### **Appendix 3.3 Vibration Monitoring Data for C5 Package**

Table 48: Vibration monitoring at C5 Package in February 23

| Location   | I                              | Co-or                 | dinate                | Date Of    | Max.          | Min.          | Avg.   |
|------------|--------------------------------|-----------------------|-----------------------|------------|---------------|---------------|--------|
| Code       | Location Description           | Latitude Longitude    |                       | Monitoring | PPv<br>(mm/s) | PPV<br>(mm/s) | (mm/s) |
| V1         | Vishwamitri Nr. Temple P116 to | 22°17'16.3644"        | 73° 10' 43.6188"      | 16.02.2023 | 1.31          | 0.45          | 0.93   |
| V I        | P120                           | N                     | Е                     | 21.02.2023 | 7.05          | 0.7           | 2.22   |
| V2         | Punjab Steel                   | 22° 19'16.824" N      | 73" 10' 38.0064" E    | 16.02.2023 | 2.78          | 0.49          | 1.81   |
| <b>V</b> 2 | P401                           | 22 1910.824 N         | /3 10 38.0004 E       | 20.02.2023 | 2.27          | 0.8           | 1.34   |
| V3         | Na Champa Casista              | 22" 19' 13.62" N      | 73' 10' 40.458" E     | 16.02.2023 | 4.71          | 0.47          | 1.80   |
| V 3        | Nr. Shagun-Society             |                       |                       | 20.02.2023 | 6.43          | 0.0           | 2.61   |
| V4         | Vadodara Railway Station TP 03 | 22° 18' 44.4312"<br>N | 73° 10' 50.8188"<br>E | 20.02.2023 | 7.77          | 0.0           | 2.00   |
| V5         | Akota P143                     | 22° 17' 44.1492" N    | 73" 10' 45.7202" E    | 20.02.2023 | 2.43          | 0.91          | 1.33   |
| V6         | CCB P136 to PI 42              | 22° 17' 41.9208" N    | 73° 10'46.1784" E     | 16.02.2023 | 3.43          | 0.85          | 2.08   |
| VO         | CCB P130 to P142               | 22 17 41.9208 IN      | /3 10 40.1784 E       | 21.02.2023 | 0.61          | 0.31          | 0.45   |
| N7         | Chhani                         | 220 202 41 27UN       | 720 01 25 55 11       | 16.02.2023 | 3.14          | 0.39          | 1.90   |
| V7         | Flyover P535                   | 22° 20' 41.37"N       | 73° 9' 35.55"E        | 21.02.2023 | 4.19          | 0.45          | 1.32   |
| V8         | Chhani Canal                   | 22° 12' 57.3804" N    | 73° 10° 1.794" E      | 16.02.2023 | 3.47          | 43            | 1.57   |

| Location | I d' D d' - d'                | Co-or                 | Date Of            | Max.       | Min.          | Avg.          |        |
|----------|-------------------------------|-----------------------|--------------------|------------|---------------|---------------|--------|
| Code     | Location Description          | Latitude              | Longitude          | Monitoring | PPv<br>(mm/s) | PPV<br>(mm/s) | (mm/s) |
|          |                               |                       |                    | 21.02.2023 | 1.1           | 0.43          | 0.69   |
| WO       | V9 Quarry<br>Crusher Kherwadi | 22° 17" 11.544"<br>N  | 7S° 28' 29.8668"   | 16.02.2023 | 3.11          | 0.41          | 1.54   |
| V9       |                               |                       | Е                  | 20.02.2023 | 6.45          | 0.31          | 1.84   |
| V10      | V10 Akota Flyover             | 22° 17" 54.1968"<br>N | 720 1 0! 45 4222"E | 16.02.2023 | 2.45          | 0.51          | 1.44   |
| V10      |                               |                       | 73° 1 0' 45.4332"E | 21.02.2023 | 2.87          | 0.5           | 1.16   |

Table 49 Vibration monitoring at C5 Package in March 23

| Location<br>Code | Location Description (Baseline<br>Setting)                                                                      | Со-ол              | Date of<br>Monitoring | Maximum<br>PPV<br>(mm/s) | Minimum<br>PPV<br>(mm/s) | Average (mm/s) |      |
|------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|--------------------------|--------------------------|----------------|------|
|                  |                                                                                                                 | Latitude           | Longitude             |                          |                          |                |      |
|                  | Vishwamitri Nr. Temple P116                                                                                     | 22° 17'13.6968" N  | 73° 10' 43.7484" E    | 10-03-2023               | 1.21                     | 0.46           | 0.87 |
|                  | to P120                                                                                                         | 22 1/13.0908 IN    | 73 10 43.7464 E       | 15-03-2023               | 4.63                     | 0.31           | 1.72 |
|                  | Start Point (P106 - P107/Ch393.7- Ch394.017) (SUNCITY)-house no:C69 (With hammering Without Train)              | 22° 17' 1.3272" N  | 73° 10' 42.384" E     | 21-03-2023               | 1.01                     | 0.92           | 0.95 |
| V1               | Start Point (P106 - P107/Ch393.7- Ch394.017) (SUNCITY)-house no:C84 (During Train on Track (Without Hammering)) | 22° 17' 1.3272" N  | 73° 10' 42.384" E     | 21-03-2023               | 3.71                     | 2.37           | 3.09 |
|                  | Vishwamitri/Start Point P106 to P109                                                                            | 22° 17' 14.8632" N | 73° 10' 43.7952" E    | 30-03-2023               | 0.23                     | 0.11           | 0.16 |
| V2               |                                                                                                                 | 22° 19' 15.5748" N | 73° 10' 40.8072" E    | 12-03-2023               | 3.58                     | 0.35           | 1.20 |

| Location<br>Code | Location Description (Baseline Setting) | Со-от              | rdinate            | Date of<br>Monitoring | Maximum<br>PPV<br>(mm/s) | Minimum<br>PPV<br>(mm/s) | Average (mm/s) |
|------------------|-----------------------------------------|--------------------|--------------------|-----------------------|--------------------------|--------------------------|----------------|
|                  |                                         | Latitude           | Longitude          |                       |                          |                          |                |
|                  | Duniah Staal                            | 22° 19' 15.5748" N | 73° 10' 40.8072" E | 17-03-2023            | 4.31                     | 0.37                     | 1.50           |
|                  | Punjab Steel –<br>P401/Ch.398.321       | 22° 19' 15.5748" N | 73° 10' 40.8072" E | 24-03-2023            | 1.23                     | 0.27                     | 0.52           |
|                  | F401/CII.398.321                        | 22° 19' 15.5748" N | 73° 10' 40.8072" E | 30-03-2023            | 0.55                     | 0.32                     | 0.40           |
|                  |                                         | 22° 19' 12.9432" N | 73° 10' 41.0052" E | 10-03-2023            | 1.31                     | 0.61                     | 0.83           |
| V3               | Nr. Shagun Society                      | 22° 19' 13.026" N  | 73° 10' 41.0052" E | 15-03-2023            | 2.46                     | 0.35                     | 1.45           |
| V 3              |                                         | 22° 19' 13.026" N  | 73° 10' 41.0052" E | 24-03-2023            | 0.47                     | 0.32                     | 0.39           |
|                  |                                         | 22° 19' 13.026" N  | 73° 10' 41.0052" E | 30-03-2023            | 0.39                     | 0.27                     | 0.33           |
|                  |                                         | 22° 19' 0.3468" N  | 73° 10' 45.372" E  | 12-03-2023            | 1.43                     | 0.00                     | 0.70           |
| 37.4             | Vadodara Railway Station TP-            | 22° 19' 0.3468" N  | 73° 10' 45.372" E  | 17-03-2023            | 3.55                     | 0.59                     | 1.70           |
| V4               | 03                                      | 22° 19' 0.3468" N  | 73° 10' 45.372" E  | 24-03-2023            | 0.68                     | 0.27                     | 0.46           |
|                  |                                         | 22° 19' 0.3468" N  | 73° 10' 45.372" E  | 31-03-2023            | 0.97                     | 0.21                     | 0.45           |
|                  |                                         | 22° 17' 11.112" N  | 73° 28' 30.5184" E | 11-03-2023            | 1.61                     | 0                        | 0.65           |
| WO               | Quarry Crusher Kherwadi                 | 22° 17' 11.274" N  | 73° 28' 30.558" E  | 15-03-2023            | 4.95                     | 0.53                     | 2.35           |
| V9               |                                         | 22° 17' 10.9788" N | 73° 28' 30.4932" E | 23-03-2023            | 0.41                     | 0.27                     | 0.34           |
|                  |                                         | 22° 17' 9.8952" N  | 73° 28' 30.054" E  | 30-03-2023            | 0.77                     | 0.41                     | 0.51           |

# **Annexure 4: Environmental Data of C6 Package**

### **Appendix 4.1: Ambient Air Quality Monitoring Data for C6 Package**

Table 50: Ambient Air Quality Monitoring Locations for C6 Package

| Sr<br>No. | Monitoring<br>Location Code | Location as per Construction Baseline                                      |  |  |  |
|-----------|-----------------------------|----------------------------------------------------------------------------|--|--|--|
| 1         | AAQ1-X                      | Sainath Nagar Resident at Chainage-402                                     |  |  |  |
| 2         | AAQ-3 A                     | lage Chhayapuri, Railway station flyover, active project site at Ch405+100 |  |  |  |
| 3         | AAQ5-B                      | ive project site at Ch -405                                                |  |  |  |
| 4         | AAQ5-A                      | lage Omkarpura, active project site at Chainage-405                        |  |  |  |
| 5         | AAQ6                        | Casting Yard at Chainage-407                                               |  |  |  |
| 6         | AAQ7                        | Active project site at Chainage-409                                        |  |  |  |
| 7         | AAQ8                        | Village Sakarda, active project site at Chainage- 412                      |  |  |  |
| 8         | AAQ9                        | Village Sakarda, active project site at Ch 412+650                         |  |  |  |
| 9         | AAQ10                       | LC, Casting yard at Chainage-417                                           |  |  |  |
| 10        | AAQ20                       | BP, project site office at Chainage-434                                    |  |  |  |
| 11        | AAQ23-A                     | Village Ravlapura at Chainage-437+820                                      |  |  |  |
| 12        | AAQ23 -B                    | Village Ravlapura at Chainage-438                                          |  |  |  |

| Sr<br>No. | Monitoring<br>Location Code | Location as per Construction Baseline                         |  |
|-----------|-----------------------------|---------------------------------------------------------------|--|
| 13        | AAQ24                       | Village Jivapura at Chainage-439                              |  |
| 14        | AAQ-24-A                    | Village- Jivapura, active project site at Ch440               |  |
| 15        | AAQ46                       | Village-Boriabi active project site at Chainage-441           |  |
| 16        | AAQ27                       | Project site office casting yard at Chainage -447             |  |
| 17        | AAQ28                       | Casting yard at Chainage-448                                  |  |
| 18        | AAQ29                       | AAQ29 Village-Uttarsanda, Active project site at Chainage-449 |  |
| 19        | AAQ30                       | Village –Piplag, BP at Chainage – 450                         |  |
| 20        | AAQ31                       | Altius Fortius High School at Ch451                           |  |
| 21        | AAQ32                       | Village- Dumral, Active Project site at Chainage-452          |  |
| 22        | AAQ34                       | Village-Hagrabad, active project site at Chainage-463         |  |
| 23        | AAQ34 A                     | Village-Degam, active project site at Ch462                   |  |
| 24        | AAQ34B                      | Village-Degam, active project site at Ch463 +740              |  |
| 25        | AAQ48 A                     | Village-Bovra, active project site at Ch465+900               |  |
| 26        | AAQ48-B                     | Village-Babra at Ch-466                                       |  |
| 27        | AAQ35 A                     | Village Katakpura, active project site at Ch468+750           |  |

| Sr<br>No. | Monitoring<br>Location Code | Location as per Construction Baseline                                   |
|-----------|-----------------------------|-------------------------------------------------------------------------|
| 28        | AAQ35-B                     | Village-Katakpura, active project site at Chainage -468                 |
| 29        | AAQ36                       | BP at Ch470+750                                                         |
| 30        | AAQ37                       | BP at Chainage-471                                                      |
| 31        | AAQ49A                      | Village-Kaji, Active project site at Ch478+550                          |
| 32        | AAQ39                       | Project site office casting yard at Chainage-483                        |
| 33        | AAQ42 C                     | Village- Ropda, Near railway Track, active project site at Chainage-489 |

Table 51: Ambient Air Quality Monitoring Data for C6 Package for PM10 and PM2.5

|           |                                |                  |                  | PM10                             | )                                |                           |                  |                  | PM2.5                            |                                  |                                  |
|-----------|--------------------------------|------------------|------------------|----------------------------------|----------------------------------|---------------------------|------------------|------------------|----------------------------------|----------------------------------|----------------------------------|
| Sr<br>No. | Monitoring<br>Location<br>Code | NAAQ<br>Standard | Baseline<br>Conc | Construction<br>phase-Jan-<br>23 | Construction<br>phase-Feb-<br>23 | Construction phase-Mar-23 | NAAQ<br>Standard | Baseline<br>Conc | Construction<br>phase-Jan-<br>23 | Construction<br>phase-Feb-<br>23 | Construction<br>phase-Mar-<br>23 |
| 1         | AAQ1-X                         | 100.00           |                  | 91.6                             | 92.12                            | 87.85                     | 60               |                  | 50.21                            | 51.06                            | 48.52                            |
| 2         | AAQ-3 A                        | 100.00           | 80.95            |                                  |                                  | 86.55                     | 60               | 34.78            |                                  |                                  | 48.99                            |
| 3         | AAQ5-B                         | 100.00           |                  | 92.5                             |                                  |                           | 60               |                  | 54.7                             |                                  |                                  |
| 4         | AAQ5-A                         | 100.00           | 82.96            | 85.44                            | 86.21                            |                           | 60               | 35.78            | 39.45                            | 40.05                            |                                  |
| 5         | AAQ6                           | 100.00           | 86.08            | 87.42                            | 88.65                            |                           | 60               | 45.55            | 49.72                            | 49.12                            |                                  |
| 6         | AAQ7                           | 100.00           |                  | 92.5                             |                                  |                           | 60               |                  | 55.7                             |                                  |                                  |
| 7         | AAQ8                           | 100.00           | 81.97            | 82.99                            | 83.42                            |                           | 60               | 34.05            | 48.95                            | 49.35                            |                                  |
| 8         | AAQ9                           | 100.00           | 82.33            |                                  |                                  | 89.56                     | 60               | 48.14            |                                  |                                  | 51.22                            |
| 9         | AAQ10                          | 100.00           |                  | 84.54                            | 85.63                            |                           | 60               |                  | 49.45                            | 50.36                            |                                  |
| 10        | AAQ20                          | 100.00           | 68.38            | 84.12                            | 86.11                            |                           | 60               | 32.42            | 49.12                            | 50.22                            |                                  |
| 11        | AAQ23-A                        | 100.00           | 88.69            | 90.62                            |                                  |                           | 60               | 40.08            | 51.78                            |                                  |                                  |
| 12        | AAQ23 -B                       | 100.00           | 88.69            | 88.72                            | 89.28                            |                           | 60               | 40.08            | 51.92                            | 52.36                            |                                  |
| 13        | AAQ24                          | 100.00           | 61.00            | 92.52                            | 92.88                            |                           | 60               | 32.05            | 51.12                            | 51.75                            |                                  |
| 14        | AAQ-24-A                       | 100.00           |                  |                                  |                                  | 93.55                     | 60               |                  |                                  |                                  | 54.55                            |
| 15        | AAQ46                          | 100.00           |                  | 92.63                            | 93.1                             | 95.55                     | 60               |                  | 51.21                            | 51.69                            | 58.5                             |
| 16        | AAQ27                          | 100.00           | 81.87            | 84.25                            | 95.76                            |                           | 60               | 37.97            | 48.96                            | 49.66                            |                                  |
| 17        | AAQ28                          | 100.00           | 92.85            | 93.12                            | 94.06                            |                           | 60               | 44.13            | 48.52                            | 49.12                            |                                  |
| 18        | AAQ29                          | 100.00           | 92.85            | 92.56                            | 93.33                            | 87.55                     | 60               | 44.13            | 47.95                            | 48.65                            | 49.54                            |
| 19        | AAQ30                          | 100.00           | 58.31            | 93.25                            | 94.22                            |                           | 60               | 31.17            | 49.52                            | 50.04                            |                                  |
| 20        | AAQ31                          | 100.00           | 74.28            |                                  |                                  | 75.12                     | 60               | 39.84            |                                  |                                  | 41.25                            |
| 21        | AAQ32                          | 100.00           | 58.31            | 74.52                            | 75.46                            |                           | 60               | 31.17            | 44.65                            | 45.23                            |                                  |
| 22        | AAQ34                          | 100.00           |                  | 84.52                            | 84.22                            |                           | 60               |                  | 49.85                            | 50.06                            |                                  |
| 23        | AAQ34 A                        | 100.00           |                  |                                  | 86.54                            | 73.14                     | 60               |                  |                                  | 50.44                            | 42.24                            |
| 24        | AAQ34B                         | 100.00           |                  |                                  |                                  | 82.44                     | 60               |                  |                                  |                                  | 48.22                            |
| 25        | AAQ48 A                        | 100.00           |                  |                                  | 86.32                            |                           | 60               |                  |                                  | 51.26                            |                                  |

|           | N/                             |                  |                  | PM10                             | )                                |                           | PM2.5            |                  |                                  |                         |                                  |  |
|-----------|--------------------------------|------------------|------------------|----------------------------------|----------------------------------|---------------------------|------------------|------------------|----------------------------------|-------------------------|----------------------------------|--|
| Sr<br>No. | Monitoring<br>Location<br>Code | NAAQ<br>Standard | Baseline<br>Conc | Construction<br>phase-Jan-<br>23 | Construction<br>phase-Feb-<br>23 | Construction phase-Mar-23 | NAAQ<br>Standard | Baseline<br>Conc | Construction<br>phase-Jan-<br>23 | Construction phase-Feb- | Construction<br>phase-Mar-<br>23 |  |
| 26        | AAQ48-B                        | 100.00           |                  | 85.65                            |                                  | 82.55                     | 60               |                  | 50.45                            |                         | 49.75                            |  |
| 27        | AAQ35 A                        | 100.00           |                  |                                  | 84.23                            | 84.82                     | 60               |                  |                                  | 49.84                   | 45.66                            |  |
| 28        | AAQ35-B                        | 100.00           |                  | 83.52                            |                                  |                           | 60               |                  | 49.12                            |                         |                                  |  |
| 29        | AAQ36                          | 100.00           |                  |                                  | 85.69                            |                           | 60               |                  |                                  | 52.82                   |                                  |  |
| 30        | AAQ37                          | 100.00           | 80.94            | 84.55                            |                                  |                           | 60               | 43.76            | 52.21                            |                         |                                  |  |
| 31        | AAQ49A                         | 100.00           |                  |                                  | 85.32                            |                           | 60               |                  |                                  | 52.74                   |                                  |  |
| 32        | AAQ39                          | 100.00           | 91.29            | 93.22                            | 93.24                            | _                         | 60               | 43.83            | 47.45                            | 47.26                   |                                  |  |
| 33        | AAQ42 C                        | 100.00           | 79.70            |                                  | 84.68                            | 94.66                     | 60               |                  |                                  | 49.82                   | 47.52                            |  |

Table 52: Ambient Air Quality Monitoring Data for C6 Package for gaseous pollutants

| a         | 35 1/                          |                  |                  | SO2                     |                         |                                  | Nox              |                  |                                  |                         |                           |  |
|-----------|--------------------------------|------------------|------------------|-------------------------|-------------------------|----------------------------------|------------------|------------------|----------------------------------|-------------------------|---------------------------|--|
| Sr<br>No. | Monitoring<br>Location<br>Code | NAAQ<br>Standard | Baseline<br>Conc | Construction phase-Jan- | Construction phase-Feb- | Construction<br>phase-Mar-<br>23 | NAAQ<br>Standard | Baseline<br>Conc | Construction<br>phase-Jan-<br>23 | Construction phase-Feb- | Construction phase-Mar-23 |  |
| 1         | AAQ1-X                         | 80               |                  | 8.52                    | 8.86                    | 11.25                            | 80               |                  | 21.21                            | 22.1                    | 22.99                     |  |
| 2         | AAQ-3 A                        | 80               | 11.54            |                         |                         | 12.52                            | 80               | 21.28            |                                  |                         | 24.55                     |  |
| 3         | AAQ5-B                         | 80               | 8.93             | 16.1                    |                         |                                  | 80               | 22.28            | 31.5                             |                         |                           |  |
| 4         | AAQ5-A                         | 80               | 8.93             | 11.97                   | 12.08                   |                                  | 80               | 22.28            | 22.84                            | 21.58                   |                           |  |
| 5         | AAQ6                           | 80               | 9.12             | 10.42                   | 10.56                   |                                  | 80               | 24.49            | 23.92                            | 23.96                   |                           |  |
| 6         | AAQ7                           | 80               |                  | 21.9                    |                         |                                  | 80               |                  | 39.9                             |                         |                           |  |
| 7         | AAQ8                           | 80               | 8                | 10.42                   | 12.75                   |                                  | 80               | 19.01            | 23.48                            | 22.56                   |                           |  |
| 8         | AAQ9                           | 80               | 11.06            |                         |                         | 12.95                            | 80               | 20.14            |                                  |                         | 25.62                     |  |
| 9         | AAQ10                          | 80               |                  | 11.25                   | 11.88                   |                                  | 80               |                  | 20.78                            | 21.32                   |                           |  |
| 10        | AAQ20                          | 80               | 7.55             | 11.25                   | 11.56                   |                                  | 80               | 18.93            | 20.46                            | 31.06                   |                           |  |
| 11        | AAQ23-A                        | 80               | 12.93            | 11.14                   |                         |                                  | 80               | 23.30            | 25.12                            |                         |                           |  |
| 12        | AAQ23 -B                       | 80               | 12.93            | 14.24                   | 14.86                   |                                  | 80               | 23.3             | 25.42                            | 25.96                   |                           |  |
| 13        | AAQ24                          | 80               | 8.81             | 11.42                   | 11.96                   |                                  | 80               | 17.79            | 23.85                            | 23.56                   |                           |  |
| 14        | AAQ-24-A                       | 80               |                  |                         |                         | 16.51                            | 80               |                  |                                  |                         | 29.5                      |  |
| 15        | AAQ46                          | 80               |                  | 11.45                   | 12.02                   | 15.55                            | 80               |                  | 23.89                            | 24.11                   | 27.55                     |  |
| 16        | AAQ27                          | 80               | 8.47             | 11.98                   | 12.56                   |                                  | 80               | 17.49            | 21.98                            | 22.56                   |                           |  |
| 17        | AAQ28                          | 80               | 14.46            | 15.12                   | 15.34                   |                                  | 80               | 31.14            | 33.52                            | 32.98                   |                           |  |
| 18        | AAQ29                          | 80               | 14.46            | 14.52                   | 14.87                   | 12.41                            | 80               | 31.14            | 33.56                            | 33.89                   | 22.51                     |  |
| 19        | AAQ30                          | 80               | 8.79             | 15.42                   | 15.96                   |                                  | 80               | 15.61            | 34.25                            | 34.86                   |                           |  |
| 20        | AAQ31                          | 80               | 13.06            |                         |                         | 13.52                            | 80               | 23.32            |                                  |                         | 24.52                     |  |
| 21        | AAQ32                          | 80               | 8.79             | 10.45                   | 14.88                   |                                  | 80               | 15.61            | 19.85                            | 24.04                   |                           |  |
| 22        | AAQ34                          | 80               |                  | 13.14                   | 13.66                   |                                  | 80               |                  | 19.24                            | 19.89                   |                           |  |
| 23        | AAQ34 A                        | 80               |                  |                         | 12.86                   | 10.23                            | 80               |                  |                                  | 18.48                   | 19.54                     |  |
| 24        | AAQ34B                         | 80               |                  |                         |                         | 11.23                            | 80               |                  |                                  |                         | 17.33                     |  |

| q         | Monitoring |                  |                  | SO2                              |                         |                         | Nox              |                  |                                  |                         |                           |  |
|-----------|------------|------------------|------------------|----------------------------------|-------------------------|-------------------------|------------------|------------------|----------------------------------|-------------------------|---------------------------|--|
| Sr<br>No. | No. Code   | NAAQ<br>Standard | Baseline<br>Conc | Construction<br>phase-Jan-<br>23 | Construction phase-Feb- | Construction phase-Mar- | NAAQ<br>Standard | Baseline<br>Conc | Construction<br>phase-Jan-<br>23 | Construction phase-Feb- | Construction phase-Mar-23 |  |
| 25        | AAQ48 A    | 80               |                  |                                  | 14.74                   |                         | 80               |                  |                                  | 19.94                   |                           |  |
| 26        | AAQ48-B    | 80               |                  | 14.12                            |                         | 11.75                   | 80               |                  | 19.49                            |                         | 25.55                     |  |
| 27        | AAQ35 A    | 80               |                  |                                  | 12.85                   | 11.45                   | 80               |                  |                                  | 19.05                   | 22.33                     |  |
| 28        | AAQ35-B    | 80               |                  | 12.12                            |                         |                         | 80               |                  | 18.59                            |                         |                           |  |
| 29        | AAQ36      | 80               |                  |                                  | 12.96                   |                         | 80               |                  |                                  | 26.11                   |                           |  |
| 30        | AAQ37      | 80               |                  | 12.42                            |                         |                         | 80               |                  | 25.12                            |                         |                           |  |
| 31        | AAQ49A     | 80               |                  |                                  | 13.22                   |                         | 80               |                  |                                  | 24.98                   |                           |  |
| 32        | AAQ39      | 80               | 9.41             | 11.12                            | 10.96                   |                         | 80               | 22.86            | 24.55                            | 24.02                   |                           |  |
| 33        | AAQ42 C    | 80               |                  |                                  | 11.86                   | 11.25                   | 80               |                  |                                  | 21.56                   | 25.55                     |  |

|           |                             |               |                      |                               | СО                        |                           |
|-----------|-----------------------------|---------------|----------------------|-------------------------------|---------------------------|---------------------------|
| Sr<br>No. | Monitoring<br>Location Code | NAAQ Standard | <b>Baseline Conc</b> | Construction phase-<br>Jan-23 | Construction phase-Feb-23 | Construction phase-Mar 23 |
| 1         | AAQ1-X                      | 4             |                      | BDL                           | BDL                       | BDL                       |
| 2         | AAQ-3 A                     | 4             |                      |                               | BDL                       | BDL                       |
| 3         | AAQ5-B                      | 4             | 0.79                 | 1.41                          | BDL                       |                           |
| 4         | AAQ5-A                      | 4             | 0.79                 | BDL                           | BDL                       |                           |
| 5         | AAQ6                        | 4             | 0.82                 | BDL                           | BDL                       |                           |
| 6         | AAQ7                        | 4             |                      | 1.98                          | BDL                       |                           |
| 7         | AAQ8                        | 4             | 0.74                 | BDL                           | BDL                       |                           |
| 8         | AAQ9                        | 4             |                      |                               | BDL                       | BDL                       |
| 9         | AAQ10                       | 4             |                      | BDL                           | BDL                       |                           |
| 10        | AAQ20                       | 4             | 0.69                 | BDL                           | BDL                       |                           |
| 11        | AAQ23-A                     | 4             | 0.86                 | BDL                           | BDL                       |                           |
| 12        | AAQ23 -B                    | 4             | 0.86                 | BDL                           | BDL                       |                           |

|           |                             |               |                      |                               | СО                        |                           |
|-----------|-----------------------------|---------------|----------------------|-------------------------------|---------------------------|---------------------------|
| Sr<br>No. | Monitoring<br>Location Code | NAAQ Standard | <b>Baseline Conc</b> | Construction phase-<br>Jan-23 | Construction phase-Feb-23 | Construction phase-Mar 23 |
| 13        | AAQ24                       | 4             | 0.68                 | BDL                           | BDL                       |                           |
| 14        | AAQ-24-A                    | 4             |                      |                               | BDL                       | BDL                       |
| 15        | AAQ46                       | 4             |                      | BDL                           | BDL                       | BDL                       |
| 16        | AAQ27                       | 4             | 0.64                 | BDL                           | BDL                       |                           |
| 17        | AAQ28                       | 4             | 1.12                 | BDL                           | BDL                       |                           |
| 18        | AAQ29                       | 4             | 1.12                 | BDL                           | BDL                       | BDL                       |
| 19        | AAQ30                       | 4             | 0.57                 | BDL                           | BDL                       |                           |
| 20        | AAQ31                       | 4             |                      |                               | BDL                       | BDL                       |
| 21        | AAQ32                       | 4             | 0.57                 | BDL                           | BDL                       |                           |
| 22        | AAQ34                       | 4             |                      | BDL                           | BDL                       |                           |
| 23        | AAQ34 A                     | 4             |                      |                               | BDL                       | BDL                       |
| 24        | AAQ34B                      | 4             |                      |                               | BDL                       | BDL                       |
| 25        | AAQ48 A                     | 4             |                      |                               | BDL                       |                           |
| 26        | AAQ48-B                     | 4             |                      | BDL                           | BDL                       | BDL                       |
| 27        | AAQ35 A                     | 4             |                      |                               | BDL                       | BDL                       |
| 28        | AAQ35-B                     | 4             |                      | BDL                           | BDL                       |                           |
| 29        | AAQ36                       | 4             |                      |                               | BDL                       |                           |
| 30        | AAQ37                       | 4             |                      | BDL                           | BDL                       |                           |
| 31        | AAQ49A                      | 4             |                      |                               | BDL                       |                           |
| 32        | AAQ39                       | 4             | 0.73                 | BDL                           | BDL                       |                           |
| 33        | AAQ42 C                     | 4             |                      |                               | BDL                       | BDL                       |

## **Appendix 4.2: DG stack Monitoring Data for C6 Package:**

Table 53: DG Stack Monitoring Data for C6 Package in January 2023

| S.N. | Parameters                                   | Units        | Limits | DG 1<br>BP at<br>Ch483 | DG 2<br>BP at<br>Ch471 | DG 3<br>BP at<br>Ch434 | DG 4<br>BP at<br>Ch434 | DG 5<br>BP at<br>Ch434 | DG 6<br>BP at<br>Ch407 | DG 7<br>BP at<br>Ch407 | DG 8<br>BP at<br>Ch. No-<br>407(120) | DG 9 Project Site Office at Ch. No- 407 |
|------|----------------------------------------------|--------------|--------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|--------------------------------------|-----------------------------------------|
| 1    | Particular<br>Matter (as<br>PM)              | gm/kw-<br>hr | 0.2    | 0.18                   | 0.13                   | 0.15                   | 0.13                   | 0.11                   | 0.14                   | 0.07                   | 0.15                                 | 0.05                                    |
| 2    | Oxide of Nitrogen (NOx)as (NO <sub>2</sub> ) | gm/kw-<br>hr | 4      | 0.03                   | 0.03                   | 0.02                   | 0.01                   | 0.02                   | 0.03                   | 0.02                   | 0.04                                 | 0.01                                    |
| 3    | Carbon<br>Monoxide (as<br>CO)                | gm/kw-<br>hr | 3.5    | 0.51                   | 0.51                   | 0.48                   | 0.48                   | 0.45                   | 0.47                   | 0.2                    | 0.59                                 | 0.19                                    |
| 4    | Sulphur<br>Dioxide                           | gm/kw-<br>hr | NA     | 0.38                   | 0.28                   | 0.26                   | 0.28                   | 0.24                   | 0.24                   | 0.12                   | 0.32                                 | 0.1                                     |

## **Appendix 4.3: Ambient Noise Quality Data for C6 Package**

Table 54: Ambient Noise Quality Monitoring Locations for C6 package

| Sr<br>No. | Monitoring Location<br>Code | Location as per Construction Baseline                         |
|-----------|-----------------------------|---------------------------------------------------------------|
| 1         | ANQ1                        | Village -Karodiya, Active Project-Site at Ch .No -402+780     |
| 2         | ANQ1-X                      | Village -Karodiya, Active Project-Site at Ch.No -402          |
| 3         | ANQ6                        | BP at Ch.No -407                                              |
| 4         | ANQ5-A                      | Village-Omkarpura, Active Project-Site at Ch.No -405          |
| 5         | ANQ10                       | BP at Ch.No -417                                              |
| 6         | ANQ8-A                      | Village-Shakarda, Active project site at Ch.No -412           |
| 7         | ANQ 20                      | BP, Active Project site at Ch.No-434+500                      |
| 8         | ANQ 23-A                    | M/S Vill-Ravlapura, Active Project Site at Ch.No-437          |
| 9         | ANQ 23-B                    | Vill-Ravlapura, Active Project Site at Ch.No-438              |
| 10        | ANQ24                       | Village -Jivapura, Active Project site at Ch.No-439           |
| 11        | ANQ46                       | Village-Bariavi, Active Project Site, at Ch441                |
| 12        | ANQ 27                      | Casting Yard (Industrial Area) at Ch.No-447+850               |
| 13        | ANQ 28                      | Casting Yard Active Project Site at Ch.No-448+400             |
| 14        | ANQ 29                      | Village -Uttrasanda ,Active Project Site at Ch449             |
| 15        | ANQ 30 B                    | BP,Active Project Site at Ch450                               |
| 16        | AAQ31                       | Active Construction Site Near Piplag Village at Ch.451        |
| 17        | ANQ 32A                     | Village -Dumral, Active Project Site at Ch452                 |
| 18        | ANQ 34-A                    | Village -Degam, Active Project Site at Ch463                  |
| 19        | ANQ34-B                     | Active Construction Site Near Degam Village at Ch.462         |
| 20        | ANQ 48 B                    | Village -Barba, Active Project Site at Ch466                  |
| 21        | ANQ35A                      | Active Construction Site Near Katakpura Village at Ch.468+750 |
| 22        | ANQ 35 -B                   | Village -Katakpura, Active Project Site at Ch468              |
| 23        | ANQ36                       | Bathing Plant, at ch-470+750                                  |

| Sr<br>No. | Monitoring Location<br>Code | Location as per Construction Baseline                     |
|-----------|-----------------------------|-----------------------------------------------------------|
| 24        | ANQ 37                      | Casting Yard ,Active Project Site at Ch471                |
| 25        | ANQ 49-A                    | Village -Kanij, Active Project Site at Ch476              |
| 26        | ANQ 49-B                    | Village -Kanij, Active Project Site at Ch478              |
| 27        | ANQ 39                      | BP at Ch483                                               |
| 28        | ANQ42C                      | Active Construction Site Near Ropda Village at Ch.489+000 |
| 29        | ANQ24                       | Village -Ropda, Active Project Site at Ch488+900          |

Table 55: Ambient Noise Quality Data for C6 package

| Sr<br>No | Monitorin<br>g<br>Location<br>Code | Standar<br>d (Leq-<br>Day) dB<br>(A) | BaseLin<br>e Data<br>during<br>Day | Constructio<br>n phase-<br>Jan -2023<br>dB (A) | Constructio<br>n phase-<br>Feb -2023<br>dB (A) | Constructio<br>n phase-<br>Mar -2023<br>dB (A) | Standar<br>d (Leq-<br>Night)<br>dB (A) | BaseLin<br>e Data<br>during<br>Night | Constructio<br>n phase-<br>Jan -2023<br>dB (A) | Constructio<br>n phase-<br>Feb -2023<br>dB (A) | Constructio<br>n phase-<br>Mar -2023<br>dB (A) |
|----------|------------------------------------|--------------------------------------|------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| 1        | ANQ1                               | 55                                   |                                    |                                                | 53.07                                          |                                                | 45                                     |                                      |                                                | 42.02                                          |                                                |
| 2        | ANQ1-X                             | 55                                   |                                    | 52.75                                          |                                                | 52.45                                          | 45                                     |                                      | 41.7                                           |                                                | 42.2                                           |
| 3        | ANQ6                               | 75                                   | 67.15                              | 67.47                                          | 67.8                                           | 67.725                                         | 70                                     | 45.13                                | 57.7                                           | 58.15                                          | 57.675                                         |
| 4        | ANQ5-A                             | 55                                   | 60.81                              | 52.85                                          | 53.15                                          | 53.3                                           | 45                                     | 43.46                                | 42.25                                          | 42.22                                          | 42.3                                           |
| 5        | ANQ10                              | 75                                   |                                    | 68.18                                          | 68.33                                          | 68.3                                           | 70                                     |                                      | 58.45                                          | 59.15                                          | 58.875                                         |
| 6        | ANQ8-A                             | 55                                   | 52.74                              | 52.77                                          | 53.77                                          | 53.05                                          | 45                                     | 42.51                                | 43.57                                          | 59.15                                          | 43.25                                          |
| 7        | ANQ 20                             | 75                                   | 68.05                              | 67.7                                           | 68.18                                          | 67.85                                          | 70                                     | 45.02                                | 56.48                                          | 56.45                                          | 55.575                                         |
| 8        | ANQ 23-A                           | 55                                   | 51.34                              | 53.7                                           | 54.4                                           |                                                | 45                                     | 40.89                                | 43.08                                          | 43.9                                           |                                                |
| 9        | ANQ 23-B                           | 55                                   |                                    | 53.35                                          | 53.25                                          |                                                | 45                                     |                                      | 42.9                                           | 43.1                                           |                                                |
| 10       | ANQ24                              | 55                                   | 50.89                              | 52.85                                          | 53.45                                          | 53.25                                          | 45                                     | 42.37                                | 43.17                                          | 43.2                                           | 43.15                                          |
| 11       | ANQ46                              | 55                                   |                                    | 53.05                                          | 53.77                                          | 53.2                                           | 45                                     |                                      | 42.4                                           | 43.12                                          | 42.2                                           |
| 12       | ANQ 27                             | 75                                   | 66.92                              | 69.12                                          | 70.45                                          | 68.775                                         | 70                                     | 44.23                                | 55.55                                          | 59.17                                          | 55.575                                         |
| 13       | ANQ 28                             | 75                                   | 58.34                              | 67.95                                          | 68.85                                          | 67.825                                         | 70                                     | 47.62                                | 48.97                                          | 48.37                                          | 48.975                                         |
| 14       | ANQ 29                             | 55                                   |                                    | 53.55                                          | 54.05                                          | 53.65                                          | 45                                     |                                      | 42.97                                          | 43.2                                           | 43.25                                          |
| 15       | ANQ 30 B                           | 75                                   |                                    | 68.45                                          | 69.02                                          | 68.8                                           | 70                                     |                                      | 54.7                                           | 53.9                                           | 54.7                                           |
| 16       | AAQ31                              | 55                                   | 53.61                              |                                                | 53.85                                          | 53.225                                         | 45                                     |                                      |                                                | 42.62                                          | 42.9                                           |
| 17       | ANQ 32A                            | 55                                   |                                    | 53.12                                          |                                                |                                                | 45                                     |                                      | 42.85                                          |                                                |                                                |

| Sr<br>No | Monitorin<br>g<br>Location<br>Code | Standar<br>d (Leq-<br>Day) dB<br>(A) | BaseLin<br>e Data<br>during<br>Day | Constructio<br>n phase-<br>Jan -2023<br>dB (A) | Constructio<br>n phase-<br>Feb -2023<br>dB (A) | Constructio<br>n phase-<br>Mar -2023<br>dB (A) | Standar<br>d (Leq-<br>Night)<br>dB (A) | BaseLin<br>e Data<br>during<br>Night | Constructio<br>n phase-<br>Jan -2023<br>dB (A) | Constructio<br>n phase-<br>Feb -2023<br>dB (A) | Constructio<br>n phase-<br>Mar -2023<br>dB (A) |
|----------|------------------------------------|--------------------------------------|------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------|--------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|
| 18       | ANQ 34-<br>A                       | 55                                   |                                    | 52.92                                          | 53.02                                          | 53.5                                           | 45                                     |                                      | 43.27                                          | 42.5                                           | 43.675                                         |
| 19       | ANQ34-B                            | 55                                   |                                    |                                                | 53.45                                          | 52.85                                          | 45                                     |                                      |                                                | 42.85                                          | 44.225                                         |
| 20       | ANQ 48 B                           | 55                                   |                                    | 53.4                                           | 53.15                                          | 53.8                                           | 45                                     |                                      | 43.52                                          | 43.42                                          | 44.25                                          |
| 21       | ANQ35A                             | 55                                   |                                    |                                                |                                                | 53.65                                          | 45                                     |                                      |                                                |                                                | 44.25                                          |
| 22       | ANQ 35 -<br>B                      | 55                                   |                                    | 53.22                                          | 53.37                                          |                                                | 45                                     |                                      | 48.05                                          | 43.6                                           |                                                |
| 23       | ANQ36                              | 75                                   |                                    |                                                | 72.12                                          | 67.4                                           | 70                                     |                                      |                                                | 58.7                                           | 42.65                                          |
| 24       | ANQ 37                             | 75                                   |                                    | 67.4                                           |                                                |                                                | 70                                     |                                      | 46.47                                          |                                                |                                                |
| 25       | ANQ 49-<br>A                       | 55                                   |                                    | 53.97                                          |                                                |                                                | 45                                     |                                      | 46.02                                          |                                                |                                                |
| 26       | ANQ 49-B                           | 55                                   |                                    | 54.06                                          | 53.75                                          |                                                | 45                                     |                                      | 43.8                                           | 44.05                                          |                                                |
| 27       | ANQ 39                             | 75                                   | 67.29                              | 53.52                                          | 73.37                                          | 53.55                                          | 70                                     | 45.3                                 | 43.67                                          | 59.15                                          | 43.8                                           |
| 28       | ANQ42C                             | 55                                   |                                    |                                                |                                                | 53.725                                         | 45                                     |                                      |                                                |                                                | 44.725                                         |
| 29       | ANQ24                              | 55                                   | 58.3                               |                                                | 53.85                                          |                                                | 45                                     | 42.95                                |                                                | 43.07                                          |                                                |

## **Appendix 4.4: Drinking Water Quality Monitoring Data for C6 Package:**

Table 56: Drinking Water Quality Data for C6 Package in January 23

|    |                              | Li    | imit (IS-10500     | ):2012)              | DW1             | DW2          | DW3                | DW4                |
|----|------------------------------|-------|--------------------|----------------------|-----------------|--------------|--------------------|--------------------|
| SN | Parameters                   | Unit  | Desirable<br>Limit | Permissible<br>Limit | LC at Ch<br>407 | LC at Ch 417 | LC at Ch. –<br>434 | LC at Ch. –<br>447 |
| 1  | Colour                       | Hazen | 5                  | 15                   | BDL             | BDL          | BDL                | BDL                |
| 2  | Odour                        | -     | Agreeable          | Agreeable            | Agreeable       | Agreeable    | Agreeable          | Agreeable          |
| 3  | Taste                        | -     | Agreeable          | Agreeable            | Agreeable       | Agreeable    | Agreeable          | Agreeable          |
| 4  | Turbidity                    | NTU   | 1                  | 5                    | BDL             | BDL          | BDL                | BDL                |
| 5  | pH(Lab)                      | -     | 6.5-8.5            | No<br>Relaxation     | 6.84            | 6.52         | 6.53               | 6.76               |
| 6  | pH(Site)                     | -     | -                  | -                    | 6.8             | 6.5          | 6.5                | 6.8                |
| 7  | Total Hardness (as<br>CaCO3) | mg/l  | 200                | 600                  | 32              | 28           | 12                 | 114                |
| 8  | Iron (as Fe)                 | mg/l  | 1                  | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |
| 9  | Chlorides (as Cl)            | mg/l  | 250                | 1000                 | 13.9            | 8.9          | 5.9                | 24.9               |
| 10 | Fluoride (as F)              | mg/l  | 1                  | 1.5                  | BDL             | BDL          | BDL                | BDL                |
| 11 | TDS                          | mg/l  | 500                | 2000                 | 74              | 42           | 31                 | 194                |
| 12 | Calcium(as Ca2+)             | mg/l  | 75                 | 200                  | 7.6             | 5.6          | 2.4                | 24.8               |
| 13 | Magnesium (as Mg2+)          | mg/l  | 30                 | 100                  | 3.15            | 3.4          | BDL                | 12.63              |
| 14 | Sulphate (as SO4)            | mg/l  | 200                | 400                  | 6.8             | 4.1          | 2.5                | 12.1               |
| 15 | Nitrate(as NO3)              | mg/l  | 45                 | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |
| 16 | Chromium (as Cr+6)           | mg/l  | 0.05               | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |
| 17 | Alkalinity as CaCO3          | mg/l  | 200                | 600                  | 38              | 20           | 8                  | 88                 |
| 18 | Aluminium (as Al)            | mg/l  | 0.03               | 0.2                  | BDL             | BDL          | BDL                | BDL                |
| 19 | Copper (as Cu)               | mg/l  | 0.05               | 1.5                  | BDL             | BDL          | BDL                | BDL                |
| 20 | Manganese (as Mn)            | mg/l  | 0.1                | 0.3                  | BDL             | BDL          | BDL                | BDL                |
| 21 | Zinc (as Zn)                 | mg/l  | 5                  | 15                   | BDL             | BDL          | BDL                | BDL                |
| 22 | Ammonia (as NH3-N)           | mg/l  | 0.5                | No<br>relaxation     | BDL             | BDL          | BDL                | BDL                |

| SN | Parameters                     | Limit (IS-10500:2012) |                    |                      | DW1             | DW2          | DW3                | DW4                |
|----|--------------------------------|-----------------------|--------------------|----------------------|-----------------|--------------|--------------------|--------------------|
|    |                                | Unit                  | Desirable<br>Limit | Permissible<br>Limit | LC at Ch<br>407 | LC at Ch 417 | LC at Ch. –<br>434 | LC at Ch. –<br>447 |
| 23 | Anionic detergents (as MBAS)   | mg/l                  | 0.2                | 1                    | BDL             | BDL          | BDL                | BDL                |
| 24 | Boron (as B)                   | mg/l                  | 0.5                | 1                    | BDL             | BDL          | BDL                | BDL                |
| 25 | Mineral oil                    | mg/l                  | 0.5                | No<br>relaxation     | BDL             | BDL          | BDL                | BDL                |
| 26 | Phenolic compounds (as C6H5OH) | mg/l                  | 0.001              | 0.002                | BDL             | BDL          | BDL                | BDL                |
| 27 | Cadmium (as Cd)                | mg/l                  | 0.003              | No relaxation        | BDL             | BDL          | BDL                | BDL                |
| 28 | Cyanide (as CN)                | mg/l                  | 0.05               | No<br>relaxation     | BDL             | BDL          | BDL                | BDL                |
| 29 | Lead (as Pb)                   | mg/l                  | 0.01               | No<br>relaxation     | BDL             | BDL          | BDL                | BDL                |
| 30 | Mercury (as Hg)                | mg/l                  | 0.001              | No<br>relaxation     | BDL             | BDL          | BDL                | BDL                |
| 31 | Nickel (as Ni)                 | mg/l                  | 0.02               | No<br>relaxation     | BDL             | BDL          | BDL                | BDL                |
| 32 | Sulphide(H2S)                  | mg/l                  | 0.05               | No<br>relaxation     | BDL             | BDL          | BDL                | BDL                |
| 33 | Residual Free<br>Chlorine(RFC) | mg/l                  | Min-0.2            | 1                    | BDL             | BDL          | BDL                | BDL                |
| 34 | Total arsenic (as As),         | mg/l                  | 0.01               | No<br>relaxation     | BDL             | BDL          | BDL                | BDL                |
| 35 | Barium                         | mg/l                  | 0.7                | No<br>relaxation     | BDL             | BDL          | BDL                | BDL                |
| 36 | Chloramines (as Cl2)           | mg/l                  | 4                  | No relaxation        | BDL             | BDL          | BDL                | BDL                |
| 37 | Silver(as Ag)                  | mg/l                  | 0.1                | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |
| 38 | Molybdenum (as Mo)             | mg/l                  | 0.07               | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |

| SN | Parameters                                   | Limit (IS-10500:2012) |                    |                      | DW1             | DW2          | DW3                | DW4                |  |  |
|----|----------------------------------------------|-----------------------|--------------------|----------------------|-----------------|--------------|--------------------|--------------------|--|--|
|    |                                              | Unit                  | Desirable<br>Limit | Permissible<br>Limit | LC at Ch<br>407 | LC at Ch 417 | LC at Ch. –<br>434 | LC at Ch. –<br>447 |  |  |
| 39 | Polynuclear Aromatic<br>Hydrocarbons(as PAH) | mg/l                  | 0.0001             | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
| 40 | Polychlorinated biphenyls                    | mg/l                  | 0.0001             | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
| 41 | TRIHALOMETHANES                              |                       |                    |                      |                 |              |                    |                    |  |  |
| a  | Bromoform                                    | mg/l                  | 0.1                | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
| b  | Dibromochloromethane                         | mg/l                  | 0.1                | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
| С  | Bromodichloromethane                         | mg/l                  | 0.06               | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
| d  | Chloroform                                   | mg/l                  | 0.2                | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
|    | PESTICIDE RESIDUES                           |                       |                    |                      |                 |              |                    |                    |  |  |
| 42 | Alachor                                      | μg/l                  | 20                 | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
| 43 | Atrazine                                     | μg/l                  | 20                 | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
| 44 | Aldrin/Dialdrin                              | μg/l                  | 0.03               | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
| 45 | Alpha HCH                                    | μg/l                  | 0.01               | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
| 46 | Beta HCH                                     | μg/l                  | 0.04               | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
| 47 | Butachlor                                    | μg/l                  | 125                | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
| 48 | Chlorpyriphos                                | μg/l                  | 30                 | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |
| 49 | Delta HCH                                    | μg/l                  | 0.04               | No<br>Relaxation     | BDL             | BDL          | BDL                | BDL                |  |  |

|    |                                                    | Li     | imit (IS-1050      | 00:2012)                 | DW1             | DW2          | DW3                | DW4                |
|----|----------------------------------------------------|--------|--------------------|--------------------------|-----------------|--------------|--------------------|--------------------|
| SN | Parameters                                         | Unit   | Desirable<br>Limit | Permissible<br>Limit     | LC at Ch<br>407 | LC at Ch 417 | LC at Ch. –<br>434 | LC at Ch. –<br>447 |
| 50 | 2,4-<br>Dichlorophenoxyacetic<br>acid              | μg/l   | 30                 | No<br>Relaxation         | BDL             | BDL          | BDL                | BDL                |
| 51 | DDT(o,p and p,p-<br>isomers of DDT.DDE<br>and DDD) | μg/l   | 1                  | No<br>Relaxation         | BDL             | BDL          | BDL                | BDL                |
| 52 | Endosuiphan(alpha, beta and sulphate)              | μg/l   | 0.4                | No<br>Relaxation         | BDL             | BDL          | BDL                | BDL                |
| 53 | Ethion                                             | μg/l   | 3                  | No<br>Relaxation         | BDL             | BDL          | BDL                | BDL                |
| 54 | Gamma HCH(Lindane)                                 | μg/l   | 2                  | No<br>Relaxation         | BDL             | BDL          | BDL                | BDL                |
| 55 | Isoproturon                                        | μg/l   | 9                  | No<br>Relaxation         | BDL             | BDL          | BDL                | BDL                |
| 56 | Malathion                                          | μg/l   | 190                | No<br>Relaxation         | BDL             | BDL          | BDL                | BDL                |
| 57 | Methyl Parathion                                   | μg/l   | 0.3                | No<br>Relaxation         | BDL             | BDL          | BDL                | BDL                |
| 58 | Monocrotophos                                      | μg/l   | 1                  | No<br>Relaxation         | BDL             | BDL          | BDL                | BDL                |
| 59 | Phorate                                            | μg/l   | 2                  | No<br>Relaxation         | BDL             | BDL          | BDL                | BDL                |
|    |                                                    |        |                    | IICROBIOLOG:             | ICAL PARAME     | CTER         |                    |                    |
| 60 | Total Coliform                                     | IS:151 | 85:2016            | Should be absent/ 100 ml | Absent/100ml    | Absent/100ml | Absent/100ml       | Absent/100ml       |
| 61 | E.coli                                             | IS:151 | 85:2016            | Should be absent/ 100 ml | Absent/100ml    | Absent/100ml | Absent/100ml       | Absent/100ml       |

## **Drinking Water Quality Contd...**

| S.N |                                        | Li    | imit (IS-10500     | ):2012)              | DW5          | DW6                | DW7         | DW8         |
|-----|----------------------------------------|-------|--------------------|----------------------|--------------|--------------------|-------------|-------------|
| · . | Parameters                             | Unit  | Desirable<br>Limit | Permissible<br>Limit | LC at Ch 448 | LC at Ch. –<br>450 | BP at Ch483 | LC at Ch471 |
| 1   | Colour                                 | Hazen | 5                  | 15                   | BDL          | BDL                | BDL         | BDL         |
| 2   | Odour                                  | -     | Agreeable          | Agreeable            | Agreeable    | Agreeable          | Agreeable   | Agreeable   |
| 3   | Taste                                  | -     | Agreeable          | Agreeable            | Agreeable    | Agreeable          | Agreeable   | Agreeable   |
| 4   | Turbidity                              | NTU   | 1                  | 5                    | BDL          | BDL                | BDL         | BDL         |
| 5   | pH(Lab)                                | -     | 6.5-8.5            | No<br>Relaxation     | 7.54         | 6.42               | 6.62        | 6.83        |
| 6   | pH(Site)                               | -     | -                  | -                    | 7.5          | 6.4                | 6.6         | 6.8         |
| 7   | Total Hardness (as CaCO <sub>3</sub> ) | mg/l  | 200                | 600                  | 136          | 4                  | 22          | 116         |
| 8   | Iron (as Fe)                           | mg/l  | 1                  | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 9   | Chlorides (as Cl)                      | mg/l  | 250                | 1000                 | 26.9         | 3.2                | 12.9        | 22.5        |
| 10  | Fluoride (as F)                        | mg/l  | 1                  | 1.5                  | BDL          | BDL                | BDL         | BDL         |
| 11  | TDS                                    | mg/l  | 500                | 2000                 | 226          | 8                  | 58          | 197         |
| 12  | Calcium(as Ca <sup>2+</sup> )          | mg/l  | 75                 | 200                  | 28.6         | 2                  | 5.2         | 20.8        |
| 13  | Magnesium (as Mg <sup>2+</sup> )       | mg/l  | 30                 | 100                  | 15.67        | BDL                | 2.18        | 15.55       |
| 14  | Sulphate (as SO <sub>4</sub> )         | mg/l  | 200                | 400                  | 12.9         | BDL                | 5.3         | 11.8        |
| 15  | Nitrate(as NO <sub>3</sub> )           | mg/l  | 45                 | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 16  | Chromium (as Cr <sup>+6</sup> )        | mg/l  | 0.05               | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 17  | Alkalinity as CaCO <sub>3</sub>        | mg/l  | 200                | 600                  | 92           | 4                  | 14          | 86          |
| 18  | Aluminium (as Al)                      | mg/l  | 0.03               | 0.2                  | BDL          | BDL                | BDL         | BDL         |
| 19  | Copper (as Cu)                         | mg/l  | 0.05               | 1.5                  | BDL          | BDL                | BDL         | BDL         |
| 20  | Manganese (as Mn)                      | mg/l  | 0.1                | 0.3                  | BDL          | BDL                | BDL         | BDL         |
| 21  | Zinc (as Zn)                           | mg/l  | 5                  | 15                   | BDL          | BDL                | BDL         | BDL         |
| 22  | Ammonia (as NH <sub>3</sub> -N)        | mg/l  | 0.5                | No relaxation        | BDL          | BDL                | BDL         | BDL         |
| 23  | Anionic detergents (as MBAS)           | mg/l  | 0.2                | 1                    | BDL          | BDL                | BDL         | BDL         |

| S.N |                                              | L    | imit (IS-10500     | ):2012)              | DW5          | DW6                | DW7         | DW8         |
|-----|----------------------------------------------|------|--------------------|----------------------|--------------|--------------------|-------------|-------------|
|     | Parameters                                   | Unit | Desirable<br>Limit | Permissible<br>Limit | LC at Ch 448 | LC at Ch. –<br>450 | BP at Ch483 | LC at Ch471 |
| 24  | Boron (as B)                                 | mg/l | 0.5                | 1                    | BDL          | BDL                | BDL         | BDL         |
| 25  | Mineral oil                                  | mg/l | 0.5                | No<br>relaxation     | BDL          | BDL                | BDL         | BDL         |
| 26  | Phenolic compounds (as $C_6H_5OH$ )          | mg/l | 0.001              | 0.002                | BDL          | BDL                | BDL         | BDL         |
| 27  | Cadmium (as Cd)                              | mg/l | 0.003              | No<br>relaxation     | BDL          | BDL                | BDL         | BDL         |
| 28  | Cyanide (as CN)                              | mg/l | 0.05               | No<br>relaxation     | BDL          | BDL                | BDL         | BDL         |
| 29  | Lead (as Pb)                                 | mg/l | 0.01               | No<br>relaxation     | BDL          | BDL                | BDL         | BDL         |
| 30  | Mercury (as Hg)                              | mg/l | 0.001              | No relaxation        | BDL          | BDL                | BDL         | BDL         |
| 31  | Nickel (as Ni)                               | mg/l | 0.02               | No relaxation        | BDL          | BDL                | BDL         | BDL         |
| 32  | Sulphide(H <sub>2</sub> S)                   | mg/l | 0.05               | No relaxation        | BDL          | BDL                | BDL         | BDL         |
| 33  | Residual Free<br>Chlorine(RFC)               | mg/l | Min-0.2            | 1                    | BDL          | BDL                | BDL         | BDL         |
| 34  | Total arsenic (as As),                       | mg/l | 0.01               | No<br>relaxation     | BDL          | BDL                | BDL         | BDL         |
| 35  | Barium                                       | mg/l | 0.7                | No<br>relaxation     | BDL          | BDL                | BDL         | BDL         |
| 36  | Chloramines (as Cl <sub>2</sub> )            | mg/l | 4                  | No<br>relaxation     | BDL          | BDL                | BDL         | BDL         |
| 37  | Silver(as Ag)                                | mg/l | 0.1                | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 38  | Molybdenum (as Mo)                           | mg/l | 0.07               | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 39  | Polynuclear Aromatic<br>Hydrocarbons(as PAH) | mg/l | 0.0001             | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |

| S.N  |                                       | Init |                    | ):2012)              | DW5          | DW6                | DW7         | DW8         |
|------|---------------------------------------|------|--------------------|----------------------|--------------|--------------------|-------------|-------------|
| 5.IN | Parameters                            | Unit | Desirable<br>Limit | Permissible<br>Limit | LC at Ch 448 | LC at Ch. –<br>450 | BP at Ch483 | LC at Ch471 |
| 40   | Polychlorinated biphenyls             | mg/l | 0.0001             | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 41   |                                       |      |                    |                      | METHANES     |                    |             |             |
| a    | Bromoform                             | mg/l | 0.1                | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| b    | Dibromochloromethane                  | mg/l | 0.1                | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| c    | Bromodichloromethane                  | mg/l | 0.06               | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| d    | Chloroform                            | mg/l | 0.2                | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
|      |                                       |      |                    | PESTICID             | E RESIDUES   |                    |             |             |
| 42   | Alachor                               | μg/l | 20                 | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 43   | Atrazine                              | μg/l | 20                 | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 44   | Aldrin/Dialdrin                       | μg/l | 0.03               | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 45   | Alpha HCH                             | μg/l | 0.01               | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 46   | Beta HCH                              | μg/l | 0.04               | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 47   | Butachlor                             | μg/l | 125                | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 48   | Chlorpyriphos                         | μg/l | 30                 | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 49   | Delta HCH                             | μg/l | 0.04               | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |
| 50   | 2,4-<br>Dichlorophenoxyacetic<br>acid | μg/l | 30                 | No<br>Relaxation     | BDL          | BDL                | BDL         | BDL         |

| S.N |                                             | Li    | imit (IS-10500     | <b>):2012</b> )                | DW5          | DW6                | DW7          | DW8          |
|-----|---------------------------------------------|-------|--------------------|--------------------------------|--------------|--------------------|--------------|--------------|
|     | Parameters                                  | Unit  | Desirable<br>Limit | Permissible<br>Limit           | LC at Ch 448 | LC at Ch. –<br>450 | BP at Ch483  | LC at Ch471  |
| 51  | DDT(o,p and p,p-isomers of DDT.DDE and DDD) | μg/l  | 1                  | No<br>Relaxation               | BDL          | BDL                | BDL          | BDL          |
| 52  | Endosuiphan(alpha, beta and sulphate)       | μg/l  | 0.4                | No<br>Relaxation               | BDL          | BDL                | BDL          | BDL          |
| 53  | Ethion                                      | μg/l  | 3                  | No<br>Relaxation               | BDL          | BDL                | BDL          | BDL          |
| 54  | Gamma HCH(Lindane)                          | μg/l  | 2                  | No<br>Relaxation               | BDL          | BDL                | BDL          | BDL          |
| 55  | Isoproturon                                 | μg/l  | 9                  | No<br>Relaxation               | BDL          | BDL                | BDL          | BDL          |
| 56  | Malathion                                   | μg/l  | 190                | No<br>Relaxation               | BDL          | BDL                | BDL          | BDL          |
| 57  | Methyl Parathion                            | μg/l  | 0.3                | No<br>Relaxation               | BDL          | BDL                | BDL          | BDL          |
| 58  | Monocrotophos                               | μg/l  | 1                  | No<br>Relaxation               | BDL          | BDL                | BDL          | BDL          |
| 59  | Phorate                                     | μg/l  | 2                  | No<br>Relaxation               | BDL          | BDL                | BDL          | BDL          |
|     |                                             |       | Ml                 | CROBIOLOG                      | ICAL PARAMET | ER                 |              |              |
| 60  | Total Coliform                              | IS:15 | 185:2016           | Should be absent/ 100 ml       | Absent/100ml | Absent/100m        | Absent/100ml | Absent/100ml |
| 61  | E.coli                                      | IS:15 | 185:2016           | Should be<br>absent/ 100<br>ml | Absent/100ml | Absent/100m        | Absent/100ml | Absent/100ml |

Table 57: Drinking Water Quality Data for C6 Package on February 23

|            |                                           |       |                        |                          | Limit (IS-                                                              | -10500:2012)                | )                              |                                                                  |                             |                                                     |                                                                         |
|------------|-------------------------------------------|-------|------------------------|--------------------------|-------------------------------------------------------------------------|-----------------------------|--------------------------------|------------------------------------------------------------------|-----------------------------|-----------------------------------------------------|-------------------------------------------------------------------------|
|            |                                           |       |                        |                          | DW1                                                                     | DW2                         | DW3                            | DW4                                                              | DW5                         | DW6                                                 | DW7                                                                     |
| SI.<br>No. | Parameters                                | Unit  | Desira<br>ble<br>Limit | Permissi<br>ble<br>Limit | Village<br>Omkarpu<br>ra, Active<br>project<br>site at<br>CH<br>405+950 | Labour<br>camp at<br>Ch 407 | Labour<br>camp at<br>Ch. – 417 | Village<br>Sakarda,<br>active<br>project<br>site at Ch.<br>- 412 | Labour<br>camp at<br>Ch 434 | Village Boriyavi, active project site at Ch 441+900 | Village<br>Rawdapu<br>ra, active<br>project<br>site at<br>Ch<br>438+700 |
|            |                                           |       |                        |                          | 14.02.202<br>3                                                          | 04.02.202                   | 04.02.202                      | 13.02.202<br>3                                                   | 04.02.202                   | 14.02.202<br>3                                      | 14.02.202<br>3                                                          |
| 1          | Colour                                    | Hazen | 5                      | 15                       | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                 | BDL                                                                     |
| 2          | Odour                                     | -     | Agreea<br>ble          | Agreeabl<br>e            | Agreeable                                                               | Agreeable                   | Agreeable                      | Agreeable                                                        | Agreeable                   | Agreeable                                           | Agreeable                                                               |
| 3          | Taste                                     | -     | Agreea<br>ble          | Agreeabl<br>e            | Agreeable                                                               | Agreeable                   | Agreeable                      | Agreeable                                                        | Agreeable                   | Agreeable                                           | Agreeable                                                               |
| 4          | Turbidity                                 | NTU   | 1                      | 5                        | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                 | BDL                                                                     |
| 5          | pH(Lab)                                   | -     | 6.5-8.5                | No<br>Relaxati<br>on     | 7.05                                                                    | 6.68                        | 6.66                           | 6.75                                                             | 6.51                        | 6.59                                                | 7.96                                                                    |
| 6          | pH(Site)                                  | -     | -                      | -                        | 7.1                                                                     | 6.7                         | 6.7                            | 6.8                                                              | 6.5                         | 6.6                                                 | 7.9                                                                     |
| 7          | Total Hardness<br>(as CaCO <sub>3</sub> ) | mg/l  | 200                    | 600                      | 68                                                                      | 52                          | 30                             | 56                                                               | 24                          | 42                                                  | 164                                                                     |
| 8          | Iron (as Fe)                              | mg/l  | 1                      | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                 | BDL                                                                     |
| 9          | Chlorides (as<br>Cl)                      | mg/l  | 250                    | 1000                     | 16.9                                                                    | 14.9                        | 7.9                            | 15.9                                                             | 6.9                         | 14.5                                                | 35.9                                                                    |
| 10         | Fluoride (as F )                          | mg/l  | 1                      | 1.5                      | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                 | BDL                                                                     |
| 11         | TDS                                       | mg/l  | 500                    | 2000                     | 114                                                                     | 102                         | 53                             | 100                                                              | 51                          | 98                                                  | 298                                                                     |

|            | Limit (IS-10500:2012)              |      |                        |                          |                                                                                      |                       |                          |                                                                               |                       |                                                                                       |                                                                                      |  |  |  |
|------------|------------------------------------|------|------------------------|--------------------------|--------------------------------------------------------------------------------------|-----------------------|--------------------------|-------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
|            |                                    |      |                        |                          | DW1                                                                                  | DW2                   | DW3                      | DW4                                                                           | DW5                   | DW6                                                                                   | DW7                                                                                  |  |  |  |
| SI.<br>No. | Parameters                         | Unit | Desira<br>ble<br>Limit | Permissi<br>ble<br>Limit | Village<br>Omkarpu<br>ra, Active<br>project<br>site at<br>CH<br>405+950<br>14.02.202 | Labour camp at Ch 407 | Labour camp at Ch. – 417 | Village<br>Sakarda,<br>active<br>project<br>site at Ch.<br>- 412<br>13.02.202 | Labour camp at Ch 434 | Village<br>Boriyavi,<br>active<br>project<br>site at Ch.<br>-<br>441+900<br>14.02.202 | Village<br>Rawdapu<br>ra, active<br>project<br>site at<br>Ch<br>438+700<br>14.02.202 |  |  |  |
| 12         | Calcium(as<br>Ca <sup>2+</sup> )   | mg/l | 75                     | 200                      | 14.6                                                                                 | 9.6                   | 6.4                      | 9.4                                                                           | 6.2                   | 8.8                                                                                   | 27.4                                                                                 |  |  |  |
| 13         | Magnesium (as Mg <sup>2+</sup> )   | mg/l | 30                     | 100                      | 7.65                                                                                 | 6.804                 | 3.402                    | 7.89                                                                          | 2.07                  | 4.86                                                                                  | 23.21                                                                                |  |  |  |
| 14         | Sulphate (as SO <sub>4</sub> )     | mg/l | 200                    | 400                      | 7.5                                                                                  | 7.1                   | 3.8                      | 7.3                                                                           | 3.1                   | 7.3                                                                                   | 15.8                                                                                 |  |  |  |
| 15         | Nitrate(as NO <sub>3</sub> )       | mg/l | 45                     | No<br>Relaxati<br>on     | BDL                                                                                  | BDL                   | BDL                      | BDL                                                                           | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |
| 16         | Chromium (as<br>Cr)                | mg/l | 0.05                   | No<br>Relaxati<br>on     | BDL                                                                                  | BDL                   | BDL                      | BDL                                                                           | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |
| 17         | Alkalinity as<br>CaCO <sub>3</sub> | mg/l | 200                    | 600                      | 54                                                                                   | 42                    | 22                       | 46                                                                            | 12                    | 30                                                                                    | 146                                                                                  |  |  |  |
| 18         | Aluminium (as<br>Al)               | mg/l | 0.03                   | 0.2                      | BDL                                                                                  | BDL                   | BDL                      | BDL                                                                           | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |
| 19         | Copper (as<br>Cu)                  | mg/l | 0.05                   | 1.5                      | BDL                                                                                  | BDL                   | BDL                      | BDL                                                                           | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |
| 20         | Manganese (as<br>Mn)               | mg/l | 0.1                    | 0.3                      | BDL                                                                                  | BDL                   | BDL                      | BDL                                                                           | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |
| 21         | Zinc (as Zn)                       | mg/l | 5                      | 15                       | BDL                                                                                  | BDL                   | BDL                      | BDL                                                                           | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |

|            | Limit (IS-10500:2012)                                          |      |                        |                          |                                                                         |                             |                                |                                                                  |                             |                                                                          |                                                                         |  |  |  |
|------------|----------------------------------------------------------------|------|------------------------|--------------------------|-------------------------------------------------------------------------|-----------------------------|--------------------------------|------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
|            |                                                                |      |                        |                          | DW1                                                                     | DW2                         | DW3                            | DW4                                                              | DW5                         | DW6                                                                      | DW7                                                                     |  |  |  |
| SI.<br>No. | Parameters                                                     | Unit | Desira<br>ble<br>Limit | Permissi<br>ble<br>Limit | Village<br>Omkarpu<br>ra, Active<br>project<br>site at<br>CH<br>405+950 | Labour<br>camp at<br>Ch 407 | Labour<br>camp at<br>Ch. – 417 | Village<br>Sakarda,<br>active<br>project<br>site at Ch.<br>- 412 | Labour<br>camp at<br>Ch 434 | Village<br>Boriyavi,<br>active<br>project<br>site at Ch.<br>–<br>441+900 | Village<br>Rawdapu<br>ra, active<br>project<br>site at<br>Ch<br>438+700 |  |  |  |
|            |                                                                |      |                        |                          | 14.02.202                                                               | 04.02.202                   | 04.02.202                      | 13.02.202                                                        | 04.02.202                   | 14.02.202                                                                | 14.02.202<br>3                                                          |  |  |  |
| 22         | Ammonia (as<br>NH <sub>3</sub> -N)                             | mg/l | 0.5                    | No<br>relaxatio<br>n     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 23         | Anionic detergents (as MBAS)                                   | mg/l | 0.2                    | 1                        | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 24         | Boron (as B)                                                   | mg/l | 0.5                    | 1                        | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 25         | Mineral oil                                                    | mg/l | 0.5                    | No<br>relaxatio<br>n     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 26         | Phenolic<br>compounds (as<br>C <sub>6</sub> H <sub>5</sub> OH) | mg/l | 0.001                  | 0.002                    | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 27         | Cadmium (as Cd)                                                | mg/l | 0.003                  | No<br>relaxatio<br>n     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 28         | Cyanide (as<br>CN)                                             | mg/l | 0.05                   | No<br>relaxatio<br>n     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 29         | Lead (as Pb)                                                   | mg/l | 0.01                   | No<br>relaxatio<br>n     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |

|            | Limit (IS-10500:2012)                |      |                        |                          |                                                                                      |                       |                          |                                                                  |                       |                                                                                       |                                                                                      |  |  |  |
|------------|--------------------------------------|------|------------------------|--------------------------|--------------------------------------------------------------------------------------|-----------------------|--------------------------|------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|
|            |                                      |      |                        |                          | DW1                                                                                  | DW2                   | DW3                      | DW4                                                              | DW5                   | DW6                                                                                   | DW7                                                                                  |  |  |  |
| SI.<br>No. | Parameters                           | Unit | Desira<br>ble<br>Limit | Permissi<br>ble<br>Limit | Village<br>Omkarpu<br>ra, Active<br>project<br>site at<br>CH<br>405+950<br>14.02.202 | Labour camp at Ch 407 | Labour camp at Ch. – 417 | Village<br>Sakarda,<br>active<br>project<br>site at Ch.<br>- 412 | Labour camp at Ch 434 | Village<br>Boriyavi,<br>active<br>project<br>site at Ch.<br>-<br>441+900<br>14.02.202 | Village<br>Rawdapu<br>ra, active<br>project<br>site at<br>Ch<br>438+700<br>14.02.202 |  |  |  |
|            | Management                           |      |                        | No                       | 3                                                                                    | 3                     | 3                        | 3                                                                | 3                     | 3                                                                                     | 3                                                                                    |  |  |  |
| 30         | Mercury (as<br>Hg)                   | mg/l | 0.001                  | relaxatio<br>n           | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |
| 31         | Nickel (as Ni)                       | mg/l | 0.02                   | No<br>relaxatio<br>n     | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |
| 32         | Sulphide(H <sub>2</sub> S)           | mg/l | 0.05                   | No<br>relaxatio<br>n     | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |
| 33         | Residual Free<br>Chlorine(RFC)       | mg/l | Min-<br>0.2            | 1                        | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |
| 34         | Total arsenic (as As),               | mg/l | 0.01                   | No<br>relaxatio<br>n     | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |
| 35         | Barium                               | mg/l | 0.7                    | No<br>relaxatio<br>n     | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |
| 36         | Chloramines<br>(as Cl <sub>2</sub> ) | mg/l | 4                      | No<br>relaxatio<br>n     | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |
| 37         | Silver(as Ag)                        | mg/l | 0.1                    | No<br>Relaxati<br>on     | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |  |  |  |

|            |                                                     |      |                        |                          | Limit (IS-                                                              | -10500:2012)          | 1                        |                                                                  |                       |                                                     |                                                                         |
|------------|-----------------------------------------------------|------|------------------------|--------------------------|-------------------------------------------------------------------------|-----------------------|--------------------------|------------------------------------------------------------------|-----------------------|-----------------------------------------------------|-------------------------------------------------------------------------|
|            |                                                     |      |                        |                          | DW1                                                                     | DW2                   | DW3                      | DW4                                                              | DW5                   | DW6                                                 | DW7                                                                     |
| SI.<br>No. | Parameters                                          | Unit | Desira<br>ble<br>Limit | Permissi<br>ble<br>Limit | Village<br>Omkarpu<br>ra, Active<br>project<br>site at<br>CH<br>405+950 | Labour camp at Ch 407 | Labour camp at Ch. – 417 | Village<br>Sakarda,<br>active<br>project<br>site at Ch.<br>- 412 | Labour camp at Ch 434 | Village Boriyavi, active project site at Ch 441+900 | Village<br>Rawdapu<br>ra, active<br>project<br>site at<br>Ch<br>438+700 |
|            |                                                     |      |                        |                          | 3                                                                       | 3                     | 3                        | 3                                                                | 3                     | 3                                                   | 3                                                                       |
| 38         | Molybdenum<br>(as Mo)                               | mg/l | 0.07                   | No<br>Relaxati<br>on     | BDL                                                                     | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                 | BDL                                                                     |
| 39         | Polynuclear<br>Aromatic<br>Hydrocarbons(<br>as PAH) | mg/l | 0.0001                 | No<br>Relaxati<br>on     | BDL                                                                     | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                 | BDL                                                                     |
| 40         | Polychlorinate<br>d biphenyls                       | mg/l | 0.0001                 | No<br>Relaxati<br>on     | BDL                                                                     | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                 | BDL                                                                     |
| 41         |                                                     |      |                        |                          | TRIHA                                                                   | LOMETHA               | NES                      |                                                                  |                       |                                                     |                                                                         |
| a          | Bromoform                                           | mg/l | 0.1                    | No<br>Relaxati<br>on     | BDL                                                                     | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                 | BDL                                                                     |
| b          | Dibromochloro<br>methane                            | mg/l | 0.1                    | No<br>Relaxati<br>on     | BDL                                                                     | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                 | BDL                                                                     |
| c          | Bromodichloro<br>methane                            | mg/l | 0.06                   | No<br>Relaxati<br>on     | BDL                                                                     | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                 | BDL                                                                     |

|            | Limit (IS-10500:2012) |      |                        |                          |                                                                         |                             |                                |                                                                  |                             |                                                                          |                                                                         |  |  |  |
|------------|-----------------------|------|------------------------|--------------------------|-------------------------------------------------------------------------|-----------------------------|--------------------------------|------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
|            |                       |      |                        |                          | DW1                                                                     | DW2                         | DW3                            | DW4                                                              | DW5                         | DW6                                                                      | DW7                                                                     |  |  |  |
| SI.<br>No. | Parameters            | Unit | Desira<br>ble<br>Limit | Permissi<br>ble<br>Limit | Village<br>Omkarpu<br>ra, Active<br>project<br>site at<br>CH<br>405+950 | Labour<br>camp at<br>Ch 407 | Labour<br>camp at<br>Ch. – 417 | Village<br>Sakarda,<br>active<br>project<br>site at Ch.<br>- 412 | Labour<br>camp at<br>Ch 434 | Village<br>Boriyavi,<br>active<br>project<br>site at Ch.<br>–<br>441+900 | Village<br>Rawdapu<br>ra, active<br>project<br>site at<br>Ch<br>438+700 |  |  |  |
|            |                       |      |                        |                          | 14.02.202                                                               | 04.02.202                   | 04.02.202                      | 13.02.202                                                        | 04.02.202                   | 14.02.202                                                                | 14.02.202<br>3                                                          |  |  |  |
| d          | Chloroform            | mg/l | 0.2                    | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
|            |                       |      |                        |                          | PESTI                                                                   | CIDE RESII                  | DUES                           |                                                                  | T                           | T                                                                        |                                                                         |  |  |  |
| 42         | Alachor               | μg/l | 20                     | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 43         | Atrazine              | μg/l | 20                     | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 44         | Aldrin/Dialdri<br>n   | μg/l | 0.03                   | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 45         | Alpha HCH             | μg/l | 0.01                   | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 46         | Beta HCH              | μg/l | 0.04                   | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 47         | Butachlor             | μg/l | 125                    | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |

|            | Limit (IS-10500:2012)                                |      |                        |                          |                                                                         |                             |                                |                                                                  |                             |                                                                          |                                                                         |  |  |  |
|------------|------------------------------------------------------|------|------------------------|--------------------------|-------------------------------------------------------------------------|-----------------------------|--------------------------------|------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
|            |                                                      |      |                        |                          | DW1                                                                     | DW2                         | DW3                            | DW4                                                              | DW5                         | DW6                                                                      | DW7                                                                     |  |  |  |
| SI.<br>No. | Parameters                                           | Unit | Desira<br>ble<br>Limit | Permissi<br>ble<br>Limit | Village<br>Omkarpu<br>ra, Active<br>project<br>site at<br>CH<br>405+950 | Labour<br>camp at<br>Ch 407 | Labour<br>camp at<br>Ch. – 417 | Village<br>Sakarda,<br>active<br>project<br>site at Ch.<br>- 412 | Labour<br>camp at<br>Ch 434 | Village<br>Boriyavi,<br>active<br>project<br>site at Ch.<br>–<br>441+900 | Village<br>Rawdapu<br>ra, active<br>project<br>site at<br>Ch<br>438+700 |  |  |  |
|            |                                                      |      |                        |                          | 14.02.202                                                               | 04.02.202                   | 04.02.202                      | 13.02.202                                                        | 04.02.202                   | 14.02.202                                                                | 14.02.202<br>3                                                          |  |  |  |
| 48         | Chlorpyriphos                                        | μg/l | 30                     | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 49         | Delta HCH                                            | μg/l | 0.04                   | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 50         | 2,4-<br>Dichloropheno<br>xyacetic acid               | μg/l | 30                     | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 51         | DDT(o,p and<br>p,p-isomers of<br>DDT.DDE and<br>DDD) | μg/l | 1                      | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 52         | Endosuiphan(a<br>lpha, beta and<br>sulphate)         | μg/l | 0.4                    | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 53         | Ethion                                               | μg/l | 3                      | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |
| 54         | Gamma<br>HCH(Lindane)                                | μg/l | 2                      | No<br>Relaxati<br>on     | BDL                                                                     | BDL                         | BDL                            | BDL                                                              | BDL                         | BDL                                                                      | BDL                                                                     |  |  |  |

|            |                     |             |                        |                                   | Limit (IS                                                                            | -10500:2012)          |                          |                                                                  |                       |                                                                                       |                                                                                      |
|------------|---------------------|-------------|------------------------|-----------------------------------|--------------------------------------------------------------------------------------|-----------------------|--------------------------|------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|            |                     |             |                        |                                   | DW1                                                                                  | DW2                   | DW3                      | DW4                                                              | DW5                   | DW6                                                                                   | DW7                                                                                  |
| SI.<br>No. | Parameters          | Unit        | Desira<br>ble<br>Limit | Permissi<br>ble<br>Limit          | Village<br>Omkarpu<br>ra, Active<br>project<br>site at<br>CH<br>405+950<br>14.02.202 | Labour camp at Ch 407 | Labour camp at Ch. – 417 | Village<br>Sakarda,<br>active<br>project<br>site at Ch.<br>- 412 | Labour camp at Ch 434 | Village<br>Boriyavi,<br>active<br>project<br>site at Ch.<br>-<br>441+900<br>14.02.202 | Village<br>Rawdapu<br>ra, active<br>project<br>site at<br>Ch<br>438+700<br>14.02.202 |
|            |                     |             |                        | No                                | 3                                                                                    | 3                     | 3                        | 3                                                                | 3                     | 3                                                                                     | 3                                                                                    |
| 55         | Isoproturon         | μg/l        | 9                      | Relaxati<br>on                    | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |
| 56         | Malathion           | μg/l        | 190                    | No<br>Relaxati<br>on              | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |
| 57         | Methyl<br>Parathion | μg/l        | 0.3                    | No<br>Relaxati<br>on              | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |
| 58         | Monocrotopho<br>s   | μg/l        | 1                      | No<br>Relaxati<br>on              | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |
| 59         | Phorate             | μg/l        | 2                      | No<br>Relaxati<br>on              | BDL                                                                                  | BDL                   | BDL                      | BDL                                                              | BDL                   | BDL                                                                                   | BDL                                                                                  |
|            |                     |             | M                      | ICROBIOL                          | OGICAL PA                                                                            | RAMETER               |                          |                                                                  |                       |                                                                                       |                                                                                      |
| 60         | Total Coliform      | IS:15185:20 |                        | Should<br>be<br>absent/<br>100 ml | Absent/10<br>0ml                                                                     | Absent/10<br>0ml      | Absent/10<br>0ml         | Absent/10<br>0ml                                                 | Absent/10<br>0ml      | Absent/10<br>0ml                                                                      | Absent/10<br>0ml                                                                     |
| 61         | E.coli              | IS:15185:20 |                        |                                   | Absent/10<br>0ml                                                                     | Absent/10<br>0ml      | Absent/10<br>0ml         | Absent/10<br>0ml                                                 | Absent/10<br>0ml      | Absent/10<br>0ml                                                                      | Absent/10<br>0ml                                                                     |

|            |            |      |                        |                          | Limit (IS-                                                              | -10500:2012)                |                                |                                                                  |                             |                                                                          |                                                                         |
|------------|------------|------|------------------------|--------------------------|-------------------------------------------------------------------------|-----------------------------|--------------------------------|------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|
|            |            |      |                        |                          | DW1                                                                     | DW2                         | DW3                            | DW4                                                              | DW5                         | DW6                                                                      | DW7                                                                     |
| SI.<br>No. | Parameters | Unit | Desira<br>ble<br>Limit | Permissi<br>ble<br>Limit | Village<br>Omkarpu<br>ra, Active<br>project<br>site at<br>CH<br>405+950 | Labour<br>camp at<br>Ch 407 | Labour<br>camp at<br>Ch. – 417 | Village<br>Sakarda,<br>active<br>project<br>site at Ch.<br>- 412 | Labour<br>camp at<br>Ch 434 | Village<br>Boriyavi,<br>active<br>project<br>site at Ch.<br>–<br>441+900 | Village<br>Rawdapu<br>ra, active<br>project<br>site at<br>Ch<br>438+700 |
|            |            |      |                        |                          | 14.02.202                                                               | 04.02.202                   | 04.02.202                      | 13.02.202                                                        | 04.02.202                   | 14.02.202                                                                | 14.02.202                                                               |
|            |            |      |                        | absent/                  | 3                                                                       | 3                           | 3                              | 3                                                                | 3                           | 3                                                                        | 3                                                                       |
|            |            |      |                        |                          |                                                                         |                             |                                |                                                                  |                             |                                                                          |                                                                         |

Continue for Drinking water......

|           |            |           |                        |                      | Limit                                                       | (IS-10500:2                                                           | 2012)                                                                 |                            |                            |                                                                               |                                        |                                                                         |
|-----------|------------|-----------|------------------------|----------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|
|           |            |           |                        |                      | DW9                                                         | DW10                                                                  | DW11                                                                  | DW12                       | DW13                       | DW14                                                                          | DW15                                   | DW16                                                                    |
| S.N<br>o. | Parameters | Uni<br>t  | Desir<br>able<br>Limit | Permissible<br>Limit | Village<br>Dumral,<br>active<br>project<br>site at<br>Ch451 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>463+700 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>461+400 | Labour<br>Camp at<br>Ch448 | Labour<br>Camp at<br>Ch450 | Village<br>Katakpu<br>ra,<br>active<br>project<br>site at<br>Ch. –<br>469+500 | Batchin<br>g Plant<br>at Ch<br>471+100 | Village-<br>Barajadi<br>, active<br>project<br>site at<br>Ch<br>483+800 |
|           |            |           |                        |                      | 11.02.20<br>23                                              | 11.02.20<br>23                                                        | 11.02.20<br>23                                                        | 11.02.20<br>23             | 11.02.20<br>23             | 11.02.20<br>23                                                                | 11.02.20<br>23                         | 11.02.20<br>23                                                          |
| 1         | Colour     | Haz<br>en | 5                      | 15                   | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 2         | Odour      | -         | Agree able             | Agreeable            | Agreeabl e                                                  | Agreeabl<br>e                                                         | Agreeabl<br>e                                                         | Agreeabl e                 | Agreeabl<br>e              | Agreeabl e                                                                    | Agreeabl<br>e                          | Agreeabl<br>e                                                           |

|           |                                           |          |                        |                      | Limit                                                       | (IS-10500:2                                                           | 2012)                                                                 |                            |                            |                                                                               |                                        |                                                                         |
|-----------|-------------------------------------------|----------|------------------------|----------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|
|           |                                           |          |                        |                      | DW9                                                         | DW10                                                                  | DW11                                                                  | DW12                       | DW13                       | DW14                                                                          | DW15                                   | DW16                                                                    |
| S.N<br>o. | Parameters                                | Uni<br>t | Desir<br>able<br>Limit | Permissible<br>Limit | Village<br>Dumral,<br>active<br>project<br>site at<br>Ch451 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>463+700 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>461+400 | Labour<br>Camp at<br>Ch448 | Labour<br>Camp at<br>Ch450 | Village<br>Katakpu<br>ra,<br>active<br>project<br>site at<br>Ch. –<br>469+500 | Batchin<br>g Plant<br>at Ch<br>471+100 | Village-<br>Barajadi<br>, active<br>project<br>site at<br>Ch<br>483+800 |
|           |                                           |          |                        |                      | 11.02.20<br>23                                              | 11.02.20<br>23                                                        | 11.02.20<br>23                                                        | 11.02.20<br>23             | 11.02.20<br>23             | 11.02.20<br>23                                                                | 11.02.20<br>23                         | 11.02.20<br>23                                                          |
| 3         | Taste                                     | -        | Agree<br>able          | Agreeable            | Agreeabl<br>e                                               | Agreeabl<br>e                                                         | Agreeabl<br>e                                                         | Agreeabl<br>e              | Agreeabl<br>e              | Agreeabl<br>e                                                                 | Agreeabl<br>e                          | Agreeabl e                                                              |
| 4         | Turbidity                                 | NT<br>U  | 1                      | 5                    | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 5         | pH(Lab)                                   | -        | 6.5-<br>8.5            | No Relaxation        | 7.25                                                        | 7.29                                                                  | 7.22                                                                  | 7.21                       | 6.58                       | 6.73                                                                          | 6.86                                   | 7.16                                                                    |
| 6         | pH(Site)                                  | -        | 1                      | -                    | 7.2                                                         | 7.3                                                                   | 7.2                                                                   | 7.2                        | 6.6                        | 6.7                                                                           | 6.9                                    | 7.2                                                                     |
| 7         | Total Hardness<br>(as CaCO <sub>3</sub> ) | mg/      | 200                    | 600                  | 124                                                         | 22                                                                    | 126                                                                   | 64                         | 22                         | 48                                                                            | 46                                     | 20                                                                      |
| 8         | Iron (as Fe)                              | mg/      | 1                      | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 9         | Chlorides (as<br>Cl)                      | mg/      | 250                    | 1000                 | 42.9                                                        | 6.5                                                                   | 28.9                                                                  | 14.5                       | 7.9                        | 17.5                                                                          | 16.9                                   | 12.5                                                                    |
| 10        | Fluoride (as F )                          | mg/      | 1                      | 1.5                  | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 11        | TDS                                       | mg/      | 500                    | 2000                 | 245                                                         | 45                                                                    | 236                                                                   | 123                        | 40                         | 88                                                                            | 85                                     | 57                                                                      |
| 12        | Calcium(as<br>Ca <sup>2+</sup> )          | mg/      | 75                     | 200                  | 26.8                                                        | 6.4                                                                   | 32.4                                                                  | 12.4                       | 4.2                        | 8.8                                                                           | 9.2                                    | 5.8                                                                     |
| 13        | Magnesium (as Mg <sup>2+</sup> )          | mg/      | 30                     | 100                  | 13.85                                                       | 1.46                                                                  | 10.94                                                                 | 8.019                      | 2.7945                     | 6.32                                                                          | 5.59                                   | 1.34                                                                    |

|           |                                    |          |                        |                      | Limit                                                       | (IS-10500:2                                                           | 2012)                                                                 |                            |                            |                                                                               |                                        |                                                                         |
|-----------|------------------------------------|----------|------------------------|----------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|
|           |                                    |          |                        |                      | DW9                                                         | DW10                                                                  | DW11                                                                  | DW12                       | DW13                       | DW14                                                                          | DW15                                   | DW16                                                                    |
| S.N<br>o. | Parameters                         | Uni<br>t | Desir<br>able<br>Limit | Permissible<br>Limit | Village<br>Dumral,<br>active<br>project<br>site at<br>Ch451 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>463+700 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>461+400 | Labour<br>Camp at<br>Ch448 | Labour<br>Camp at<br>Ch450 | Village<br>Katakpu<br>ra,<br>active<br>project<br>site at<br>Ch. –<br>469+500 | Batchin<br>g Plant<br>at Ch<br>471+100 | Village-<br>Barajadi<br>, active<br>project<br>site at<br>Ch<br>483+800 |
|           |                                    |          |                        |                      | 11.02.20<br>23                                              | 11.02.20<br>23                                                        | 11.02.20<br>23                                                        | 11.02.20<br>23             | 11.02.20<br>23             | 11.02.20<br>23                                                                | 11.02.20<br>23                         | 11.02.20<br>23                                                          |
| 14        | Sulphate (as SO <sub>4</sub> )     | mg/      | 200                    | 400                  | 15.1                                                        | 3.5                                                                   | 12.4                                                                  | 6.9                        | 3.6                        | 7.5                                                                           | 7.2                                    | 6                                                                       |
| 15        | Nitrate(as NO <sub>3</sub> )       | mg/      | 45                     | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 16        | Chromium (as<br>Cr)                | mg/      | 0.05                   | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 17        | Alkalinity as CaCO <sub>3</sub>    | mg/      | 200                    | 600                  | 110                                                         | 20                                                                    | 96                                                                    | 46                         | 18                         | 36                                                                            | 42                                     | 16                                                                      |
| 18        | Aluminium (as<br>Al)               | mg/      | 0.03                   | 0.2                  | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 19        | Copper (as Cu)                     | mg/      | 0.05                   | 1.5                  | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 20        | Manganese (as<br>Mn)               | mg/      | 0.1                    | 0.3                  | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 21        | Zinc (as Zn)                       | mg/      | 5                      | 15                   | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 22        | Ammonia (as<br>NH <sub>3</sub> -N) | mg/      | 0.5                    | No relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 23        | Anionic<br>detergents (as<br>MBAS) | mg/      | 0.2                    | 1                    | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |

|           | Limit (IS-10500:2012)    DW9   DW10   DW11   DW12   DW13   DW14   DW15   DW16 |          |                        |                      |                                                             |                                                                       |                                                                       |                            |                            |                                                                               |                                        |                                                                         |  |  |
|-----------|-------------------------------------------------------------------------------|----------|------------------------|----------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|--|--|
|           |                                                                               |          |                        |                      | DW9                                                         | DW10                                                                  | DW11                                                                  | DW12                       | DW13                       | DW14                                                                          | DW15                                   | DW16                                                                    |  |  |
| S.N<br>o. | Parameters                                                                    | Uni<br>t | Desir<br>able<br>Limit | Permissible<br>Limit | Village<br>Dumral,<br>active<br>project<br>site at<br>Ch451 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>463+700 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>461+400 | Labour<br>Camp at<br>Ch448 | Labour<br>Camp at<br>Ch450 | Village<br>Katakpu<br>ra,<br>active<br>project<br>site at<br>Ch. –<br>469+500 | Batchin<br>g Plant<br>at Ch<br>471+100 | Village-<br>Barajadi<br>, active<br>project<br>site at<br>Ch<br>483+800 |  |  |
|           |                                                                               |          |                        |                      | 11.02.20<br>23                                              | 11.02.20<br>23                                                        | 11.02.20<br>23                                                        | 11.02.20<br>23             | 11.02.20<br>23             | 11.02.20<br>23                                                                | 11.02.20<br>23                         | 11.02.20<br>23                                                          |  |  |
| 24        | Boron (as B)                                                                  | mg/      | 0.5                    | 1                    | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |
| 25        | Mineral oil                                                                   | mg/      | 0.5                    | No relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |
| 26        | Phenolic<br>compounds (as<br>C <sub>6</sub> H <sub>5</sub> OH)                | mg/      | 0.001                  | 0.002                | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |
| 27        | Cadmium (as<br>Cd)                                                            | mg/      | 0.003                  | No relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |
| 28        | Cyanide (as<br>CN)                                                            | mg/      | 0.05                   | No relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |
| 29        | Lead (as Pb)                                                                  | mg/      | 0.01                   | No relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |
| 30        | Mercury (as<br>Hg)                                                            | mg/      | 0.001                  | No relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |
| 31        | Nickel (as Ni)                                                                | mg/      | 0.02                   | No relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |
| 32        | Sulphide(H <sub>2</sub> S)                                                    | mg/      | 0.05                   | No relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |
| 33        | Residual Free<br>Chlorine(RFC)                                                | mg/      | Min-<br>0.2            | 1                    | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |

|           | Limit (IS-10500:2012)           DW9         DW10         DW11         DW12         DW13         DW14         DW15         DW16 |          |                        |                      |                                                             |                                                                       |                                                                       |                            |                            |                                                                               |                                        |                                                                         |  |  |  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------|----------|------------------------|----------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|--|--|--|
|           |                                                                                                                                |          |                        |                      | DW9                                                         | DW10                                                                  | DW11                                                                  | DW12                       | DW13                       | DW14                                                                          | DW15                                   | DW16                                                                    |  |  |  |
| S.N<br>o. | Parameters                                                                                                                     | Uni<br>t | Desir<br>able<br>Limit | Permissible<br>Limit | Village<br>Dumral,<br>active<br>project<br>site at<br>Ch451 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>463+700 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>461+400 | Labour<br>Camp at<br>Ch448 | Labour<br>Camp at<br>Ch450 | Village<br>Katakpu<br>ra,<br>active<br>project<br>site at<br>Ch. –<br>469+500 | Batchin<br>g Plant<br>at Ch<br>471+100 | Village-<br>Barajadi<br>, active<br>project<br>site at<br>Ch<br>483+800 |  |  |  |
|           |                                                                                                                                |          |                        |                      | 11.02.20<br>23                                              | 11.02.20<br>23                                                        | 11.02.20<br>23                                                        | 11.02.20<br>23             | 11.02.20<br>23             | 11.02.20<br>23                                                                | 11.02.20<br>23                         | 11.02.20<br>23                                                          |  |  |  |
| 34        | Total arsenic (as As),                                                                                                         | mg/      | 0.01                   | No relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 35        | Barium                                                                                                                         | mg/      | 0.7                    | No relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 36        | Chloramines<br>(as Cl <sub>2</sub> )                                                                                           | mg/      | 4                      | No relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 37        | Silver(as Ag)                                                                                                                  | mg/      | 0.1                    | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 38        | Molybdenum<br>(as Mo)                                                                                                          | mg/      | 0.07                   | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 39        | Polynuclear<br>Aromatic<br>Hydrocarbons(<br>as PAH)                                                                            | mg/      | 0.0001                 | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 40        | Polychlorinated biphenyls                                                                                                      | mg/      | 0.0001                 | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 41        |                                                                                                                                |          |                        |                      | TRI                                                         | HALOME                                                                | THANES                                                                |                            |                            |                                                                               |                                        |                                                                         |  |  |  |
| a         | Bromoform                                                                                                                      | mg/      | 0.1                    | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| b         | Dibromochloro<br>methane                                                                                                       | mg/      | 0.1                    | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |

|           | Limit (IS-10500:2012)  DW9 DW10 DW11 DW12 DW13 DW14 DW15 DW16 |          |                        |                      |                                                             |                                                                       |                                                                       |                            |                            |                                                                               |                                        |                                                                         |  |  |  |
|-----------|---------------------------------------------------------------|----------|------------------------|----------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|--|--|--|
|           |                                                               |          |                        |                      | DW9                                                         | DW10                                                                  | DW11                                                                  | DW12                       | DW13                       | DW14                                                                          | DW15                                   | DW16                                                                    |  |  |  |
| S.N<br>o. | Parameters                                                    | Uni<br>t | Desir<br>able<br>Limit | Permissible<br>Limit | Village<br>Dumral,<br>active<br>project<br>site at<br>Ch451 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>463+700 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>461+400 | Labour<br>Camp at<br>Ch448 | Labour<br>Camp at<br>Ch450 | Village<br>Katakpu<br>ra,<br>active<br>project<br>site at<br>Ch. –<br>469+500 | Batchin<br>g Plant<br>at Ch<br>471+100 | Village-<br>Barajadi<br>, active<br>project<br>site at<br>Ch<br>483+800 |  |  |  |
|           |                                                               |          |                        |                      | 11.02.20<br>23                                              | 11.02.20<br>23                                                        | 11.02.20<br>23                                                        | 11.02.20<br>23             | 11.02.20<br>23             | 11.02.20<br>23                                                                | 11.02.20<br>23                         | 11.02.20<br>23                                                          |  |  |  |
| с         | Bromodichloro methane                                         | mg/      | 0.06                   | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| d         | Chloroform                                                    | mg/      | 0.2                    | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
|           |                                                               |          |                        |                      | PES                                                         | FICIDE RE                                                             | ESIDUES                                                               |                            |                            |                                                                               |                                        |                                                                         |  |  |  |
| 42        | Alachor                                                       | μg/l     | 20                     | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 43        | Atrazine                                                      | μg/l     | 20                     | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 44        | Aldrin/Dialdrin                                               | μg/l     | 0.03                   | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 45        | Alpha HCH                                                     | μg/l     | 0.01                   | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 46        | Beta HCH                                                      | μg/l     | 0.04                   | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 47        | Butachlor                                                     | μg/l     | 125                    | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 48        | Chlorpyriphos                                                 | μg/l     | 30                     | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 49        | Delta HCH                                                     | μg/l     | 0.04                   | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 50        | 2,4-<br>Dichlorophenox<br>yacetic acid                        | μg/l     | 30                     | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |
| 51        | DDT(o,p and p,p-isomers of                                    | μg/l     | 1                      | No Relaxation        | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |  |  |  |

|           |                                              |          |                        |                          | Limit                                                       | (IS-10500:2                                                           | 2012)                                                                 |                            |                            |                                                                               |                                        |                                                                         |
|-----------|----------------------------------------------|----------|------------------------|--------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|
|           |                                              |          |                        |                          | DW9                                                         | DW10                                                                  | DW11                                                                  | DW12                       | DW13                       | DW14                                                                          | DW15                                   | DW16                                                                    |
| S.N<br>o. | Parameters                                   | Uni<br>t | Desir<br>able<br>Limit | Permissible<br>Limit     | Village<br>Dumral,<br>active<br>project<br>site at<br>Ch451 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>463+700 | Village<br>Degam,<br>active<br>project<br>site at<br>Ch. –<br>461+400 | Labour<br>Camp at<br>Ch448 | Labour<br>Camp at<br>Ch450 | Village<br>Katakpu<br>ra,<br>active<br>project<br>site at<br>Ch. –<br>469+500 | Batchin<br>g Plant<br>at Ch<br>471+100 | Village-<br>Barajadi<br>, active<br>project<br>site at<br>Ch<br>483+800 |
|           |                                              |          |                        |                          | 11.02.20<br>23                                              | 11.02.20<br>23                                                        | 11.02.20<br>23                                                        | 11.02.20<br>23             | 11.02.20<br>23             | 11.02.20<br>23                                                                | 11.02.20<br>23                         | 11.02.20<br>23                                                          |
|           | DDT.DDE and<br>DDD)                          |          |                        |                          | 20                                                          |                                                                       | 20                                                                    | 20                         | 20                         |                                                                               |                                        |                                                                         |
| 52        | Endosuiphan(al<br>pha, beta and<br>sulphate) | μg/l     | 0.4                    | No Relaxation            | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 53        | Ethion                                       | μg/l     | 3                      | No Relaxation            | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 54        | Gamma<br>HCH(Lindane)                        | μg/l     | 2                      | No Relaxation            | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 55        | Isoproturon                                  | μg/l     | 9                      | No Relaxation            | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 56        | Malathion                                    | μg/l     | 190                    | No Relaxation            | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 57        | Methyl<br>Parathion                          | μg/l     | 0.3                    | No Relaxation            | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 58        | Monocrotophos                                | μg/l     | 1                      | No Relaxation            | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
| 59        | Phorate                                      | μg/l     | 2                      | No Relaxation            | BDL                                                         | BDL                                                                   | BDL                                                                   | BDL                        | BDL                        | BDL                                                                           | BDL                                    | BDL                                                                     |
|           | 110                                          |          |                        | I                        | MICROBIC                                                    | DLOGICAI                                                              | . PARAME                                                              | TER                        |                            |                                                                               |                                        |                                                                         |
| 60        | Total Coliform                               |          | 185:201<br>6           | Should be absent/ 100 ml | Absent/1<br>00ml                                            | Absent/1<br>00ml                                                      | Absent/1<br>00ml                                                      | Absent/1<br>00ml           | Absent/1<br>00ml           | Absent/1<br>00ml                                                              | Absent/1 00ml                          | Absent/1<br>00ml                                                        |
| 61        | E.coli                                       | IS:15    | 185:201<br>6           | Should be absent/ 100 ml | Absent/1<br>00ml                                            | Absent/1<br>00ml                                                      | Absent/1<br>00ml                                                      | Absent/1<br>00ml           | Absent/1 00ml              | Absent/1<br>00ml                                                              | Absent/1<br>00ml                       | Absent/1<br>00ml                                                        |

# **Appendix 4.5: Surface Water Quality Monitoring Data for C6 Package**

Table 58: Surface Water Quality Monitoring Data for C6 Package in January 2023

|           |                               |                | Tolerance                  | SW- 1(U/s)             | SW-1(D/s)              | SW-(U/s)                     | SW-(D/s)                     | SW-(U/s)               | SW-(D/s)               |
|-----------|-------------------------------|----------------|----------------------------|------------------------|------------------------|------------------------------|------------------------------|------------------------|------------------------|
| S.<br>No. | Parameters                    | Unit           | Limit as<br>per<br>IS:2296 | Mahi River at<br>Ch417 | Mahi River at<br>Ch417 | Meshwa<br>River at Ch<br>476 | Meshwa<br>River at Ch<br>476 | MoharRiver<br>at Ch463 | MoharRiver<br>at Ch463 |
| 1.        | Temperature                   | c              | -                          | 23                     | 23.5                   | 26.2                         | 26.2                         | 24.3                   | 24.2                   |
| 2.        | Salinity                      | %              | -                          | 0.0076                 | 0.0078                 | 0.0106                       | 0.0097                       | 0.0097                 | 0.0095                 |
| 3.        | Nitrite (as NO2)              | mg/l           |                            | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 4.        | Total Suspended Solid         | mg/l           |                            | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 5.        | Sodium<br>Absorbance<br>Ratio | (meq/l)<br>1/2 | 26                         | 0.1976                 | 0.2022                 | 0.2882                       | 0.2934                       | 0.1691                 | 0.1586                 |
| 6.        | Boron (as B)                  | mg/l           | 2                          | 0.11                   | 0.12                   | 0.15                         | 0.17                         | BDL                    | BDL                    |
| 7.        | Free Ammonia                  | mg/l           | 1.2                        | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 8.        | Mangnese (as Mn)              | mg/l           | -                          | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 9.        | Mercury (as Hg)               | mg/l           | -                          | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 10.       | Selenium (as Se)              | mg/l           | 0.05                       | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 11.       | Cyanide (as CN)               | mg/l           | 0.05                       | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 12.       | Nickel (as Ni)                | mg/l           | -                          | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 13.       | Silver (as Ag)                | mg/l           | -                          | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 14.       | Barium (As Ba)                | mg/l           | -                          | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 15.       | Colour                        | Hazen          | -                          | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 16.       | Turbidity                     | NTU            | -                          | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 17.       | рН                            | -              | 8.5                        | 8.08                   | 8.18                   | 8.18                         | 8.28                         | 7.35                   | 7.29                   |
| 17.       | pH(site)                      |                | 8.5                        | 8.0                    | 8.1                    | 8.2                          | 8.3                          | 7.4                    | 7.3                    |
| 18.       | DO                            | mg/l           | Minimum-<br>4              | 8.1                    | 8.0                    | 8.4                          | 8.2                          | 8.7                    | 8.5                    |

|           |                              |             | Tolerance                  | SW- 1(U/s)             | SW-1(D/s)              | SW-(U/s)                     | SW-(D/s)                     | SW-(U/s)               | SW-(D/s)               |
|-----------|------------------------------|-------------|----------------------------|------------------------|------------------------|------------------------------|------------------------------|------------------------|------------------------|
| S.<br>No. | Parameters                   | Unit        | Limit as<br>per<br>IS:2296 | Mahi River at<br>Ch417 | Mahi River at<br>Ch417 | Meshwa<br>River at Ch<br>476 | Meshwa<br>River at Ch<br>476 | MoharRiver<br>at Ch463 | MoharRiver<br>at Ch463 |
| 19.       | BOD                          | mg/l        | 3                          | 0.8                    | 1                      | BDL                          | BDL                          | BDL                    | BDL                    |
| 20.       | COD                          | mg/l        | -                          | 4                      | 7.6                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 21.       | Total Hardness<br>(as CaCO3) | mg/l        | -                          | 178                    | 182                    | 422                          | 426                          | 232                    | 236                    |
| 22.       | Iron (as Fe)                 | mg/l        | 50                         | 0.09                   | 0.11                   | 0.07                         | 0.09                         | 0.08                   | 0.09                   |
| 23.       | Chlorides (as Cl)            | mg/l        | 600                        | 41.9                   | 43.5                   | 58.9                         | 62.9                         | 53.9                   | 52.9                   |
| 24.       | Fluoride (as F)              | mg/l        | 1.5                        | 0.16                   | 0.17                   | 0.78                         | 0.79                         | 0.14                   | 0.15                   |
| 25.       | Conductivity                 | umho/c<br>m | -                          | 353                    | 356                    | 1172                         | 1175                         | 692                    | 701                    |
| 26.       | TDS                          | mg/l        | 1500                       | 218                    | 220                    | 703                          | 705                          | 415                    | 421                    |
| 27.       | Calcium(as<br>Ca2+)          | mg/l        | -                          | 36.2                   | 34.8                   | 106.4                        | 98.6                         | 56.8                   | 48.8                   |
| 28.       | Magnesium (as<br>Mg2+)       | mg/l        | -                          | 21.26                  | 23.08                  | 37.9                         | 43.6                         | 21.87                  | 27.7                   |
| 29.       | Cadmium                      | mg/l        | 0.01                       | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 30.       | Copper (as Cu)               | mg/l        | 1.5                        | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 31.       | Sulphate (as SO4)            | mg/l        | 400                        | 11.5                   | 12.9                   | 25.6                         | 26.3                         | 22.3                   | 24.6                   |
| 32.       | Nitrate(as NO3)              | mg/l        | 50                         | 1.2                    | 1.3                    | 6.8                          | 7.1                          | 1.1                    | 1.2                    |
| 33.       | Zinc (as Zn)                 | mg/l        | 15                         | BDL                    | BDL                    | 0.05                         | 0.06                         | 0.01                   | BDL                    |
| 34.       | Total Chromium<br>(as Cr)    | mg/l        | 0.05                       | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 35.       | Oil & Grease                 | mg/l        | 0.1                        | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 36.       | Alkalinity (as<br>CaCO3)     | mg/l        | -                          | 154                    | 158                    | 228                          | 218                          | 180                    | 228                    |
| 37.       | Lead (as Pb)                 | mg/l        | 0.1                        | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 38.       | Total Arsenic (as<br>As)     | mg/l        | 0.2                        | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |

|           |                                                |                | Tolerance                  | SW- 1(U/s)             | SW-1(D/s)              | SW-(U/s)                     | SW-(D/s)                     | SW-(U/s)               | SW-(D/s)               |
|-----------|------------------------------------------------|----------------|----------------------------|------------------------|------------------------|------------------------------|------------------------------|------------------------|------------------------|
| S.<br>No. | Parameters                                     | Unit           | Limit as<br>per<br>IS:2296 | Mahi River at<br>Ch417 | Mahi River at<br>Ch417 | Meshwa<br>River at Ch<br>476 | Meshwa<br>River at Ch<br>476 | MoharRiver<br>at Ch463 | MoharRiver<br>at Ch463 |
| 39.       | Phenolic<br>Compound                           | mg/l           | 0.005                      | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 40.       | Anionic Surface<br>Active Detergent<br>as MBAS | mg/l           |                            | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 41.       | Sodium                                         | mg/l           |                            | 17.2                   | 17.8                   | 38.6                         | 39.5                         | 16.8                   | 15.9                   |
| 42.       | Potassium                                      | mg/l           |                            | 4.2                    | 4.6                    | 14.4                         | 15.3                         | 4.3                    | 4.1                    |
| 43.       | Total Kjheldal<br>Nitrogen (as N)              | mg/l           |                            | 4.2                    | 5.8                    | 3.8                          | 3.6                          | BDL                    | BDL                    |
| 44.       | Mineral Oil                                    | mg/l           |                            | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 45.       | Total Petroleum<br>Hydrocarbon                 | mg/l           |                            | BDL                    | BDL                    | BDL                          | BDL                          | BDL                    | BDL                    |
| 46.       | Odour                                          |                |                            | Odourless              | Odourless              | Odourless                    | Odourless                    | Odourless              | Odourless              |
|           |                                                |                |                            | M                      | icrobiological Pa      | rameter                      |                              |                        |                        |
| 47.       | Total Coliform                                 | MPN/1<br>00 ml | 500                        | 38                     | 42                     | 44                           | 48                           | 36                     | 42                     |
| 48.       | Fecal Coliform                                 | MPN/1<br>00 ml | -                          | 16                     | 18                     | 13                           | 16                           | 16                     | 18                     |

Table 59: Surface Water Quality Monitoring Data for C6 Package in February 2023

|        |                               |                |                                                    | SW- (Canal)                                                  | SW-(Pond)                    | SW-(Canal)                        | SW- (Canal)                                                    | SW-(Pond)                                                | SW-(Pond)                                        |
|--------|-------------------------------|----------------|----------------------------------------------------|--------------------------------------------------------------|------------------------------|-----------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|
| S. No. | Parameters                    | Unit           | Tolerance<br>Limit as<br>per<br>IS:2296<br>Class-C | Village<br>Laxmipura,<br>active project<br>site at Ch<br>421 | Village<br>Gamdi at<br>Ch434 | Village<br>Piplag at<br>Ch450+550 | Village<br>Brajadi,<br>active project<br>site at Ch<br>481+200 | Village<br>Babra, active<br>project site at<br>Ch465+250 | Village Degam, active project site at Ch 462+100 |
| 1      | Temperature                   | c              | -                                                  | 27.8                                                         | 30.1                         | 29.5                              | 30.1                                                           | 29.1                                                     | 30                                               |
| 2      | Salinity                      | %              | -                                                  | 0.0231                                                       | 0.0245                       | 0.0056                            | 0.0056                                                         | 0.0764                                                   | 0.0081                                           |
| 3      | Nitrite(as<br>NO2)            | mg/l           |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                              |
| 4      | Total<br>Suspended<br>Solid   | mg/l           |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                              |
| 5      | Sodium<br>Absorbance<br>Ratio | (meq/l)1/<br>2 |                                                    | 0.1965                                                       | 0.145                        | 0.2551                            | 0.2493                                                         | 0.5349                                                   | 0.1914                                           |
| 6      | Boron (as B)                  | mg/l           |                                                    | 0.11                                                         | 0.14                         | BDL                               | BDL                                                            | 0.28                                                     | 0.15                                             |
| 7      | Free<br>Ammonia               | mg/l           |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                              |
| 8      | Mangnese (as Mn)              | mg/l           |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                              |
| 9      | Mercury (as<br>Hg)            | mg/l           |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                              |
| 10     | Selenium (as<br>Se)           | mg/l           |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                              |
| 11     | Cyanide (as CN)               | mg/l           |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                              |
| 12     | Nickel (as Ni)                | mg/l           |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                              |
| 13     | Silver (as Ag)                | mg/l           |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                              |
| 14     | Barium (As<br>Ba)             | mg/l           |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                              |

|        |                                 |         |                                                    | SW- (Canal)                                                  | SW-(Pond)                    | SW-(Canal)                        | SW- (Canal)                                                    | SW-(Pond)                                                | SW-(Pond)                                                       |
|--------|---------------------------------|---------|----------------------------------------------------|--------------------------------------------------------------|------------------------------|-----------------------------------|----------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|
| S. No. | Parameters                      | Unit    | Tolerance<br>Limit as<br>per<br>IS:2296<br>Class-C | Village<br>Laxmipura,<br>active project<br>site at Ch<br>421 | Village<br>Gamdi at<br>Ch434 | Village<br>Piplag at<br>Ch450+550 | Village<br>Brajadi,<br>active project<br>site at Ch<br>481+200 | Village<br>Babra, active<br>project site at<br>Ch465+250 | Village<br>Degam,<br>active<br>project site<br>at Ch<br>462+100 |
| 15     | Colour                          | Hazen   | 300                                                | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                                             |
| 16     | Turbidity                       | NTU     |                                                    | BDL                                                          | 4                            | 1                                 | 3                                                              | 38                                                       | 3                                                               |
| 17     | рН                              | -       | 6.5-8.5                                            | 7.17                                                         | 8.33                         | 8.06                              | 7.99                                                           | 7.96                                                     | 7.4                                                             |
| 17     | pH(site)                        |         |                                                    | 7.2                                                          | 8.3                          | 8                                 | 8                                                              | 8                                                        | 7.4                                                             |
| 18     | DO                              | mg/l    | Minimum-<br>4                                      | 8.1                                                          | 7.2                          | 7.8                               | 8                                                              | 7.2                                                      | 7.5                                                             |
| 19     | BOD                             | mg/l    | 3                                                  | 1.2                                                          | 2.4                          | BDL                               | 1.6                                                            | 4.8                                                      | 1.6                                                             |
| 20     | COD                             | mg/l    |                                                    | 6                                                            | 12                           | BDL                               | 6                                                              | 18                                                       | 8                                                               |
| 21     | Total<br>Hardness (as<br>CaCO3) | mg/l    |                                                    | 425                                                          | 430                          | 112                               | 112                                                            | 104                                                      | 148                                                             |
| 22     | Iron (as Fe)                    | mg/l    | 50                                                 | 0.16                                                         | 0.22                         | 0.12                              | 0.11                                                           | 0.22                                                     | 0.14                                                            |
| 23     | Chlorides (as<br>Cl)            | mg/l    | 600                                                | 127.8                                                        | 135.66                       | 31.08                             | 31.08                                                          | 423.42                                                   | 44.68                                                           |
| 24     | Fluoride (as F                  | mg/l    | 1.5                                                | 0.19                                                         | 0.23                         | 0.11                              | 0.12                                                           | 0.31                                                     | 0.14                                                            |
| 25     | Conductivity                    | umho/cm |                                                    | 1183                                                         | 1190                         | 1170                              | 1183                                                           | 2890                                                     | 1173                                                            |
| 26     | TDS                             | mg/l    | 1500                                               | 710                                                          | 714                          | 702                               | 710                                                            | 1737                                                     | 704                                                             |
| 27     | Calcium(as<br>Ca2+)             | mg/l    |                                                    | 116.48                                                       | 120.25                       | 30.46                             | 28.86                                                          | 20.84                                                    | 27.25                                                           |
| 28     | Magnesium<br>(as Mg2+)          | mg/l    |                                                    | 32.51                                                        | 31.44                        | 8.71                              | 9.68                                                           | 12.61                                                    | 19.41                                                           |
| 29     | Cadmium                         | mg/l    | 0.01                                               | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                                             |
| 30     | Copper (as<br>Cu)               | mg/l    | 1.5                                                | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                                             |

|        |                                                   |      |                                                    | SW- (Canal)                                                  | SW-(Pond)                    | SW-(Canal)                        | SW- (Canal)                                                    | SW-(Pond)                                                | SW-(Pond)                                                       |
|--------|---------------------------------------------------|------|----------------------------------------------------|--------------------------------------------------------------|------------------------------|-----------------------------------|----------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|
| S. No. | Parameters                                        | Unit | Tolerance<br>Limit as<br>per<br>IS:2296<br>Class-C | Village<br>Laxmipura,<br>active project<br>site at Ch<br>421 | Village<br>Gamdi at<br>Ch434 | Village<br>Piplag at<br>Ch450+550 | Village<br>Brajadi,<br>active project<br>site at Ch<br>481+200 | Village<br>Babra, active<br>project site at<br>Ch465+250 | Village<br>Degam,<br>active<br>project site<br>at Ch<br>462+100 |
| 31     | Sulphate (as SO4)                                 | mg/l | 400                                                | 25.6                                                         | 28.9                         | 14.2                              | 13.6                                                           | 120.4                                                    | 20.6                                                            |
| 32     | Nitrate(as<br>NO3)                                | mg/l | 50                                                 | 2.1                                                          | 2.8                          | 1.3                               | 1.2                                                            | 8.9                                                      | 1.1                                                             |
| 33     | Zinc (as Zn)                                      | mg/l | 15                                                 | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                                             |
| 34     | Total<br>Chromium (as<br>Cr)                      | mg/l | 0.05                                               | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                                             |
| 35     | Oil & Grease                                      | mg/l | 0.1                                                | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                                             |
| 36     | Alkalinity (as CaCO3)                             | mg/l |                                                    | 154                                                          | 471.2                        | 148                               | 144                                                            | 536                                                      | 228                                                             |
| 37     | Lead (as Pb)                                      | mg/l | 0.1                                                | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                                             |
| 38     | Total Arsenic<br>(as As)                          | mg/l | 0.2                                                | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                                             |
| 39     | Phenolic<br>Compound                              | mg/l | 0.005                                              | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                                             |
| 40     | Anionic<br>Surface-Active<br>Detergent as<br>MBAS | mg/l |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                                             |
| 41     | Sodium                                            | mg/l |                                                    | 26.4                                                         | 19.6                         | 17.6                              | 17.2                                                           | 35.6                                                     | 15.2                                                            |
| 42     | Potassium                                         | mg/l |                                                    | 12.2                                                         | 8.6                          | 4.8                               | 4.5                                                            | 12.8                                                     | 6.2                                                             |
| 43     | Total Kjheldal<br>Nitrogen (as<br>N)              | mg/l |                                                    | BDL                                                          | 4.6                          | 3.8                               | 3.2                                                            | 13.6                                                     | 5.6                                                             |
| 44     | Mineral Oil                                       | mg/l |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                                             |

|        |                             |               |                                                    | SW- (Canal)                                                  | SW-(Pond)                    | SW-(Canal)                        | SW- (Canal)                                                    | SW-(Pond)                                                | SW-(Pond)                                        |
|--------|-----------------------------|---------------|----------------------------------------------------|--------------------------------------------------------------|------------------------------|-----------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|
| S. No. | Parameters                  | Unit          | Tolerance<br>Limit as<br>per<br>IS:2296<br>Class-C | Village<br>Laxmipura,<br>active project<br>site at Ch<br>421 | Village<br>Gamdi at<br>Ch434 | Village<br>Piplag at<br>Ch450+550 | Village<br>Brajadi,<br>active project<br>site at Ch<br>481+200 | Village<br>Babra, active<br>project site at<br>Ch465+250 | Village Degam, active project site at Ch 462+100 |
| 45     | Total Petroleum Hydrocarbon | mg/l          |                                                    | BDL                                                          | BDL                          | BDL                               | BDL                                                            | BDL                                                      | BDL                                              |
| 46     | Odour                       |               |                                                    | Odourless                                                    | Odourless                    | Odourless                         | Odourless                                                      | Odourless                                                | Odourless                                        |
|        |                             |               |                                                    | Microb                                                       | iological Parame             | eter                              |                                                                |                                                          |                                                  |
| 47     | Total<br>Coliform           | MPN/100<br>ml | 5000                                               | 22                                                           | 56                           | 28                                | 26                                                             | 82                                                       | 44                                               |
| 48     | Fecal<br>Coliform           | MPN/100<br>ml | -                                                  | 13                                                           | 22                           | 12                                | 10                                                             | 36                                                       | 18                                               |

# **Appendix 4.6: Bottom sediment Quality Monitoring Data for C6 Package**

Table 60:Bottom Sediment Quality Analysis for C6 Package on January 2023

|       |                                     |              | BS-1 N    | Iahi River at 4    | 117          | BS-2 N    | Aohar River           | at 463   | BS-03-M   | eshwa Rive | r at 476 |
|-------|-------------------------------------|--------------|-----------|--------------------|--------------|-----------|-----------------------|----------|-----------|------------|----------|
| S. No | Parameter                           | Unit         | Base line | Jan-23             | Chang<br>e % | Base line | Jan-23                | Change % | Base line | Jan-23     | Change % |
| 1     | Colour                              |              | Brown     | Brown              |              | Brown     | Brown                 |          | Brown     | Brown      |          |
| 2     | pH (2:5<br>Suspension)              | -            | 7.47      | 7.59               | 2%           | 7.33      | 8.26                  | 13%      | 7.85      | 7.89       | 1%       |
| 3     | Electrical<br>Conductivity<br>(2:5) | μmhos/c<br>m | 374       | 409                | 9%           | 392       | 518                   | 32%      | 389       | 408        | 5%       |
| 4     | Bulk Density                        | gm/cc        | 1.29      | 1.34               | 4%           | 1.42      | 1.52                  | 7%       | 1.34      | 1.39       | 4%       |
| 5     | Texture                             |              | clay      | Sandy Clay<br>Loam |              | Clay      | Sandy<br>Clay<br>Loam |          | Clay      | Loam       |          |
| I.    | Sand                                | %(w/w)       | 31.1      | 36.5               | 17%          | 33.9      | 35.7                  | 5%       | 33.6      | 34.2       | 2%       |
| II.   | Clay                                | %(w/w)       | 43.1      | 39.7               | -8%          | 42.1      | 39.6                  | -6%      | 41.3      | 41.9       | 1%       |
| III.  | Silt                                | %(w/w)       | 25.8      | 23.8               | -8%          | 27        | 24.7                  | -9%      | 25.1      | 23.9       | -5%      |
| 6     | Organic<br>Carbon                   | %            | 0.77      | 0.9                | 17%          | 0.91      | 0.95                  | 4%       | 0.85      | 0.91       | 7%       |
| 7     | Organic<br>Matter                   | %            | 1.321     | 1.552              | 17%          | 1.354     | 1.638                 | 21%      | 1.465     | 1.569      | 7%       |
| 8     | Total<br>Nitrogen as N              | mg/kg        | 232       | 254                | 9%           | 255       | 262                   | `        | 246       | 268        | 9%       |
| 9     | Total<br>Phosphorus                 | mg/kg        | 45.2      | 114.8              | 154%         | 48.3      | 39.2                  | -19%     | 39.2      | 41.3       | 5%       |
| 10    | Exchangeable Potassium              | mg/kg        | 269       | 268                | 0%           | 252       | 268                   | 6%       | 291       | 292.6      | 1%       |
| 11    | Exchangeable<br>Sodium as Na        | mg/kg        | 94.3      | 131.6              | 40%          | 89.4      | 143.2                 | 60%      | 98.8      | 116.4      | 18%      |
| 12    | Exchangeable Calcium                | mg/kg        | 4816      | 4962               | 3%           | 4720      | 5110                  | 8%       | 5014      | 4986.4     | -1%      |

|       |                                |                | BS-1 M    | ahi River at | 417          | BS-2 N    | Aohar River | at 463      | BS-03-Meshwa River at 476 |        |          |  |
|-------|--------------------------------|----------------|-----------|--------------|--------------|-----------|-------------|-------------|---------------------------|--------|----------|--|
| S. No | Parameter                      | Unit           | Base line | Jan-23       | Chang<br>e % | Base line | Jan-23      | Change<br>% | Base line                 | Jan-23 | Change % |  |
| 13    | Exchangeable Magnesium         | mg/kg          | 1009      | 1088         | 8%           | 988       | 1202        | 22%         | 1005                      | 1096   | 9%       |  |
| 14    | Cation<br>exchange<br>capacity | meq/10<br>0 gm | 33.6      | 35.1         | 4%           | 32.9      | 36.9        | 12%         | 34.6                      | 35.3   | 2%       |  |
| 15    | Total Iron                     | mg/kg          | 2040      | 3194         | 57%          | 1978      | 3312        | 67%         | 2144                      | 2252.4 | 5%       |  |
| 16    | Total Zinc                     | mg/kg          | 66        | 75.3         | 14%          | 54        | 84.1        | 56%         | 63                        | 65.8   | 4%       |  |
| 17    | Total Copper                   | mg/kg          | 44.32     | 43.6         | -2%          | 44.32     | 51.2        | 16%         | 49.7                      | 49.1   | -1%      |  |
| 18    | Total Boron                    | mg/kg          | 11.3      | 14.9         | 32%          | 11.3      | 15.6        | 38%         | 13.5                      | 16.8   | 24%      |  |
| 19    | Total<br>Chromium              | mg/kg          | 17.7      | BDL          |              | 19.8      | BDL         |             | 15.9                      | BDL    |          |  |
| 20    | Lead                           | mg/kg          | BDL       | BDL          |              | BDL       | BDL         |             | BDL                       | BDL    |          |  |
| 21    | Cadmium                        | mg/kg          | BDL       | BDL          |              | BDL       | BDL         |             | BDL                       | BDL    |          |  |
| 22    | Mercury                        | mg/kg          | BDL       | BDL          |              | BDL       | BDL         |             | BDL                       | BDL    |          |  |
| 23    | Cyanide                        | mg/kg          | BDL       | BDL          |              | BDL       | BDL         |             | BDL                       | BDL    |          |  |
| 24    | Nickel                         | mg/kg          | 12.5      | 15.6         | 25%          | 11.3      | 17.9        | 58%         | 14.8                      | 16.3   | 10%      |  |
| 25    | Arsenic                        | mg/kg          | BDL       | BDL          |              | BDL       | BDL         |             |                           | BDL    |          |  |
| 26    | Sulphate as<br>SO4             | mg/kg          | 165.5     | 178.2        | 8%           | 144.8     | 218.5       | 51%         | 142.1                     | 136.5  | -4%      |  |
| 27    | Phosphate as<br>PO4            | mg/kg          | 131.75    | 355.88       | 170%         | 79.3      | 121.52      | 53%         | 121.52                    | 128.03 | 5%       |  |
| 28    | Chloride as Cl                 | mg/kg          | 215.5     | 162.5        | -25%         | 112.5     | 186.5       | 66%         | 109.2                     | 126.5  | 16%      |  |

# **Appendix 4.7: Ground Water Quality Monitoring Data for C6 Package**

Table 61: Ground Water Quality Monitoring Data for C6 Package in January 2023

|      |                              |       |               | it (IS-<br>):2012)   | G         | W1        | GW2            | G             | W3        | G'        | W4        | GW5             |
|------|------------------------------|-------|---------------|----------------------|-----------|-----------|----------------|---------------|-----------|-----------|-----------|-----------------|
| S.N. | Parameters                   | Unit  | Desira<br>ble | Permiss ible         | LC at     | Ch407     | LC at<br>Ch417 | LC at         | Ch434     | LC at (   | Ch448     | LC at Ch<br>471 |
|      |                              |       | Limit         | Limit                | Baseline  | 2/01/23   | 2/01/23        | Baselin<br>e  | 3/01/23   | Baseline  | 4/01/23   | 05/01/23        |
| 1    | Colour                       | Hazen | 5             | 15                   | BDL       | BDL       | BDL            | BDL           | BDL       | BDL       | BDL       | BDL             |
| 2    | Odour                        | -     | Agreeabl<br>e | Agreeable            | Agreeable | Agreeable | Agreeable      | Agreeabl<br>e | Agreeable | Agreeable | Agreeable | Agreeable       |
| 3    | Taste                        | -     | Agreeabl<br>e | Agreeable            | Agreeable | Agreeable | Agreeable      | Agreeabl<br>e | Agreeable | Agreeable | Agreeable | Agreeable       |
| 4    | Turbidity                    | NTU   | 1             | 5                    | BDL       | BDL       | BDL            | BDL           | BDL       | BDL       | BDL       | BDL             |
| 5    | pH(Lab)                      | 1     | 6.5-8.5       | No<br>Relaxatio<br>n | 7.08      | 7.08      | 7.81           | 7.41          | 7.72      | 7.17      | 7.68      | 7.32            |
| 6    | pH(Site)                     | -     | -             | -                    | -         | 7.1       | 7.8            | -             | 7.7       | -         | 7.7       | 7.3             |
| 7    | Total Hardness<br>(as CaCO3) | mg/l  | 200           | 600                  | 2504.7    | 2360      | 550            | 281.16        | 328       | 968.04    | 986       | 1090            |
| 8    | Iron (as Fe)                 | mg/l  | 1             | No<br>Relaxatio<br>n | 0.36      | 0.38      | 0.09           | 0.24          | 0.25      | 0.3       | 0.32      | 0.28            |
| 9    | Chlorides (as<br>Cl)         | mg/l  | 250           | 1000                 | 535.41    | 568.9     | 135            | 57.23         | 62.9      | 549.26    | 568.9     | 1299.5          |
| 10   | Fluoride (as F)              | mg/l  | 1             | 1.5                  | 0.64      | 0.69      | 0.39           | 0.46          | 0.49      | 0.52      | 0.62      | 0.88            |
| 11   | TDS                          | mg/l  | 500           | 2000                 | 3307      | 3312      | 677            | 668           | 716       | 1622      | 1686      | 2736            |
| 12   | Calcium(as<br>Ca2+)          | mg/l  | 75            | 200                  | 488.05    | 496.6     | 95.6           | 63.49         | 68.6      | 158.72    | 176.4     | 144.29          |
| 13   | Magnesium (as<br>Mg2+)       | mg/l  | 30            | 100                  | 312.15    | 271.79    | 75.57          | 29.75         | 38.02     | 143.19    | 132.4     | 177.21          |
| 14   | Sulphate (as SO4)            | mg/l  | 200           | 400                  | 293.53    | 298.5     | 42.3           | 25.76         | 28.9      | 302.52    | 306.2     | 176.4           |

|      |                                      |      |               | it (IS-<br>):2012)   | GV       | W1      | GW2         | G            | W3      | GV       | W4      | GW5             |
|------|--------------------------------------|------|---------------|----------------------|----------|---------|-------------|--------------|---------|----------|---------|-----------------|
| S.N. | Parameters                           | Unit | Desira<br>ble | Permiss ible         | LC at (  | Ch407   | LC at Ch417 | LC at        | Ch434   | LC at C  | Ch448   | LC at Ch<br>471 |
|      |                                      |      | Limit         | Limit                | Baseline | 2/01/23 | 2/01/23     | Baselin<br>e | 3/01/23 | Baseline | 4/01/23 | 05/01/23        |
| 15   | Nitrate(as<br>NO3)                   | mg/l | 45            | No<br>Relaxatio<br>n | 33.61    | 35.1    | 8.6         | 22.22        | 23.6    | 21.84    | 23.4    | 32.4            |
| 16   | Chromium (as<br>Cr+6)                | mg/l | 0.05          | No<br>Relaxatio<br>n | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 17   | Alkalinity as<br>CaCO3               | mg/l | 200           | 600                  | 678.46   | 690     | 580         | 460.68       | 468     | 427.18   | 510     | 550             |
| 18   | Aluminium (as<br>Al)                 | mg/l | 0.03          | 0.2                  | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 19   | Copper (as Cu)                       | mg/l | 0.05          | 1.5                  | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 20   | Manganese (as Mn)                    | mg/l | 0.1           | 0.3                  | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 21   | Zinc (as Zn)                         | mg/l | 5             | 15                   | 0.28     | 0.32    | 0.06        | 0.2          | 0.21    | 0.25     | 0.28    | 0.18            |
| 22   | Ammonia (as<br>NH3-N)                | mg/l | 0.5           | No relaxation        | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 23   | Anionic detergents (as MBAS)         | mg/l | 0.2           | 1                    | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 24   | Boron (as B)                         | mg/l | 0.5           | 1                    | BDL      | 0.14    | BDL         | BDL          | BDL     | BDL      | 0.08    | 0.14            |
| 25   | Mineral oil                          | mg/l | 0.5           | No<br>relaxation     | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 26   | Phenolic<br>compounds (as<br>C6H5OH) | mg/l | 0.001         | 0.002                | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 27   | Cadmium (as Cd)                      | mg/l | 0.003         | No<br>relaxation     | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |

|      |                                                     |      |              | it (IS-<br>0:2012)   | G1       | W1      | GW2         | G            | W3      | G/       | W4      | GW5             |
|------|-----------------------------------------------------|------|--------------|----------------------|----------|---------|-------------|--------------|---------|----------|---------|-----------------|
| S.N. | Parameters                                          | Unit | Desira       | Permiss              | LC at (  | Ch407   | LC at Ch417 | LC at        | Ch434   | LC at (  | Ch448   | LC at Ch<br>471 |
|      |                                                     |      | ble<br>Limit | ible<br>Limit        | Baseline | 2/01/23 | 2/01/23     | Baselin<br>e | 3/01/23 | Baseline | 4/01/23 | 05/01/23        |
| 28   | Cyanide (as CN)                                     | mg/l | 0.05         | No relaxation        | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 29   | Lead (as Pb)                                        | mg/l | 0.01         | No relaxation        | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 30   | Mercury (as<br>Hg)                                  | mg/l | 0.001        | No relaxation        | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 31   | Nickel (as Ni)                                      | mg/l | 0.02         | No relaxation        | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 32   | Sulphide(H2S)                                       | mg/l | 0.05         | No relaxation        | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 33   | Residual Free<br>Chlorine(RFC)                      | mg/l | Min-0.2      | 1                    | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 34   | Total arsenic (as As),                              | mg/l | 0.01         | No relaxation        | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 35   | Barium                                              | mg/l | 0.7          | No relaxation        | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 36   | Chloramines (as Cl2)                                | mg/l | 4            | No relaxation        | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 37   | Silver(as Ag)                                       | mg/l | 0.1          | No<br>Relaxatio<br>n | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 38   | Molybdenum (as Mo)                                  | mg/l | 0.07         | No<br>Relaxatio<br>n | BDL      | BDL     | BDL         | BDL          | BDL     | BDL      | BDL     | BDL             |
| 39   | Polynuclear<br>Aromatic<br>Hydrocarbons(<br>as PAH) | mg/l | 0.0001       | No<br>Relaxatio<br>n | -        | BDL     | BDL         | -            | BDL     | -        | BDL     | BDL             |

|      |                               |      |               | it (IS-<br>0:2012)   | G/        | W1       | GW2         | G'           | W3      | G/       | W4      | GW5             |
|------|-------------------------------|------|---------------|----------------------|-----------|----------|-------------|--------------|---------|----------|---------|-----------------|
| S.N. | Parameters                    | Unit | Desira<br>ble | Permiss ible         | LC at (   | Ch407    | LC at Ch417 | LC at        | Ch434   | LC at (  | Ch448   | LC at Ch<br>471 |
|      |                               |      | Limit         | Limit                | Baseline  | 2/01/23  | 2/01/23     | Baselin<br>e | 3/01/23 | Baseline | 4/01/23 | 05/01/23        |
| 40   | Polychlorinate<br>d biphenyls | mg/l | 0.0001        | No<br>Relaxatio<br>n | -         | BDL      | BDL         | -            | BDL     | -        | BDL     | BDL             |
| 41   |                               |      |               | TR                   | IHALOMI   | ETHANES  |             |              |         |          |         |                 |
| a    | Bromoform                     | mg/l | 0.1           | No<br>Relaxatio<br>n | -         | BDL      | BDL         | -            | BDL     |          | BDL     | BDL             |
| b    | Dibromochloro<br>methane      | mg/l | 0.1           | No<br>Relaxatio<br>n | -         | BDL      | BDL         | -            | BDL     |          | BDL     | BDL             |
| c    | Bromodichloro<br>methane      | mg/l | 0.06          | No<br>Relaxatio<br>n | -         | BDL      | BDL         | -            | BDL     |          | BDL     | BDL             |
| d    | Chloroform                    | mg/l | 0.2           | No<br>Relaxatio<br>n | -         | BDL      | BDL         | -            | BDL     |          | BDL     | BDL             |
|      |                               |      |               |                      | STICIDE R | RESIDUES |             |              |         |          |         |                 |
| 42   | Alachor                       | μg/l | 20            | No<br>Relaxatio<br>n | -         | BDL      | BDL         | -            | BDL     |          | BDL     | BDL             |
| 43   | Atrazine                      | μg/l | 20            | No<br>Relaxatio<br>n | -         | BDL      | BDL         | -            | BDL     |          | BDL     | BDL             |
| 44   | Aldrin/Dialdrin               | μg/l | 0.03          | No<br>Relaxatio<br>n | -         | BDL      | BDL         | -            | BDL     |          | BDL     | BDL             |
| 45   | Alpha HCH                     | μg/l | 0.01          | No<br>Relaxatio<br>n | -         | BDL      | BDL         | -            | BDL     |          | BDL     | BDL             |

|      |                                                      |      |               | it (IS-<br>0:2012)   | GV       | W1      | GW2         | G'           | W3      | G\       | W4      | GW5             |
|------|------------------------------------------------------|------|---------------|----------------------|----------|---------|-------------|--------------|---------|----------|---------|-----------------|
| S.N. | Parameters                                           | Unit | Desira<br>ble | Permiss ible         | LC at (  | Ch407   | LC at Ch417 | LC at        | Ch434   | LC at (  | Ch448   | LC at Ch<br>471 |
|      |                                                      |      | Limit         | Limit                | Baseline | 2/01/23 | 2/01/23     | Baselin<br>e | 3/01/23 | Baseline | 4/01/23 | 05/01/23        |
| 46   | Beta HCH                                             | μg/l | 0.04          | No<br>Relaxatio<br>n | -        | BDL     | BDL         | -            | BDL     |          | BDL     | BDL             |
| 47   | Butachlor                                            | μg/l | 125           | No<br>Relaxatio<br>n | -        | BDL     | BDL         | -            | BDL     |          | BDL     | BDL             |
| 48   | Chlorpyriphos                                        | μg/l | 30            | No<br>Relaxatio<br>n | -        | BDL     | BDL         | -            | BDL     |          | BDL     | BDL             |
| 49   | Delta HCH                                            | μg/l | 0.04          | No<br>Relaxatio<br>n | -        | BDL     | BDL         | -            | BDL     |          | BDL     | BDL             |
| 50   | 2,4-<br>Dichloropheno<br>xyacetic acid               | μg/l | 30            | No<br>Relaxatio<br>n | -        | BDL     | BDL         | -            | BDL     |          | BDL     | BDL             |
| 51   | DDT(o,p and<br>p,p-isomers of<br>DDT.DDE and<br>DDD) | μg/l | 1             | No<br>Relaxatio<br>n | -        | BDL     | BDL         | -            | BDL     |          | BDL     | BDL             |
| 52   | Endosuiphan(al<br>pha, beta and<br>sulphate)         | μg/l | 0.4           | No<br>Relaxatio<br>n | -        | BDL     | BDL         | -            | BDL     |          | BDL     | BDL             |
| 53   | Ethion                                               | μg/l | 3             | No<br>Relaxatio<br>n | -        | BDL     | BDL         | -            | BDL     |          | BDL     | BDL             |
| 54   | Gamma<br>HCH(Lindane)                                | μg/l | 2             | No<br>Relaxatio<br>n | -        | BDL     | BDL         | -            | BDL     |          | BDL     | BDL             |

|      |                     |                   |               | it (IS-<br>):2012)   | G          | W1               | GW2              | G            | W3               | G        | W4               | GW5              |
|------|---------------------|-------------------|---------------|----------------------|------------|------------------|------------------|--------------|------------------|----------|------------------|------------------|
| S.N. | Parameters          | Unit              | Desira<br>ble | Permiss ible         | LC at      | Ch407            | LC at<br>Ch417   | LC at        | Ch434            | LC at    | Ch448            | LC at Ch<br>471  |
|      |                     |                   | Limit         | Limit                | Baseline   | 2/01/23          | 2/01/23          | Baselin<br>e | 3/01/23          | Baseline | 4/01/23          | 05/01/23         |
| 55   | Isoproturon         | μg/l              | 9             | No<br>Relaxatio<br>n | 1          | BDL              | BDL              | -            | BDL              |          | BDL              | BDL              |
| 56   | Malathion           | μg/l              | 190           | No<br>Relaxatio<br>n | -          | BDL              | BDL              | -            | BDL              |          | BDL              | BDL              |
| 57   | Methyl<br>Parathion | μg/l              | 0.3           | No<br>Relaxatio<br>n | -          | BDL              | BDL              | -            | BDL              |          | BDL              | BDL              |
| 58   | Monocrotopho<br>s   | μg/l              | 1             | No<br>Relaxatio<br>n | -          | BDL              | BDL              | -            | BDL              |          | BDL              | BDL              |
| 59   | Phorate             | μg/l              | 2             | No<br>Relaxatio<br>n | -          | BDL              | BDL              | -            | BDL              |          | BDL              | BDL              |
|      | •                   | •                 | •             | Mi                   | crobiologi | cal Parame       | ters             |              | •                |          | •                |                  |
| 60   | Total Coliform      | IS:15185:<br>2016 | Should b      |                      | <2         | Absent/10<br>0ml | Absent/10<br>0ml | <2           | Absent/10<br>0ml | <2       | Absent/100<br>ml | Absent/100<br>ml |
| 61   | E.coli              | IS:15185:<br>2016 | Should b      |                      | Absent     | Absent/10<br>0ml | Absent/10<br>0ml | Absent       | Absent/10<br>0ml | Absent   | Absent/100<br>ml | Absent/100<br>ml |

# Groundwater Quality Monitoring contd...

| S.N. | Parameters                      | Limit (IS-10500:2012) |                     |                      | GW6           |                | GW7            | GW8                                                            | GW9                                                               | GW10        |            |
|------|---------------------------------|-----------------------|---------------------|----------------------|---------------|----------------|----------------|----------------------------------------------------------------|-------------------------------------------------------------------|-------------|------------|
|      |                                 | Unit                  | Desirab<br>le Limit | Desirab Permissi     |               | LC at Ch483    |                | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch419 | Village<br>Laxmipur<br>a active<br>project<br>site at Ch.<br>-421 | LC at Ch447 |            |
|      |                                 |                       |                     |                      | Baseline      | 07.01.202<br>3 | 07.01.202<br>3 | 07.01.202<br>3                                                 | 07.01.2023                                                        | Baseline    | 19.01.2023 |
| 1    | Colour                          | Hazen                 | 5                   | 15                   | BDL           | BDL            | BDL            | BDL                                                            | BDL                                                               | BDL         | BDL        |
| 2    | Odour                           | -                     | Agreeab<br>le       | Agreeabl<br>e        | Agreeabl<br>e | Agreeabl<br>e  | Agreeabl<br>e  | Agreeabl<br>e                                                  | Agreeable                                                         | Agreeable   | Agreeable  |
| 3    | Taste                           | -                     | Agreeab<br>le       | Agreeabl<br>e        | Agreeabl<br>e | Agreeabl<br>e  | Agreeabl<br>e  | Agreeabl<br>e                                                  | Agreeable                                                         | Agreeable   | Agreeable  |
| 4    | Turbidity                       | NTU                   | 1                   | 5                    | BDL           | BDL            | BDL            | BDL                                                            | BDL                                                               | BDL         | BDL        |
| 5    | pH(Lab)                         | -                     | 6.5-8.5             | No<br>Relaxatio<br>n | 7.41          | 7.24           | 7.44           | 7.73                                                           | 7.78                                                              | 7.4         | 8.08       |
| 6    | pH(Site)                        | -                     | -                   | -                    | 1             | 7.2            | 7.4            | 7.7                                                            | 7.8                                                               | 1           | 8.0        |
| 7    | Total<br>Hardness (as<br>CaCO3) | mg/l                  | 200                 | 600                  | 1112.76       | 1126           | 380            | 340                                                            | 350                                                               | 776.16      | 936        |
| 8    | Iron (as Fe)                    | mg/l                  | 1                   | No<br>Relaxatio<br>n | 0.38          | 0.39           | 0.08           | 0.08                                                           | 0.06                                                              | 0.32        | 0.34       |
| 9    | Chlorides<br>(as Cl)            | mg/l                  | 250                 | 1000                 | 1583.15       | 1739.4         | 69.98          | 49.98                                                          | 49.98                                                             | 632.34      | 640.9      |
| 10   | Fluoride (as F)                 | mg/l                  | 1                   | 1.5                  | 0.69          | 0.72           | 0.29           | 0.32                                                           | 0.36                                                              | 0.51        | 0.56       |
| 11   | TDS                             | mg/l                  | 500                 | 2000                 | 3125          | 3226           | 432            | 447                                                            | 443                                                               | 1711        | 1742       |
| 12   | Calcium(as<br>Ca2+)             | mg/l                  | 75                  | 200                  | 177.76        | 180.6          | 52.1           | 40.08                                                          | 44.09                                                             | 139.67      | 158.4      |

|      |                                    | Limi | t (IS-10500         | ):2012)               | G        | W6          | GW7            | GW8                                                            | GW9                                                        | GV       | V10        |
|------|------------------------------------|------|---------------------|-----------------------|----------|-------------|----------------|----------------------------------------------------------------|------------------------------------------------------------|----------|------------|
| S.N. | Parameters                         | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | LC at (  | LC at Ch483 |                | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch419 | Village Laxmipur a active project site at Ch421  LC at Ch4 |          | Ch447      |
|      |                                    |      |                     |                       | Baseline | 3           | 07.01.202<br>3 | 07.01.202<br>3                                                 | 07.01.2023                                                 | Baseline | 19.01.2023 |
| 13   | Magnesium (as Mg2+)                | mg/l | 30                  | 100                   | 162.41   | 163.9       | 60.68          | 58.27                                                          | 58.26                                                      | 103.76   | 131.22     |
| 14   | Sulphate (as SO4)                  | mg/l | 200                 | 400                   | 676.92   | 682.4       | 28.6           | 24.1                                                           | 23.4                                                       | 347.44   | 352.8      |
| 15   | Nitrate(as<br>NO3)                 | mg/l | 45                  | No<br>Relaxatio<br>n  | 23.84    | 32.6        | 7.2            | 6.4                                                            | 6.1                                                        | 26.92    | 29.5       |
| 16   | Chromium (as Cr+6)                 | mg/l | 0.05                | No<br>Relaxatio<br>n  | BDL      | BDL         | BDL            | BDL                                                            | BDL                                                        | BDL      | BDL        |
| 17   | Alkalinity as<br>CaCO3             | mg/l | 200                 | 600                   | 427.18   | 570         | 262            | 300                                                            | 296                                                        | 523.5    | 630        |
| 18   | Aluminium<br>(as Al)               | mg/l | 0.03                | 0.2                   | BDL      | BDL         | BDL            | BDL                                                            | BDL                                                        | BDL      | BDL        |
| 19   | Copper (as<br>Cu)                  | mg/l | 0.05                | 1.5                   | BDL      | BDL         | BDL            | BDL                                                            | BDL                                                        | BDL      | BDL        |
| 20   | Manganese (as Mn)                  | mg/l | 0.1                 | 0.3                   | BDL      | BDL         | BDL            | BDL                                                            | BDL                                                        | BDL      | BDL        |
| 21   | Zinc (as Zn)                       | mg/l | 5                   | 15                    | 0.28     | 0.3         | BDL            | BDL                                                            | 0.13                                                       | 0.25     | 0.26       |
| 22   | Ammonia<br>(as NH3-N)              | mg/l | 0.5                 | No<br>relaxatio<br>n  | BDL      | BDL         | BDL            | BDL                                                            | BDL                                                        | BDL      | BDL        |
| 23   | Anionic<br>detergents<br>(as MBAS) | mg/l | 0.2                 | 1                     | BDL      | BDL         | BDL            | BDL                                                            | BDL                                                        | BDL      | BDL        |

|      |                                         | Limi                     | t (IS-10500 | <b>):2012</b> )       | G <sup>v</sup> | W6             | GW7                                                                    | GW8                                                            | GW9                                                               | GV          | V10        |
|------|-----------------------------------------|--------------------------|-------------|-----------------------|----------------|----------------|------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|-------------|------------|
| S.N. | Parameters                              | Unit Desirab<br>le Limit |             | Permissi<br>ble Limit | LC at Ch483    |                | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch<br>418+400 | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch419 | Village<br>Laxmipur<br>a active<br>project<br>site at Ch.<br>-421 | LC at Ch447 |            |
|      |                                         |                          |             |                       | Baseline       | 07.01.202<br>3 | 07.01.202<br>3                                                         | 07.01.202<br>3                                                 | 07.01.2023                                                        | Baseline    | 19.01.2023 |
| 24   | Boron (as B)                            | mg/l                     | 0.5         | 1                     | BDL            | 0.17           | BDL                                                                    | BDL                                                            | 0.09                                                              | BDL         | 0.11       |
| 25   | Mineral oil                             | mg/l                     | 0.5         | No<br>relaxatio<br>n  | BDL            | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL         | BDL        |
| 26   | Phenolic<br>compounds<br>(as<br>C6H5OH) | mg/l                     | 0.001       | 0.002                 | BDL            | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL         | BDL        |
| 27   | Cadmium<br>(as Cd)                      | mg/l                     | 0.003       | No<br>relaxatio<br>n  | BDL            | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL         | BDL        |
| 28   | Cyanide (as CN)                         | mg/l                     | 0.05        | No<br>relaxatio<br>n  | BDL            | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL         | BDL        |
| 29   | Lead (as Pb)                            | mg/l                     | 0.01        | No<br>relaxatio<br>n  | BDL            | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL         | BDL        |
| 30   | Mercury (as<br>Hg)                      | mg/l                     | 0.001       | No<br>relaxatio<br>n  | BDL            | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL         | BDL        |
| 31   | Nickel (as<br>Ni)                       | mg/l                     | 0.02        | No<br>relaxatio<br>n  | BDL            | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL         | BDL        |

|      |                                       | Limi | it (IS-10500        | 0:2012)               | G           | W6             | GW7                                                                    | GW8                                                            | GW9                                                               | GV       | V10        |
|------|---------------------------------------|------|---------------------|-----------------------|-------------|----------------|------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|----------|------------|
| S.N. | Parameters                            | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | LC at Ch483 |                | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch<br>418+400 | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch419 | Village<br>Laxmipur<br>a active<br>project<br>site at Ch.<br>-421 | LC at (  | Ch447      |
|      |                                       |      |                     |                       | Baseline    | 07.01.202<br>3 | 07.01.202<br>3                                                         | 07.01.202<br>3                                                 | 07.01.2023                                                        | Baseline | 19.01.2023 |
| 32   | Sulphide(H2 S)                        | mg/l | 0.05                | No<br>relaxatio<br>n  | BDL         | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL      | BDL        |
| 33   | Residual<br>Free<br>Chlorine(RF<br>C) | mg/l | Min-0.2             | 1                     | BDL         | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL      | BDL        |
| 34   | Total arsenic (as As),                | mg/l | 0.01                | No<br>relaxatio<br>n  | BDL         | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL      | BDL        |
| 35   | Barium                                | mg/l | 0.7                 | No<br>relaxatio<br>n  | BDL         | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL      | BDL        |
| 36   | Chloramines (as Cl2)                  | mg/l | 4                   | No<br>relaxatio<br>n  | BDL         | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL      | BDL        |
| 37   | Silver(as<br>Ag)                      | mg/l | 0.1                 | No<br>Relaxatio<br>n  | BDL         | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL      | BDL        |
| 38   | Molybdenu<br>m (as Mo)                | mg/l | 0.07                | No<br>Relaxatio<br>n  | BDL         | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | BDL      | BDL        |
| 39   | Polynuclear<br>Aromatic               | mg/l | 0.0001              | No<br>Relaxatio<br>n  | -           | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |

|      |                                  | Limi | it (IS-10500        | 0:2012)              | G        | W6             | GW7            | GW8                                                            | GW9                                                               | GV       | V10        |
|------|----------------------------------|------|---------------------|----------------------|----------|----------------|----------------|----------------------------------------------------------------|-------------------------------------------------------------------|----------|------------|
| S.N. | Parameters                       | Unit | Desirab<br>le Limit |                      |          | LC at Ch483    |                | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch419 | Village<br>Laxmipur<br>a active<br>project<br>site at Ch.<br>-421 | LC at (  | Ch447      |
|      |                                  |      |                     |                      | Baseline | 07.01.202<br>3 | 07.01.202<br>3 | 07.01.202<br>3                                                 | 07.01.2023                                                        | Baseline | 19.01.2023 |
|      | Hydrocarbo<br>ns(as PAH)         |      |                     |                      |          |                |                |                                                                |                                                                   |          |            |
| 40   | Polychlorina<br>ted<br>biphenyls | mg/l | 0.0001              | No<br>Relaxatio<br>n |          | BDL            | BDL            | BDL                                                            | BDL                                                               | -        | BDL        |
| 41   |                                  |      |                     |                      | TRI      | HALOMET        | HANES          |                                                                |                                                                   |          |            |
| a    | Bromoform                        | mg/l | 0.1                 | No<br>Relaxatio<br>n | 1        | BDL            | BDL            | BDL                                                            | BDL                                                               | -        | BDL        |
| b    | Dibromochl oromethane            | mg/l | 0.1                 | No<br>Relaxatio<br>n | -        | BDL            | BDL            | BDL                                                            | BDL                                                               | -        | BDL        |
| c    | Bromodichlo romethane            | mg/l | 0.06                | No<br>Relaxatio<br>n | -        | BDL            | BDL            | BDL                                                            | BDL                                                               | -        | BDL        |
| d    | Chloroform                       | mg/l | 0.2                 | No<br>Relaxatio<br>n | -        | BDL            | BDL            | BDL                                                            | BDL                                                               | -        | BDL        |
|      |                                  |      |                     |                      | PES      | TICIDE RE      | SIDUES         |                                                                |                                                                   |          |            |
| 42   | Alachor                          | μg/l | 20                  | No<br>Relaxatio<br>n | -        | BDL            | BDL            | BDL                                                            | BDL                                                               | -        | BDL        |
| 43   | Atrazine                         | μg/l | 20                  | No<br>Relaxatio<br>n | -        | BDL            | BDL            | BDL                                                            | BDL                                                               | -        | BDL        |

|      |                                           | Limi | t (IS-10500         | ):2012)               | G        | W6             | GW7                                                                    | GW8                                                            | GW9                                                               | GV       | V10        |
|------|-------------------------------------------|------|---------------------|-----------------------|----------|----------------|------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|----------|------------|
| S.N. | Parameters                                | Unit | Desirab<br>le Limit | Permissi<br>ble Limit |          | Ch483          | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch<br>418+400 | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch419 | Village<br>Laxmipur<br>a active<br>project<br>site at Ch.<br>-421 | LC at (  | Ch447      |
|      |                                           |      |                     |                       | Baseline | 07.01.202<br>3 | 07.01.202<br>3                                                         | 07.01.202<br>3                                                 | 07.01.2023                                                        | Baseline | 19.01.2023 |
| 44   | Aldrin/Diald<br>rin                       | μg/l | 0.03                | No<br>Relaxatio<br>n  | -        | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |
| 45   | Alpha HCH                                 | μg/l | 0.01                | No<br>Relaxatio<br>n  | -        | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |
| 46   | Beta HCH                                  | μg/l | 0.04                | No<br>Relaxatio<br>n  | -        | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |
| 47   | Butachlor                                 | μg/l | 125                 | No<br>Relaxatio<br>n  | -        | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |
| 48   | Chlorpyriph os                            | μg/l | 30                  | No<br>Relaxatio<br>n  | -        | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |
| 49   | Delta HCH                                 | μg/l | 0.04                | No<br>Relaxatio<br>n  | -        | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |
| 50   | 2,4-<br>Dichlorophe<br>noxyacetic<br>acid | μg/l | 30                  | No<br>Relaxatio<br>n  | -        | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |
| 51   | DDT(o,p<br>and p,p-<br>isomers of         | μg/l | 1                   | No<br>Relaxatio<br>n  | -        | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |

|      |                                                 | Limi | it (IS-10500        | 0:2012)               | G           | W6             | GW7                                                                    | GW8                                                            | GW9                                                               | GV       | V10        |
|------|-------------------------------------------------|------|---------------------|-----------------------|-------------|----------------|------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|----------|------------|
| S.N. | Parameters                                      | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | LC at Ch483 |                | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch<br>418+400 | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch419 | Village<br>Laxmipur<br>a active<br>project<br>site at Ch.<br>-421 | LC at (  | Ch447      |
|      |                                                 |      |                     |                       | Baseline    | 07.01.202<br>3 | 07.01.202<br>3                                                         | 07.01.202<br>3                                                 | 07.01.2023                                                        | Baseline | 19.01.2023 |
|      | DDT.DDE and DDD)                                |      |                     |                       |             |                |                                                                        |                                                                |                                                                   |          |            |
| 52   | Endosuiphan<br>(alpha, beta<br>and<br>sulphate) | μg/l | 0.4                 | No<br>Relaxatio<br>n  | -           | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |
| 53   | Ethion                                          | μg/l | 3                   | No<br>Relaxatio<br>n  | -           | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |
| 54   | Gamma<br>HCH(Linda<br>ne)                       | μg/l | 2                   | No<br>Relaxatio<br>n  | -           | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |
| 55   | Isoproturon                                     | μg/l | 9                   | No<br>Relaxatio<br>n  | -           | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |
| 56   | Malathion                                       | μg/l | 190                 | No<br>Relaxatio<br>n  | -           | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |
| 57   | Methyl<br>Parathion                             | μg/l | 0.3                 | No<br>Relaxatio<br>n  | -           | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | 1        | BDL        |
| 58   | Monocrotop<br>hos                               | μg/l | 1                   | No<br>Relaxatio<br>n  | -           | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL        |

|      |                   | Limit            | (IS-10500           | ):2012)               | G\       | N6             | GW7                                                                    | GW8                                                            | GW9                                                               | GV       | V10              |
|------|-------------------|------------------|---------------------|-----------------------|----------|----------------|------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|----------|------------------|
| S.N. | Parameters        | Unit             | Desirab<br>le Limit | Permissi<br>ble Limit | LC at (  | Ch483          | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch<br>418+400 | Village<br>Rajupur<br>a, active<br>project<br>site at<br>Ch419 | Village<br>Laxmipur<br>a active<br>project<br>site at Ch.<br>-421 | LC at (  | Ch447            |
|      |                   |                  |                     |                       | Baseline | 07.01.202<br>3 | 07.01.202<br>3                                                         | 07.01.202<br>3                                                 | 07.01.2023                                                        | Baseline | 19.01.2023       |
| 59   | Phorate           | μg/l             | 2                   | No<br>Relaxatio<br>n  | -        | BDL            | BDL                                                                    | BDL                                                            | BDL                                                               | -        | BDL              |
|      |                   |                  |                     |                       | MICROBIC | DLOGICAL       | <b>PARAMET</b>                                                         | TER                                                            |                                                                   |          |                  |
| 60   | Total<br>Coliform | IS:15185:<br>016 |                     | d be absent/          | <2       | Absent/1 00ml  | Absent/1 00ml                                                          | Absent/1<br>00ml                                               | Absent/100<br>ml                                                  | <2       | Absent/10<br>0ml |
| 61   | E.coli            | IS:15185:<br>016 |                     | d be absent/          | Absent   | Absent/1 00ml  | Absent/1<br>00ml                                                       | Absent/1<br>00ml                                               | Absent/100<br>ml                                                  | Absent   | Absent/10<br>0ml |

Groundwater quality Monitoring Contd....

|     |           | Limi  | t (IS-10500         | ):2012)               | GW11                                    | GW12           | GW13                               | GW14                                                | GW15                                       | GW16                                    |
|-----|-----------|-------|---------------------|-----------------------|-----------------------------------------|----------------|------------------------------------|-----------------------------------------------------|--------------------------------------------|-----------------------------------------|
| S.N | Parameter | Unit  | Desirab<br>le Limit | Permissi<br>ble Limit | Village<br>Uttarsand<br>a, at Ch<br>449 | LC at<br>Ch450 | Village<br>Piplagchoki<br>at Ch451 | Village<br>Kanij active<br>project site<br>at Ch476 | Active<br>project site<br>at Ch<br>409+210 | Active project<br>site at Ch<br>409+520 |
|     |           |       |                     |                       | 11.01.2023                              | 04.01.202      | 11.01.2023                         | 06.01.2023                                          | 14.01.2023                                 | 14.01.2023                              |
| 1   | Colour    | Hazen | 5                   | 15                    | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 2   | Odour     | -     | Agreeab<br>le       | Agreeabl<br>e         | Agreeable                               | Agreeabl<br>e  | Agreeable                          | Agreeable                                           | Agreeable                                  | Agreeable                               |
| 3   | Taste     | -     | Agreeab<br>le       | Agreeabl<br>e         | Agreeable                               | Agreeabl e     | Agreeable                          | Agreeable                                           | Agreeable                                  | Agreeable                               |
| 4   | Turbidity | NTU   | 1                   | 5                     | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |

|     |                                 | Limi | t (IS-10500         | ):2012)               | GW11                                    | GW12           | GW13                               | GW14                                                | GW15                                       | GW16                                    |
|-----|---------------------------------|------|---------------------|-----------------------|-----------------------------------------|----------------|------------------------------------|-----------------------------------------------------|--------------------------------------------|-----------------------------------------|
| S.N | Parameter                       | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | Village<br>Uttarsand<br>a, at Ch<br>449 | LC at<br>Ch450 | Village<br>Piplagchoki<br>at Ch451 | Village<br>Kanij active<br>project site<br>at Ch476 | Active<br>project site<br>at Ch<br>409+210 | Active project<br>site at Ch<br>409+520 |
|     |                                 |      |                     |                       | 11.01.2023                              | 04.01.202      | 11.01.2023                         | 06.01.2023                                          | 14.01.2023                                 | 14.01.2023                              |
| 5   | pH(Lab)                         | -    | 6.5-8.5             | No<br>Relaxatio<br>n  | 7.89                                    | 8.12           | 8.32                               | 7.33                                                | 7.39                                       | 7.29                                    |
| 6   | pH(Site)                        | -    | -                   | 1                     | 7.9                                     | 8.1            | 8.3                                | 7.3                                                 | 7.4                                        | 7.3                                     |
| 7   | Total<br>Hardness (as<br>CaCO3) | mg/l | 200                 | 600                   | 690                                     | 130            | 210                                | 270                                                 | 468                                        | 48                                      |
| 8   | Iron (as Fe)                    | mg/l | 1                   | No<br>Relaxatio<br>n  | 0.21                                    | 0.07           | 0.13                               | 0.08                                                | 0.18                                       | 0.09                                    |
| 9   | Chlorides (as Cl)               | mg/l | 250                 | 1000                  | 229.9                                   | 24.9           | 44.9                               | 49.9                                                | 277.9                                      | 13.9                                    |
| 10  | Fluoride (as F                  | mg/l | 1                   | 1.5                   | 0.57                                    | 0.16           | 0.26                               | 0.11                                                | 0.42                                       | 0.12                                    |
| 11  | TDS                             | mg/l | 500                 | 2000                  | 1079                                    | 219            | 449                                | 358                                                 | 835                                        | 121                                     |
| 12  | Calcium(as<br>Ca2+)             | mg/l | 75                  | 200                   | 98.09                                   | 16.03          | 28.6                               | 48.09                                               | 89.77                                      | 12.82                                   |
| 13  | Magnesium (as Mg2+)             | mg/l | 30                  | 100                   | 108.08                                  | 21.85          | 33.65                              | 36.39                                               | 59.18                                      | 3.87                                    |
| 14  | Sulphate (as SO4)               | mg/l | 200                 | 400                   | 78.6                                    | 10.6           | 21.2                               | 16.5                                                | 56.2                                       | 9.2                                     |
| 15  | Nitrate(as<br>NO3)              | mg/l | 45                  | No<br>Relaxatio<br>n  | 7.8                                     | BDL            | 0.09                               | 0.07                                                | BDL                                        | BDL                                     |
| 16  | Chromium (as<br>Cr+6)           | mg/l | 0.05                | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |

|     |                                      | Limi | t (IS-10500         | ):2012)               | GW11                                    | GW12           | GW13                               | GW14                                                | GW15                                       | GW16                                    |
|-----|--------------------------------------|------|---------------------|-----------------------|-----------------------------------------|----------------|------------------------------------|-----------------------------------------------------|--------------------------------------------|-----------------------------------------|
| S.N | Parameter                            | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | Village<br>Uttarsand<br>a, at Ch<br>449 | LC at<br>Ch450 | Village<br>Piplagchoki<br>at Ch451 | Village<br>Kanij active<br>project site<br>at Ch476 | Active<br>project site<br>at Ch<br>409+210 | Active project<br>site at Ch<br>409+520 |
|     |                                      |      |                     |                       | 11.01.2023                              | 04.01.202      | 11.01.2023                         | 06.01.2023                                          | 14.01.2023                                 | 14.01.2023                              |
| 17  | Alkalinity as<br>CaCO3               | mg/l | 200                 | 600                   | 570                                     | 110            | 130                                | 190                                                 | 380                                        | 76                                      |
| 18  | Aluminium<br>(as Al)                 | mg/l | 0.03                | 0.2                   | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 19  | Copper (as Cu)                       | mg/l | 0.05                | 1.5                   | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 20  | Manganese (as Mn)                    | mg/l | 0.1                 | 0.3                   | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 21  | Zinc (as Zn)                         | mg/l | 5                   | 15                    | BDL                                     | BDL            | 0.13                               | BDL                                                 | BDL                                        | BDL                                     |
| 22  | Ammonia (as<br>NH3-N)                | mg/l | 0.5                 | No<br>relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 23  | Anionic<br>detergents<br>(as MBAS)   | mg/l | 0.2                 | 1                     | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 24  | Boron (as B)                         | mg/l | 0.5                 | 1                     | BDL                                     | BDL            | 0.09                               | BDL                                                 | BDL                                        | BDL                                     |
| 25  | Mineral oil                          | mg/l | 0.5                 | No<br>relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 26  | Phenolic<br>compounds<br>(as C6H5OH) | mg/l | 0.001               | 0.002                 | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 27  | Cadmium (as Cd)                      | mg/l | 0.003               | No<br>relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 28  | Cyanide (as CN)                      | mg/l | 0.05                | No<br>relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |

|     |                               | Limi | t (IS-10500         | 0:2012)               | GW11                                    | GW12           | GW13                               | GW14                                                | GW15                                       | GW16                                    |
|-----|-------------------------------|------|---------------------|-----------------------|-----------------------------------------|----------------|------------------------------------|-----------------------------------------------------|--------------------------------------------|-----------------------------------------|
| S.N | Parameter                     | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | Village<br>Uttarsand<br>a, at Ch<br>449 | LC at<br>Ch450 | Village<br>Piplagchoki<br>at Ch451 | Village<br>Kanij active<br>project site<br>at Ch476 | Active<br>project site<br>at Ch<br>409+210 | Active project<br>site at Ch<br>409+520 |
|     |                               |      |                     |                       | 11.01.2023                              | 04.01.202      | 11.01.2023                         | 06.01.2023                                          | 14.01.2023                                 | 14.01.2023                              |
| 29  | Lead (as Pb)                  | mg/l | 0.01                | No<br>relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 30  | Mercury (as<br>Hg)            | mg/l | 0.001               | No<br>relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 31  | Nickel (as Ni)                | mg/l | 0.02                | No<br>relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 32  | Sulphide(H2S                  | mg/l | 0.05                | No<br>relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 33  | Residual Free<br>Chlorine(RFC | mg/l | Min-0.2             | 1                     | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 34  | Total arsenic (as As),        | mg/l | 0.01                | No<br>relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 35  | Barium                        | mg/l | 0.7                 | No<br>relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 36  | Chloramines<br>(as Cl2)       | mg/l | 4                   | No<br>relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 37  | Silver(as Ag)                 | mg/l | 0.1                 | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |

|     |                                                     | Limi | t (IS-10500         | ):2012)               | GW11                                    | GW12           | GW13                               | GW14                                                | GW15                                       | GW16                                    |
|-----|-----------------------------------------------------|------|---------------------|-----------------------|-----------------------------------------|----------------|------------------------------------|-----------------------------------------------------|--------------------------------------------|-----------------------------------------|
| S.N | Parameter                                           | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | Village<br>Uttarsand<br>a, at Ch<br>449 | LC at<br>Ch450 | Village<br>Piplagchoki<br>at Ch451 | Village<br>Kanij active<br>project site<br>at Ch476 | Active<br>project site<br>at Ch<br>409+210 | Active project<br>site at Ch<br>409+520 |
|     |                                                     |      |                     |                       | 11.01.2023                              | 04.01.202      | 11.01.2023                         | 06.01.2023                                          | 14.01.2023                                 | 14.01.2023                              |
| 38  | Molybdenum<br>(as Mo)                               | mg/l | 0.07                | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 39  | Polynuclear<br>Aromatic<br>Hydrocarbons<br>(as PAH) | mg/l | 0.0001              | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 40  | Polychlorinate<br>d biphenyls                       | mg/l | 0.0001              | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 41  |                                                     |      |                     |                       | TRIHA                                   | ALOMETH.       | ANES                               |                                                     |                                            |                                         |
| a   | Bromoform                                           | mg/l | 0.1                 | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| b   | Dibromochlor omethane                               | mg/l | 0.1                 | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| С   | Bromodichlor omethane                               | mg/l | 0.06                | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| d   | Chloroform                                          | mg/l | 0.2                 | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
|     |                                                     |      | ·                   |                       | PESTI                                   | CIDE RESI      | DUES                               |                                                     |                                            |                                         |
| 42  | Alachor                                             | μg/l | 20                  | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |

|     |                                                      | Limi | t (IS-10500         | <b>):2012</b> )       | GW11                                    | GW12           | GW13                               | GW14                                                | GW15                                       | GW16                                    |
|-----|------------------------------------------------------|------|---------------------|-----------------------|-----------------------------------------|----------------|------------------------------------|-----------------------------------------------------|--------------------------------------------|-----------------------------------------|
| S.N | Parameter                                            | Unit | Desirab<br>le Limit | Permissi<br>ble Limit | Village<br>Uttarsand<br>a, at Ch<br>449 | LC at<br>Ch450 | Village<br>Piplagchoki<br>at Ch451 | Village<br>Kanij active<br>project site<br>at Ch476 | Active<br>project site<br>at Ch<br>409+210 | Active project<br>site at Ch<br>409+520 |
|     |                                                      |      |                     |                       | 11.01.2023                              | 04.01.202      | 11.01.2023                         | 06.01.2023                                          | 14.01.2023                                 | 14.01.2023                              |
| 43  | Atrazine                                             | μg/l | 20                  | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 44  | Aldrin/Dialdri<br>n                                  | μg/l | 0.03                | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 45  | Alpha HCH                                            | μg/l | 0.01                | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 46  | Beta HCH                                             | μg/l | 0.04                | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 47  | Butachlor                                            | μg/l | 125                 | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 48  | Chlorpyriphos                                        | μg/l | 30                  | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 49  | Delta HCH                                            | μg/l | 0.04                | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 50  | 2,4-<br>Dichlorophen<br>oxyacetic acid               | μg/l | 30                  | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 51  | DDT(o,p and<br>p,p-isomers of<br>DDT.DDE<br>and DDD) | μg/l | 1                   | No<br>Relaxatio<br>n  | BDL                                     | BDL            | BDL                                | BDL                                                 | BDL                                        | BDL                                     |

|     |                                              | Limi    | t (IS-1050          | 0:2012)                        | GW11                                    | GW12             | GW13                               | GW14                                                | GW15                                       | GW16                                    |
|-----|----------------------------------------------|---------|---------------------|--------------------------------|-----------------------------------------|------------------|------------------------------------|-----------------------------------------------------|--------------------------------------------|-----------------------------------------|
| S.N | Parameter                                    | Unit    | Desirab<br>le Limit | Permissi<br>ble Limit          | Village<br>Uttarsand<br>a, at Ch<br>449 | LC at<br>Ch450   | Village<br>Piplagchoki<br>at Ch451 | Village<br>Kanij active<br>project site<br>at Ch476 | Active<br>project site<br>at Ch<br>409+210 | Active project<br>site at Ch<br>409+520 |
|     |                                              |         |                     |                                | 11.01.2023                              | 04.01.202        | 11.01.2023                         | 06.01.2023                                          | 14.01.2023                                 | 14.01.2023                              |
| 52  | Endosuiphan(<br>alpha, beta<br>and sulphate) | μg/l    | 0.4                 | No<br>Relaxatio<br>n           | BDL                                     | BDL              | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 53  | Ethion                                       | μg/l    | 3                   | No<br>Relaxatio<br>n           | BDL                                     | BDL              | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 54  | Gamma<br>HCH(Lindane<br>)                    | μg/l    | 2                   | No<br>Relaxatio<br>n           | BDL                                     | BDL              | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 55  | Isoproturon                                  | μg/l    | 9                   | No<br>Relaxatio<br>n           | BDL                                     | BDL              | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 56  | Malathion                                    | μg/l    | 190                 | No<br>Relaxatio<br>n           | BDL                                     | BDL              | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 57  | Methyl<br>Parathion                          | μg/l    | 0.3                 | No<br>Relaxatio<br>n           | BDL                                     | BDL              | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 58  | Monocrotoph<br>os                            | μg/l    | 1                   | No<br>Relaxatio<br>n           | BDL                                     | BDL              | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
| 59  | Phorate                                      | μg/l    | 2                   | No<br>Relaxatio<br>n           | BDL                                     | BDL              | BDL                                | BDL                                                 | BDL                                        | BDL                                     |
|     |                                              |         |                     |                                | MICROBIOL                               | OGICAL P.        | ARAMETER                           |                                                     |                                            |                                         |
| 60  | Total<br>Coliform                            | IS:1518 | 5:2016              | Should be<br>absent/ 100<br>ml | Absent/100 ml                           | Absent/1<br>00ml | Absent/100<br>ml                   | Absent/100<br>ml                                    | Absent/100m                                | Absent/100ml                            |

|     |           | Limi    | t (IS-1050          | 0:2012)                        | GW11                                    | GW12             | GW13                               | GW14                                                | GW15                             | GW16                                    |
|-----|-----------|---------|---------------------|--------------------------------|-----------------------------------------|------------------|------------------------------------|-----------------------------------------------------|----------------------------------|-----------------------------------------|
| S.N | Parameter | Unit    | Desirab<br>le Limit |                                | Village<br>Uttarsand<br>a, at Ch<br>449 | LC at<br>Ch450   | Village<br>Piplagchoki<br>at Ch451 | Village<br>Kanij active<br>project site<br>at Ch476 | Active project site at Ch409+210 | Active project<br>site at Ch<br>409+520 |
|     |           |         |                     |                                | 11.01.2023                              | 04.01.202        | 11.01.2023                         | 06.01.2023                                          | 14.01.2023                       | 14.01.2023                              |
| 61  | E.coli    | IS:1518 | 5:2016              | Should be<br>absent/ 100<br>ml | Absent/100 ml                           | Absent/1<br>00ml | Absent/100<br>ml                   | Absent/100<br>ml                                    | Absent/100m                      | Absent/100ml                            |

Table 62: Ground Water Quality Monitoring Data for C6 Package on March 2023

|      |                              |       |                    |                      | Limit (IS-1 | 10500:2012)         |                                                                                         |                                                                        |            |
|------|------------------------------|-------|--------------------|----------------------|-------------|---------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------|
|      |                              |       |                    |                      | GV          | W1                  | GW2                                                                                     | G'                                                                     | W3         |
| S.No | Parameter                    | Unit  | Desirable<br>Limit | Permissible<br>Limit |             | rsanda at Ch.<br>48 | Village<br>Chhapra<br>(Distance<br>b/w<br>Borewell -<br>Ch471<br>approximate<br>ly 1 km | Village Banjdi (Distance<br>b/w Borewell - Ch483<br>approximately 1 km |            |
|      |                              |       |                    |                      | Baseline    | 15.03.2023          | 15.03.2023                                                                              | Baseline                                                               | 15.03.2023 |
| 1    | Colour                       | Hazen | 5                  | 15                   | BDL         | BDL                 | BDL                                                                                     | BDL                                                                    | BDL        |
| 2    | Odour                        | -     | Agreeable          | Agreeable            | Agreeable   | Agreeable           | Agreeable                                                                               | Agreeable                                                              | Agreeable  |
| 3    | Taste                        | -     | Agreeable          | Agreeable            | Agreeable   | Agreeable           | Agreeable                                                                               | Agreeable                                                              | Agreeable  |
| 4    | Turbidity                    | NTU   | 1                  | 5                    | BDL         | BDL                 | BDL                                                                                     | BDL                                                                    | BDL        |
| 5    | pH(Lab)                      | -     | 6.5-8.5            | No<br>Relaxation     | 7.17        | 7.04                | 7.23                                                                                    | 7.41                                                                   | 7.09       |
| 6    | pH(Site)                     | -     | -                  | -                    | -           | 7.1                 | 7.2                                                                                     | -                                                                      | 7.1        |
| 7    | Total Hardness (as<br>CaCO3) | mg/l  | 200                | 600                  | 968.04      | 908                 | 1050                                                                                    | 1112.76                                                                | 1126       |
| 8    | Iron (as Fe)                 | mg/l  | 1                  | No<br>Relaxation     | 0.3         | 0.34                | 0.31                                                                                    | 0.38                                                                   | 0.48       |
| 9    | Chlorides (as Cl)            | mg/l  | 250                | 1000                 | 549.26      | 227.29              | 341.9                                                                                   | 1583.15                                                                | 1739       |
| 10   | Fluoride (as F)              | mg/l  | 1                  | 1.5                  | 0.52        | 1.82                | 2.5                                                                                     | 0.69                                                                   | 2.58       |
| 11   | TDS                          | mg/l  | 500                | 2000                 | 1622        | 1759                | 2735                                                                                    | 3125                                                                   | 3100       |
| 12   | Calcium(as Ca2+)             | mg/l  | 75                 | 200                  | 158.72      | 51.3                | 54.5                                                                                    | 177.76                                                                 | 92.98      |
| 13   | Magnesium (as<br>Mg2+)       | mg/l  | 30                 | 100                  | 143.19      | 189.48              | 222.04                                                                                  | 162.41                                                                 | 217.13     |
| 14   | Sulphate (as SO4)            | mg/l  | 200                | 400                  | 302.52      | 350                 | 136.4                                                                                   | 676.92                                                                 | 682        |
| 15   | Nitrate(as NO3)              | mg/l  | 45                 | No<br>Relaxation     | 21.84       | 28.3                | 31.5                                                                                    | 23.84                                                                  | 35.6       |

|      |                                   |      |                    |                      | Limit (IS-1                       | 10500:2012) |                                                                                         |            |                                            |
|------|-----------------------------------|------|--------------------|----------------------|-----------------------------------|-------------|-----------------------------------------------------------------------------------------|------------|--------------------------------------------|
|      |                                   |      |                    |                      | GV                                | W1          | GW2                                                                                     | G          | W3                                         |
| S.No | Parameter                         | Unit | Desirable<br>Limit | Permissible<br>Limit | Village Uttarsanda at Ch448  -448 |             | Village<br>Chhapra<br>(Distance<br>b/w<br>Borewell -<br>Ch471<br>approximate<br>ly 1 km | b/w Borewe | jdi (Distance<br>ell - Ch483<br>ately 1 km |
|      |                                   |      |                    |                      | Baseline                          | 15.03.2023  | 15.03.2023                                                                              | Baseline   | 15.03.2023                                 |
| 16   | Chromium (as Cr+6)                | mg/l | 0.05               | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                                     | BDL        | BDL                                        |
| 17   | Alkalinity as CaCO3               | mg/l | 200                | 600                  | 427.18                            | 636         | 660                                                                                     | 427.18     | 512                                        |
| 18   | Aluminium (as Al)                 | mg/l | 0.03               | 0.2                  | BDL                               | BDL         | BDL                                                                                     | BDL        | BDL                                        |
| 19   | Copper (as Cu)                    | mg/l | 0.05               | 1.5                  | BDL                               | BDL         | BDL                                                                                     | BDL        | BDL                                        |
| 20   | Manganese (as Mn)                 | mg/l | 0.1                | 0.3                  | BDL                               | BDL         | BDL                                                                                     | BDL        | BDL                                        |
| 21   | Zinc (as Zn)                      | mg/l | 5                  | 15                   | 0.25                              | 0.31        | 0.28                                                                                    | 0.28       | 0.34                                       |
| 22   | Ammonia (as NH3-<br>N)            | mg/l | 0.5                | No<br>relaxation     | BDL                               | BDL         | BDL                                                                                     | BDL        | BDL                                        |
| 23   | Anionic detergents (as MBAS)      | mg/l | 0.2                | 1                    | BDL                               | BDL         | BDL                                                                                     | BDL        | BDL                                        |
| 24   | Boron (as B)                      | mg/l | 0.5                | 1                    | BDL                               | 0.12        | 0.13                                                                                    | BDL        | 0.18                                       |
| 25   | Mineral oil                       | mg/l | 0.5                | No<br>relaxation     | BDL                               | BDL         | BDL                                                                                     | BDL        | BDL                                        |
| 26   | Phenolic compounds<br>(as C6H5OH) | mg/l | 0.001              | 0.002                | BDL                               | BDL         | BDL                                                                                     | BDL        | BDL                                        |
| 27   | Cadmium (as Cd)                   | mg/l | 0.003              | No<br>relaxation     | BDL                               | BDL         | BDL                                                                                     | BDL        | BDL                                        |
| 28   | Cyanide (as CN)                   | mg/l | 0.05               | No<br>relaxation     | BDL                               | BDL         | BDL                                                                                     | BDL        | BDL                                        |
| 29   | Lead (as Pb)                      | mg/l | 0.01               | No<br>relaxation     | BDL                               | BDL         | BDL                                                                                     | BDL        | BDL                                        |

|      |                                                    |      |                    |                      | Limit (IS-1                       | 10500:2012) |                                                                                         |                                                                        |            |
|------|----------------------------------------------------|------|--------------------|----------------------|-----------------------------------|-------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------|
|      |                                                    |      |                    |                      | G'                                | W1          | GW2                                                                                     | G'                                                                     | W3         |
| S.No | Parameter                                          | Unit | Desirable<br>Limit | Permissible<br>Limit | Village Uttarsanda at Ch.<br>-448 |             | Village<br>Chhapra<br>(Distance<br>b/w<br>Borewell -<br>Ch471<br>approximate<br>ly 1 km | Village Banjdi (Distance<br>b/w Borewell - Ch483<br>approximately 1 km |            |
|      |                                                    |      |                    |                      | Baseline                          | 15.03.2023  | 15.03.2023                                                                              | Baseline                                                               | 15.03.2023 |
| 30   | Mercury (as Hg)                                    | mg/l | 0.001              | No relaxation        | BDL                               | BDL         | BDL                                                                                     | BDL                                                                    | BDL        |
| 31   | Nickel (as Ni)                                     | mg/l | 0.02               | No relaxation        | BDL                               | BDL         | BDL                                                                                     | BDL                                                                    | BDL        |
| 32   | Sulphide(H2S)                                      | mg/l | 0.05               | No relaxation        | BDL                               | BDL         | BDL                                                                                     | BDL                                                                    | BDL        |
| 33   | Residual Free<br>Chlorine(RFC)                     | mg/l | Min-0.2            | 1                    | BDL                               | BDL         | BDL                                                                                     | BDL                                                                    | BDL        |
| 34   | Total arsenic (as As),                             | mg/l | 0.01               | No relaxation        | BDL                               | BDL         | BDL                                                                                     | BDL                                                                    | BDL        |
| 35   | Barium                                             | mg/l | 0.7                | No relaxation        | BDL                               | BDL         | BDL                                                                                     | BDL                                                                    | BDL        |
| 36   | Chloramines (as Cl2)                               | mg/l | 4                  | No relaxation        | BDL                               | BDL         | BDL                                                                                     | BDL                                                                    | BDL        |
| 37   | Silver(as Ag)                                      | mg/l | 0.1                | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                                     | BDL                                                                    | BDL        |
| 38   | Molybdenum (as<br>Mo)                              | mg/l | 0.07               | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                                     | BDL                                                                    | BDL        |
| 39   | Polynuclear<br>Aromatic<br>Hydrocarbons(as<br>PAH) | mg/l | 0.0001             | No<br>Relaxation     | -                                 | BDL         | BDL                                                                                     | BDL                                                                    | BDL        |
| 40   | Polychlorinated biphenyls                          | mg/l | 0.0001             | No<br>Relaxation     | -                                 | BDL         | BDL                                                                                     | BDL                                                                    | BDL        |

|      |                       |      |                    |                      | Limit (IS-1                       | 10500:2012) |                                                                    |                                                                        |            |
|------|-----------------------|------|--------------------|----------------------|-----------------------------------|-------------|--------------------------------------------------------------------|------------------------------------------------------------------------|------------|
|      |                       |      |                    |                      | G <sup>1</sup>                    | W1          | GW2                                                                | G <sup>v</sup>                                                         | W3         |
| S.No | Parameter             | Unit | Desirable<br>Limit | Permissible<br>Limit | Village Uttarsanda at Ch.<br>-448 |             | Village Chhapra (Distance b/w Borewell - Ch471 approximate ly 1 km | Village Banjdi (Distance<br>b/w Borewell - Ch483<br>approximately 1 km |            |
|      |                       |      |                    |                      | Baseline                          | 15.03.2023  | 15.03.2023                                                         | Baseline                                                               | 15.03.2023 |
| 41   |                       |      |                    | TRIHAL               | OMETHANE                          | S           |                                                                    |                                                                        |            |
| a    | Bromoform             | mg/l | 0.1                | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                | BDL                                                                    | BDL        |
| b    | Dibromochlorometha ne | mg/l | 0.1                | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                | BDL                                                                    | BDL        |
| c    | Bromodichlorometha ne | mg/l | 0.06               | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                | BDL                                                                    | BDL        |
| d    | Chloroform            | mg/l | 0.2                | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                | BDL                                                                    | BDL        |
|      |                       |      |                    | PESTICI              | DE RESIDUE                        | S           |                                                                    |                                                                        |            |
| 42   | Alachor               | μg/l | 20                 | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                | BDL                                                                    | BDL        |
| 43   | Atrazine              | μg/l | 20                 | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                | BDL                                                                    | BDL        |
| 44   | Aldrin /Dialdrin      | μg/l | 0.03               | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                | BDL                                                                    | BDL        |
| 45   | Alpha HCH             | μg/l | 0.01               | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                | BDL                                                                    | BDL        |
| 46   | Beta HCH              | μg/l | 0.04               | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                | BDL                                                                    | BDL        |
| 47   | Butachlor             | μg/l | 125                | No<br>Relaxation     | BDL                               | BDL         | BDL                                                                | BDL                                                                    | BDL        |

|      |                                                       |      |                    |                      | Limit (IS-1 | 10500:2012)         |                                                                                         |                                                                        |            |
|------|-------------------------------------------------------|------|--------------------|----------------------|-------------|---------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------|
|      |                                                       |      |                    |                      | GV          | W1                  | GW2                                                                                     | GV                                                                     | W3         |
| S.No | Parameter                                             | Unit | Desirable<br>Limit | Permissible<br>Limit |             | rsanda at Ch.<br>48 | Village<br>Chhapra<br>(Distance<br>b/w<br>Borewell -<br>Ch471<br>approximate<br>ly 1 km | Village Banjdi (Distance<br>b/w Borewell - Ch483<br>approximately 1 km |            |
|      |                                                       |      |                    |                      | Baseline    | 15.03.2023          | 15.03.2023                                                                              | Baseline                                                               | 15.03.2023 |
| 48   | Chlorpyriphos                                         | μg/l | 30                 | No<br>Relaxation     | BDL         | BDL                 | BDL                                                                                     | BDL                                                                    | BDL        |
| 49   | Delta HCH                                             | μg/l | 0.04               | No<br>Relaxation     | BDL         | BDL                 | BDL                                                                                     | BDL                                                                    | BDL        |
| 50   | 2,4-<br>Dichlorophenoxyacet<br>ic acid                | μg/l | 30                 | No<br>Relaxation     | BDL         | BDL                 | BDL                                                                                     | BDL                                                                    | BDL        |
| 51   | DDT(o,p and p,p-<br>isomers of<br>DDT.DDE and<br>DDD) | μg/l | 1                  | No<br>Relaxation     | BDL         | BDL                 | BDL                                                                                     | BDL                                                                    | BDL        |
| 52   | Endosuiphan(alpha, beta and sulphate)                 | μg/l | 0.4                | No<br>Relaxation     | BDL         | BDL                 | BDL                                                                                     | BDL                                                                    | BDL        |
| 53   | Ethion                                                | μg/l | 3                  | No<br>Relaxation     | BDL         | BDL                 | BDL                                                                                     | BDL                                                                    | BDL        |
| 54   | Gamma<br>HCH(Lindane)                                 | μg/l | 2                  | No<br>Relaxation     | BDL         | BDL                 | BDL                                                                                     | BDL                                                                    | BDL        |
| 55   | Isoproturon                                           | μg/l | 9                  | No<br>Relaxation     | BDL         | BDL                 | BDL                                                                                     | BDL                                                                    | BDL        |
| 56   | Malathion                                             | μg/l | 190                | No<br>Relaxation     | BDL         | BDL                 | BDL                                                                                     | BDL                                                                    | BDL        |
| 57   | Methyl Parathion                                      | μg/l | 0.3                | No<br>Relaxation     | BDL         | BDL                 | BDL                                                                                     | BDL                                                                    | BDL        |

|      |                |                   |                    |                      | Limit (IS-1      | 10500:2012)         |                                                                                         |                                         |                  |
|------|----------------|-------------------|--------------------|----------------------|------------------|---------------------|-----------------------------------------------------------------------------------------|-----------------------------------------|------------------|
|      |                |                   |                    |                      | GV               | W1                  | GW2                                                                                     | GV                                      | W3               |
| S.No | Parameter      | Unit              | Desirable<br>Limit | Permissible<br>Limit | 0                | rsanda at Ch.<br>48 | Village<br>Chhapra<br>(Distance<br>b/w<br>Borewell -<br>Ch471<br>approximate<br>ly 1 km | Village Banj<br>b/w Borewe<br>approxima |                  |
|      |                |                   |                    |                      | Baseline         | 15.03.2023          | 15.03.2023                                                                              | Baseline                                | 15.03.2023       |
| 58   | Monocrotophos  | μg/l              | 1                  | No<br>Relaxation     | BDL              | BDL                 | BDL                                                                                     | BDL                                     | BDL              |
| 59   | Phorate        | μg/l              | 2                  | No<br>Relaxation     | BDL              | BDL                 | BDL                                                                                     | BDL                                     | BDL              |
|      |                |                   | M                  | ICROBIOLO            | GICAL PARA       | METER               |                                                                                         |                                         |                  |
| 60   | Total Coliform | IS:15185:20<br>16 | Absent/100<br>ml   | Absent/100<br>ml     | Absent/100<br>ml | Absent/100<br>ml    | Absent/100m                                                                             | Absent/100<br>ml                        | Absent/100 ml    |
| 61   | E.coli         | IS:15185:20<br>16 | Absent/100<br>ml   | Absent/100<br>ml     | Absent/100<br>ml | Absent/100<br>ml    | Absent/100m                                                                             | Absent/100 ml                           | Absent/100<br>ml |

Table 63: Groundwater Quality results – locations where parameters beyond the permissible limits

| SI. No | Parameter, Baseline & Permissible limit | Location for Ground water analysis                   | Permissible limits (IS 10500:2012) | Baseline | Result (Jan 23) | % Change<br>from<br>Baseline | Result<br>(Mar 23) | % Change<br>from<br>Baseline |
|--------|-----------------------------------------|------------------------------------------------------|------------------------------------|----------|-----------------|------------------------------|--------------------|------------------------------|
|        |                                         | LC at Ch407                                          |                                    | 2504.7   | 2360            | -6%                          |                    |                              |
|        |                                         | LC at Ch448                                          |                                    | 968.04   | 986             | 2%                           |                    |                              |
|        |                                         | LC at Ch471                                          |                                    |          | 1090            |                              |                    |                              |
|        |                                         | LC at Ch483                                          |                                    | 1112.76  | 1126            | 1%                           |                    |                              |
|        |                                         | LC at Ch447                                          |                                    | 776.16   | 936             | 21%                          |                    |                              |
| 1      | Total Hardness<br>(as CaCO3)            | Village Uttarsanda at<br>Ch448                       | 600 mg/l                           | 968.04   |                 |                              | 908                | -6%                          |
|        |                                         | Village Chhapra<br>(Distance b/w<br>Borewell - Ch471 |                                    | -        |                 |                              | 1050               |                              |
|        |                                         | Village Banjdi<br>(Distance b/w<br>Borewell - Ch483  |                                    | 1112.76  |                 |                              | 1126               | 1%                           |
|        |                                         | LC at Ch407                                          |                                    | 3307     | 3312            | 0%                           |                    |                              |
|        |                                         | LC at Ch483                                          |                                    | 3125     | 3226            | 3%                           |                    |                              |
|        |                                         | LC at Ch471                                          |                                    |          | 2736            |                              |                    |                              |
|        |                                         | LC at Ch447                                          |                                    | 1711     | 1742            | 2%                           |                    |                              |
| 2      | TDS                                     | Village Chhapra<br>(Distance b/w<br>Borewell - Ch471 | 2000 mg/L                          |          |                 |                              | 2735               |                              |
|        |                                         | Village Banjdi<br>(Distance b/w<br>Borewell - Ch483  |                                    | 3125     |                 |                              | 3100               | -1%                          |
| 3      | Calcium (as<br>Ca2+)                    | LC at Ch407                                          | 200 mg/l                           | 488.05   | 496.6           | 2%                           |                    |                              |
| 4      | Magnesium (as                           | LC at Ch407                                          | 100 mg/l                           | 312.15   | 271.79          | -13%                         |                    |                              |
| 4      | Mg2+)                                   | LC at Ch483                                          | 100 mg/l                           | 162.41   | 163.9           | 1%                           |                    |                              |

| SI. No | Parameter, Baseline & Permissible limit | Location for Ground water analysis                   | Permissible limits<br>(IS 10500:2012) | Baseline | Result (Jan 23) | % Change<br>from<br>Baseline | Result<br>(Mar 23) | % Change<br>from<br>Baseline |
|--------|-----------------------------------------|------------------------------------------------------|---------------------------------------|----------|-----------------|------------------------------|--------------------|------------------------------|
|        |                                         | LC at Ch471                                          |                                       |          | 177.21          |                              |                    |                              |
|        |                                         | LC at Ch448                                          |                                       | 143.19   | 132.4           | -8%                          |                    |                              |
|        |                                         | LC at Ch447                                          |                                       | 103.76   | 131.22          | 26%                          |                    |                              |
|        |                                         | Village Uttarsanda at<br>Ch448                       |                                       | 143.19   |                 |                              | 189.48             | 32%                          |
|        |                                         | Village Chhapra<br>(Distance b/w<br>Borewell - Ch471 |                                       |          |                 |                              | 222.04             |                              |
|        |                                         | Village Banjdi<br>(Distance b/w<br>Borewell - Ch483  |                                       | 162.41   |                 |                              | 217.13             | 34%                          |
|        |                                         | Village Uttarsanda at<br>Ch448                       |                                       | 0.5      |                 |                              | 1.82               | 264%                         |
| 5      | Fluoride (as F)                         | Village Chhapra<br>(Distance b/w<br>Borewell - Ch471 | 200 mg/l                              |          |                 |                              | 2.5                |                              |
|        |                                         | Village Banjdi<br>(Distance b/w<br>Borewell - Ch483  |                                       | 0.69     |                 |                              | 2.58               | 274%                         |
|        |                                         | LC at Ch483                                          |                                       | 1583.15  | 1739.4          | 10%                          | 1739               | 10%                          |
|        |                                         | LC at Ch471                                          |                                       |          | 1299.5          |                              |                    |                              |
| 6      | Chlorides (as Cl)                       | Village Banjdi<br>(Distance b/w<br>Borewell - Ch483  | 1000 mg/l                             |          |                 |                              | 1739               |                              |
|        |                                         | LC at Ch407                                          |                                       | 678.46   | 690             | 2%                           |                    |                              |
|        | Alkalinity as                           | LC at Ch447                                          |                                       | 523.5    | 630             | 20%                          |                    |                              |
| 7      | CaCO3                                   | Village Banjdi<br>(Distance b/w<br>Borewell - Ch483  | 600 mg/l                              | 676.92   |                 |                              | 512                | -24%                         |

| SI. No | Parameter, Baseline & Permissible limit | Location for Ground water analysis                   | Permissible limits<br>(IS 10500:2012) | Baseline | Result<br>(Jan 23) | % Change<br>from<br>Baseline | Result<br>(Mar 23) | % Change<br>from<br>Baseline |
|--------|-----------------------------------------|------------------------------------------------------|---------------------------------------|----------|--------------------|------------------------------|--------------------|------------------------------|
|        |                                         | Village Uttarsanda at<br>Ch448                       |                                       |          |                    |                              | 636                |                              |
|        |                                         | Village Chhapra<br>(Distance b/w<br>Borewell - Ch471 |                                       |          |                    |                              | 660                |                              |
|        |                                         | LC at Ch483                                          |                                       |          | 682.4              | 1%                           |                    |                              |
| 8      | Sulphate (as SO4)                       | Village Banjdi<br>(Distance b/w<br>Borewell - Ch483  | 400 mg/l                              | 676.92   |                    |                              | 682                |                              |

## **Appendix 4.8: Wastewater Quality Monitoring Data for C6 Package**

Table 64: Treated-Waste-water Quality Data for C6 Package

|     |                      |                  |             | W           | W1           | W       | W2           | W          | W3              | W          | W4         | W               | W5          | WW5             |
|-----|----------------------|------------------|-------------|-------------|--------------|---------|--------------|------------|-----------------|------------|------------|-----------------|-------------|-----------------|
| S.  |                      | MDL<br>(Method   |             | (STP (      | (STP Outlet) |         | (STP Outlet) |            | (STP<br>Outlet) |            | Outlet)    | (S'             | ΓP<br>tlet) | (STP<br>Outlet) |
| No. | Parameters           | Detection Limit) | Limits      | LC at Ch483 |              | LC at ( | LC at Ch434  |            | LC at Ch<br>471 |            | Ch417      | LC at Ch<br>448 |             | LC at<br>Ch450  |
|     |                      | 2()              |             | Jan-23      | Feb-23       | Jan-23  | Feb-23       | Jan-<br>23 | Feb-<br>23      | Jan-<br>23 | Feb-<br>23 | Jan-<br>23      | Feb-<br>23  | Jan-23          |
| 1   | Colour               | 5                | -           | 10          | 5            | 20      | 15           | 20         | 5               | 10         | 15         | 20              | BDL         | 20              |
| 2   | pH(Lab)              | 1                | 5.5-<br>9.0 | 8.41        | 8.16         | 7.45    | 8.01         | 7.71       | 7.53            | 7.32       | 8.22       | 7.2             | 8.03        | 7.7             |
| 3   | TDS                  | 5                | -           | 3966        | 4194         | 1464    | 1500         | 2312       | 3156            | 1226       | 2070       | 1346            | 2268        | 2154            |
| 4   | TSS                  | 5                | 100         | 26.2        | 58           | 16.5    | 66           | 49.7       | 54.8            | 49.2       | 57.4       | 48.5            | 43.5        | 86              |
| 5   | BOD                  | 0.2              | 30          | 27.2        | 26           | 21.5    | 28.4         | 28.6       | 29.2            | 28.4       | 25.2       | 29.2            | 21.4        | 29.2            |
| 6   | COD                  | 0.4              | 250         | 212         | 220          | 136     | 236          | 232        | 220             | 228        | 192        | 236             | 124         | 242             |
| 7   | Oil &<br>Grease      | 1                | 10          | 6.2         | 6.4          | 4.2     | 6.8          | 7.2        | 6.9             | 6.8        | 5.4        | 7.6             | 5.2         | 8.2             |
| 8   | Phenolic<br>Compound | 0.001            | 1           | BDL         | BDL          | BDL     | BDL          | BDL        | BDL             | BDL        | BDL        | BDL             | BDL         | BDL             |

|     |                        |                  |        | W            | W1     | W           | W2      | W               | W3         | W            | W4         | W               | W5         | WW5             |
|-----|------------------------|------------------|--------|--------------|--------|-------------|---------|-----------------|------------|--------------|------------|-----------------|------------|-----------------|
| S.  |                        | MDL<br>(Method   |        | (STP Outlet) |        | (STP (      | Outlet) | (STP<br>Outlet) |            | (STP Outlet) |            | (S'.            |            | (STP<br>Outlet) |
| No. | Parameters             | Detection Limit) | Limits | LC at Ch483  |        | LC at Ch434 |         | LC at Ch<br>471 |            | LC at Ch417  |            | LC at Ch<br>448 |            | LC at<br>Ch450  |
|     |                        | <i>Limit)</i>    |        | Jan-23       | Feb-23 | Jan-23      | Feb-23  | Jan-<br>23      | Feb-<br>23 | Jan-<br>23   | Feb-<br>23 | Jan-<br>23      | Feb-<br>23 | Jan-23          |
| 9   | Ammoniacal<br>Nitrogen | 0.4              | 50     | 14.5         | 17.2   | 4.5         | 16.6    | 32.5            | 29.6       | 13.6         | 14.2       | 48.2            | 18.3       | 38.6            |
| 10  | Phosphate              | 0.1              | 5      | 2.9          | 3.8    | 1.24        | 4.8     | 4.2             | 4.1        | 4.5          | 2.8        | 4.2             | 2.1        | 4.7             |
| 11  | Cyanide                | 0.001            | 0.2    | BDL          | BDL    | BDL         | BDL     | BDL             | BDL        | BDL          | BDL        | BDL             | BDL        | BDL             |
| 12  | Lead                   | 0.01             | 0.1    | BDL          | BDL    | BDL         | BDL     | BDL             | BDL        | BDL          | BDL        | BDL             | BDL        | BDL             |
| 13  | Arsenic                | 0.001            | 0.2    | BDL          | BDL    | BDL         | BDL     | BDL             | BDL        | BDL          | BDL        | BDL             | BDL        | BDL             |
| 14  | Cadmium                | 0.002            | 2      | BDL          | BDL    | 0.42        | 0.51    | BDL             | BDL        | 0.072        | BDL        | 0.026           | BDL        | 0.12            |
| 15  | Chromium               | 0.01             | 2      | 0.12         | 0.36   | 0.87        | 0.78    | 0.91            | 0.86       | 0.12         | 0.09       | 0.47            | 0.36       | 0.86            |

Table 65: Greywater Wastewater Quality Monitoring for C6 package

|     |                                     |      |             | W         | W1          | W           | W2          | W           | W3          | WW4                       | WW5                    |
|-----|-------------------------------------|------|-------------|-----------|-------------|-------------|-------------|-------------|-------------|---------------------------|------------------------|
| S.  | Parameters                          | Unit | Limits      | (Gray wat | er- Outlet) | (Gray wa    | ter Outlet) | (Gray wat   | ter-Outlet) | (Gray<br>Water<br>Outlet) | (Gray Water<br>Outlet) |
| No. |                                     |      |             | LC at     | Ch483       | LC at Ch434 |             | LC at Ch471 |             | LC at<br>Ch417            | LC at Ch450            |
|     |                                     |      |             | Jan-23    | Feb-23      | Jan-23      | Feb-23      | Jan-23      | Feb-23      | Jan-23                    | Feb-23                 |
| 1   | Colour                              |      | -           | BDL       | BDL         | BDL         | BDL         | BDL         | BDL         | BDL                       | 20                     |
| 2   | pH(Lab)                             | -    | 5.5-<br>9.0 | 7.37      | 7.77        | 7.69        | 7.7         | 7.44        | 7.93        | 7.18                      | 7.43                   |
| 3   | TDS                                 |      | 1           | 3509      | 4002        | 645         | 669         | 2502        | 2886        | 716.5                     | 2268                   |
| 4   | TSS                                 | mg/l | 100         | 29.5      | 8.4         | 14.5        | 6.5         | 18.5        | BDL         | 24.5                      | 94                     |
| 5   | BOD (3 Days<br>at 27°C)             | mg/l | 30          | 27.2      | 18.2        | 18          | 7.8         | 29.1        | 13.6        | 27.2                      | 29.4                   |
| 6   | COD                                 | mg/l | 250         | 212       | 136         | 106         | 28          | 182         | 104         | 190                       | 246                    |
| 7   | Oil & Grease                        | mg/l | 10          | 3.9       | BDL         | 2.7         | BDL         | 7.1         | BDL         | 7.2                       | 9.2                    |
| 8   | Phenolic<br>Compound<br>(as C6H5OH) | mg/l | 1           | BDL       | BDL         | BDL         | BDL         | BDL         | BDL         | BDL                       | BDL                    |

|     |                                     |      |        | W         | W1          | W           | W2         | W           | W3          | WW4                       | WW5                    |
|-----|-------------------------------------|------|--------|-----------|-------------|-------------|------------|-------------|-------------|---------------------------|------------------------|
| S.  | <b>Parameters</b>                   | Unit | Limits | (Gray wat | er- Outlet) | (Gray wat   | er Outlet) | (Gray wat   | ter-Outlet) | (Gray<br>Water<br>Outlet) | (Gray Water<br>Outlet) |
| No. |                                     |      |        | LC at     | Ch483       | LC at Ch434 |            | LC at Ch471 |             | LC at<br>Ch417            | LC at Ch450            |
|     |                                     |      |        | Jan-23    | Feb-23      | Jan-23      | Feb-23     | Jan-23      | Feb-23      | Jan-23                    | Feb-23                 |
| 9   | Ammonical<br>Nitrogen (as<br>NH4-N) | mg/l | 50     | 11.5      | 8.2         | 3.2         | 3.6        | 7.2         | 4.4         | 7.9                       | 41.2                   |
| 10  | Phosphate (as PO4)                  | mg/l | 5      | 2.72      | 1.21        | 1.24        | 0.76       | 3.7         | 1.1         | 3.2                       | 4.86                   |
| 11  | Cyanide (as CN)                     | mg/l | 0.2    | BDL       | BDL         | BDL         | BDL        | BDL         | BDL         | BDL                       | BDL                    |
| 12  | Lead (as Pb)                        | mg/l | 0.1    | BDL       | BDL         | BDL         | BDL        | BDL         | BDL         | BDL                       | 0.09                   |
| 13  | Arsenic (as<br>As)                  | mg/l | 0.2    | BDL       | BDL         | BDL         | BDL        | BDL         | BDL         | BDL                       | BDL                    |
| 14  | Cadmium (as<br>Cd)                  | mg/l | 2      | 0.09      | BDL         | 0.032       | BDL        | BDL         | BDL         | 0.09                      | 0.23                   |
| 15  | Chromium (as<br>Cr)                 | mg/l | 2      | 0.12      | 0.08        | 0.12        | BDL        | 0.12        | BDL         | 0.23                      | 1.16                   |

Table 66: RO reject Quality Monitoring Data for C6 Package

|        |                                        |      |         | WW1              | WW2             | WW3              | WW4              | WW5              | WW6              |
|--------|----------------------------------------|------|---------|------------------|-----------------|------------------|------------------|------------------|------------------|
| S. No. | Parameters                             | Unit | Limits  | (RO<br>Rejected) | (RO Rejected)   | (RO<br>Rejected) | (RO<br>Rejected) | (RO<br>Rejected) | (RO<br>Rejected) |
|        |                                        |      |         | BP at Ch<br>483  | LC at Ch<br>434 | LC at Ch<br>417  | LC at Ch<br>450  | LC at Ch<br>447  | LC at Ch<br>407  |
| 1      | Colour                                 |      | -       | BDL              | BDL             | BDL              | BDL              | BDL              | BDL              |
| 2      | pH(Lab)                                | -    | 5.5-9.0 | 7.41             | 7.51            | 7.92             | 7.6              | 8.03             | 7.22             |
| 3      | TDS                                    |      | -       | 4392             | 777             | 1308             | 3024             | 2076             | 5124             |
| 4      | TSS                                    | mg/l | 100     | BDL              | BDL             | BDL              | BDL              | BDL              | BDL              |
| 5      | BOD                                    | mg/l | 30      | 24.5             | BDL             | 1.2              | BDL              | BDL              | BDL              |
| 6      | COD                                    | mg/l | 250     | 80               | BDL             | 8                | BDL              | BDL              | BDL              |
| 7      | Oil & Grease                           | mg/l | 10      | 1.2              | BDL             | 1.1              | BDL              | BDL              | BDL              |
| 8      | Phenolic<br>Compound<br>(as<br>C6H5OH) | mg/l | 1       | BDL              | BDL             | BDL              | BDL              | BDL              | BDL              |
| 9      | Ammonical<br>Nitrogen (as<br>NH4-N)    | mg/l | 50      | BDL              | BDL             | BDL              | BDL              | BDL              | BDL              |

|        |                     |      |        | WW1              | WW2             | WW3              | WW4              | WW5              | WW6              |
|--------|---------------------|------|--------|------------------|-----------------|------------------|------------------|------------------|------------------|
| S. No. | Parameters          | Unit | Limits | (RO<br>Rejected) | (RO Rejected)   | (RO<br>Rejected) | (RO<br>Rejected) | (RO<br>Rejected) | (RO<br>Rejected) |
|        |                     |      |        | BP at Ch<br>483  | LC at Ch<br>434 | LC at Ch<br>417  | LC at Ch<br>450  | LC at Ch<br>447  | LC at Ch<br>407  |
| 10     | Phosphate (as PO4)  | mg/l | 5      | BDL              | 0.07            | 0.07             | BDL              | BDL              | BDL              |
| 11     | Cyanide (as CN)     | mg/l | 0.2    | BDL              | BDL             | BDL              | BDL              | BDL              | BDL              |
| 12     | Lead (as Pb)        | mg/l | 0.1    | BDL              | BDL             | BDL              | BDL              | BDL              | BDL              |
| 13     | Arsenic (as<br>As)  | mg/l | 0.2    | BDL              | BDL             | BDL              | BDL              | BDL              | BDL              |
| 14     | Cadmium (as Cd)     | mg/l | 2      | BDL              | BDL             | BDL              | BDL              | BDL              | BDL              |
| 15     | Chromium<br>(as Cr) | mg/l | 2      | BDL              | BDL             | BDL              | BDL              | BDL              | BDL              |

## **Appendix 4.9: Vibration Monitoring Data for C6 Package**

Table 67: Vibration Monitoring Data for C6 Package in January 2023

| Sr. No. | Vibration<br>Quality                              | Location                                        | Co-ordinate                             | Sampling Date | Maximum | Minimum | Average |
|---------|---------------------------------------------------|-------------------------------------------------|-----------------------------------------|---------------|---------|---------|---------|
|         |                                                   |                                                 |                                         | 02-Jan        | 0.000   | 0.000   | 0.000   |
| 1       | V-1                                               | Village-Karodiya, Active Project site at Ch     | 22°21'51"N,                             | 09-Jan        | 0.000   | 0.000   | 0.000   |
| 1       | V-1                                               | 402                                             | 73°09'29"E                              | 16-Jan        | 0.000   | 0.000   | 0.000   |
|         |                                                   |                                                 |                                         | 24-Jan        | 0.000   | 0.000   | 0.000   |
|         |                                                   |                                                 |                                         | 02-Jan        | 0.000   | 0.000   | 0.000   |
| 2       | V-2                                               | DD Dochwoth willows at ab. 407                  | 220222211                               | 09-Jan        | 0.000   | 0.000   | 0.000   |
| 2       | V-2                                               | BP, Dashrath village at ch -407                 | 22°22'23"N, 73°09'55"E                  | 16-Jan        | 0.000   | 0.000   | 0.000   |
|         |                                                   |                                                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 24-Jan        | 0.000   | 0.000   | 0.000   |
|         |                                                   |                                                 |                                         | 02-Jan        | 0.300   | 0.000   | 0.002   |
| 2       | V-3                                               | Village-Omkarpura, Active Project site at Ch405 | 22°22'58"N, 73°09'52"E                  | 09-Jan        | 0.000   | 0.000   | 0.000   |
| 3       | V-3                                               |                                                 |                                         | 16-Jan        | 0.000   | 0.000   | 0.000   |
|         |                                                   |                                                 |                                         | 24-Jan        | 0.000   | 0.000   | 0.000   |
|         |                                                   |                                                 |                                         | 02-Jan        | 0.000   | 0.000   | 0.000   |
| 4       | X7.4                                              | DD Deissans Willes et al. 417                   | 22°23 56"N,                             | 09-Jan        | 0.000   | 0.000   | 0.000   |
| 4       | V-4                                               | BP, Rajupura Village at ch -417                 | 73°09'20"E                              | 16-Jan        | 0.000   | 0.000   | 0.000   |
|         |                                                   |                                                 |                                         | 24-Jan        | 0.000   | 0.000   | 0.000   |
|         |                                                   |                                                 |                                         | 02-Jan        | 0.000   | 0.000   | 0.000   |
| 5       | V 5                                               | illana Calcarda Antiva Duniant sita at Ch. 412  | 22°25'44"N,                             | 09-Jan        | 0.100   | 0.000   | 0.001   |
| 3       | V-5 Village-Sakarda, Active Project site at Ch412 | 73°07'14"E                                      | 16-Jan                                  | 0.000         | 0.000   | 0.000   |         |
|         |                                                   | ,5 0,1. 1                                       | 24-Jan                                  | 0.000         | 0.000   | 0.000   |         |
|         |                                                   | M/a Charati Commonantical Ltd. DD at Ch         |                                         | 03-Jan        | 0.000   | 0.000   | 0.000   |
| 6       | V-6                                               | M/s Shruti Cosmoceutical Ltd .BP at Ch-         | 22°27'19"N,                             | 10-Jan        | 0.100   | 0.000   | 0.001   |
|         | 433+900                                           |                                                 | 72°05'05"E                              | 17-Jan        | 0.000   | 0.000   | 0.000   |

| Sr. No. | Vibration<br>Quality | Location                                      | Co-ordinate                             | Sampling Date | Maximum | Minimum | Average |
|---------|----------------------|-----------------------------------------------|-----------------------------------------|---------------|---------|---------|---------|
|         |                      |                                               |                                         | 25-Jan        | 0.000   | 0.000   | 0.000   |
|         |                      |                                               |                                         | 03-Jan        | 0.000   | 0.000   | 0.000   |
|         | V7                   | Village-Rawdapura,                            | 22°28'25"N,                             | 10-Jan        | 0.000   | 0.000   | 0.000   |
|         | V /                  | Active Project site at Ch437                  | 73°03'57"E                              | 17-Jan        | 0.000   | 0.000   | 0.000   |
|         |                      |                                               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 25-Jan        | 0.000   | 0.000   | 0.000   |
|         |                      |                                               |                                         | 03-Jan        | 0.300   | 0.000   | 0.002   |
| 0       | V-8                  | Village-Rawdapura, Active Project site at Ch  | 22024/12//NI                            | 10-Jan        | 0.000   | 0.000   | 0.000   |
| 8       | V-8                  | 438                                           | 22°34'12"N, - 72°59'16"E                | 17-Jan        | 0.000   | 0.000   | 0.000   |
|         |                      |                                               | ,2 3, 10 2                              | 25-Jan        | 0.000   | 0.000   | 0.000   |
|         |                      |                                               |                                         | 03-Jan        | 0.000   | 0.000   | 0.000   |
| 9       | V-9                  | Village-Jivapura, Active Project site at Ch   | 22°35'17"N,                             | 10-Jan        | 0.000   | 0.000   | 0.000   |
| 9       | V-9                  | 439                                           | 72°58'19"E                              | 17-Jan        | 0.000   | 0.000   | 0.000   |
|         |                      |                                               |                                         | 25-Jan        | 0.000   | 0.000   | 0.000   |
|         |                      |                                               |                                         | 03-Jan        | 0.000   | 0.000   | 0.000   |
| 10      | V-10                 | Willow Davissi Active Desirat site at Ch. 441 | 22°38'31"N,                             | 10-Jan        | 0.000   | 0.000   | 0.000   |
| 10      | V-10                 | Village-Boriavi, Active Project site at Ch441 | 72°54'24"E                              | 17-Jan        | 0.000   | 0.000   | 0.000   |
|         |                      |                                               |                                         | 25-Jan        | 0.000   | 0.000   | 0.000   |
|         |                      |                                               |                                         | 04-Jan        | 0.000   | 0.000   | 0.000   |
| 11      | V-11                 | DD Hyterson do villago et al. 447             | 22°39'01"N,                             | 11-Jan        | 0.000   | 0.000   | 0.000   |
| 11      | V-11                 | BP ,Uttarsanda village at ch -447             | 72°53'06"E                              | 18-Jan        | 0.000   | 0.000   | 0.000   |
|         |                      |                                               |                                         | 27-Jan        | 0.100   | 0.000   | 0.001   |
|         |                      |                                               |                                         | 04-Jan        | 0.100   | 0.000   | 0.001   |
| 10      | V/10                 | M/s Clabal Madicina Day 144 at 1,440          | 22°39'05"N,                             | 11-Jan        | 0.000   | 0.000   | 0.000   |
| 12      | V12                  | M/s Global Medicine Pvt.Ltd.at ch-448         | 72°53'03"E                              | 18-Jan        | 0.000   | 0.000   | 0.000   |
|         |                      |                                               |                                         | 27-Jan        | 0.000   | 0.000   | 0.000   |
| 13      | V-13                 |                                               |                                         | 04-Jan        | 0.200   | 0.000   | 0.001   |

| Sr. No. | Vibration<br>Quality | Location                                              | Co-ordinate               | Sampling Date | Maximum        | Minimum | Average |
|---------|----------------------|-------------------------------------------------------|---------------------------|---------------|----------------|---------|---------|
|         |                      |                                                       |                           | 11-Jan        | 0.100          | 0.000   | 0.002   |
|         |                      | Village-Uttarsanda, Active Project site at Ch<br>449  | 22°39'11"N,               | 18-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                                       | 72°52'54"E                | 27-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                                       |                           | 04-Jan        | 0.000          | 0.000   | 0.000   |
| 14      | V-14                 | BP, Piplag Village at ch -450                         | 22°39'33"N,               | 11-Jan        | 0.100          | 0.000   | 0.001   |
| 14      | V-14                 | Dr, ripiag village at cli -430                        | 72°51'58"E                | 18-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                                       |                           | 27-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                                       |                           | 04-Jan        | 0.000          | 0.000   | 0.000   |
| 15      | V-15                 | Williams Dummal Active President site at Ch. 452      | 22°40'00''N               | 11-Jan        | 0.000          | 0.000   | 0.000   |
| 15      | V-15                 | Village-Dumral, Active Project site at Ch452          | 22°40'08"N,<br>72°50'37"E | 18-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                                       |                           | 27-Jan        | 0.000          | 0.000   | 0.000   |
| 16      | V-16                 | Active Construction Site Near Degam Village at Ch.462 | 22°44'05"N,<br>72°46'46"E | N             | o Construction | n       |         |
|         |                      |                                                       |                           | 05-Jan        | 0.000          | 0.000   | 0.000   |
| 17      | V-17                 | William Danier Adding Business of the ACC             | 22°47'07"N,               | 12-Jan        | 0.000          | 0.000   | 0.000   |
| 1/      | V-1/                 | Village-Degam, Active Project site at Ch463           | 72°44'32"E                | 19-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                                       |                           | 28-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                                       |                           | 05-Jan        | 0.100          | 0.000   | 0.001   |
| 18      | V-18                 | Willows Dakus Antique Duningt site at Ch. 466         | 22°47'31"N,               | 12-Jan        | 0.100          | 0.000   | 0.001   |
| 18      | V-18                 | Village-Babra, Active Project site at Ch466           | 72°44'15"E                | 19-Jan        | 0.200          | 0.000   | 0.001   |
|         |                      |                                                       | , 2                       | 28-Jan        | 0.100          | 0.000   | 0.001   |
|         |                      |                                                       |                           | 05-Jan        | 0.000          | 0.000   | 0.000   |
| 10      | V 10                 | Village-Katakpura, Active Project site at Ch          | 2205211411NT              | 12-Jan        | 0.000          | 0.000   | 0.000   |
| 19      | V-19                 | 468                                                   | 22°53'14"N, 72°40'06"E    | 19-Jan        | 0.100          | 0.000   | 0.002   |
|         |                      |                                                       | ,2 .000 L                 | 28-Jan        | 0.200          | 0.000   | 0.001   |
| 20      | V-20                 | BP, Chhapra village at ch -470+750                    |                           | 05-Jan        | 0.100          | 0.000   | 0.003   |

| Sr. No. | Vibration<br>Quality | Location                                     | Co-ordinate                | Sampling Date | Maximum        | Minimum | Average |
|---------|----------------------|----------------------------------------------|----------------------------|---------------|----------------|---------|---------|
|         |                      |                                              | 2205 41451124              | 12-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                              | 22°54'47"N, 72°38'55"E     | 19-Jan        | 0.100          | 0.000   | 0.001   |
|         |                      |                                              | 72 3033 E                  | 28-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                              |                            | 06-Jan        | 0.000          | 0.000   | 0.000   |
| 21      | V-21                 | Village-Kanij, Active Project site at Ch476  | 22°55'41"N,                | 13-Jan        | 0.000          | 0.000   | 0.000   |
| 21      | V-Z1                 | vinage-Kanij, Active Project site at Cii470  | 72°38'26"E                 | 20-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                              |                            | 28-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                              |                            | 06-Jan        | 0.200          | 0.000   | 0.001   |
| 22      | V-22                 | Villaga Vanii Astiva Duniast site at Ch. 479 | 22°55'54"NI                | 13-Jan        | 0.000          | 0.000   | 0.000   |
| 22      | V-22                 | Village-Kanij, Active Project site at Ch478  | 22°55'54"N, 72°38'18"E     | 20-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                              |                            | N             | o Construction | n       |         |
|         |                      |                                              |                            | 06-Jan        | 0.000          | 0.000   | 0.000   |
| 23      | V23                  | DD Dodaiodi outpost et ab. 492               | 22°53'05''N                | 13-Jan        | 0.000          | 0.000   | 0.000   |
| 23      | V 23                 | BP, Badejadi outpost, at ch -483             | 72°39'56''E                | 20-Jan        | 0.000          | 0.000   | 0.000   |
|         |                      |                                              |                            | 28-Jan        | 0.000          | 0.000   | 0.000   |
| 24      | V24                  | Village Gamdi at Ch. 488                     | 22°53'05"N,<br>72°'39'56"E | N             | o Construction | n       |         |

Table 68: Vibration Monitoring Data for C6 Package in February 2023

| Sr. No. | Vibration<br>Quality | Location                                  | Co-ordinate | Sampling Date | Maximum | Minimum | Average |
|---------|----------------------|-------------------------------------------|-------------|---------------|---------|---------|---------|
|         |                      |                                           |             | 01-Feb-23     | 0.000   | 0.000   | 0.000   |
| 1       | V-1                  | Village-Karodiya, Active Project site at  | 22°21'51"N, | 08-Feb-23     | 0.000   | 0.000   | 0.000   |
| 1       | V-1                  | chainage-402                              | 73°09'29"E  | 13-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                           |             | 20-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                           |             | 01-Feb-23     | 0.000   | 0.000   | 0.000   |
| 2       | V-2                  | DD Dockmath willows at al. 407            | 22°22'23"N, | 08-Feb-23     | 0.100   | 0.000   | 0.001   |
| 2       | V-2                  | BP,Dashrath village at ch -407            | 73°09'55"E  | 13-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                           |             | 20-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                           |             | 01-Feb-23     | 0.000   | 0.000   | 0.000   |
| 2       | W 2                  | Village-Omkarpura, Active Project site at | 22°22'58"N, | 08-Feb-23     | 0.000   | 0.000   | 0.000   |
| 3       | V-3                  | chainage-405                              | 73°09'52"E  | 13-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                           |             | 20-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                           |             | 01-Feb-23     | 0.000   | 0.000   | 0.000   |
| 4       | V-4                  | DD Dairrey Willege et al. 417             | 22°23 56"N, | 08-Feb-23     | 0.100   | 0.000   | 0.001   |
| 4       | V-4                  | BP,Rajupura Village at ch -417            | 73°09'20"E  | 13-Feb-23     | 0.100   | 0.000   | 0.002   |
|         |                      |                                           |             | 20-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                           |             | 01-Feb-23     | 0.000   | 0.000   | 0.000   |
| _       | V/ 5                 | Village-Sakarda,, Active Project site at  | 22°25'44"N, | 08-Feb-23     | 0.100   | 0.000   | 0.001   |
| 5       | V-5                  | chainage-412                              | 73°07'14"E  | 13-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                           |             | 20-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                           |             | 01-Feb-23     | 0.000   | 0.000   | 0.000   |
| 6       | 6 V-6                | M/s Shruti Cosmoceutical Ltd .BP at Ch-   | 22°27'19"N, | 08-Feb-23     | 0.100   | 0.000   | 0.001   |
| О       |                      | 433+900                                   | 72°05'05"E  | 14-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                           |             | 20-Feb-23     | 0.000   | 0.000   | 0.000   |
|         | V7                   |                                           |             | 02-Feb        | 0.000   | 0.000   | 0.000   |

| Sr. No. | Vibration<br>Quality | Location                                               | Co-ordinate               | Sampling Date | Maximum | Minimum | Average |
|---------|----------------------|--------------------------------------------------------|---------------------------|---------------|---------|---------|---------|
|         |                      | Village-Rawdapura, Active Project site at chainage-437 | 22°28'25"N,<br>73°03'57"E |               | NCW     |         |         |
|         |                      |                                                        |                           | 02-Feb-23     | 0.000   | 0.000   | 0.000   |
| 8       | V-8                  | Village-Rawdapura, Active Project site at              | 22°34'12"N,               | 08-Feb-23     | 0.000   | 0.000   | 0.000   |
| 8       | V-8                  | chainage-438                                           | 72°59'16"E                | 14-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                        |                           | 21-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                        |                           | 02-Feb-23     | 0.000   | 0.000   | 0.000   |
| 9       | V-9                  | Village-Jivapura, Active Project site at               | 22°35'17"N,               | 09-Feb-23     | 0.100   | 0.000   | 0.001   |
| 9       | V-9                  | chainage-439                                           | 72°58'19"E                | 14-Feb-23     | 0.200   | 0.000   | 0.001   |
|         |                      |                                                        |                           | 21-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                        |                           | 02-Feb-23     | 0.000   | 0.000   | 0.000   |
| 10      | V-10                 | Village-Boriavi, Active Project site at                | 22°38'31"N,               | 09-Feb-23     | 0.000   | 0.000   | 0.000   |
| 10      | V-10                 | chainage-441                                           | 72°54'24"E                | 14-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                        |                           | 21-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                        |                           | 02-Feb-23     | 0.000   | 0.000   | 0.000   |
| 11      | V-11                 | DD Littersande village et ch. 447                      | 22°39'01"N,               | 09-Feb-23     | 0.000   | 0.000   | 0.000   |
| 11      | V-11                 | BP,Uttarsanda village at ch -447                       | 72°53'06"E                | 14-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                        |                           | 21-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                        |                           | 02-Feb-23     | 0.100   | 0.000   | 0.001   |
| 12      | V12                  | M/s Global Medicine Pvt.Ltd.at ch-448                  | 22°39'05"N,               | 09-Feb-23     | 0.000   | 0.000   | 0.000   |
| 12      | V12                  | M/s Global Medicine Pvt.Ltd.at cn-448                  | 72°53'03"E                | 14-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                        |                           | 21-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                        |                           | 03-Feb-23     | 0.100   | 0.000   | 0.002   |
| 13      | V-13                 | Village-Uttarsanda, Active Project site at             | 22°39'11"N,               | 10-Feb-23     | 0.100   | 0.000   | 0.001   |
| 13      | V-13                 | chainage-449                                           | 72°52'54"E                | 15-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                        |                           | 22-Feb-23     | 0.000   | 0.000   | 0.000   |

| Sr. No. | Vibration<br>Quality | Location                                                 | Co-ordinate               | Sampling Date | Maximum | Minimum | Average |
|---------|----------------------|----------------------------------------------------------|---------------------------|---------------|---------|---------|---------|
| 14      | V-14                 | BP,Piplag Village at ch -450                             | 22°39'33"N,<br>72°51'58"E | 03-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 10-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 15-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 22-Feb-23     | 0.000   | 0.000   | 0.000   |
| 15      | V-15                 | Village-Dumral, Active Project site at chainage-452      | 22°40'08"N,<br>72°50'37"E | 03-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 10-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 15-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 22-Feb-23     | 0.000   | 0.000   | 0.000   |
| 16      | V-16                 | Active Construction Site Near Degam<br>Village at Ch.462 | 22°44'05"N,<br>72°46'46"E | 03-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 10-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 15-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 22-Feb-23     | 0.000   | 0.000   | 0.000   |
| 17      | V-17                 | Village-Degam, Active Project site at chainage-463       | 22°47'07"N,<br>72°44'32"E | 03-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 10-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 15-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 22-Feb-23     | 0.000   | 0.000   | 0.000   |
| 18      | V-18                 | Village-Babra, Active Project site at chainage-466       | 22°47'31"N,<br>72°44'15"E | 03-Feb-23     | 0.100   | 0.000   | 0.001   |
|         |                      |                                                          |                           | 10-Feb-23     | 0.100   | 0.000   | 0.001   |
|         |                      |                                                          |                           | 15-Feb-23     | 0.200   | 0.000   | 0.001   |
|         |                      |                                                          |                           | 22-Feb-23     | 0.100   | 0.000   | 0.001   |
| 19      | V-19                 | Village-Katakpura, Active Project site at chainage-468   | 22°53'14"N,<br>72°40'06"E | 06-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 11-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                          |                           | 16-Feb-23     | 0.100   | 0.000   | 0.002   |
|         |                      |                                                          |                           | 23-Feb-23     | 0.200   | 0.000   | 0.001   |
| 20      | V-20                 | BP,Chhapra village at ch -470+750                        | 22°54'47"N,<br>72°38'55"E | 06-Feb-23     | 0.000   | 0.000   | 0.000   |
| 20      |                      |                                                          |                           | 11-Feb-23     | 0.000   | 0.000   | 0.000   |

| Sr. No. | Vibration<br>Quality | Location                                           | Co-ordinate               | Sampling Date | Maximum | Minimum | Average |
|---------|----------------------|----------------------------------------------------|---------------------------|---------------|---------|---------|---------|
|         |                      |                                                    |                           | 16-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                    |                           | 23-Feb-23     | 0.000   | 0.000   | 0.000   |
| 21      | V-21                 | Village-Kanij, Active Project site at chainage-476 | 22°55'41"N,<br>72°38'26"E |               | NCW     |         |         |
|         |                      |                                                    |                           | 06-Feb-23     | 0.100   | 0.000   | 0.001   |
| 22      | V-22                 | Village-Kanij, Active Project site at              | 22°55'54"N,               | 11-Feb-23     | 0.100   | 0.000   | 0.001   |
| 22      | V-22                 | chainage-478                                       | 72°38'18"E                | 16-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                    |                           | 23-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                    |                           | 11-Feb-23     | 0.000   | 0.000   | 0.000   |
| 23      | V23                  | DD Dodoiodi out nost at ab 402                     | 22°53'05''N               | 17-Feb-23     | 0.000   | 0.000   | 0.000   |
| 23      | V 23                 | BP,Badejadi out post, at ch -483                   | 72°39'56''E               | 23-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                    |                           | 23-Feb-23     | 0.000   | 0.000   | 0.000   |
|         | 24 V24               |                                                    |                           | 06-Feb-23     | 0.300   | 0.000   | 0.002   |
| 24      |                      | Village Gamdi at Ch. 488                           | 22°53'05"N,               | 11-Feb-23     | 0.000   | 0.000   | 0.000   |
| 24      |                      |                                                    | 72°'39'56"E               | 17-Feb-23     | 0.000   | 0.000   | 0.000   |
|         |                      |                                                    |                           | 23-Feb-23     | 0.000   | 0.000   | 0.000   |

Table 69:Vibration Monitoring Data for C6 Package in March 2023

| Sr. No. | Vibration<br>Quality                  | Location                                                   | Co-ordinate                                        | Sampling Date | Maximum | Minimum | Average |       |
|---------|---------------------------------------|------------------------------------------------------------|----------------------------------------------------|---------------|---------|---------|---------|-------|
|         |                                       |                                                            |                                                    | 01.3.23       | 0.000   | 0.000   | 0.000   |       |
| 1       | V-1                                   | Village-Kadoriya, Active Project Site At ch-               | 22°21'20"N,                                        | 09.3.23       | 0.000   | 0.000   | 0.000   |       |
| 1       | V-1                                   | 402+750                                                    | 73°09'19"E                                         | 16.3.23       | 0.300   | 0.000   | 0.002   |       |
|         |                                       |                                                            |                                                    | 23.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       |                                                            | <u> </u>                                           | 01.3.23       | 0.000   | 0.000   | 0.000   |       |
| 2       | V-2                                   | Village-Dashrath, Active Project Site at ch-               | 22°25'33"N,                                        | 09.3.23       | 0.000   | 0.000   | 0.000   |       |
| 2       | V-2                                   | 407+550                                                    | 73°07'27"E                                         | 16.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       |                                                            |                                                    | 23.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       |                                                            |                                                    | 01.3.23       | 0.300   | 0.000   | 0.002   |       |
| 3       | V-3                                   | Village-Omkarpura Active Project site at Ch.               | 22°22'48"N,                                        | 09.3.23       | 0.000   | 0.000   | 0.000   |       |
| 3       | V-3                                   | 405+700                                                    | 73°09'50"E                                         | 16.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       |                                                            |                                                    | 23.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       |                                                            |                                                    | 01.3.23       | 0.000   | 0.000   | 0.000   |       |
| 4       | V-4                                   | Village Rajupura, Bathing Plant, Casting yard at Ch417+650 | 22°27'22"N,                                        | 09.3.23       | 0.000   | 0.000   | 0.000   |       |
| 4       | V -4                                  |                                                            | 72°05'05"E                                         | 16.3.23       | 0.100   | 0.000   | 0.001   |       |
|         |                                       |                                                            |                                                    | 23.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       |                                                            |                                                    | 01.3.23       | 0.000   | 0.000   | 0.000   |       |
| 5       | V/ 5                                  | Villaga Calcarda Activa Duciact Cita et ab 412             | V-5 Village-Sakarda, Active Project Site at ch-412 | 22°25'39"N,   | 09.3.23 | 0.000   | 0.000   | 0.000 |
| 3       | V-3                                   | vinage-sakarda, Active Project Site at Cii-412             | 73°07'21"E                                         | 16.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       |                                                            |                                                    | 23.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       |                                                            |                                                    | 02.3.23       | 0.000   | 0.000   | 0.000   |       |
| 6       | V-6                                   | M/C Charti Composition and I td 422 1900                   | 22°34'13"N,                                        | 10.3.23       | 0.100   | 0.000   | 0.001   |       |
| O       | V-0                                   | M/S Shruti Cosmoceutical pvt.Ltd. 433+800                  | 72°59'17"E                                         | 17.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       |                                                            |                                                    | 24.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       |                                                            |                                                    | 02.3.23       | 0.000   | 0.000   | 0.000   |       |
|         | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | Active Construction Site Near Jivapura                     | 22°36'27"N,                                        | 10.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       | Village at Ch.439+100                                      | 72°57'18"E                                         | 17.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       |                                                            | <u>                                     </u>       | 24.3.23       | 0.000   | 0.000   | 0.000   |       |
|         |                                       |                                                            | 22027116UNI                                        | 02.3.23       | 0.000   | 0.000   | 0.000   |       |
| 8       | V-9                                   |                                                            | ge 22°37'16"N,<br>72°56'34"E                       | 10.3.23       | 0.200   | 0.000   | 0.001   |       |
|         |                                       | at C11.441+100                                             | 12 30 34 E                                         | 17.3.23       | 0.000   | 0.000   | 0.000   |       |

| Sr. No. | Vibration<br>Quality | Location                                        | Co-ordinate  | Sampling Date | Maximum | Minimum | Average |
|---------|----------------------|-------------------------------------------------|--------------|---------------|---------|---------|---------|
|         |                      |                                                 |              | 24.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 03.3.23       | 0.000   | 0.000   | 0.000   |
| 0       | 37.11                | W:11 1144 1- DD 447+000                         | 22°39'01"N,  | 13.3.23       | 0.000   | 0.000   | 0.000   |
| 9       | V-11                 | Village-Uttarsanda, BP 447+900                  | 72°53'06"E   | 20.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 27.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 03.3.23       | 0.000   | 0.000   | 0.000   |
| 10      | V/ 10                | M/a Clabal Madiaina at Ch. 449                  | 22°39'05"N,  | 13.3.23       | 0.000   | 0.000   | 0.000   |
| 10      | V-12                 | M/s Global Medicine at Ch. 448                  | 72°53'03"E   | 20.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 27.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 03.3.23       | 0.000   | 0.000   | 0.000   |
| 1.1     | X7 10                | Active Construction Site Near Uttarsanda        | 22°39'23"N,  | 13.3.23       | 0.000   | 0.000   | 0.000   |
| 11      | V-13                 | Village at Ch.449+400                           | 72°52'20"E   | 20.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 27.3.23       | 0.100   | 0.000   | 0.001   |
|         |                      |                                                 |              | 03.3.23       | 0.100   | 0.000   | 0.001   |
| 10      | 10                   | Village-Piplag, BP 450+100                      | 22°39'23"N,  | 13.3.23       | 0.000   | 0.000   | 0.000   |
| 12      | V-14                 |                                                 | 72°51'58"E   | 20.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 27.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 03.3.23       | 0.200   | 0.000   | 0.001   |
| 10      | 37.15                | Active Construction Site Near Piplag Village at | 22°39'52"N,  | 13.3.23       | 0.100   | 0.000   | 0.002   |
| 13      | V-15                 | Ch.451                                          | 72°51'13"E   | 20.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 27.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 06.3.23       | 0.000   | 0.000   | 0.000   |
| 1.4     | V 16                 | Active Construction Site Near Degam Village     | 22°44'05"N,  | 14.3.23       | 0.100   | 0.000   | 0.001   |
| 14      | V-16                 | at Ch.462                                       | 72°46'46"E   | 21.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 28.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 06.3.23       | 0.000   | 0.000   | 0.000   |
| 1.7     | 15 V-17              | Active Construction Site Near Piplag Village at | 22°4428"N,   | 14.3.23       | 0.000   | 0.000   | 0.000   |
| 15      |                      | Ch.463+600                                      | 72°46'28"E   | 21.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                                 |              | 28.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      | A C C C C C N D 1 Y                             | 220451241131 | 06.3.23       | 0.000   | 0.000   | 0.000   |
| 17      | V-18                 |                                                 | 22°45'34"N,  | 14.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      | Ch.466+000                                      | 72°45'41"E   | 21.3.23       | 0.000   | 0.000   | 0.000   |

| Sr. No. | Vibration<br>Quality | Location                                    | Co-ordinate               | Sampling Date | Maximum | Minimum | Average |
|---------|----------------------|---------------------------------------------|---------------------------|---------------|---------|---------|---------|
|         |                      |                                             |                           | 28.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                             |                           | 06.3.23       | 0.100   | 0.000   | 0.001   |
| 18      | V-19                 | Active Construction Site Near Katakpura     | 22°46'28"N,               | 14.3.23       | 0.100   | 0.000   | 0.001   |
| 10      | V-19                 | Village at Ch.468+750                       | 72°44'47"E                | 21.3.23       | 0.200   | 0.000   | 0.001   |
|         |                      |                                             |                           | 28.3.23       | 0.100   | 0.000   | 0.001   |
|         |                      |                                             |                           | 06.3.23       | 0.000   | 0.000   | 0.000   |
| 10      | V 20                 | Village-Chhapra, BP 470+400                 | 22°47'31"N,<br>72°44'15"E | 14.3.23       | 0.000   | 0.000   | 0.000   |
| 19      | 19 V-20              |                                             |                           | 21.3.23       | 0.100   | 0.000   | 0.002   |
|         |                      |                                             |                           | 28.3.23       | 0.200   | 0.000   | 0.001   |
|         |                      |                                             |                           | 07.3.23       | 0.100   | 0.000   | 0.003   |
| 20      | V 22                 | Active Construction Site Near Barajadi Out  | 22°53'14"N,               | 15.3.23       | 0.000   | 0.000   | 0.000   |
| 20      | V-23                 | Police station at ch-483                    | 72°40'06"E                | 22.3.23       | 0.100   | 0.000   | 0.001   |
|         |                      |                                             |                           | 29.3.23       | 0.000   | 0.000   | 0.000   |
|         |                      |                                             |                           | 07.3.23       | 0.000   | 0.000   | 0.000   |
| 21      | 21 V-24 Ac           | Active Construction Site Near Ropda Village | 22°55'48"N,               | 15.3.23       | 0.200   | 0.000   | 0.002   |
| 21      |                      | 1 &                                         | 72°38'18"E                | 22.3.23       | 0.100   | 0.000   | 0.002   |
|         |                      |                                             |                           | 29.3.23       | 0.000   | 0.000   | 0.000   |

# **Annexure 5: Environmental Data of C7 Package**

### **Appendix 5.1: Ambient Air Quality Monitoring Data for C7 Package**

Table 70: Ambient Air quality Monitoring data for C7 Package for particulate matter

|        |                                             |                   | PM10     |                              |                   | PM2.5    |                              |
|--------|---------------------------------------------|-------------------|----------|------------------------------|-------------------|----------|------------------------------|
| Sr. No | Location                                    | NAAQS<br>standard | Baseline | Construction<br>Phase Feb 23 | NAAQS<br>standard | Baseline | Construction<br>Phase Feb 23 |
| 1      | Casting Yard No 1 BP                        | 100               | 92.05    | 87.61                        | 60                | 53.11    | 54.16                        |
| 2      | Ch 489+467 CY 02 Main Gate                  | 100               | 90.58    | 84.25                        | 60                | 51.75    | 48.74                        |
| 3      | Viaduct 01. ch 490, Nr railway colony vatav | 100               | 87.65    | 78.11                        | 60                | 51.02    | 52.07                        |
| 4      | CH 491 Raghveer Ind. Vatva                  | 100               | 91.43    | 81.15                        | 60                | 52.17    | 46.24                        |
| 5      | Ch 493, Nr. Sheetal saurabh school          | 100               | 86.64    | 85.61                        | 60                | 50.82    | 50.41                        |
| 6      | CH 495, Nr, Ghodasar Canal                  | 100               | 92.06    | 90.2                         | 60                | 45.81    | 43.74                        |
| 7      | Viaduct 1, Ch 496, Nr. Maninagar Railway    | 100               | 93.88    | 95.23                        | 60                | 55.92    | 55.82                        |
| 8      | Viaduct 2, Ch 498, Nr. Railway Colony       | 100               | 76.76    | 93.27                        | 60                | 38.42    | 53.32                        |
| 9      | CH 499+800 Ahmedabad Station Nr. BP         | 100               | 100.6    | 98.5                         | 60                | 61.25    | 56.65                        |
| 10     | Viaduct 02 CH 500+750 Nr. Parcel Office     | 100               | 83.71    | 89.08                        | 60                | 43.21    | 49.99                        |
| 11     | Viaduct 02 CH 501 Nr. Fatima Masjid         | 100               | 86.79    | 81.7                         | 60                | 53.83    | 43.34                        |
| 12     | CH 504+600, Sabarmati Riverfront            | 100               | 71.41    | 61.09                        | 60                | 33.21    | 49.57                        |
| 13     | CH 505, Sabarmati Station, Nr. BP           | 100               | 95.5     | 76.26                        | 60                | 56.96    | 44.99                        |

Table 71: Ambient Air quality Monitoring data for C7 Package for gaseous pollutants

|        |                  |                                             |                   | SO2      |                              |                   | Nox      |                              |                   | CO       |                              |
|--------|------------------|---------------------------------------------|-------------------|----------|------------------------------|-------------------|----------|------------------------------|-------------------|----------|------------------------------|
| Sr. No | Location<br>Code | Location                                    | NAAQS<br>standard | Baseline | Construction<br>Phase Feb 23 | NAAQS<br>standard | Baseline | Construction<br>Phase Feb 23 | NAAQS<br>standard | Baseline | Construction<br>Phase Feb 23 |
| 1      | AAQ 1            | Casting Yard No 1 BP                        | 80                | 19.5     | 16.69                        | 80                | 36.99    | 32.76                        | 4                 | 0.693    | 0.79                         |
| 2      | AAQ 2            | Ch 489+467 CY 02 Main Gate                  | 80                | 16.82    | 14.84                        | 80                | 30.88    | 17.89                        | 4                 | 0.68     | 0.82                         |
| 3      | AAQ 3            | Viaduct 01. ch 490, Nr railway colony vatav | 80                | 16.62    | 16.69                        | 80                | 28.63    | 23.44                        | 4                 | 0.68     | 0.66                         |
| 4      | AAQ 4            | CH 491 Raghveer Ind. Vatva                  | 80                | 20.45    | 14.09                        | 80                | 32.69    | 24.95                        | 4                 | 0.79     | 0.68                         |
| 5      | AAQ 5            | Ch 493, Nr. Sheetal saurabh school          | 80                | 16.91    | 12.51                        | 80                | 29.76    | 24.95                        | 4                 | 0.89     | 0.8                          |
| 6      | AAQ 6            | CH 495, Nr, Ghodasar Canal                  | 80                | 17.71    | 15.34                        | 80                | 32.25    | 27.43                        | 4                 | 0.69     | 0.86                         |
| 7      | AAQ 7            | Viaduct 1, Ch 496, Nr. Maninagar<br>Railway | 80                | 18.54    | 14.41                        | 80                | 32.2     | 25.71                        | 4                 | 0.82     | 0.78                         |
| 8      | AAQ 8            | Viaduct 2, Ch 498, Nr. Railway<br>Colony    | 80                | 14.26    | 13.84                        | 80                | 29.3     | 23.94                        | 4                 | 0.57     | 0.77                         |
| 9      | AAQ 9            | CH 499+800 Ahmedabad Station<br>Nr. BP      | 80                | 19.77    | 14.88                        | 80                | 35.52    | 26.94                        | 4                 | 0.82     | 0.8                          |
| 10     | AAQ 10           | Viaduct 02 CH 500+750 Nr. Parcel Office     | 80                | 15.86    | 14.42                        | 80                | 32.66    | 26.46                        | 4                 | 0.64     | 0.68                         |
| 11     | AAQ 11           | Viaduct 02 CH 501 Nr. Fatima<br>Masjid      | 80                | 18.12    | 15.43                        | 80                | 32.77    | 27.22                        | 4                 | 0.67     | 0.54                         |
| 12     | AAQ 12           | CH 504+600, Sabarmati Riverfront            | 80                | 13.05    | 13.05                        | 80                | 26.48    | 20.65                        | 4                 | 0.45     | 0.36                         |
| 13     | AAQ 13           | CH 505, Sabarmati Station, Nr. BP           | 80                | 15.65    | 13.85                        | 80                | 30.07    | 21.27                        | 4                 | 0.67     | 0.42                         |

## **Appendix 5.2: Ambient Noise Quality Data for C7 Package**

Table 72: Ambient Noise Quality Data for C7 Package

| Sr. No | Code  | Location                   | ANQM<br>Standard | Baseline | Leq Day<br>on Feb 23 | ANQM<br>Standard | Baseline | Leq Night on<br>Feb 23 |
|--------|-------|----------------------------|------------------|----------|----------------------|------------------|----------|------------------------|
| 1      | ANQ 1 | Casting Yard No 1 BP       | 75               | 78       | 75.1                 | 70               | 67.33    | 64.6                   |
| 2      | ANQ 4 | CH 491 Raghveer Ind. Vatva | 75               | 69.76    | 69.26                | 70               | 61.4     | 58.95                  |

# **Annexure 6: Environmental Data of C8 Package**

### **Appendix 6.1: Ambient Air Quality Monitoring Data for C8 Package**

Table 73: Ambient Air quality Monitoring data for C8 Package for particulate matter

|           |                                  |     |                | PM10                         |                              |                                |                |                | PM2.5                        |                              |                                |
|-----------|----------------------------------|-----|----------------|------------------------------|------------------------------|--------------------------------|----------------|----------------|------------------------------|------------------------------|--------------------------------|
| Sr.<br>No | Office &                         |     | Baseline Conc. | Construction Phase<br>Jan 23 | Construction Phase<br>Feb 23 | Construction Phase<br>March 23 | NAAQS standard | Baseline Conc. | Construction Phase<br>Jan 23 | Construction Phase<br>Feb 23 | Construction Phase<br>March 23 |
| 1         | Office &<br>RMC Plant<br>(AAQ1)  | 100 | 78.68          | 71.95                        | 68.56                        | 68.69                          | 60             | 39.58          | 33.74                        | 35.41                        | 35.83                          |
| 2         | Peepleshwar<br>Society<br>(AAQ2) | 100 | 81.63          | 59.12                        | 62.39                        | 57.83                          | 60             | 41.24          | 27.91                        | 33.33                        | 30.41                          |
| 3         | Satva Homes<br>(AAQ3)            | 100 | 58.28          | 73.43                        | 71.77                        | 71.47                          | 60             | 28.74          | 34.58                        | 37.08                        | 33.74                          |

Table 74: Ambient Air quality Monitoring data for C8 Package for gaseous pollutants

|                   |                                   |                   |                | S              | O2                           |                              |                              |                   |                | NOx                          |                              |                              | со                |                |                              |                              |                              |
|-------------------|-----------------------------------|-------------------|----------------|----------------|------------------------------|------------------------------|------------------------------|-------------------|----------------|------------------------------|------------------------------|------------------------------|-------------------|----------------|------------------------------|------------------------------|------------------------------|
| Sr<br>·<br>N<br>o | Location                          | NAAQS<br>standard | Baseline Conc. | Baseline Conc. | Construction<br>Phase Jan 23 | Construction<br>Phase Feb 23 | Construction<br>Phase Mar 23 | NAAQS<br>standard | Baseline Conc. | Construction<br>Phase Jan 23 | Construction<br>Phase Feb 23 | Construction<br>Phase Mar 23 | NAAQS<br>standard | Baseline Conc. | Construction<br>Phase Jan 23 | Construction<br>Phase Feb 23 | Construction<br>Phase Mar 23 |
| 1                 | Office & RMC Plant (AAQ1)         | 80                | 35.83          | 14.17          | 9.6                          | 8.94                         | 10.75                        | 80                | 23.04          | 20.39                        | 17.86                        | 19.12                        | 4                 | 0.50           | 0.5                          | 0.52                         | 0.46                         |
| 2                 | Peepleshwa<br>r Society<br>(AAQ2) | 80                | 30.41          | 19.71          | 10.67                        | 11.8                         | 10.1                         | 80                | 30.55          | 16.76                        | 17.14                        | 16.1                         | 4                 | 0.56           | 0.37                         | 0.41                         | 0.36                         |
| 3                 | Satva<br>Homes<br>(AAQ3)          | 80                | 33.74          | 13.42          | 12.05                        | 11.37                        | 11.17                        | 80                | 22.37          | 20.3                         | 20.98                        | 19.16                        | 4                 | 0.26           | 0.45                         | 0.48                         | 0.43                         |

## **Appendix 6.2: Ambient Noise Quality Data for C8 Package**

Table 75: Ambient Noise Quality Data for C8 Package

| Sr. No | Location                     | ANQM<br>Standard | Baseline | Leq<br>Day on<br>Jan 23 | Leq<br>Day on<br>Feb 23 | Leq<br>Day on<br>Mar 23 | ANQM<br>Standard | Baseline | Leq<br>Night on<br>Jan 23 | Leq<br>Night<br>on Feb<br>23 | Leq<br>Night<br>on Mar<br>23 |
|--------|------------------------------|------------------|----------|-------------------------|-------------------------|-------------------------|------------------|----------|---------------------------|------------------------------|------------------------------|
| 1      | Office & RMC Plant (AAQ1)    | 75               | 64.2     | 62.9                    | 63.2                    | 64                      | 70               | 54.3     | 50.6                      | 50.3                         | 50.4                         |
| 2      | Peepleshwar<br>Society(AAQ2) | 45               | 63.6     | 60.2                    | 59.7                    | 59                      | 40               | 52.4     | 51.5                      | 51                           | 50.1                         |
| 3      | Satva Homes (AAQ3)           | 45               | 61.8     | 54.8                    | 53.6                    | 55.1                    | 40               | 52.7     | 49.3                      | 48.3                         | 49                           |

## **Appendix 6.3: Vibration Monitoring Data for C8 Package**

Table 76: Vibration Monitoring Data for C8 Package in January 2023

| S. No. | Location<br>Code | Monitoring<br>Location  | Date of Monitoring | Location-X<br>(mm/s) | Location-Y<br>(mm/s) | Location-Z<br>(mm/s) | Average (mm/s) |
|--------|------------------|-------------------------|--------------------|----------------------|----------------------|----------------------|----------------|
|        |                  | A alconory A months out | 05-Jan-23          | 1.64                 | 1.74                 | 1.74                 | 1.70           |
| 1      | VM1              | Asharay Apartment       | 11-Jan-23          | 1.24                 | 1.58                 | 1.42                 | 1.41           |
|        |                  | 10                      | 20-Jan-23          | 1.36                 | 1.44                 | 1.56                 | 1.46           |
|        |                  |                         | 05-Jan-23          | 1.54                 | 1.60                 | 1.60                 | 1.58           |
| 2      | VM2              | Pipleshwar Society      | 11-Jan-23          | 1.40                 | 1.56                 | 1.58                 | 1.51           |
|        |                  |                         | 20-Jan-23          | 1.30                 | 1.52                 | 1.56                 | 1.46           |
|        |                  |                         | 05-Jan-23          | 1.66                 | 1.56                 | 1.58                 | 1.60           |
| 3      | 3 VM3            | Satwa Home)             | 11-Jan-23          | 1.04                 | 1.58                 | 1.62                 | 1.41           |
|        |                  | ,                       | 20-Jan-23          | 1.18                 | 1.58                 | 1.48                 | 1.41           |

Table 77: Vibration Monitoring Data for C8 Package in Feb 2023

| S. No. | Location<br>Code | Monitoring<br>Location | Date of Monitoring | Location-X<br>(mm/s) | Location-Y<br>(mm/s) | Location-Z<br>(mm/s) | Average (mm/s) |      |      |
|--------|------------------|------------------------|--------------------|----------------------|----------------------|----------------------|----------------|------|------|
|        |                  | A ahaway A mautumant   | 09-Feb-23          | 1.32                 | 1.58                 | 1.54                 | 1.48           |      |      |
| 1      | VM1              | Asharay Apartment      | 17-Feb-23          | 1.36                 | 1.52                 | 1.42                 | 1.43           |      |      |
|        |                  | 10                     | 21-Feb-23          | 1.4                  | 1.4                  | 1.4                  | 1.4            |      |      |
|        |                  |                        | 09-Feb-23          | 1.44                 | 1.54                 | 1.48                 | 1.48           |      |      |
| 2      | VM2              | Pipleshwar Society     | Pipleshwar Society | Pipleshwar Society   | 17-Feb-23            | 1.44                 | 1.52           | 1.44 | 1.46 |
|        |                  |                        | 21-Feb-23          | 1.36                 | 1.48                 | 1.38                 | 1.40           |      |      |
|        |                  |                        | 09-Feb-23          | 1.40                 | 1.50                 | 1.42                 | 1.44           |      |      |
| 3      | 3 VM3            | Satwa Home)            | 17-Feb-23          | 1.44                 | 1.46                 | 1.15                 | 1.46           |      |      |
|        |                  | ,                      | 21-Feb-23          | 1.36                 | 1.40                 | 1.34                 | 1.36           |      |      |

Table 78: Vibration Monitoring Data for C8 Package in March 2023

| S. No. | Location<br>Code | Monitoring<br>Location | Date of Monitoring | Location-X<br>(mm/s) | Location-Y<br>(mm/s) | Location-Z<br>(mm/s) | Average (mm/s) |
|--------|------------------|------------------------|--------------------|----------------------|----------------------|----------------------|----------------|
|        |                  | A ahamay A manting ant | 09-Mar-23          | 1.42                 | 1.34                 | 1.3                  | 1.35           |
| 1      | VM1              | Asharay Apartment      | 16-Mar-23          | 1.26                 | 1.24                 | 1.24                 | 1.24           |
|        |                  | 10                     | 22-Mar-23          | 0.25                 | 0.24                 | 0.24                 | 0.24           |
|        |                  |                        | 09-Mar-23          | 1.32                 | 1.44                 | 1.30                 | 1.35           |
| 2      | VM2              | Pipleshwar Society     | 16-Mar-23          | 1.26                 | 1.26                 | 1.24                 | 1.25           |
|        |                  |                        | 22-Mar-23          | 0.29                 | 0.26                 | 0.28                 | 0.27           |
|        |                  |                        | 09-Mar-23          | 1.34                 | 1.32                 | 1.36                 | 1.35           |
| 3      | VM3              | Satwa Home)            | 16-Mar-23          | 1.60                 | 1.28                 | 1.18                 | 1.35           |
|        |                  | ,                      | 22-Mar-23          | 0.26                 | 0.25                 | 0.25                 | 0.26           |

# **Annexure 7: Environmental Data of P1B Package**

### **Appendix 7.1: – Ambient Air Quality Data for P1B Package**

Table 79: Ambient Air quality Monitoring data for P1B Package for particulate matter

|           |          |                      |                   |                   | PM10                         |                              |                   |                   | PM2.5                        |                              |
|-----------|----------|----------------------|-------------------|-------------------|------------------------------|------------------------------|-------------------|-------------------|------------------------------|------------------------------|
| Sr.<br>No | Location | Location<br>Name     | NAAQS<br>standard | Baseline<br>Conc. | Construction<br>Phase Jan 23 | Construction<br>Phase Mar 23 | NAAQS<br>standard | Baseline<br>Conc. | Construction<br>Phase Jan 23 | Construction<br>Phase Mar 23 |
| 1         | (AAQ1)   | Navsari<br>Base Camp | 100               | 97.45             | 87.89                        | 95.22                        | 60                | 52.4              | 56.38                        | 57.48                        |
| 2         | (AAQ5)   | GAD 12               | 100               | 68.4              | 75.83                        |                              | 60                | 33.4              | 51.86                        |                              |
| 3         | (AAQ7)   | GAD 15               | 100               | 63.05             | 71.95                        |                              | 60                | 33                | 49.42                        |                              |
| 4         | (AAQ11)  | GAD 1441             | 100               | 56.95             | 80.56                        | 76.24                        | 60                | 28.1              | 48.2                         | 48.2                         |

Table 80: Ambient Air quality Monitoring data for P1B Package for gaseous pollutants

|           |          |                         |                   | ,                 | SO4                 |                            |                   |                   | Nox                 |                  | CO                |                   |                            |                     |
|-----------|----------|-------------------------|-------------------|-------------------|---------------------|----------------------------|-------------------|-------------------|---------------------|------------------|-------------------|-------------------|----------------------------|---------------------|
| Sr.<br>No | Location | Locatio<br>n Name       | NAAQS<br>standard | Baseline<br>Conc. | Construction Jan 23 | Construc<br>tion Mar<br>23 | NAAQS<br>standard | Baseline<br>Conc. | Construction Jan 23 | Construction Mar | NAAQS<br>standard | Baseline<br>Conc. | Construc<br>tion Jan<br>23 | Construction Mar 23 |
| 1         | (AAQ1)   | Navsari<br>Base<br>Camp | 80                | 14.17             | 19.96               | 19.46                      | 80                | 23.0<br>4         | 38.54               | 38.45            | 4                 | 0.5041            | BDL                        | BDL                 |
| 2         | (AAQ5)   | GAD 12                  | 80                | 15.35             | 13.56               |                            | 80                | 36.2              | 33.62               |                  | 4                 | 0.66              | BDL                        |                     |
| 3         | (AAQ7)   | GAD 15                  | 80                | 16.55             | 12.31               |                            | 80                | 33.1              | 31.83               |                  | 4                 | 0.49              | BDL                        |                     |
| 4         | (AAQ11)  | GAD<br>1441             | 80                | 9.5               | 11.4                | 11.76                      | 80                | 25.6<br>5         | 26.8                | 35.45            | 4                 | 0.52              | BDL                        | BDL                 |

## **Appendix 7.2: – DG stack Monitoring Data for P1B Package**

Table 81 DG stack Monitoring Data for P1B Package in January 23

| Sr. | Parameters                                                | Requirement as per | UOM      | Test Method           | Stack 1                 | Stack 2 | Stack 3 |  |
|-----|-----------------------------------------------------------|--------------------|----------|-----------------------|-------------------------|---------|---------|--|
| No. | 1 arameters                                               | EPA                | COM      | 1 est Wicthou         | BP DG set at GAD No. 10 |         |         |  |
| 1   | Particulate Matter (as PM)                                | Max-0.2            | gm/km-hr | IS:11255 (Part-<br>1) | 0.15                    | 0.09    | 0.11    |  |
| 2   | Oxide of Nitrogen<br>(NOx) (as NO2) + HC<br>(Hydrocarbon) | Max-4.0            | gm/km-hr | IS:11255 (Part-7)     | 0.59                    | 0.44    | 0.32    |  |
| 3   | Carbon Monoxide (as CO)                                   | Max-3.5            | gm/km-hr | IS:13270- b-<br>1992  | 0.4                     | 0.28    | 0.18    |  |
| 4   | Sulphate Dioxide (as SO2)                                 | N.A                | gm/km-hr | IS:11255 (Part-<br>2) | 0.02                    | 0.01    | 0.01    |  |

## **Appendix 7.2: – Ambient Noise Quality Data for P1B Package**

Table 67: Ambient Noise Quality Data for the month of Dec of P1B Package

| Sr. No | Location | ANQM<br>Standard | Baseline | Leq Day on<br>Jan 23 | Leq Day<br>on Feb 23 | Leq Day<br>on Mar<br>23 | ANQM<br>Standard | Baseline | Leq Night<br>on Jan 23 | Leq Night<br>on Feb 23 | Leq<br>Night on<br>Mar 23 |
|--------|----------|------------------|----------|----------------------|----------------------|-------------------------|------------------|----------|------------------------|------------------------|---------------------------|
| 1      | (ANQ1)   | 75               | 71.7     | 71.9                 | 71.9                 | 71.9                    | 70               | 64       | 51.1                   | 52.3                   | 53.1                      |
| 2      | (ANQ5)   | 75               | 72.1     | 67.5                 | 67.5                 | 67.5                    | 70               | 65.35    | 54.2                   | 56.8                   | 58.5                      |
| 3      | (ANQ7)   | 75               | 68.85    | 69.9                 | 70.2                 | 70.5                    | 70               | 60.2     | 51.4                   | 53.8                   | 53.6                      |
| 4      | (ANQ11)  | 75               | 70.65    | 70                   | 70                   | 70                      | 70               | 64.4     | 49.9                   | 47.8                   | 49.3                      |

## **Annexure 8: Environmental Monitoring Data of P4 package**

### **Appendix 8.1: Ambient Air Monitoring for P4 package**

Table 82: Ambient Air Monitoring for P4X package at STEL Workshop

| SI No | Parameter                    | Units      | Standard | Baseline     | Dec 22 Results | Mar 23<br>Results |
|-------|------------------------------|------------|----------|--------------|----------------|-------------------|
| 1     | Particulate Matter (PM10)    | $\mu g/m3$ | 100      | 196          | 196            | 96.0              |
| 2     | Particulate Matter (PM2.5)   | μg/m3      | 60       | 142          | 142            | 56.0              |
| 3     | Sulphur Dioxide (SO2)        | μg/m3      | 80       | 23.8         | 23.8           | 20.15             |
| 4     | Nitrogen Dioxide (NO2)       | μg/m3      | 80       | 33.3         | 50.23          | 32.40             |
| 5     | Carbon Monoxide (CO)         | mg/m3      | 4        | 0.41         | 1.3            | 1.20              |
| 6     | Lead (As Pb)                 | μg/m3      | 1        | Not detected | Not detected   | Not detected      |
| 7     | Nickel (As Ni)               | ng/m3      | 20       | Not detected | Not detected   | Not detected      |
| 8     | Arsenic (As As)              | ng/m3      | 6        | Not detected | Not detected   | Not detected      |
| 9     | Ozone (As O3)                | μg/m3      | 180      | Not detected | Not detected   | Not detected      |
| 10    | Ammonia (As NH3)             | μg/m3      | 400      | Not detected | Not detected   | Not detected      |
| 11    | Benzene (As C6H6)            | μg/m3      | 5        | Not detected | Not detected   | Not detected      |
| 12    | Benzo (A) Pyrine-Particulate | ng/m3      | 1        | Not detected | Not detected   | Not detected      |

Table 83: Ambient Air Monitoring for P4Y package at GML Workshop

| SI No | Parameter                               | Units             | Standard | Baseline     | Dec 22 Results | Mar 23<br>Results |
|-------|-----------------------------------------|-------------------|----------|--------------|----------------|-------------------|
| 1     | Particulate Matter (PM <sub>10</sub> )  | $\mu g/m^3$       | 100      | 94.8         | 96.4           | 95.20             |
| 2     | Particulate Matter (PM <sub>2.5</sub> ) | $\mu g/m^3$       | 60       | 50.12        | 47.21          | 50.12             |
| 3     | Sulphur Dioxide (SO2)                   | $\mu g/m^3$       | 80       | 18.06        | 16.05          | 20.08             |
| 4     | Nitrogen Dioxide (NO2)                  | $\mu g/m^3$       | 80       | 30.5         | 28.6           | 34.60             |
| 5     | Carbon Monoxide (CO)                    | mg/m <sup>3</sup> | 4        | 1.15         | 1.18           | 1.25              |
| 6     | Lead (As Pb)                            | $\mu g/m^3$       | 1        | Not Detected | Not Detected   | Not Detected      |
| 7     | Nickel (As Ni)                          | ng/m³             | 20       | Not Detected | Not Detected   | Not Detected      |

| SI No | Parameter                    | Units             | Standard | Baseline     | Dec 22 Results | Mar 23<br>Results |
|-------|------------------------------|-------------------|----------|--------------|----------------|-------------------|
| 8     | Arsenic (As As)              | ng/m <sup>3</sup> | 6        | Not Detected | Not Detected   | Not Detected      |
| 9     | Ozone (As O3)                | $\mu g/m^3$       | 180      | 51.4         | 32             | 38.0              |
| 10    | Ammonia (As NH3)             | $\mu g/m^3$       | 400      | <20.0        | <20.0          | <20.0             |
| 11    | Benzene (As C6H6)            | $\mu g/m^3$       | 5        | Not Detected | Not Detected   | Not Detected      |
| 12    | Benzo (A) Pyrine-Particulate | ng/m <sup>3</sup> | 1        | Not Detected | Not Detected   | Not Detected      |

Table 84: Ambient Air Monitoring for P4Y package at TEIL Workshop

| SI No | Parameter                    | Units | Standard | Baseline<br>(July 2022) | Jan 23 Results |
|-------|------------------------------|-------|----------|-------------------------|----------------|
| 1     | Particulate Matter (PM10)    | μg/m3 | 100      | 53.1                    | 53.8           |
| 2     | Particulate Matter (PM2.5)   | μg/m3 | 60       | 22.4                    | 25.50          |
| 3     | Sulphur Dioxide (SO2)        | μg/m3 | 80       | 12.7                    | 8.0            |
| 4     | Nitrogen Dioxide (NO2)       | μg/m3 | 80       | 25.3                    | 17.6           |
| 5     | Carbon Monoxide (CO)         | mg/m3 | 4        | Not Detected            | Not Detected   |
| 6     | Lead (As Pb)                 | μg/m3 | 1        | Not Detected            | Not Detected   |
| 7     | Nickel (As Ni)               | ng/m3 | 20       | Not Detected            | Not Detected   |
| 8     | Arsenic (As As)              | ng/m3 | 6        | Not Detected            | Not Detected   |
| 9     | Ozone (As O3)                | μg/m3 | 180      | Not Detected            | Not Detected   |
| 10    | Ammonia (As NH3)             | μg/m3 | 400      | Not Detected            | Not Detected   |
| 11    | Benzene (As C6H6)            | μg/m3 | 5        | Not Detected            | Not Detected   |
| 12    | Benzo (A) Pyrine-Particulate | ng/m3 | 1        | Not Detected            | Not Detected   |

### **Appendix 8.2: Workplace Air Quality Monitoring for P\$ package**

Table 85: Workplace Air Monitoring at STEL Workshop

| S.No | Parameter                           | Units             | Limits as per<br>WHO/CPCB<br>Guidelines | Baseline Results<br>(Dec-Jan21) | Dec-22       | Mar 23       |
|------|-------------------------------------|-------------------|-----------------------------------------|---------------------------------|--------------|--------------|
|      |                                     |                   | CNC DRILL                               | ING AREA                        |              |              |
|      | Particulate Matter                  | mg/m3             | 15                                      | 1.3                             | 2.02         | 1.40         |
|      | Sulphur dioxide (SO2)               | ppm               | 5                                       | Not Detected                    | Not detected | Not detected |
| 1    | Nitrogen Dioxide (NO2)              | ppm               | 25                                      | Not Detected                    | Not Detected | Not Detected |
| 1    | Carbon Monoxide (CO)                | ppm               | 50                                      | Not Detected                    | 1.5          | 1.25         |
|      | Carbon Dioxide (CO2)                | ppm               | 5000                                    | 981                             | 1402         | 1116.0       |
|      | TVOC                                | μg/m3             | 200                                     | 186                             | 189          | 152          |
|      | Formaldehyde                        | mg/m3             | 0.93                                    | 0.024                           | 0.056        | 0.028        |
|      |                                     |                   | HSD BA                                  | Y AREA                          |              |              |
|      | Particulate Matter                  | mg/m <sup>3</sup> | 15                                      | 1.3                             | 1.26         | 1.50         |
|      | Sulphur dioxide (SO <sub>2</sub> )  | ppm               | 5                                       | Not Detected                    | Not detected | Not detected |
| 2    | Nitrogen Dioxide (NO <sub>2</sub> ) | ppm               | 25                                      | Not Detected                    | Not Detected | Not Detected |
| 2    | Carbon Monoxide (CO)                | ppm               | 50                                      | Not Detected                    | 1.35         | 1.27         |
|      | Carbon Dioxide (CO <sub>2</sub> )   | ppm               | 5000                                    | 981                             | 1140         | 1260         |
|      | TVOC                                | μg/m <sup>3</sup> | 200                                     | 186                             | 142          | 168          |
|      | Formaldehyde                        | mg/m <sup>3</sup> | 0.93                                    | 0.024                           | 0.023        | 0.041        |

Table 86: Workplace Air Monitoring at GML Workshop

| S.No | Parameter              | Units | Limits as per<br>WHO/CPCB<br>Guidelines | Baseline Results<br>(Dec-Jan21) | Dec-22       | Mar 23       |
|------|------------------------|-------|-----------------------------------------|---------------------------------|--------------|--------------|
|      |                        |       | FABRICATION WORK                        | SHOP AREA                       |              |              |
|      | Particulate Matter     | mg/m3 | 15                                      | 1.08                            | 1.26         | 1.10         |
|      | Sulphur dioxide (SO2)  | ppm   | 5                                       | Not Detected                    | Not detected | Not detected |
| 1    | Nitrogen Dioxide (NO2) | ppm   | 25                                      | Not Detected                    | Not Detected | Not Detected |
| 1    | Carbon Monoxide (CO)   | ppm   | 50                                      | 1.16                            | 1.18         | 1.15         |
|      | Carbon Dioxide (CO2)   | ppm   | 5000                                    | 1210                            | 1406         | 976          |
|      | TVOC                   | μg/m3 | 200                                     | 158                             | 172          | 158          |
|      | Formaldehyde           | mg/m3 | 0.93                                    | 0.023                           | 0.038        | 0.041        |
|      |                        |       | PAINTING BLASTIN                        | NG AREA                         |              |              |
|      | Particulate Matter     | mg/m3 | 15                                      | 1.08                            | 1.32         | 0.76         |
|      | Sulphur dioxide (SO2)  | ppm   | 5                                       | Not Detected                    | Not detected | Not detected |
| 2    | Nitrogen Dioxide (NO2) | ppm   | 25                                      | Not Detected                    | Not Detected | Not Detected |
| 2    | Carbon Monoxide (CO)   | ppm   | 50                                      | 1.16                            | 1.25         | 1.15         |
|      | Carbon Dioxide (CO2)   | ppm   | 5000                                    | 1210                            | 1458         | 918          |
|      | TVOC                   | μg/m3 | 200                                     | 158                             | 166          | 146          |
|      | Formaldehyde           | mg/m3 | 0.93                                    | 0.023                           | 0.025        | 0.032        |

Table 87: Workplace Air Monitoring at TEIL Workshop

| S.No | Parameter                           | Units             | Limits as per<br>WHO/CPCB<br>Guidelines | Baseline Results (Dec-<br>Jul 22) | March<br>2023 |  |  |  |  |
|------|-------------------------------------|-------------------|-----------------------------------------|-----------------------------------|---------------|--|--|--|--|
|      |                                     | FABRI             | CATION WORKSHOP A                       | AREA                              |               |  |  |  |  |
|      | Particulate Matter                  | mg/m <sup>3</sup> | 15                                      | 16.7                              | 21.4          |  |  |  |  |
|      | Sulphur dioxide (SO <sub>2</sub> )  | ppm               | 5                                       | 8.1                               | 6.8           |  |  |  |  |
| 1    | Nitrogen Dioxide (NO <sub>2</sub> ) | ppm               | 25                                      | 15.9                              | 13.4          |  |  |  |  |
| 1    | Carbon Monoxide (CO)                | ppm               | 50                                      | Not Detected                      | Not Detected  |  |  |  |  |
|      | Carbon Dioxide (CO <sub>2</sub> )   | ppm               | 5000                                    | 310                               | 489           |  |  |  |  |
|      | TVOC                                | μg/m <sup>3</sup> | 200                                     |                                   | Not Detected  |  |  |  |  |
|      | Formaldehyde                        | mg/m <sup>3</sup> | 0.93                                    |                                   | Not detected  |  |  |  |  |
|      | PAINTING BLASTING AREA              |                   |                                         |                                   |               |  |  |  |  |
|      | Particulate Matter                  | mg/m <sup>3</sup> | 15                                      | 16.7                              | 19.8          |  |  |  |  |
|      | Sulphur dioxide (SO <sub>2</sub> )  | ppm               | 5                                       | 8.1                               | 7.6           |  |  |  |  |
| 2    | Nitrogen Dioxide (NO <sub>2</sub> ) | ppm               | 25                                      | 15.9                              | 16.5          |  |  |  |  |
| 2    | Carbon Monoxide (CO)                | ppm               | 50                                      | Not Detected                      | Not Detected  |  |  |  |  |
|      | Carbon Dioxide (CO <sub>2</sub> )   | ppm               | 5000                                    | 310                               | 379           |  |  |  |  |
|      | TVOC                                | μg/m <sup>3</sup> | 200                                     |                                   | Not Detected  |  |  |  |  |
|      | Formaldehyde                        | mg/m <sup>3</sup> | 0.93                                    |                                   | Not Detected  |  |  |  |  |

#### **Appendix 8.3: Ambient Noise Quality Monitoring**

Table 88: Ambient Noise Quality Monitoring at STEL

| S. No | Parameters         | Standards | Baseline | Dec 2022<br>Results | Mar 23<br>Results |
|-------|--------------------|-----------|----------|---------------------|-------------------|
|       | Leq Day in dB(A)   | 75        | 64.8     | 65                  | 62.4              |
| 1     | Leq Night in dB(A) | 70        | 56.3     | 46.7                | 48.8              |

Table 89: Ambient Noise Quality Monitoring at GML

| S. No | Parameters         | Standards | Baseline | Dec 2022<br>Results | Mar 23<br>Results |
|-------|--------------------|-----------|----------|---------------------|-------------------|
| 1     | Leq Day in dB(A)   | 75        | -        | 62.4                | 62.4              |
|       | Leq Night in dB(A) | 70        | -        | 48.8                | 48.8              |

Table 90: Ambient Noise Quality Monitoring at TEIL

| S. No | Locations | Parameters         | Standards | Baseline | Jan 23<br>Results |
|-------|-----------|--------------------|-----------|----------|-------------------|
| 1     | BAY 1     | Leq Day in dB(A)   | 75        | -        | 51                |
| 1     | DAII      | Leq Night in dB(A) | 70        | -        | 43                |
| 2     | 2 BAY 3   | Leq Day in dB(A)   | 75        | -        | 54                |
| 2     |           | Leq Night in dB(A) | 70        | -        | 44                |

#### **Appendix 8.4: Workplace Noise Monitoring.**

Table 91: Workplace Noise Monitoring at STEL Workshop

| S. No | Location Name        | Parameters | Standards | Dec 23 Results | Mar 23<br>Results |
|-------|----------------------|------------|-----------|----------------|-------------------|
| 1     | CNC drilling machine | Log        | 00 4D(A)  | 85.5           | 72.4              |
| 2     | HSD Area             | Leq        | 90 dB(A)  | 80.2           | 72.8              |

Table 92: Workplace Noise Monitoring at GML Workshop

| S. No | Location Name        | Parameters | Standards | Dec 23 Results | Mar 23 Results |
|-------|----------------------|------------|-----------|----------------|----------------|
| 1     | CNC drilling machine | Leq        | 90 dB(A)  | 89.1           | 75.2           |

Table 93: Workplace Noise Monitoring at TEIL Workshop

| S. No | Location Name                                   | Parameters | Standards         | Results |
|-------|-------------------------------------------------|------------|-------------------|---------|
| 1     | Indoor / Occupational Nois Bay-1                |            |                   | 38.9    |
| 2.    | Indoor / Occupational Noise Bay-2               |            |                   | 41.6    |
| 3.    | Indoor / Occupational Noise Bay-3               | Leq        | 90 dB(A)          | 43.8    |
| 4.    | Indoor / Occupational Noise Between Bay 1&2     |            |                   | 40.5    |
| 5.    | Indoor/ Occupational Noise Between Bay 2&3      | Leq        | 30 <b>dD</b> (11) | 45.3    |
| 6.    | Indoor / Occupational Noise Bay-1 (Northeast)   |            |                   | 39.7    |
| 7.    | Indoor / Occupational Noise Bay-2 (North Earth) |            |                   | 48.6    |
| 8.    | Indoor / Occupational Noise Bay-3 (North East)  |            |                   | 51.1    |

### **Appendix 8.5: Noise Monitoring for DG set-STEL**

Table 94: Noise Monitoring for DG stacks at STEL

| C NI- | DC D-4-9-                    | D14    | Unit  | Standard                                           |
|-------|------------------------------|--------|-------|----------------------------------------------------|
| S.No  | DG Details                   | Result | dB(A) | As Per CPCB Norms                                  |
|       | 500 KVA                      |        |       |                                                    |
|       | Open DG Window               |        | 1     |                                                    |
|       | a- 0.5 mt from DG Set        | 103.2  | ]     |                                                    |
| 1     | b- 1.0 mt from DG set        | 101.5  | dB(A) |                                                    |
|       | Closed DG Window             |        |       |                                                    |
|       | a- 0.5 mt from DG set        | 74.0   |       |                                                    |
|       | <b>b-</b> 1.0 mt from DG set | 72.4   |       | 75 dB(A) at 1.0 m distance from closed window DG   |
|       | 250 KVA                      |        |       | 75 dB(11) at 1.5 in distance from closed window BC |
|       | Open DG Window               |        |       |                                                    |
|       | a- 0.5 mt from DG Set        | 97.8   |       |                                                    |
| 2     | b- 1.0 mt from DG set        | 96.2   | dB(A) |                                                    |
|       | Closed DG Window             |        |       |                                                    |
|       | c- 0.5 mt from DG Set        | 71.4   |       |                                                    |
|       | d- 1.0 mt from DG set        | 70.6   |       |                                                    |

Table 95: DG Stack Monitoring at STEL

| S. No. | Parameters        | Unit     | Limits (max) | Stack Emission | Stack Emission |
|--------|-------------------|----------|--------------|----------------|----------------|
|        |                   |          |              | 500 KVA        | 250 KVA        |
| 1      | Particular Matter | gm/kw-hr | 0.3          | 0.116          | 0.076          |
| 2      | Sulphur Dioxide   | gm/kw-hr | NA           | 10.58          | 8.12           |
| 3      | Oxide of Nitrogen | gm/kw-hr | 9.2          | 4.3            | 2.6            |
| 4      | Carbon Monoxide   | gm/kw-hr | 3.5          | 0.51           | 0.41           |
| 5      | Hydrocarbon       | gm/kw-hr | 1.3          | 0.094          | 0.056          |

#### **Appendix 8.6: DG Stack Monitoring -TEIL**

Table 96: DG stack monitoring data at TEIL

| S.No | Parameters         | Units   | Emission Limits as Per CPCB up to 800 KVA DG | Baseline<br>July 2022 | Result<br>January 2023 |
|------|--------------------|---------|----------------------------------------------|-----------------------|------------------------|
| 1    | Particulate matter | g-kw/hr | < 0.2                                        | 0.108                 | 0.103                  |
| 2    | Sulphur dioxide    | g-kw/hr | NA                                           | 0.115                 | 0.092                  |
| 3    | Oxides of Nitrogen | g-kw/hr | <4.0                                         | 1.316                 | 0.754                  |
| 4    | Carbon Monoxide    | g-kw/hr | <3.5                                         | 0.062                 | Not Detected           |
| 5    | Hydrocarbons       | g-kw/hr | <4.0                                         | -                     | Not Detected           |

Table 97: Noise Monitoring for DG stacks at TEIL

| S.No | DG Details                              | Result   | Unit<br>dB(A) | Standard<br>As Per CPCB Norms                      |
|------|-----------------------------------------|----------|---------------|----------------------------------------------------|
| 1    | 250 KVA Open DG Window Closed DG Window | 87<br>68 | dB(A)         | 75 dB(A) at 1.0 mt distance from closed. window DG |

Table 98: Drinking water analysis for STEL

| g N             | _                            |          | Standard as j       | per IS 10500:2012               | Baseline    | Results      | Results      |
|-----------------|------------------------------|----------|---------------------|---------------------------------|-------------|--------------|--------------|
| S.No Parameters |                              | Units    | Desirable<br>Limits | Permissible/<br>Extended Limits | (June 2022) | (Dec 22)     | (Mar 23)     |
| 1               | Colour                       | Hazen    | 5                   | 15                              | <1.0        | <1.0         | <1.0         |
| 2               | Odour                        | -        | Agreeable           | Agreeable                       | Agreeable   | Agreeable    | Agreeable    |
| 3               | Taste                        | -        | Agreeable           | Agreeable                       | Agreeable   | Agreeable    | Agreeable    |
| 4               | Turbidity                    | NTU      | 1                   | 5                               | <1.0        | <1.0         | <1.0         |
| 5               | pH Value                     | -        | 6.5-8.5             | -                               | 7.48        | 7.21         | 7.40         |
| 6               | Total Dissolved Solids (TDS) | mg/l     | 500                 | 2000                            | 110         | 145          | 141.0        |
| 7               | Conductivity                 | umhos/cm | -                   | -                               | 172         | 226          | 220.0        |
| 8               | Temperature                  | 0C       | -                   | -                               | 24          | 21           | 18.0         |
| 9               | Phosphate (as PO4)           | mg/l     | -                   | -                               | < 0.01      | < 0.01       | < 0.01       |
| 10              | Ammoniacal Nitrogen          | mg/l     | 0.5                 | No relaxation                   | <0.1        | <0.1         | <0.10        |
| 11              | Calcium (as Ca)              | mg/l     | 75                  | 200                             | 13.6        | 10.5         | 8.50         |
| 12              | Chloride (as Cl)             | mg/l     | 250                 | 1000                            | 7.5         | 23.5         | 26.40        |
| 13              | Fluoride (as F)              | mg/l     | 1                   | 1.5                             | <0.1        | <0.1         | < 0.1        |
| 14              | Free Residual Chlorine       | mg/l     | 0.2                 | 1                               | < 0.2       | Not Detected | Not Detected |
| 15              | Iron (as Fe)                 | mg/l     | 1                   | No relaxation                   | 0.05        | 0.05         | < 0.05       |
| 16              | Magnesium (as Mg)            | mg/l     | 30                  | 100                             | 0.24        | 1.27         | 1.12         |
| 17              | Silica (as SiO2)             | mg/l     | -                   | -                               | 1           | 1            | 0.94         |
| 18              | Nitrite (as NO2)             | mg/l     | -                   | -                               | <0.1        | <0.1         | < 0.1        |
| 19              | Nitrate (as NO3)             | mg/l     | 45                  | No relaxation                   | <1.0        | <1.0         | <1.0         |

|                       |                                   |            | Standard as p       | per IS 10500:2012               | Baseline     | Results      | Results      |  |  |
|-----------------------|-----------------------------------|------------|---------------------|---------------------------------|--------------|--------------|--------------|--|--|
| S.No                  | Parameters                        | Units      | Desirable<br>Limits | Permissible/<br>Extended Limits | (June 2022)  | (Dec 22)     | (Mar 23)     |  |  |
| 20                    | Bicarbonate (as HCO3)             | mg/l       | -                   | -                               | 73           | 58           | 46.0         |  |  |
| 21                    | Carbonate (CO3)                   | mg/l       | -                   | -                               | Not Detected | Not Detected | Not Detected |  |  |
| 22                    | Sulphate (as SO4)                 | mg/l       | 200                 | 400                             | 2.85         | 2.5          | 2.80         |  |  |
| 23                    | Sulphide (as H2S)                 | mg/l       | 0.05                | No relaxation                   | < 0.05       | < 0.05       | < 0.05       |  |  |
| 24                    | Alkalinity (as CaC03)             | mg/l       | 200                 | 600                             | 60           | 52           | 46.0         |  |  |
| 25                    | Total Hardness (as<br>CaCO3)      | mg/l       | 200                 | 600                             | 15           | 21           | 23.0         |  |  |
| 26                    | Total Kjeldhal Nitrogen           | mg/l       | -                   | -                               | 0            | Not Detected | Not Detected |  |  |
| 27                    | Total Solids                      | mg/l       | -                   | -                               | 110          | 145          | 141.0        |  |  |
| 28                    | Total Acidity (as CaCO3)          | mg/l       | -                   | -                               | <1.0         | <1.0         | <1.0         |  |  |
| 29                    | Phenolic Compound as (C6H5OH)     | mg/l       | 0.001               | 0.002                           | < 0.001      | Not Detected | Not Detected |  |  |
| 30                    | Biological Oxygen<br>Demand       | mg/l       | -                   | -                               | NIL          | NIL          | NIL          |  |  |
| 31                    | Chemical Oxygen<br>Demand (as O2) | mg/l       | -                   | -                               | NIL          | NIL          | NIL          |  |  |
| 32                    | Dissolve Oxygen (as 02)           | mg/l       | -                   | -                               | 8.5          | 7.6          | 7.8          |  |  |
| 33                    | Inorganic Solids                  | mg/l       | -                   | -                               | 98           | 121          | 120.0        |  |  |
| 34                    | Sodium (as Na)                    | mg/l       | -                   | -                               | 18.2         | 35           | 42.0         |  |  |
| 35                    | Potassium (as K)                  | mg/l       | -                   | -                               | 0.75         | 1.02         | 1.10         |  |  |
| 36                    | Free Carbon Dioxide               | mg/l       | -                   | -                               | NIL          | NIL          | NIL          |  |  |
| 37                    | Total Suspended solid (TSS)       | mg/l       | -                   | -                               | 1            | <1.0         | <1.0         |  |  |
| Biological Parameters |                                   |            |                     |                                 |              |              |              |  |  |
| 38                    | Escherichia coli                  | MPN/100 ml | MPN/100 ml          | MPN/100 ml                      | Absent       | Absent       | Absent       |  |  |

|      |                   | TIm:40     | Standard as p       | per IS 10500:2012               | Baseline    | Results  | Results  |
|------|-------------------|------------|---------------------|---------------------------------|-------------|----------|----------|
| S.No | Parameters        | Units      | Desirable<br>Limits | Permissible/<br>Extended Limits | (June 2022) | (Dec 22) | (Mar 23) |
| 39   | Coliform Bacteria | MPN/100 ml | MPN/100 ml          | MPN/100 ml                      | Absent      | Absent   | Absent   |

Table 99: Drinking water analysis for GML

| G.N. |                              | <b>T</b> I 1. | Standard as p       | per IS 10500:2012               | Baseline (July | Results      | Demille               |
|------|------------------------------|---------------|---------------------|---------------------------------|----------------|--------------|-----------------------|
| S.No | Parameters                   | Units         | Desirable<br>Limits | Permissible/<br>Extended Limits | 2022)          | (Dec 2022)   | Results<br>(March 23) |
| 1    | Colour                       | Hazen         | 5                   | 15                              | <1.0           | <1.0         | <1.0                  |
| 2    | Odour                        | -             | Agreeable           | Agreeable                       | Agreeable      | Agreeable    | Agreeable             |
| 3    | Taste                        | -             | Agreeable           | Agreeable                       | Agreeable      | Agreeable    | Agreeable             |
| 4    | Turbidity                    | NTU           | 1                   | 5                               | <1.0           | <1.0         | <1.0                  |
| 5    | pH Value                     | -             | 6.5-8.5             | -                               | 7.16           | 7.4          | 7.40                  |
| 6    | Total Dissolved Solids (TDS) | mg/l          | 500                 | 2000                            | 118            | 136          | 128.0                 |
| 7    | Aluminium (As Al)            | mg/l          | 0.03                | 0.2                             |                | < 0.01       | < 0.01                |
| 8    | Total Ammonia                | mg/l          | 0.5                 | No relaxation                   |                | < 0.10       | < 0.10                |
| 9    | Anionic Detergents (as MABS) | mg/l          | 0.2                 | 1                               |                | <0.10        | <0.10                 |
| 10   | Barium (As Ba)               | mg/l          | 0.5                 | No relaxation                   |                | < 0.10       | < 0.10                |
| 11   | Boron (As B)                 | mg/l          | 0.5                 | 2.4                             |                | < 0.10       | < 0.10                |
| 12   | Calcium (as Ca)              | mg/l          | 75                  | 200                             | 16             | 12.8         | 10.55                 |
| 13   | Chloramines (As Cl2)         | mg/l          | 4                   | No relaxation                   |                | Not Detected | Not Detected          |
| 14   | Chloride (as Cl)             | mg/l          | 250                 | 1000                            | 8.4            | 7.6          | 8.40                  |
| 15   | Copper (As Cu)               | mg/l          | 0.05                | 1.5                             |                | Not Detected | Not Detected          |

| C.N. | D                            | TI    | Standard as J       | per IS 10500:2012               | Baseline (July | Results      | Results      |  |
|------|------------------------------|-------|---------------------|---------------------------------|----------------|--------------|--------------|--|
| S.No | Parameters                   | Units | Desirable<br>Limits | Permissible/<br>Extended Limits | 2022)          | (Dec 2022)   | (March 23)   |  |
| 16   | Fluoride (as F)              | mg/l  | 1                   | 1.5                             | <0.1           | < 0.1        | <0.1         |  |
| 17   | Free Residual Chlorine       | mg/l  | 0.2                 | 1                               | < 0.2          | Not Detected | Not Detected |  |
| 18   | Iron (as Fe)                 | mg/l  | 1                   | No relaxation                   | 0.05           | < 0.05       | < 0.05       |  |
| 19   | Magnesium (as Mg)            | mg/l  | 30                  | 100                             | 5.34           | 3.4          | 1.66         |  |
| 20   | Manganese (As Mn)            | mg/l  | 0.1                 | 0.3                             |                | Not Detected | Not Detected |  |
| 21   | Mineral Oil                  | mg/l  | 0.5                 | No relaxation                   |                | Not Detected | Not Detected |  |
| 22   | Nitrate (as NO3)             | mg/l  | 45                  | No relaxation                   | <1.0           | <1.0         | <1.0         |  |
| 23   | Selenium (As Se)             | mg/l  | 0.01                | No relaxation                   |                | Not Detected | Not Detected |  |
| 24   | Silver (As Ag)               | mg/l  | 0.01                | No relaxation                   |                | Not Detected | Not Detected |  |
| 25   | Sulphate (as SO4)            | mg/l  | 200                 | 400                             | 1.28           | 4.06         | 2.80         |  |
| 26   | Sulphide (as H2S)            | mg/l  | 0.05                | No relaxation                   | < 0.05         | Not Detected | Not Detected |  |
| 27   | Alkalinity (as CaC03)        | mg/l  | 200                 | 600                             | 42             | 45           | 41.0         |  |
| 28   | Total Hardness (as<br>CaCO3) | mg/l  | 200                 | 600                             | 18             | 18           | 19.2         |  |
| 29   | Zinc (As Zn)                 | mg/l  | 5                   | 15                              | < 0.1          | < 0.1        | < 0.1        |  |
| 30   | Phenolic Compound as         | ma/l  | 0.001               | 0.002                           | < 0.001        | Not Detected | Not Detected |  |
| 30   | (C6H5OH)                     | mg/l  | 0.001               | 0.002                           | <0.001         | Not Detected | < 0.001      |  |
| 31   | Cadmium (As Cd)              | mg/l  | 0.003               | No relaxation                   |                | < 0.001      | < 0.01       |  |
| 32   | Cyanide (as Cn)              | mg/l  | 0.05                | No relaxation                   |                | < 0.01       | < 0.01       |  |
| 33   | Lead (As Pb)                 | mg/l  | 0.01                | No relaxation                   |                | < 0.01       | < 0.001      |  |
| 34   | Mercury (As Hg)              | mg/l  | 0.001               | No relaxation                   |                | < 0.001      | < 0.05       |  |
| 35   | Molybdenum (As Mo)           | mg/l  | 0.02                | No relaxation                   |                | < 0.05       | < 0.01       |  |
| 36   | Nickel (As Ni)               | mg/l  | 0.02                | No relaxation                   |                | < 0.01       | < 0.0001     |  |

| G.N. | _                                     | <b>T</b> T *4 | Standard as p       | er IS 10500:2012                | Baseline (July | Results    | D 1                   |  |
|------|---------------------------------------|---------------|---------------------|---------------------------------|----------------|------------|-----------------------|--|
| S.No | Parameters                            | Units         | Desirable<br>Limits | Permissible/<br>Extended Limits | 2022)          | (Dec 2022) | Results<br>(March 23) |  |
| 37   | Poly Nuclear aromatic<br>Hydrocarbons | mg/l          | 0.0001              | No relaxation                   |                | < 0.0001   | < 0.0001              |  |
| 38   | Poly Chlorinated biphenyl             | mg/l          | 0.0005              | No relaxation                   |                | < 0.0001   | <0.01                 |  |
| 39   | Total Arsenic (as As)                 | mg/l          | 0.01                | No relaxation                   |                | < 0.01     | < 0.05                |  |
| 40   | Total Chromium (As<br>As)             | mg/l          | 0.05                | No relaxation                   |                | <0.05      | <0.05                 |  |
|      |                                       |               | Biological Para     | meters                          |                |            |                       |  |
| 41   | Escherichia coli                      | MPN/100 ml    | MPN/100 ml          | MPN/100 ml                      | Absent         | Absent     | Absent                |  |
| 42   | Coliform Bacteria                     | MPN/100 ml    | MPN/100 ml          | MPN/100 ml                      | Absent         | Absent     | Absent                |  |

Table 100: Drinking water analysis for TEIL

| S.No  | Parameters                    | _                                             | 0500:2012 (Amd. No 3 ) 2021 | Units | Baseline     | Results      |
|-------|-------------------------------|-----------------------------------------------|-----------------------------|-------|--------------|--------------|
| 5.110 | rarameters                    | Desirable Limits Permissible/ Extended Limits |                             | Omts  | (July 2022)  | Jan-2023     |
| 1     | Colour                        | 5                                             | 15                          | Hazen | 1.0          | 1.0          |
| 2     | Odour                         | Agreeable                                     | Agreeable                   | -     | Agreeable    | Agreeable    |
| 3     | Taste                         | Agreeable                                     | Agreeable                   | -     | Agreeable    | Agreeable    |
| 4     | Turbidity                     | 1                                             | 5                           | NTU   | <1.0         | <1.0         |
| 5     | pH Value                      | 6.5-8.5                                       | -                           | -     | 6.89         | 6.69         |
| 6     | Total Dissolved Solids (TDS)  | 500                                           | 2000                        | mg/l  | 49           | 21.7         |
| 7     | Organic Solids                |                                               |                             | mg/l  | -            | 8.4          |
| 8     | Total Suspended Solids        | -                                             | -                           | mg/l  | -            | Not Detected |
| 9     | Ammoniacal Nitrogen           |                                               |                             | mg/l  | -            | Not Detected |
| 10    | Conductivity                  | -                                             | -                           | uS/cm | 83           | 34.1         |
| 11    | Inorganic Solids              | -                                             | -                           | mg/l  | -            | 20.9         |
| 12    | Calcium (as Ca)               | 75                                            | 200                         | mg/l  | 2.0          | 1.2          |
| 13    | Potassium                     | -                                             | -                           | mg/l  | -            | Not Detected |
| 14    | Chloride (as Cl)              | 250                                           | 1000                        | mg/l  | 21.4         | 9.64         |
| 15    | Silica (As SiO <sub>2</sub>   | -                                             | -                           | mg/l  | 1.25         | 1.2          |
| 16    | Fluoride (as F)               | 1.0                                           | 1.5                         | mg/l  | Not Detected | Not Detected |
| 17    | Free Residual Chlorine        | 0.2                                           | 1.0                         | mg/l  | Not Detected | Not Detected |
| 18    | Iron (as Fe)                  | 1.0                                           | No relaxation               | mg/l  | Not Detected | Not Detected |
| 19    | Magnesium (as Mg)             | 30                                            | 100                         | mg/l  | 2.9          | Not Detected |
| 20    | Sodium                        | -                                             | -                           | mg/l  | -            | Not Detected |
| 21    | Total Solids                  | -                                             |                             | mg/l  |              | 22.4         |
| 22    | Nitrate (as NO <sub>3</sub> ) | 45                                            | No relaxation               | mg/l  | 1.44         | Not Detected |
| 23    | Nitrite (As NO <sub>2</sub> ) | 0.01                                          | No relaxation               | mg/l  | Not Detected | Not Detected |
| 24    | Bicarbonate (As HCO3)         | -                                             | -                           | mg/l  | -            | 5.93         |
| 25    | Sulphate (as SO4)             | 200                                           | 400                         | mg/l  | 1.62         | Not Detected |

| S.No  | Parameters                    | =                                             | 10500:2012 (Amd. No 3 o 2021 | Units      | Baseline     | Results      |
|-------|-------------------------------|-----------------------------------------------|------------------------------|------------|--------------|--------------|
| 5.110 | rarameters                    | Desirable Limits Permissible/ Extended Limits |                              | Omts       | (July 2022)  | Jan-2023     |
| 26    | Biological Oxygen Demand      | 2                                             |                              | mg/l       | Not Detected | Not Detected |
| 27    | Chemical Oxygen Demand        | 4                                             |                              | mg/l       | Not Detected | Not Detected |
| 28    | Total Hardness (as CaCO3)     | 200                                           | 600                          | mg/l       | 17.0         | 3.92         |
| 29    | Dissolved Oxygen              |                                               |                              | mg/l       |              | 6.1          |
| 30    | Phenolic Compound as (C6H5OH) | 0.001                                         | 0.002                        | mg/l       | -            | Not Detected |
| 31    | Fixed Solids                  | -                                             | -                            | mg/l       | -            | 29.2         |
| 32    | Phosphorus as P               | -                                             | -                            | mg/l       | Not Detected | Not Detected |
| 33    | Total Acidity                 | -                                             | -                            | mg/l       | -            | 9.8          |
| 34    | Total KJeldhal Nitrogen       | -                                             | -                            | mg/l       | Not Detected | Not Detected |
| 35    | Carbonate (CO3)               | -                                             | -                            | mg/l       | Not Detected | Not Detected |
| 36    | Temperature                   | -                                             | -                            | °C         | 25           | 25           |
| 37    | Escherichia coli              | MPN/100 ml                                    | MPN/100 ml                   | MPN/100 ml |              | <2           |
| 38    | Coliform Bacteria             | MPN/100 ml                                    | MPN/100 ml                   | MPN/100 ml |              | <2           |

### **Appendix 8.8: Wastewater Quality Monitoring:**

Table 101: Treated Wastewater Quality Analysis for STEL

| S.No | Parameters   | Units | Limits as Per CPCB<br>Norms | Baseline (June<br>2022) | Result (Dec-2022) | Result (March 23) |
|------|--------------|-------|-----------------------------|-------------------------|-------------------|-------------------|
| 1    | рН           | -     | 5.5-9.0                     | 8.62                    | 7.45              | 7.36              |
| 2    | TSS          | mg/l  | 100                         | 51                      | 6.8               | 10.8              |
| 3    | COD          | mg/l  | 250                         | 174                     | 10                | 23.0              |
| 4    | BOD          | mg/l  | 30                          | 28                      | Not Detected      | 2.2               |
| 5    | Oil & Grease | mg/l  | 10                          | 1.1                     | Not Detected      | Not Detected      |

## **Annexure 9: Waste Generation & Management details of various Infra Packages**

#### Appendix 9.1: Status of Waste Generation & Management Details at C4 package in the Quarter

Table 102: Status of Waste Generation & Management Details at C4 package in the Quarter

| Sr. No. | Item Description        | Unit            | enerated | / Stored in t | he month | Disposed | /Recycled in | the month | Remarks (Disposal Agency/ where &                                                                                 |  |
|---------|-------------------------|-----------------|----------|---------------|----------|----------|--------------|-----------|-------------------------------------------------------------------------------------------------------------------|--|
| 51.110. | (Waste type)            |                 | Jan 23   | Feb 23        | Mar 23   | Jan 23   | Feb 23       | Mar 23    | how Recycled                                                                                                      |  |
| 1       | C&D waste               | Cum             | 56       | 574           | 1618     | 56       | 356          | 538       | Reused internally and externally sent to vendors for reused.                                                      |  |
| 2       | Biomedical waste        | Kg              | 3.6      | 0.9           | 2.65     | 3.6      | 0.9          | 2.65      | M/s Globe Bio-care M/s En Clear Biomedical waste disposal Pvt ltd. M/s Samvedana Incineration                     |  |
| 3       | Hazardous waste         | Kg or<br>liters |          |               |          |          |              |           | M/s Jai Ambe Thin Chemical M/s Moradia Borthers Chem Pvt Limited M/s ABC Organic and Chemical Private Limited     |  |
| 3.1     | Waste/used Oil          | Liters          | 250      | 700           | 980      | 20       | 30           | 4800      | -                                                                                                                 |  |
| 3.2     | Waste Cotton            | Kgs             | -        | -             |          | -        | -            |           | Kept at Janardhan Cold Storage                                                                                    |  |
| 3.3     | Waste Filters           | Nos             | -        | 1             |          | -        | -            |           | -                                                                                                                 |  |
| 3.4     | Waste Chemicals         | Nos/ Kg         | -        | -             | -        | -        | -            | -         | -                                                                                                                 |  |
| 3.5     | Waste containers        | Nos             | 600      | 300           | 200      | 600      | 300          | 200       | Buyback policy with supplier.                                                                                     |  |
| 3.6     | Any other               |                 |          |               |          |          |              |           |                                                                                                                   |  |
| 4       | Non- Hazardous<br>waste | Kg              |          |               |          |          |              |           |                                                                                                                   |  |
| 4.1     | Food waste              | Kg              | 75210    | 123078        | 89826    | 75210    | 123078       | 89826     | M/s. Shireesha management Services,<br>Bhagvanbhai Samantbhai Veer, Ajaybhai Satiya<br>& Mulad gram panchayat kim |  |
| 4.2     | Paper and cardboard     | Kg              | 33       | 18            | 848      | 143      | 18           | 803       | Jai Shri Nath Agency.<br>M/s Samat Bhai                                                                           |  |
| 4.3     | Plastic                 | Kg              | 10       | 20            | 745      | 45       | 20           | 705       | Jai Shri Nath Agency.<br>M/s Samat Bhai                                                                           |  |
| 4.4     | Wood                    | Kg              | 200      | 144           | 2869     | 230      | 104          | 1234      | Jai Shri Nath Agency.                                                                                             |  |

| Sr. No.         | Item Description | Unit | enerated/ Stored in the month |        |        | Disposed | Recycled in | the month | Remarks (Disposal Agency/ where &         |
|-----------------|------------------|------|-------------------------------|--------|--------|----------|-------------|-----------|-------------------------------------------|
| <b>510</b> 1100 | (Waste type)     |      | Jan 23                        | Feb 23 | Mar 23 | Jan 23   | Feb 23      | Mar 23    | how Recycled                              |
|                 |                  |      |                               |        |        |          |             |           | M/s Samat Bhai                            |
| 4.5             | Scrap Metals     | MT   | 1391.2                        | 700.78 | 756    | 538      | 219         | 169       | M/s Naveen Enterprises & M/s Raghav Steel |
| 4.6             | Any other        |      |                               |        |        |          |             |           |                                           |
| 5               | Batteries        | No.s |                               | 5      | 8      |          |             |           |                                           |
| 6               | E-waste          | Kg   | -                             |        | 1.23   | -        |             | 0         | -                                         |

## Appendix 9.2: Status of Waste Generation & Management details at C6 Package in the Quarter

Table 103:Status of Waste Generation & Management Details at C6 package in the Quarter

| Sr. | Item Description (Waste | Unit            | Generated/ Stored in the month |        |        | Disposed/Recycled in the month |        |        | Remarks (Disposal Agency/ where |
|-----|-------------------------|-----------------|--------------------------------|--------|--------|--------------------------------|--------|--------|---------------------------------|
| No. | type)                   |                 | Jan 23                         | Feb 23 | Mar 23 | Jan 23                         | Feb 23 | Mar 23 | &how Recycled                   |
| 1   | C&D waste               | Cum             | 1392 Cum                       | 1392   | 246    | 1272 Cum                       | 1272   | 39.6   |                                 |
| 2   | Biomedical waste        | Kg              | 1.260                          | 6.55   | 9      | 1.260                          | 6.55   | 9      | Samvedna BMW Incinerator        |
| 3   | Hazardous waste         | Kg or<br>liters |                                |        |        |                                |        |        | B2B & Approved Agency           |
| 3.1 | Waste/used Oil          | Liters          | 458                            | 1035   | 1754   | _                              | -      | -      |                                 |
| 3.2 | Waste Cotton            | Kgs             | 262                            | 13     | 46     | -                              | -      | -      |                                 |
| 3.3 | Waste Filters           | Nos             | 315                            | 122    | 54     | _                              | -      | -      |                                 |
| 3.4 | Waste Chemicals         | Nos/ Kg         |                                | -      |        |                                |        |        |                                 |
| 3.5 | Waste containers/ drums | Nos             | -                              | -      | -      | -                              | -      | -      |                                 |
| 3.6 | Any other               |                 |                                |        |        |                                |        |        |                                 |
| 4   | Non- Hazardous waste    | Kg              |                                |        |        |                                |        |        |                                 |
| 4.1 | Food waste              | Kg              | 1367                           | 334    | 613    | -                              | -      | -      | OWC                             |
| 4.2 | Paper and cardboard     | Kg              | 90                             | 121    | 100    | -                              | -      | -      |                                 |
| 4.3 | Plastic                 | Kg              | -                              | -      | -      | -                              | -      | -      |                                 |
| 4.4 | Wood                    | Kg              | -                              | -      | -      | -                              | -      | -      |                                 |
| 4.5 | Scrap Metals            | MT              | 19                             | 314    | 32     | -                              | -      | -      |                                 |
| 4.6 | Any other               |                 | -                              | -      | -      | -                              | -      | -      |                                 |
| 5   | Batteries               | No.s            | 01                             | -      | -      | -                              | -      | -      |                                 |
| 6   | E-waste                 | Kg              | 03                             | 03     | 03     | -                              | -      | -      |                                 |

#### Appendix 9.3: Status of Waste Generation & Management at C5 Package in the Quarter

Table 104:Status of Waste Generation & Management Details at C5 package in the Quarter

| Sr. | Item Description           | Unit         | Generated | d/ Stored in | the month | Disposed | l/Recycled in | the month | Remarks (Disposal Agency/                          |
|-----|----------------------------|--------------|-----------|--------------|-----------|----------|---------------|-----------|----------------------------------------------------|
| No. | (Waste type)               | Unit         | Jan 23    | Feb 23       | Mar 23    | Jan 23   | Feb 23        | Mar 23    | where & how Recycled                               |
| 1   | C&D waste                  | cum          | 39.6      | 145.2        | 108.4     | 00       | 00            | 00        | Pile Head After Chipping Kept at P550, P549 & P402 |
| 2   | Biomedical waste           | Kg           | 0.1       | 0.2          | 0.2       | 0.1      | 0.2           | 0.2       |                                                    |
| 3   | Hazardous waste            | Kg or liters | -         |              |           |          |               |           |                                                    |
| 3.1 | Waste/used Oil             | Liters       | 35        | 45           | 18        | -        | 00            | 00        | Kept at Janardhan Cold Storage                     |
| 3.2 | Waste Cotton               | Kgs          | 02        | -            | 1.5       |          | -             | 00        | Kept at Janardhan Cold Storage                     |
| 3.3 | Waste Filters              | Nos          | 16        | 34           | 09        | -        | 01            | 00        | -                                                  |
| 3.4 | Waste Chemicals            | Nos/ Kg      |           |              |           |          |               |           |                                                    |
| 3.5 | Waste containers/<br>drums | Nos          | 15        | 00           | 306       | 15       | 12            | 306       | Sent for reuse at Crusher unit                     |
| 3.6 | Any other                  |              |           |              |           |          |               |           |                                                    |
| 4   | Non- Hazardous waste       | Kg           |           |              |           |          |               |           |                                                    |
| 4.1 | Food waste                 | Kg           | 861       | 989.6        | 1036.3    | 861      | 989.6         | 1036.3    | Disposal to VMC                                    |
| 4.2 | Paper and cardboard        | Kg           | 04        | 00           | 3.7       | 04       | 00            | -         | Kept at office                                     |
| 4.3 | Plastic                    | Kg           |           |              |           |          |               |           |                                                    |
| 4.4 | Wood                       | Kg           | -         | -            | -         | -        | -             | -         |                                                    |
| 4.5 | Scrap Metals               | MT           | 48.35     | 23.52        | 10000     | 1.2      | 00            | -         | Stored at Punjab Steel                             |
| 4.6 | Any other                  |              |           |              |           |          |               |           |                                                    |
| 5   | Batteries                  | No.s         | -         |              |           | -        |               |           | -                                                  |
| 6   | E-waste                    | Kg           | 2.03      | 0            | 01        | -        | 00            |           | Kept at office                                     |

### Appendix 9.4: Status of Waste Generation & Management at C7 Package in the Quarter

Table 105:Status of Waste Generation & Management Details at C7 package in the Quarter

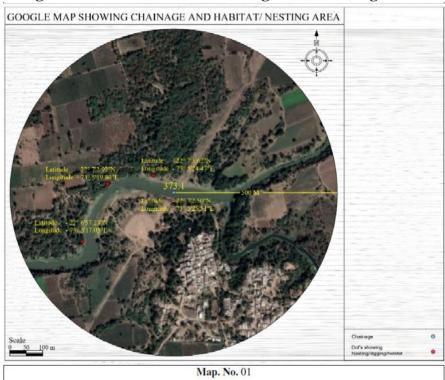
| Sr. | Item Description        | <b>T</b> T <b>!</b> 4 | Genera               | ted/Stored in th        | ne month         | Disposed/Recycled in the                        | Remarks(DisposalAgency/ where |
|-----|-------------------------|-----------------------|----------------------|-------------------------|------------------|-------------------------------------------------|-------------------------------|
| No. | (Waste type)            | Unit                  | Jan 23               | Feb 23                  | Mar 23           | month                                           | &<br>how Recycled             |
|     | C&D waste               |                       |                      |                         |                  |                                                 |                               |
|     | Viaduct Section 01      |                       | 480 / 168            | 301.2 / 78.31           | 75 / 30 Approx   | 312 Approx. + 222.89                            | Reused at site level          |
|     | Viaduct Section 02      |                       | Approx               | Approx.                 | 73 / 30 Applox   | Approx.+ 45 Approx                              | Reused at site level          |
| 1   | Ahmedabad Station       | Kg                    | 195 / 126<br>Approx. | 90.5 / 13.57<br>Approx. |                  | 69 Approx.+ 76.92 Approx.                       | Reused at site level          |
|     | Sabarmati Station       |                       | -                    | -                       | 15               | -                                               | -                             |
|     | Casting Yard-01         |                       | -                    | 15.0 Approx.            | 10               | 15.0 Approx.+ 10                                | -                             |
|     | Biomedical waste        |                       |                      |                         |                  |                                                 |                               |
| 2   | Casting Yard-01         | Kg                    | 0.70 Kg<br>Approx.   | 0.65 Kg<br>Approx.      | 0.6 Kg Approx    | 0.70 Kg Approx+ 0.65 Kg<br>Approx+0.6 Kg Approx | Disposed to AMC Health Center |
|     | Ahmedabad Station       |                       | -                    | -                       | 0.4 Kg           | 0.4 Kg                                          | -                             |
|     | Sabarmati Station       |                       | -                    | -                       | 0.4 Kg           | 0.4 Kg                                          | -                             |
|     | Hazardous waste         |                       |                      |                         |                  |                                                 |                               |
| 3   | Waste/used Oil          | Kg or                 | 70.0 Liter<br>Approx | 55 Liter<br>Approx.     | 55 Liter Approx. | -                                               | -                             |
|     | Waste Cotton            | litres                | 0.25 Kg              | 0.2 Kg                  | 0.2 Kg           | -                                               | -                             |
|     | Waste Filters           |                       | 4.0 Kg               | 4.0 Kg                  | 5.0 Kg           | -                                               | -                             |
|     | Waste Containers/ drums |                       | 35 Nos.              | 30 Nos.                 | 40 Nos.          | -                                               | -                             |
|     | Non- Hazardous waste    |                       |                      |                         |                  |                                                 |                               |
|     | Food waste              |                       | 5.0 Kg               | 4.5 Kg                  | 5.0 Kg           | 5.0 Kg                                          | -                             |
| 4   | Paper and cardboard     | Kg/MT                 | -                    | -                       | 560 Kg           | 560 Kg                                          | -                             |
|     | Plastic                 |                       | -                    | -                       | 290 Kg           | 290 Kg                                          | -                             |
|     | Wood                    | ]                     | -                    | _                       | 570 Kg           | 570 Kg                                          | -                             |
|     | Scrap                   | <u> </u>              | -                    | -                       |                  | -                                               | -                             |
| 5   | Used Batteries          | Kg                    | -                    | -                       |                  | -                                               | -                             |
| 6   | E-waste                 | Kg                    | -                    | -                       |                  | -                                               | -                             |

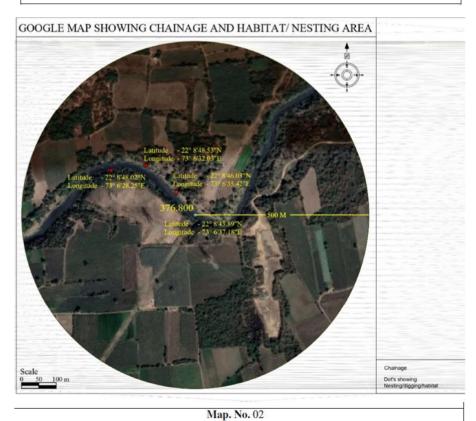
### Appendix 9.5: Status of Waste Generation & Management at C8 Package in the Quarter

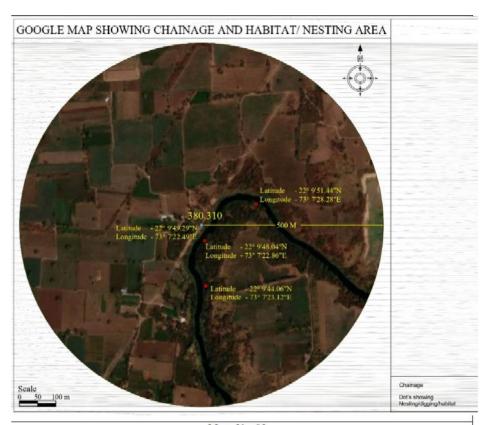
Table 106:Status of Waste Generation & Management Details at C8 package in the Quarter

| # | Item Description (Waste Unit                               |              | Gener        | rated/ Stored in th | e month      | Disposed/Recycled in | Remarks |
|---|------------------------------------------------------------|--------------|--------------|---------------------|--------------|----------------------|---------|
|   | type)                                                      |              | Jan 23       | Feb 23              | Mar 23       | the month            |         |
| 1 | C&D waste                                                  | Kg           | None         | None                |              |                      |         |
|   | Section-wise                                               |              |              |                     |              |                      |         |
| 2 | Biomedical waste                                           | Kg           | None         | None                |              |                      |         |
|   | Section-wise                                               |              |              |                     |              |                      |         |
| 3 | Hazardous waste  1. Waste/used. Oil                        | Kg or litres | 1. 760 Liter | 1. 880 Liter        | 1. 420 Litre |                      |         |
|   | <ul><li>2. Waste Cotton</li><li>3. Waste Filters</li></ul> |              | 2. 2 Kg      | 2. 1 Kg             | 2. 1 Kg      |                      |         |
|   | 4. Waste Chemicals                                         |              | 3. 5 Nos     | 3. 12 Nos           | 3. None      |                      |         |
|   | 5. Waste Containers/drums                                  |              | 4. Nil       | 4. Nil              | 4. Nil       |                      |         |
|   | 6. Any other                                               |              | 5. 3 Nos     | 5. 6 Nos            | 5. 1 Nos     |                      |         |
|   |                                                            |              | 6. None      | 6. None             | 6. None      |                      |         |
| 4 | Non- Hazardous<br>waste<br>1. Food waste                   | Kg           | 21Kg         | 18 Kg               | 19 kg        |                      |         |
|   | 2. Paper and cardboard                                     |              |              |                     |              |                      |         |
|   | <ul><li>3. Plastic</li><li>4. Wood</li></ul>               |              |              |                     |              |                      |         |
|   | <ul><li>5. Scrap</li><li>6. Any other</li></ul>            |              |              |                     |              |                      |         |
| 5 | Batteries                                                  | Nos          | None         | None                | 04           |                      |         |
| 6 | E-waste                                                    | Kg           | None         | None                | None         |                      |         |

### Appendix 9.6: Status of Waste Generation & Management at P1B Package in the Quarter

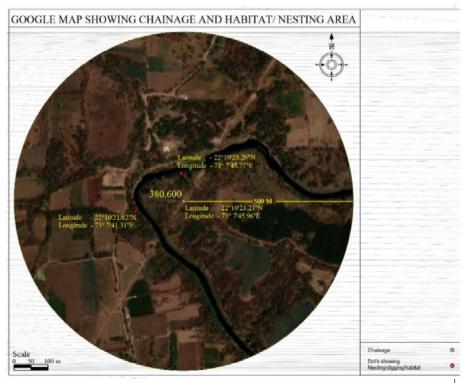

Table 107:Status of Waste Generation & Management Details at P1B package in the Quarter


| Sl. No. | Item Description<br>(Waste type)                                                                                     | Unit         | Generated/<br>month | / Stored in 1 | the          | Disposed/Recycled in the month                                                                              | Remarks<br>(Disposal Agency/ where & how                          |
|---------|----------------------------------------------------------------------------------------------------------------------|--------------|---------------------|---------------|--------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|         |                                                                                                                      |              | Jan                 | Feb           | Mar          |                                                                                                             | Recycled                                                          |
| 1       | C&D waste                                                                                                            | Kg           | 44,156.25           | 52,987.5      | 17,66<br>2.5 | After crushing the pile head, we will used for the development of approach road & casting yard development. | Main source of generation of C & D waste are Pile heads, TM wash. |
| 2       | Biomedical waste                                                                                                     | Kg           | 2.261               | 1.492         | 0.685        | 4.438                                                                                                       | For the biomedical waste disposal, we have tie-up hospital.       |
| 3       | Hazardous waste  1. Waste/used Oil  2. Waste Cotton  3. Waste Filters  4. Waste Chemicals  5. Waste Containers/drums | Kg or litres | 92                  | 92            | 1562         | 00                                                                                                          | M/s- Mateshwari Metals.                                           |
| 4       | Non- Hazardous waste  1. Food waste  2. Paper and cardboard  3. Plastic  4. Wood  5. Scrap                           | Kg           | 73                  | -             |              | Handing over to municipalities.                                                                             | -                                                                 |
| 5       | Batteries                                                                                                            | No's         | 00                  | -             | 38           | 26 (handing over to approved agency for final disposal).                                                    | M/s- Jai Ambe Thin Chem                                           |


| Sl. No. | Item Description<br>(Waste type) | Unit | Generated/<br>month | Stored in t | he  | Disposed/Recycled in the month | Remarks<br>(Disposal Agency/ where & how |
|---------|----------------------------------|------|---------------------|-------------|-----|--------------------------------|------------------------------------------|
|         |                                  |      | Jan                 | Feb         | Mar |                                | Recycled                                 |
| 6       | E-waste                          | Kg   | -                   | -           |     | -                              | All the electronic items are in under    |
|         |                                  |      |                     |             |     |                                | warranty & till now no generation        |
|         |                                  |      |                     |             |     |                                | of E-waste.                              |

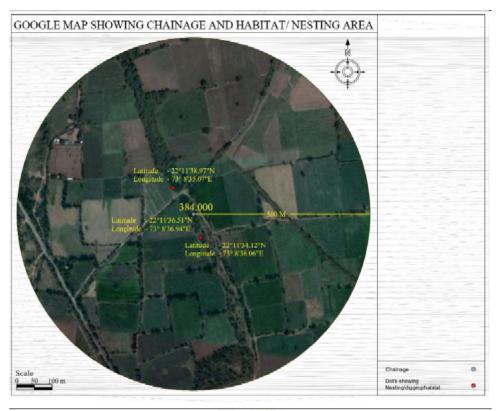
### **Annexure 10: Crocodile Conservation Plan**

#### 1. Potential Nesting/ Habitat areas at River Crossings for C4 Package



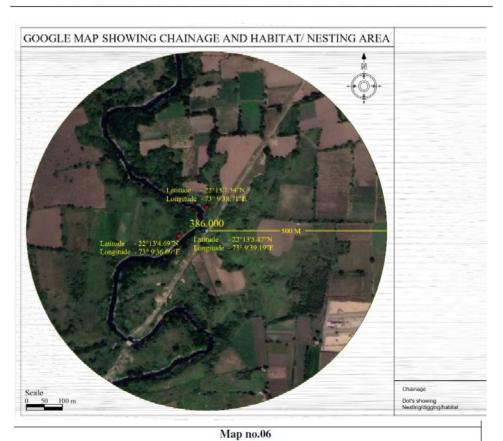




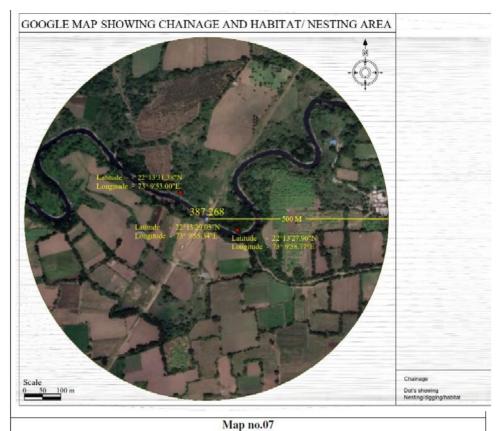


Map. No. 03

\* Red dot showing potential nesting sites/habitat (Marked as per indirect / secondary sources)

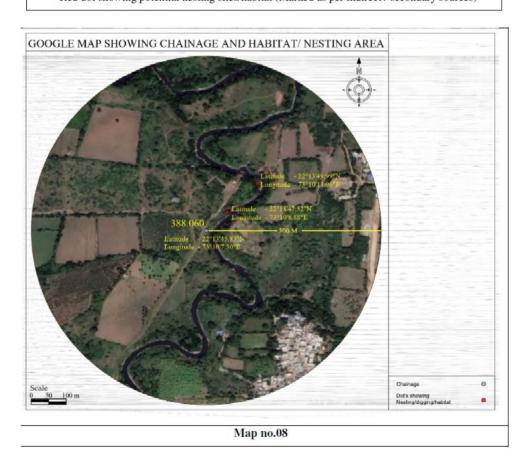


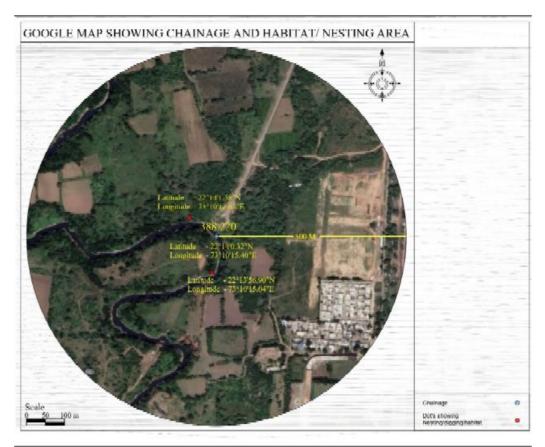

Map no.04

\* Red dot showing potential nesting sites/habitat (Marked as per indirect / secondary sources)




Map no.05


\* Red dot showing potential nesting sites/habitat (Marked as per indirect / secondary sources)




402



\* Red dot showing potential nesting sites/habitat (Marked as per indirect / secondary sources)





Map no.09

#### 2. Action Plan for C5 package

#### Preventive Measures during Human Crocodile Conflict (HCC)

| Animal     | Loss type                |          | Preventive measures                             |    |          |           | Mitigation measures   |                              |              |
|------------|--------------------------|----------|-------------------------------------------------|----|----------|-----------|-----------------------|------------------------------|--------------|
|            |                          | 2442.212 | Removal & relocation caged warning. sign boards |    |          |           | Compensation for loss |                              |              |
| Crocodiles | Human                    |          | Crocodile Exclusion Enclosure                   |    |          |           | Avoid entering river  |                              |              |
| Crocodnes  | Livestock<br>depredation | attack,  | Training programs                               | to | Workmen/ | Education | Awareness entire co   | programs<br>instruction peri | during<br>od |
|            |                          |          | Declaration of prohibited area                  |    |          |           | Day &                 | Night Security               | у            |

#### **Strategy for Conserving the Crocodilian Species**

| Strategy                              | Requirement                                                                                                                                                                                                                                                                                                                               | Advantages                                                                                                                                                                                                  | Possible limitations                                                                                                                                                                                                                |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| &Awareness                            | <ul> <li>Providing the community with information on the biology, ecology and behaviour of crocodilians, and guidelines for avoiding a negative interaction</li> <li>Analysing the situation where HCC exists, considering ecological and social factors.</li> <li>Monitoring and evaluating actions, and sharing information.</li> </ul> | <ul> <li>Provides useful advice for the public.</li> <li>Provides an evidence basis for management.</li> <li>Reveals all the dimensions of the conflict involves the community in a positiveway.</li> </ul> | <ul> <li>Funding and available experts.</li> <li>Slow to develop and there's pressure to act quickly.</li> <li>Challenging working with different stakeholders</li> <li>Natural resource dependent people ignore advice.</li> </ul> |
| Risk-based<br>approaches:<br>Zonation | Delineating zones where crocodilians will, and will not, be tolerated based on the level of risk they pose.                                                                                                                                                                                                                               | An efficient and effective way of directing management resources.  Population of larger crocodilians is reduced in highly utilized areas.  Clarifies management response                                    | Crocodilians are highly mobile and difficult to detect. May contribute to a false sense of security. Conflict can arise over why some areas are zoned and others not.                                                               |
| Barriers<br>a<br>nd enclosures        | Construction of fences, weirs or<br>Crocodile Exclusion Enclosures<br>(CEEs) to make access to water<br>safer                                                                                                                                                                                                                             | Offer safe access to water in rural areas where locals must use crocinhabited water bodies.                                                                                                                 | Require robust design and durable materials. Require maintenance. Shorelines move seasonally expensive.                                                                                                                             |
| Improved infrastructure               | Infrastructure to keep humans and crocodilians apart. Provision of water in tanks or piped water; improved waste disposal toilet facilities and safe crossing places.                                                                                                                                                                     | Keeps people away from crocodilian habitat.  Can be good for conservation.  Can improve the living conditions for local people                                                                              | Infrastructure separates humans and crocodilians, but people still use the water for recreation, washing of animals, attacks persist and crocodilians are killed.                                                                   |

| Real-time<br>monitoring | • | Local management and/or locals dedicate timeto monitoring crocodilians and issue warnings whenthey're seen in areas used | • | Provides real-<br>time information on<br>crocodilianpresence.  Keeps officials and locals<br>aware of crocodilians. | • | Crocodilians are highly mobile and hard tospot. |
|-------------------------|---|--------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------|
|                         |   | by humans.                                                                                                               |   |                                                                                                                     |   |                                                 |
| Training                | • | Training of police,                                                                                                      | • | Involves locals                                                                                                     | • | Expensive potentially                           |
|                         |   | emergency services for how to respond to                                                                                 | • | Reduces conflict helpful where                                                                                      |   | encourages risky<br>behaviour.                  |
|                         |   | incidents and handle crocodilians                                                                                        |   | conservation authorities have limited                                                                               | • | Interventions are                               |
|                         |   |                                                                                                                          |   | nave mineca                                                                                                         |   | dangerous.                                      |
|                         |   |                                                                                                                          |   | resources.                                                                                                          |   |                                                 |

#### 3. Action Plan of C4 Package

|            | Appendix "A"                                                                                                                                                         | Appendix "A" - CROCODILE CONSERVATION AND MANAGEMENT PLAN (Action Plan)                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                          |  |  |  |  |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|--|--|
| Sr.<br>No. | Recommendations                                                                                                                                                      | Action Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Responsible Person                                                       |  |  |  |  |  |
| 1          | Training on Crocodile safety to be conducted for the Person working in the critical area and no person without training shall be deployed.                           | L&T will provide three type of training abour crocodile Management and Conservation -  1. Induction training must include the awareness of Crocodile Management and conservation plan.  2. Site Specific Training on Crocodile conservation and management plan to be delivered by Site Staff.  3. Site Specific Training on Crocodile conservation and management plan to be delivered by Experts working in this filed.  Training records shall be maintained.             | EHS In Charge<br>Mr. Pradeshwarasingh<br>9003453155<br>mpssft@Intecc.com |  |  |  |  |  |
| 2          | No Visitors, other than working team shall be allowed at site. In unavoidable case, Visitor shall be trained on Crocodile safety and shall be accompanied by expert. | 1). Unauthorised person entry are restrcited at site.  2). Any visitor / vendor would like to Visit, has to undergone induction training included Crocodile Conservatiobn and management Plan.  3). Signboard shall be displayed that "Unauthorised entry restricted" "Crocodile Zone" etc.  4). Security guards shall be deployed while work is going on near river streach to ensure the entry and exit, record shall be maintained.                                       | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com  |  |  |  |  |  |
| 3          | Adequate nos. of signages shall be deployed at site to make awareness among locals and workmen deployed at site.                                                     | 1). Awareness, Warning singboard shall be displayed in ROW and working areas to created awareness to locals and well employees. Signbaord must be in languages, which is understand to all.  2). Signboard shall be displayed at every 100 meters both side of road. (Minumum quantity 15 Nos in each working areas)  3). Peirodical review of signboard shall be carried out.  4). Signboard can be shifted one to another location if work is completed in this streaches. | EHS In Charge<br>Mr. Pradeshwarasingh<br>9003453155<br>mpssft@Intecc.com |  |  |  |  |  |
| 4          | Expert Ground staff shall be deployed for monitoring of Crocodile movement in the area.                                                                              | 1). Day and Night patroling team will be formed and regular petrolling shall be carried out.     2). Record shall be maintainted if crocodile observed and same shall be communicated in Next day pre-start briefing.     3). It is ensure that petrolling team must be competent and well aware about any emergecny to deal with it.                                                                                                                                        | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com  |  |  |  |  |  |

|            | Appendix "A"                                                                                                                                                                                                 | - CROCODILE CONSERVATION AND MANAGEMENT PLAN (Action Plan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| Sr.<br>No. | Recommendations                                                                                                                                                                                              | Action Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Responsible Person                                                                                  |
| 5          | Identification of Critical habitat for feeding & nesting of muggers to be done and work shall be executed at a safe distance from it.                                                                        | 1). With reference to the Third aprty report and finding of critical habitant, L&T will ensure that they will not disturb and extra care to be taken in this area while working.  2). Before starting the work, Site team will take a survey of the area to ensure the presenace of Crococdile along with NGOs, and enusre the cleanrace.  3). Sing board shall be displayed in such areas to create the awarenss among the employees.  4). No feeding and horseplay allowed in the area where habitant and nesting found. Emergency Contact No. shall be diaplalyed.                                                                                                                                                | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com                             |
| 6          | If needed, Safe Capture & release of mugger to their natural habitat by experienced persons to be ensured.                                                                                                   | 1). Forest Department will be co-ordinate for the same. If such situation demand that L&T has to take action for capturing and releasing the crocodile from one place to another, then only activity shall be performed by Forest Department along with active NGOs working in this area.  2). It is also to be decided by forest Department only as per the work requirement, if required.                                                                                                                                                                                                                                                                                                                          | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com                             |
| 7          | Programs for Public & Workmen awareness to be conducted for mugger & human safety.                                                                                                                           | Human - Crocodile Conflict Progam shall be conducted in Site, Nearby Habitation and workmen camps etc. in cordination with Forest Deparmtent and NGOs.     Records of the same shall be maintianed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com                             |
| 8          | Night work shall be avoided and if continued, sufficient illumination shall be ensured with expert crocodile rescue person, Ambulance, Male Nurse, Site Engineer, Site superviosr, Welfare Officer and EHSO. | Nightshift work shall be perfomed in safer way by followed -  1. Adequate illumination in the working area and surronding shall be ensures and periodically checked and record maintained.  2. Entry of the perosn must be restricted in working are only, No one must allow to outside the working area.  3. Urinal and washing arrangement shall be carriedout in illuminated area and person must not allow to outside / other places.  4. First Aid facility and ambulance shall be present in approachable distanace with adequate equipment and first aider.  5. Night petrolling shall be carried out by competent persons.  6. Crocodile Rescue team must aware about the working area and their approaches. | Execution team /<br>Admin & IR Incharge<br>Mr. Sanjiv Kumar<br>9920373675<br>kumarsanjiv@Intecc.com |
| 9          | Lone working shall be prohibited.                                                                                                                                                                            | Signboard shall be displayed "Lone working not permitted in this area"     Awarness to be created among employees that no one shall performed single duty.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Execution team /<br>Admin & IR Incharge<br>Mr. Sanjiv Kúmar<br>9920373675<br>kumarsanjiv@Intecc.com |

|            | Appendix "A"                                                                                                               | - CROCODILE CONSERVATION AND MANAGEMENT PLAN (Action Plan)                                                                                                                                                                                                                                                                                                                |                                                                         |
|------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Sr:<br>No. | Recommendations                                                                                                            | Action Plan                                                                                                                                                                                                                                                                                                                                                               | Responsible Person                                                      |
| 10         | It shall be ensured that no food or meat or fish waste is thrwon into water body or left at site.                          | <ol> <li>No cooking/eating is allowed at site and adequate rest area will be provided for eating.</li> <li>Food Waste shall be stored in provided covered dustbins. Daily cleaning of Food waste bins to be ensured.</li> <li>Records of the same shall be maintained.</li> <li>Singboard of the same shall be displayed.</li> </ol>                                      | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |
| 11         | Preparation of Food and eating at site near Crocodile habitat area is strictly prohibited.                                 | <ol> <li>No cooking/eating is allowed at site and adequate rest area will be provided for eating.</li> <li>Food Waste shall be stored in provided covered dustbins. Daily cleaning of Food waste bins to be ensured.</li> <li>Records of the same shall be maintained.</li> <li>Singboard of the same shall be displayed.</li> </ol>                                      | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |
| 12         | Welfare facility (Toilets, Drinking water, rest area etc.) to be ensured at safe place.                                    | 1). Welfare facility like Drinking water, Toilets and rest area must be provided in safe place. 2). Propoer illumination of the area shall be ensured. 3). Periodcial check to be ensure of the area.                                                                                                                                                                     | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |
| 13         | Dedicated security quard and night petrloing team to be deployed.                                                          | 1). Restricted entry shall be ensure in the working area in Night Shift. 2). Security guard must be deployed to enusre the entry and exits. 3). Petrolling shall be perfomred by competent team. 4). Security cabin must be placed in safe position and propoer illumination. 5). No single security guard shall be deployed at site.                                     | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |
| 14         | While working fencing to be provided with coordination by forest dept                                                      | 1). Both side fencing shall be provided while working near river streaches in co-ordination with the Forest Deparmtnet. 2). Fencing must be provided as specified by the Forest team only. 3). Length and height of the fencing also decided as per the Guidelines of forest team. 4). Dedicate Forest officer co-ordination shall be establihsed for specific condtions. | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |
| 15         | Fishing should be regularized and regulation strictly enforced in all the major mugger habitats by the concerned authority | in consultation with Forest Department and Local NGOs awareness to be created among workers and local communicty to avoid the fishing in mugger habitant areas.                                                                                                                                                                                                           | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |

|            | Appendix"A                                                                            | " - CROCODILE CONSERVATION AND MANAGEMENT PLAN (Action Plan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                         |
|------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Sr.<br>No. | Recommendations                                                                       | Action Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Responsible Person                                                      |
| 16         | Chainage Wise Action plan  1) Fenced enclosure, Protective Barriers like wire netting | Maximum Muggers and mound nest was direct sighted on Chainage 373, 376, 386 and 388.06 while survey, and suggested recommedation are to be complied by Contractor - 1). Both side fencing shall be provided while working near river streaches in co-ordination with the Forest Deparmtnet.  2). Fencing must be provided as specified by the Forest team only.  3). Length and height of the fencing also decided as per the Guidelines of forest team.  4). Dedicate Forest officer co-ordination shall be establihsed for specific condtions. | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |
| 17         | Chainage Wise Action plan  2) Crocodile Excluded Enclosure: Must for Every Chainage   | Maximum Muggers and mound nest was direct sighted on Chainage 373, 376, 386 and 388.06 while survey, and suggested recommedation are to be complied by Contractor - 1) Crocodile Excluded Enclosure shall be provided in consultation with forest department as and where required.                                                                                                                                                                                                                                                              | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |
| 18         | Chainage Wise Action plan 3) Obey all crocodile warning signs                         | Maximum Muggers and mound nest was direct sighted on Chainage 373, 376, 386 and 388.06 while survey, and suggested recommedation are to be complied by Contractor - 1). All singboard shall be displayed as per advise by Expert, NGO and Forest Department.                                                                                                                                                                                                                                                                                     | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |

|            | Appendix "A" - CROCODILE CONSERVATION AND MANAGEMENT PLAN (Action Plan)                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                    |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Sr.<br>No. | Recommendations                                                                                                             | Action Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Responsible Person                                                                                                                 |  |  |  |  |  |
| 19         | Chainage Wise Action plan 4) Be extra vigilant around water at night and during the breeding season from September to April | Maximum Muggers and mound nest was direct sighted on Chainage 373, 376, 386 and 388.06 while survey, and suggested recommedation are to be complied by Contractor - Nightshift work shall be performed in safer way by followed -  1). Adequate illumination in the working area and surronding shall be ensures and periodically checked and record maintained.  2). Entry of the perosn must be restricted in working are only, No one must allow to outside the working area.  3). Urinal and washing arrangement shall be carriedout in illuminated area and person must not allow to outside / other places.  4). First Aid facility and ambulance shall be present in approachable distanace with adequate equipment and first aider.  5). Night petrolling shall be carried out by competent persons.  6). Crocodile Rescue team must aware about the working area and their approaches. Deployment of guard at every chainage, wherever work performed -  7). Restricted entry shall be ensure in the working area in Night Shift.  8) During breeding period, more security to be enusre, awareness created, night watch will increase to avoid any incident. | Admin/IR In Charge Mr. Sohail Khan 9907621365 skhan@Intecc.com Execution team / Mr. Sanjiv Kumar 9920373675 kumarsanjiv@Intecc.com |  |  |  |  |  |
| 20         | Chainage Wise Action plan 5) Deployment of Guard at every chainage                                                          | Maximum Muggers and mound nest was direct sighted on Chainage 373, 376, 386 and 388.06 while survey, and suggested recommedation are to be complied by Contractor - 1). Security guard must be deployed to enusre the entry and exits.  2). Petrolling shall be performed by competent team.  3). Security cabin must be placed in safe position and propoer illumination.  4). No single security guard shall be deployed at site.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com                                                            |  |  |  |  |  |
| <u></u>    |                                                                                                                             | Measures required for community / nearby Villagers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Admin (ID to Change                                                                                                                |  |  |  |  |  |
| 21         | Inappropriate fishing practices                                                                                             | Sign Board showing warning regarding this practice shall be provided.     New arenss among the community and villagers to be created with the help of NGOs and Forest Department.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com                                                            |  |  |  |  |  |
| 22         | Artificial feeding/Food provisioning                                                                                        | Sign Board showing warning regarding this practice shall be provided.     Awarenss among the community and villagers to be created with the help of NGOs and Forest Department.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com                                                            |  |  |  |  |  |

|            | Appendix "A" - CROCODILE CONSERVATION AND MANAGEMENT PLAN (Action Plan) |                                                                                                                                                                                                                                                          |                                                                         |  |  |  |  |  |
|------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|--|--|
| Sr.<br>No. | Recommendations                                                         | Action Plan                                                                                                                                                                                                                                              | Responsible Person                                                      |  |  |  |  |  |
|            | Swimming/washing clothes in the river                                   | 1). Sign Board showing Warning regarding not to swim in the river and not to wash cloths to place near crocodile habitat/river to be provided.  2). Awarenss among the community and villagers to be created with the help of NGOs and Forest Department | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |  |  |  |  |  |
| 24         | Monetary/Financial gain                                                 | 1). Awareness through NGO'S is required regarding the following illegal activities Killing or capture of crocodilians for commercial or non-commercial gain: for food, skins (leather), ingredients for medicine or magic, for sale or to keep as pets.  | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |  |  |  |  |  |
| 25         | Human attack, livestock depredation                                     | Removal and relocation, caged-bathing ghats provided by forest department if any.     Warning sign boards to be displayed.     Awareness program for the villagers                                                                                       | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |  |  |  |  |  |
| 26         | Cattle crossing crocodile-inhabited waters                              | Awareness created among the community with the help of NGOs and Local Forest Department.     Sign Board showing warning in this regards to be displayed with the help of local NGOs and Forest Department.                                               | Admin/IR In Charge<br>Mr. Sohail Khan<br>9907621365<br>skhan@Intecc.com |  |  |  |  |  |

#### **Annexure 11: Evidences on Incident**

Letter written to Director of Relief, Vadodara State Emergency Operation by Contractor



Larsen & Toubro Limited, Construction Construction
Transportation Infrastructure
C6 Package - MAHSR, TFL Office,
6th Floor, Lillaria 1038, Gotti - Sevasi Road,
New Alkapuri, Laxmipura, Vadodara, Gujarat - 390 021, INDSA www.Lotecc.com 13th January 2023

L&T/TIIC-TFL/RREC/GPCB/MAHSR/C6/2023/3477

The Director of Relief State Emergency Operation Centre Road no. 4B, Sector 18 Gandhinagar (Gujarat) - 382021

Project: C6 Package - Design and Construction of 89 Km long Vladuct (Ch. 401.8 - 489.4)

including Anand/Nadiad Station for MAHSR Project.

Subject: Intimation regarding workers getting exposed to an unidentified gas around

MAHSR Ch. 409.920 (near Ajod village) at night between 10:00 pm of

12.01.2023 and 2:00 am of 13.01.2023

Ref: Contract Agreement executed between Larsen & Toubro Limited (L&T) and

NHSRCL dated 16.12.2020 (MAHSR Package - C6)

Dear Sir,

We wish to inform that we are executing works for High-Speed Rail Project Package C6 (Bullet Train Project) from Vadodara to Ahmedabad for National High-Speed Rail Corporation Limited (NHSRCL) and various workers have been engaged to execute works through out the stretch. This is to bring in your notice that our workers engaged at MAHSR Ch. Ch. 409.920 (near Ajod village) got exposed to an unidentified gas around the work location at night between 10:00 pm of 12.01.2023 and 2:00 am of 13.01.2023 and has been feeling nauseated since night and are under supervision of doctors after primary first-aid treatment.

In view of above incidence, we hereby request you to identify the gas and take necessary action to avoid such incidence in future. Also, please provide us the guidelines to work safely at Site.

Thanking you.

Yours faithfully.

For Larsen & Toubro Limited

M Ramesh

Task Force Leader, MAHSR C6 Package

1. Shri S. Sreedharan, CCM, TCAP JV

2. Shri Pradeep Ahirkar, CPM, NHSRCL, Vadodara

Page 1 of 1 NB

\*\*\* Aumbai Office : Landmark 'A' Wing, 6th Floor, Suren Road, Off. Andheri - Kurla Road, Near Western Highway Metro, Andheri (E), Mumbai - 400 093, (NDM

\*\*Heodquarters : RB. No. 979, Mount Poonamallee Road, Manapakkam, Chennai - 600 089, (NDM

\*\*Regutered Office: LBT House, N. M. Metrg, Baland Estate, Mumbai - 400 001, (NDM

Licence No.: CN - 199999MH1946FLC094768

L&T Construction - Transportation Infrastructure is a brand of Larsen & Toubro Limited



### SHREE KRISHNA ANALYTICAL SERVICES PVT. LTD.

(An ISO 9001 : 2015, ISO 14001 : 2015 & OHSAS 16001 : 2007 Certified & MoEFCC Recognised Laboratory)
A-5/4, Mayapuri Industrial Area, Phase-II, New Delhi-110004, Ph.: 0111-28115459, 41848475, 9654958120
E-mail: shreekrishnalab@gmail.com, info@skaslab.com, Web ; www.skaslab.com



GOVT. APPROVED TESTING LABORATORY

| issued To         |                                  | & TOUBRO LIMITED, CONSTRUCTION                                                                                   | Report No.              | ENV-150123008 |
|-------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|
|                   | SEVASI                           | C6, 6 <sup>th</sup> FLOOR, LILLERIA 1038, GOTRI<br>ROAD, NEAR SEVASI POLICE STATION,<br>KA PURI, VADODARA-390021 | Date of Sample Received | 15/01/2023    |
| Sample Natu       | Sample Nature/Name   AMBIENT AIR |                                                                                                                  | Test Started On         | 15/01/2023    |
| Sample Code       |                                  | AAQ                                                                                                              | Test Completed on       | 19/01/2023    |
| Customer Ref. No. |                                  | EL662WOD1000807 / Dated 01/07/2021                                                                               | Date of Report Issued   | 19/01/2023    |

Project Name: Mumbai Ahmedabad High Speed Rail (MAHSR) C6 (Construction Phase)

#### SAMPLING & ANALYSIS DATA

Sample Drawn By

: Mr. Yashi (Field Analyst-Environment Lab)

Date of Monitoring and Time : 13.01.2023 (12:30 pm) to 14.01.2023 (12:30 pm)

Average Temperature (°C) : 21

Sampling Location : Active project site at Chainage-409, P-11-12
Sampling Co-Ordinate : 22°24′22″N 73°8′38″E
Sampling Method : NAAQMS Monitoring & Analysis Guidelines Volume-I

Humidity (%)

: 76

Wind Direction Wind Speed (km/h) Environment Condition : NE 1 3.2 : Clear Sky

#### **TEST RESULTS**

| S. No. | Parameters                          | Unit  | Result | Requirement<br>permissible limits<br>as per NAAQS/CPCB | Test Method                                                                         |
|--------|-------------------------------------|-------|--------|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| 1.     | Particulate Matter (PM2.5)          | µg/m³ | 55.7   | 60.0                                                   | NAAQMS Monitoring &<br>Analysis Guidelines,<br>Volume-I CPCB, Gravimetric<br>method |
| 2      | Particulate Matter (PM10)           | µg/m² | 92.5   | 100.0                                                  | IS 5182 (Part 23)                                                                   |
| 3.     | Carbon Monoxide (CO)                | mg/m³ | 1.98   | 4.0                                                    | IS 5182 (Part 10)                                                                   |
| 4.     | Sulphur Dioxide (SO <sub>2</sub> )  | µg/m³ | 21.9   | 80.0                                                   | IS 5182 (Part 2)                                                                    |
| 5.     | Nitrogen Dioxide (NO <sub>2</sub> ) | µg/m³ | 39.9   | 80.0                                                   | IS 5182 (Part 6)                                                                    |
| 6.     | Ammonia (as NH <sub>3</sub> )       | µg/m³ | 42,5   | 400                                                    | NAAQMS Monitoring &<br>Analysis Guidelines Volume-I<br>Colormetric (by UV )         |

Remarks: Note: - Party asked for the above tests only

\*\*\*End of Report\*\*\*



Page 1 of 1

VINAY KUMAR

TC-8932



#### SHREE KRISHNA ANALYTICAL SERVICES PVT. LTD.

(An ISO 9001 : 2015, ISO 14001 : 2015 & OHSAS 18001 | 2007 Certified & MoEFCC Recognised Laboratory)

A-Si4, Mayapuri Industrial Area, Phase-II, New Delhi-110064, Ph. | 011-28115459, 41848475, 9654958120

E-mail: shreekrishnalab@gmail.com, info@skaslab.com, Web. : www.skaslab.com



GOVT. APPROVED TESTING LABORATORY

#### REPORT OF ANALYSIS

| Issued To                                                                                         | LARSEN                           | & TOUBRO LIMITED, CONSTRUCTION.    | Report No.            | ENV-150123007 |  |
|---------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|-----------------------|---------------|--|
| MAHSR C6, 6 <sup>th</sup> FLOOR, LILLERIA 1038, GOTRI<br>SEVASI ROAD, NEAR SEVASI POLICE STATION, |                                  | Date of Sample Received            | ved 15/01/2023        |               |  |
|                                                                                                   | NEW ALKA PURI, VADODARA-390021   |                                    | Test Started On       | 15/01/2023    |  |
| Sample Natu                                                                                       | Sample Nature/Name   AMBIENT AIR |                                    | Test Completed on     | 19/01/2023    |  |
| Sample Code                                                                                       | 0                                | AAQ                                |                       | 19/01/2023    |  |
| Customer Ref. No.                                                                                 |                                  | EL662WOD1000807 / Dated 01/07/2021 | Date of Report Issued | 19/01/2023    |  |

Project Name: Mumbai Ahmedabad High Speed Rail (MAHSR) C6 (Construction Phase)

#### SAMPLING & ANALYSIS DATA

Sample Drawn By

: Mr. Yashi (Field Analyst-Environment Lab)

Date of Monitoring and Time : 13.01.2023 (02:10 pm) to 14.01.2023 (02:00 pm)

Sampling Location

Active project site at Chainage 405, P-4 Near by-Highway
 22°22'29'N 73°09'58"E

Sampling Co-Ordinate

Sampling Method

: NAAQMS Monitoring & Analysis Guidelines Volume-I

Average Temperature (°C)

: 23

Humidity (%) Wind Direction : 59.1 : E

Wind Speed (km/h)

: 1.9

Environment Condition

: Clear Sky

#### TEST RESULTS

| S. No. | Parameters                          | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result | Requirement<br>permissible limits<br>as per NAAQS/CPCB | Test Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.     | Particulate Matter (PM2.5)          | hð <sub>l</sub> m <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54.7   | 60.0                                                   | NAAQMS Monitoring &<br>Analysis Guidelines,<br>Volume-I CPCB, Gravimet<br>method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | (04440)                             | µg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92.5   | 100.0                                                  | IS 5182 (Part 23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2      | Particulate Matter (PM10)           | and the same of th | 1.41   | 4.0                                                    | IS 5182 (Part 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.     | Carbon Monoxide (CO)                | mg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                        | IS 5182 (Part 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | Sulphur Dioxide (SO <sub>2</sub> )  | µg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16.1   | 80.0                                                   | And the last of th |
| 4.     |                                     | µg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.5   | 80.0                                                   | IS 5182 (Part 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5.     | Nitrogen Diaxide (NO <sub>2</sub> ) | pgrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |                                                        | NAAQMS Monitoring &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6.     | Ammonia (as NH <sub>3</sub> )       | µg/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39.7   | 400                                                    | Analysis Guidelines Volume<br>Colormetric (by UV )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Remarks: Note: - Party asked for the above tests only

\*\*\*End of Report\*\*\*





Page 1 of 1

Annexure-1 - GPCB Notice



# ગુજરાત પ્રદૂષણ નિયંત્રણ બોર્ડ, પ્રાદેશિક કચેરી

ગેરી કમ્પાઉન્ડ, રેસકોર્રા રોડ, વડોદરા-૩૯૦૦૦૭. ફોન : ૨૩૫૪૮૫૦ વેબસાઇટ : www.gpcb.gov.in, http://gpcbxgn.gujarat.gov.in

## તપાસ માટે દાખલ થવાની નોટીસ

·i.: 32381

પાણી અધિનિયમ ૧૯૭૪ ની કલમ-૨૭, હવા અધિનિયમ ૧૯૮૧ની કલમ-૨૪ અને પર્યાવરણ (સુરક્ષા) અધિનિયમ-૧૯૮૬ની કલમ-૧૦ હેઠળ અમોને મળેલ સત્તાની રૂએ અમો નીચે સહી કરનાર અમોને જરૂરી લાગે તેની સહાય લઇને કોઇપણ સમયે નીચેના હેતુઓ માટે આપની જગ્યામાં દાખલ થવાનો અને તપાસ કરવાનો અધિકાર ધરાવીએ છીએ.

- (૧) અમોને સોંપેલા રાજ્ય બોર્ડ-કેન્દ્ર સરકારનાં કાર્ય બજાવવાના હેતુ માટે.
- (૨) આવા કોઇ કાર્યો બજાવવાના છે કે કેમ અને તેમ હોય તો કઇ રીતે તે બજાવવાના અથવા આ અધિનિયમ અથવા તે હેઠળ બનેલા નિયમોની અથવા આ અધિનિયમ હેઠળ બજાવેલ નોટીસની, કરેલા કોઇ હુકમની, આદેશની અથવા આપેલા કોઇ અધિકારપત્રની જોગવાઇનું પાલન કરવામાં આવી રહ્યું છે કે કેમ તે નક્કી કરવાના હેતુ માટે.
- (૩) કોઇ સાધન સામગ્રી, ઔદ્યોગિક પ્લાન્ટ, રેકર્ડ, રજિસ્ટર, દસ્તાવેજ અથવા અન્ય કોઇ મહત્ત્વની વસ્તુની તપાસ કરવા અને તેની ચકાસણી કરવાના હેતુ માટે અથવા જે જગ્યામાં તેને એમ માનવાના કારણ હોય કે આ કાયદા કે તે હેઠળ બનેલા નિયમો સંદર્ભે કોઇ ગુનો કરવામાં આવ્યો છે, અથવા થવાની તૈયારીમાં છે, તેવી કોઇ જગ્યાની ઝડતી લેવા માટે અને તે માટે એમ માનવાને કારણ હોય કે આ કાયદા કે તે હેઠળ શિક્ષાપાત્ર કોઇ ગુના કર્યાનો પુરાવો, તેવા સાધન સામગ્રી, ઔદ્યોગિક પ્લાન્ટ, રેકર્ડ, રજિસ્ટર, દસ્તાવેજ અથવા અન્ય મહત્ત્વની વસ્તુ કબજે લેવા.

ઉપરોક્ત સત્તા મુજબ અને ફરજો બજાવવાના હેતુસર અમો નીચે જણાવેલ કર્મચારી/અધિકારી સાથે આપની જગ્યામાં દાખલ થઇએ છીએ.

| Otar.                                                     |                                        |
|-----------------------------------------------------------|----------------------------------------|
| a. O. C. Purch. (A+6)                                     |                                        |
| ₹.                                                        |                                        |
| 3.                                                        | (1:05                                  |
| ઉદ્યોગ / કારખાના/સ્થળમાં દાખલ થયાનો સમય : સવારના / સાંજના | 30100000000000000000000000000000000000 |
| પ્રતિ,                                                    |                                        |
| A Mashiances Hish stred Project                           | Hel: Padaria H.C.                      |
| Bu. NIR Rad Markey.                                       | अधिकारीनुंनामः H.C. Pad wig            |
| Wist nadadase                                             | હોદ્યો: હિલ્લ                          |
| આ સૂચના (નોટીસ) મેળવનારની સહી: 📭 માં મુંગ proth           | ourer - st. FHS manage                 |
| અને તારીખ :                                               |                                        |
|                                                           |                                        |

## **GUJARAT POLLUTION CONTROL BOARD**



#### REGIONAL OFFICE-VADODARA

GERI Compound, Race Course Road, Vadodara - 390 007, Phone : 2354850
Website : www.gpcb.gov.in Online Application Site : http://gpcbxgr.gujarat.gov.in
E-mail Id (RO) : ro-gpcb-vado@gujarat.gov.in, E-mail ID (UH) uh-gpcb-vado@gujarat.gov.in

|                                                                                     | स्थण तपास                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ાની નિરીક્ષણ નોંધ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| આઇ.ડી.નં. 3ટ3 87 કેટેગરી/સ્કેલ:                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , Latitude/Longitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                |
| શ્રીમાન,                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.7                                                           |
| આપશ્રીને જણાવવાનું કે, આ<br>કરેલ છે જે દરમ્યાન હવા/પાણી/જોખર્મ                      | ો કચરા/પ્લાસ્ટીકના<br>દરમ્યાન પર્યાવરણીય કા                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .// નમૂના પૃથ્થ<br>પદાઓના સંદર્ભે ત્રૃટિઓ/ક્ષતિઓ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | જોવા/જાણવા મળેલ છે, જે આધારે                                   |
| કુદરતી ન્યાયના સિદ્ધાંત મુજબ આપક<br>આપવામાં આવે છે.                                 | રા અંગુ-અવવા કાવદાકા<br>શ્રીને સાંભળવાની તક પ્                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ય પગલા લતા અન / ગયવા પ<br>ા્રી પાડવાના હેતુથી અત્રે લેખિત                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | તમાં સ્થળસ્થિતિ/મુદ્દાઓ/સૂચનાઓ                                 |
| આ પરત્વે આપશ્રી નીચે લેગિ<br>દિન–૦૩માં બોર્ડની વડી કચેરીને ગાંધી<br>આપવામાં આવે છે. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | પ્ટતા / પૂર્તતા અહેવાલ કામકાજના<br>અથવા Emailથી રજૂ કરવા નોટીસ |
| સ્થળ તપાસ દરમ્યાન જોવા મળેલ સ્થળ                                                    | <b>ગસ્થિતિ/ત્રૂટિઓ/શ્વતિએ</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ો/ખામીઓ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al al                                                          |
| and the same                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|                                                                                     | AS PEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Annexuec -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T- 11                                                          |
|                                                                                     | 1.5 1 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d top in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                              |
|                                                                                     | 971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Property of the second                                         |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 7 24 2                                                       |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                              |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40                                                             |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200 0 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sel Padmion                                                    |
| યુ.પ્ર.નિ.બોર્ડના નામે અને વતી,                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D.C. Patel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                              |
| અધિકારીઓના નામ, હોદ્દો, સહી)ઃ                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (AEC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                |
| યુલાકાત લેવામાં આવેલ હોય તે એકમન                                                    | ા પ્રતિનિધિની રજુઆત                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | : (જે લાગુ પડે તેની સામે જ સહ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (7 - 5 - 5)                                                    |
| ુલાકાત દરમ્યાન અધિકારીશ્રીઓએ                                                        | and the same of th | The second secon |                                                                |
| ૧) આ સ્થળસ્થિતિ/સૂચનાઓ સાથે હું                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . V.                                                           |
| ૨) જેમાં દરાવિલ સ્થળસ્થિતિ/સૂચનાગ                                                   | રોમાંથી મદા નં                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | સાથે હં, નીચે સહી                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>_</u>                                                       |
| રનાર અસહમત છું. જેના માટે મારી ની                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PA                                                             |
| ોકમના પ્રતિનિધિ/આ નોંધ મેળવનારનું                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Miti'n poalhakas                                               |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 and engineer)                                                |

#### MULKING -I

ES SHIBOD MOTKING FLOOR UT (84x7) OF ES SHIBOD MAYZER CHIDON H Envisonment of sichool milated mosking bloos us (२५४7) 21401 हैंग अंग अंग अंगर्म Smell संनाडिस रोते

(2) Guitson School of the money & chestly sing sing and sent and singly sing singly POTOBLE

(3) अमापना रक्षा मारा अग्रम अम्बार २८ म ३० लाहा आम अमापना रक्षा महाराज्य अग्रम अम्बार २८ म ३० लाहा आम करा ज्याता तिराह के का कराता मान्या पारमाधित हारा 2417) soctor of cucren sech.

(क) कार हारात माराविक्त का निर्मार का हमाययों स्टाउइ काम हमाययों तेशह कागा है ता रशक्सकड़े जा स्टाउइ काम हमाययों तेशह कागा हमाययों (क) कोर हमाय माराविक्त को निर्मार काम हमाययों

(3) (8)

> D.C. Patel H.C. Padaria mr. Nitin prabhakat (sr. environment Ensinces)

# **Annexure 12: Attendance sheet for Trainings conducted by TCAP**

Attendance Sheet for Sec 1 C4 Package as on 31/01/23

Environment, Health and Safety

| rainer :  | Mrs. So                 | nal pera   | Training At | tendance<br>Topic : | us Amo     | un progra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------|-------------------------|------------|-------------|---------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| enueg K   |                         | Date: 810  | 2023        | Duration :          | 2 Hy       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S.No      | Ps.No                   | Name       |             | Designation         | Department | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1         |                         | Atout 0    | shop takan  | CS-SIN-Safeh        | TRAP       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2         |                         | 1110       | nch Rui     | 16-6 Sold           | teal       | (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3         |                         | - Indiana  | dryasi      | K5-CiteEn           | TOAP       | Alexan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4         |                         |            | r mandal    | civil sup.          | 447        | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5         |                         | 18/10/ Cum | S Thosh     | 5 foremon           | TICH       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6         |                         | Gurabh     | YadaV       | STEIGH RASE         | 127        | Zamyyne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7         |                         | Mel Sho    | thanouge    | Safetitu            | W2 LBT     | SAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8         |                         |            | of Charden  | Safty Sugare        | EHS        | Vipen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 9         |                         |            | way.        | As & Forts Man      | A P        | portulis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10        |                         | Ankur      | Barlaga     | FA M. SA/QC         | DAIGC      | gives -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11        |                         | Sudi       | p 4hesh     | 19:458              | 0 4        | A STATE OF THE STA |
| 12        |                         | GOVIM      | of yadov    | CIVIL FORM          |            | Gary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 13        |                         | Thabur     | Rayinh      | P.C                 | 13.12      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14        |                         | Nicon      | Dahi!       | Don't Manager       | BP         | Man.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 15        |                         | Konibi S   | Singh.      | Gra. Civil          | 1250       | CAR AM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 16        |                         | TRAZ       | Q44         | Solde Civi          | ICAT       | WANTED THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17        |                         |            | tuppain     | Monagor             | EHZ        | CHI CHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18        |                         |            | WIETE       | EK HALL             | EH5.       | UG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 19        | DOYNAMA                 |            |             |                     | BID        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20        | 2022718                 | Shape (    | in Kimir    | BY ENVERS           | (1.1S      | de la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Signature | l Paule<br>e of Trainer | _          |             |                     |            | Signature of EHSO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



#### Environment, Health and Safety





C4 IM Format No.11K

## Training Attendance

| rainer : |            |                     | Topic:      |            |                   |
|----------|------------|---------------------|-------------|------------|-------------------|
| enue :   |            | Date:               | Duration :  |            |                   |
| S.No     | Ps.No      | Name:               | Designation | Department | Signature / []    |
| 1        | 20329114   | Wan Thudmay.        | DET         | Pricast    | illam thousans    |
| 2        |            | Ram Shaim (K3)      | TIMP        | Atra       | Pulsas (          |
| 3        | 20337866   | Susanto ky fradkan  | S8. E43     | EH3        | HIV.              |
| 4        |            | CHAUCHART KARNITURE | ASH CHS     | Ens        | (contranolhousi   |
| 5        |            |                     | <u> </u>    |            |                   |
| 6        |            |                     | ļ           |            |                   |
| 7        |            |                     |             |            |                   |
| 8        |            |                     |             |            |                   |
| 9        |            |                     |             |            |                   |
| 10       |            |                     |             |            |                   |
| 11       |            |                     |             |            |                   |
| 12       |            |                     |             |            |                   |
| 13       |            |                     |             |            |                   |
| 14       |            |                     |             |            |                   |
| 15       | - 1-       |                     |             |            |                   |
| 16       |            |                     |             |            |                   |
| 17       |            |                     |             |            |                   |
| 18       |            | 1-1-1-1             |             |            |                   |
| 19       |            |                     |             |            | cni/              |
| 20       |            |                     |             |            | 10 Caro           |
| Signatur | of Trainer | 2                   |             |            | Signature of EHSO |

C4 IM 11 Competence, Training & Induction

Revision Date: 01.08.18

| 0     | EF Cases on the   | Environment, Health a        |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | June )       |  |
|-------|-------------------|------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|
| 0     | AT CHHIMICHT      | imagrated tear approach to c | c4 Mil Format No.13K |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
|       |                   | Training Att                 | andance              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
| ner 7 | Mer. Sono         | 1 Joseph                     | Topis: Env 7         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | at that      |  |
| we: p | cy 359            | Date: 24/01/2023             | Deretion: 120        | and the last of th |              |  |
| 5.Mo  | Ps.No             | Name                         | Designation          | Department                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Signature    |  |
| 1     | (100 448)         | NEER AT IMDEY                | T. M. MANARY         | 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1            |  |
| 2     | 20101306          | Shailende Patel              | S. Mar.              | Civil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 851.         |  |
|       |                   | RAKESH SONAWANE.             | Manager              | Chil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cours        |  |
| 4     | R/343589          | K-Murali Surdezp             | Manager              | RMS - Steel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |  |
| 5     | 2032174           | 6. Phanikal                  | I'v. Com they        | civil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and          |  |
| 4     | 20396624          | 2 - 0                        | Sor condingo         | cul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 712          |  |
|       |                   | Makesh Budhwari              | Good Mar             | Civil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total .      |  |
| -     | Onsidese          |                              | ave Non              | Pre-can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100          |  |
|       | Suissian          | MADAMOT AN                   | gy troping           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1            |  |
|       | 20331216          | Rahul Single                 | A.M.                 | Ine Cast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sparola      |  |
| 11    |                   | Postoch Komune Strace        | Advisor ASH          | TRAdmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Min house    |  |
| 12    | 2031611           |                              | Er Anmar             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Duge         |  |
| _     | 20332128          |                              | HELL MIGH            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lunds        |  |
| 200   | 20340861          | P. C. A. C. C.               | Sti Engineer         | N 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E12-         |  |
|       |                   | Negen Chhatripela            | N. Sames             | A 5 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | firely       |  |
|       |                   | DWishex Prood                | St-Enginer           | 200000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A Brooms     |  |
| 400   | 200735            | Ankt Kung C.A.               | Pote : Gra           | Breat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -180         |  |
|       | 2034/640          | Tusher by                    | Se Fing              | Pre cast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Two .        |  |
| _     | 20324284          |                              |                      | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18           |  |
|       |                   | RISHMUANTH VENTAMES          | A-SS. Mgr            | Porcure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The same     |  |
| 21    | 200               |                              | 111                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHAIN        |  |
| 22    |                   | Saroftumer                   | P.7                  | , blr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hast         |  |
|       |                   | PVISS VISL VADRAM            | ST. MANAGE           | 77170 771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P.VISSUAMEN  |  |
| - 1   |                   | Arun Pandiyanik              | Dr. Technic          | Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | May          |  |
|       | 103/9874          | LANCHOON HOLLS               | St. 8473             | Cive!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 (Thomas    |  |
|       | 20337212          | Y TELIX                      | FLSST may            | EHS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8/100        |  |
| 26 9  | 2034/349          | UMBOUT ELO                   | Abaser               | Livia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WINE         |  |
| 27    | 2033528           | Tuther Churchaei             | ASH 7848             | EH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - median     |  |
| 28    | K-387             | V Concession                 |                      | B/1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -            |  |
| 29    |                   |                              |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |  |
| 30    |                   |                              |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +            |  |
| 31    |                   |                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
| 32    | 1)                | 0                            | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |  |
| in    | Tana e of Trainer | ~                            |                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | All Mark     |  |
| 4.000 | e or manage       |                              |                      | Signi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nare of EHSO |  |



#### (Invitonment, Health and Safety

Physical Gregoriet Sylventique



DI IM Format No.11K

#### Training Attendance

|                   |        | Training Attenuance    |            |
|-------------------|--------|------------------------|------------|
| Irolner: Mir Sola | passed | texts: Err. Management | at TIMHT & |

| Ma  | Ps.Ne      | Name                 | Designation | Department | Signature |
|-----|------------|----------------------|-------------|------------|-----------|
| 4   | 24234448   | Moddlep Burgon       | MOM         | cit        | grather   |
| 2   | 203/7003   | Way Survey           | JK M        | card       | N/A/The-  |
| 1   | 20844324   | Alayaram Vangor      | -Ajcm       | civil      | Digmo     |
| 4   | 20313022   | SK-John Saida        | Ach         | Livis      | & mari    |
| 5   | ao 3264 SZ | A Jayababies         | Sent file   | Planning   | A Taychol |
| 4   | tosticos   | Tuebon Thatkan       | State Sign  | Planing    | alia      |
| 7   | 24344780   | Pul Pilyay Coomer E. | PL PS       | BLE        | Mind      |
| 8   | 26335014   |                      | RIGHT       | Planning   | Marit     |
| 2   | 20301618   | A. z. Hahcian        | APM         | Dianaly    | (mobile)  |
| 10  | \$1,12649  |                      | acm         | dist       | CIZE      |
| 15  | 2944924    | Sohum Vineszur       | Sitt. Proj  | Civil      | the       |
| 12  | Car R      |                      | Hansa       | 2000       | de        |
| 33  | Lopenti    | Gopilathan           |             | is Proces  | 179       |
| 34  | # SIPIE 03 |                      | Day my      |            | 7.8       |
| 15  | 2031546    | ASHOK GONAD          | Asst our    | Entellan   | 45        |
| 36  | 203229     |                      |             | Adm.       | -         |
| 17  | 20327061   | G.C. Soldalao        | Adjunctor   | Accas      | 979       |
| 18  | 8/936      | S.A. RHAN.           | 4/A 1/4     | 4/4        | 1         |
| 10  | 117065     | chandan singe        | Street B    | ctore      | de        |
| 20  | Zecrishn   | Bradishum single     | Serve       | EHE        | Medito    |
| 21  |            |                      |             |            | , A       |
| 22  |            |                      |             |            |           |
| 23  |            |                      |             |            |           |
| 24  |            |                      |             |            |           |
| S   |            |                      |             |            |           |
| 36  |            |                      |             |            |           |
| 27. |            |                      |             |            |           |
| 28  |            |                      |             |            |           |
| 29  |            |                      |             |            |           |
| 30  |            |                      |             |            |           |
| 31  |            |                      |             |            |           |
| 32  | 10         |                      |             |            | Laber     |

CA BM 15 Competence, Training & Industries

Revision Date: 61.00,13



#### **LARSEN & TOUBRO LIMITED**

Ref: IM-11-D Rev 00

# TRAINING ATTENDANCE RECORD

Training Subject

: FAIVIRONMENTAL MANAGEMENDATE : 25/01/2023

Names of Faculty

: MIS SOMAL PAREER, TCAP ENVIRONMENTAL EXPERT

Contents covered in brief:

### Staffs / Workmen Attended

| SI.<br>No | Name              | PS No*/T No/Sub<br>Con Name | Department | Area of work  | Signature   |
|-----------|-------------------|-----------------------------|------------|---------------|-------------|
| l.        | Sonjew Kumar Bryt | 20107907                    | Execution  | PM            | Sargu       |
| 2         | Pranod Kr-Sigh    | 2031982.6                   | Execution  | Vicduet       | Juliah      |
| 3         | Hillen Rum        |                             | Decon      |               | H. F. Rosan |
| 4         | G-SELVATHANGAM    |                             | Execution  | viaduelles    | and         |
| 5.        | Chandan Kuwar     |                             | Execution  | Vioduct       | Chamber     |
| 6         | NOMAN GANI        |                             | Execulian  | Casting yards | Am          |
| 7         | ANNOH YAUNIK      |                             | Design     | Shin          | A           |
| 8-        | Asketsh stal      | 80334335                    | Logistis   | Planing       | W/          |
| 9         | ALKESH TRIVEDI    | 2.0028123                   | IR         | Administrat   | Maria       |
| 0.        | M.V.1 Suger       | · Sodye                     | galac      | Main office   | TX          |
| 11        | Moravii Desai KS  | 20315602                    | Execution  | was his mesa  | 100         |

": For Staff

Name & sign of training coordinator

## LARSEN & TOUBRO LIMITED

Ref: IM-11-D Rev 00

# TRAINING ATTENDANCE RECORD

Training Subject

Date :

Names of Faculty

Contents covered in brief:

## Staffs / Workmen Attended

| SI.<br>No | Name                | PS No*/T No/Sub<br>Con Name | Department | Area of work | Signature   |
|-----------|---------------------|-----------------------------|------------|--------------|-------------|
| R.        | Plazihmi Saorihm    | 20330605                    | QA ac      | lab          | Jants       |
| 13.       | V Sai Fenjanya      | 20538989                    | governost  | HUE PC Yand  | Village Buy |
| 14.       | Tomandan Kumar      | 2.03157.2.5                 | Quality    | Lab          | all "       |
| 15        | Himarishu-kumar     | 20326826                    | Saket 1    | 442+0463 =   | Him 84      |
| 16.       | Bharriths. B        | 20333990                    | Pre-Cast   | 444          | Bleuzz      |
| 17        | Sentara             | 203 169 8 2                 | Planes     | Planers      | 2e          |
| 18        | Ranit Pruci         | 164073                      | POM        | · P.O.M      | Oper        |
| 19        | An Wilesh Kumar Sta | 20332255                    | 555        | Information  | 40          |
| 20        | Awment Checkway     | 20327410                    | cur.       | Marburt      | a           |
| 21        | M. Vetrivel         | 2009/6/5                    | Store      | store        | Mile        |
| 23        | P. SATHILL KIMPE    | 10014829                    | STORE      | STOKE        | There       |

\*: For Staff

Name & sign of training coordinator

# TRANSPORTATION INFRASTRUCTURE INDEPENDENT COMPANY TRAINING ATTENDANCE RECORD

Date :

training Subject

Names of Faculty

Contents covered in brief :

Staffs / Workmen Attended

| SI.  | Name              | PS No*/T No/Sub<br>Con Name | Department | Area of work | Signature  |
|------|-------------------|-----------------------------|------------|--------------|------------|
| 37/4 | Sankar Mendal     | 20073594                    | EHS        | Section-3    | 2          |
|      | Bibbas Mahah      | 20324532                    | PZM        | 17           | <u>B</u> - |
| 24   | BHREAT MAHALAN    | 20328848                    | EXECUITION | SCCTION-3    | Bhard      |
|      | M. Ramatrishna    | 20319541                    | EHS        | SECTION-3    | U. Roud    |
|      | South brasad      | 20324124                    | Planing    | Sec-3        | fel        |
|      | Wilanjan Kit      | 20311196                    | CIVIL      | PPP See      | 3 Maya     |
| 10   | Penny Challet     | 20330122                    | CiviL      | CY HE 3      | (Hos       |
| V    | Arganish Cambalan | 963g3610                    | Clier      | repud        | 1          |
| 35   | - Heal June Lager | 2-321597                    | En. May    | Cu.o.        | 24         |

": For Staff

Name & sign of training coordinator

| Venue: Constant Survey 2 Survey 3 Registration | onforence hame | chon Env                                | Date: 050                                     | anagement  | training por      |
|------------------------------------------------|----------------|-----------------------------------------|-----------------------------------------------|------------|-------------------|
| Venue: Constant Survey 2 Survey 3 Registration | onforonce t    |                                         | 71                                            | Traine     | 12 ms. Sorial Par |
| 1 Sur<br>2 Su<br>3 Rojet                       |                | fall Sec-3                              | Date: 050                                     |            | Chief Em Pape     |
| 1 Sur<br>2 Su<br>3 Rajut                       |                |                                         | Designation                                   | 1 QD9 8    | Signature         |
| 2 SN<br>3 Rajut                                | esh. s. M      |                                         | P. M                                          | L&T        | MANNY .           |
| 3 Rajut                                        | 0 10 -         |                                         | DGM                                           | 297        | amount            |
|                                                | nil Kumo       | VL                                      | Astt. Ploney Man                              | 121        | Chapre            |
|                                                | Chopra         |                                         | PD                                            | L&T        | Rhunder           |
|                                                | Nerurkar       |                                         | Asst Manager                                  | LLT        | V Suil            |
| 5 Su                                           | wil Varsa      | 9                                       | Dy CRE                                        | TCAP       | Abter.            |
| 7 Dev                                          | endra Ne       | vai                                     | A C14.                                        | L& T       | 10                |
|                                                | THYAGAR        |                                         | PM                                            | LLT        | ansolve who       |
|                                                | raj sharm      |                                         | ecm                                           | LAT        | UA                |
|                                                | & Bandge       |                                         | Env manager                                   | レチナ        | Songon            |
|                                                | line Thaker    |                                         | GET-CHS                                       | LBT        | To To             |
|                                                | ocaya K        |                                         | Safety Engineer                               | TCAP       | Many              |
|                                                | ket 3. Be      |                                         | Engineer                                      | TCAP       | · dedwaite        |
|                                                | Jane Gr        |                                         | Site Engg.                                    | TCAP       | (AUTOP)           |
|                                                | hage Saha      |                                         | Site Eng                                      | TCAP       | (19               |
|                                                | sh Zavoni      |                                         | Site Enga                                     | TCAP       | 1                 |
| 17 Ami                                         | + Dubey        |                                         | site engy.                                    | TCAP       | brus              |
|                                                | IIT MACU       | 177                                     | K-3                                           | TCAP       | Jonath            |
| 19 De                                          | mwas           | Beh                                     | DGM-611)                                      | 246        | Roy               |
| 20 50                                          | unil Da        | lvi -                                   |                                               | let .      | -t                |
| 21 Mahes                                       | h Chand        | Marons                                  | Manager RMC                                   | L7T        | Hem               |
|                                                |                | kash Joxhi                              | Astt. Managerph                               | L65T       | 4 2               |
| 23 (Ti+c                                       | mdree. V. K.   | abhora                                  | site Engineer                                 | TCAP       |                   |
|                                                | ndra Kr. S     |                                         | e Hs                                          | LRT        | Clouds            |
|                                                | rosh Kysha     |                                         | Plan Pe sub-                                  |            | 1                 |
|                                                | hartha Mo      |                                         | Plant Head.                                   | Procon RM. | gw.               |
| 27                                             |                |                                         | Marie San |            |                   |
| 28                                             |                |                                         |                                               |            |                   |
| 29                                             |                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                               |            |                   |
| 30                                             |                | DAGAR                                   |                                               |            |                   |

## LARSEN & TOUBRO LIMITED TRANSPORTATION INFRASTRUCTURE INDEPENDENT COMPANY

Ref: IM-11-B Rev 00

# ATTENDANCE SHEET FOR (Environmental Managemet

Name of the Project

MAHSR

Date & Time

: 11:00 AM - 01:00 PM

Conducted By

Mr. Sonal Pareek

Location

: cy-483

Topics

: Environment Management - MAHSR

|        |                          | 777        |                    |            |
|--------|--------------------------|------------|--------------------|------------|
| SI. no | Name                     | PS No/T No | Designation        | Signature  |
| 1)     | K Chinnaswamy            | 15091      | Pb                 | K-triunal- |
| 2)     | Suboll Dayy              | 20329223   | Dy. Como (LAT)     | flots      |
| 3)     | Ramesh Adhikari          | 20128870   | Sr.CM              | Stor       |
| 41     | T-V-SUMIL                | 203/16306  | CM                 | Sant       |
| 5]     | Anit pund Bhalti         | 20330461   | Sr. Engl.          | Anuk       |
| 6.     | Pramod Ku. Panda         | 7344       | Stone Acet.        | 1 storm    |
| 7.     | Alor Naik                | 136762     | IR SADJOON - M gW. | Jan-       |
| 8.     | Prasanta rumar Sahov.    | 20139579   | MI-A (Store)       | Pal        |
| q.     | Sandeep Kumar Kashyap    | 20062187   | Elect. Engs.       | Eur        |
| 10     | Drymi) Date              | 7, NO 7053 | Store ASIA.        | PJ         |
| ().    | Shrusath Mushi           | 20317453   | Construeton Munum  | Λ.         |
| 12.    | ALOK MODAK               | 20317180   | SURVEYOR           | dialore    |
| 13.    | Saisab Mama              | 20322585   | Engg Survey        | Alarma.    |
| ių     | Virendry Yudan           | 2032 8028  | SHE Marrager       | livenel    |
| 15     | Shublam Pr               | TCAP       | Safety Engineer    | But        |
| 16     | Aurit Kum                | TLAP       | Cido Cod           | In         |
| 17.    | Shubham Pawar            | 20323663   | Planning Engy      | ding       |
| 18     | PANKAS GUPTA             | 90187384   | Pan                | 1 Sense    |
| 19     | Maricis Bicharde Mohanty | 20037937   | seetle             | lhot       |

Signature of Traine

11711 2004 114**21** 

# TRANSPORTATION INFRASTRUCTURE INDEPENDENT COMPANY

Ref: IM-11-B Rev 00

Signature of Trainer

ATTENDANCE SHEET FOR (

Name of the Project

Conducted By

Topics

Date & Time

Location :

| SI. no | Name            | PS No/T No | Designation    | Signature  |
|--------|-----------------|------------|----------------|------------|
| 20.    | Pritech Jugtorp | TCAP       | KB-Olte Eng    | Bile       |
| 2101   | PARVEEN KUMPR   | TCAP       | Asst. marger   | lo 8       |
| 23     | Part Mishia.    | TCAP       | HSSt. Manager. | toport     |
| 7-3    | BARLA MAVEEN    | LST        | Asst. margur   | haling     |
|        |                 |            |                |            |
|        |                 |            |                |            |
|        |                 |            |                |            |
|        |                 |            |                |            |
|        |                 |            |                |            |
|        |                 |            |                |            |
|        |                 |            |                |            |
|        |                 |            |                | 711        |
|        |                 |            |                | - 10       |
|        |                 |            | Fi.(3)         |            |
|        |                 |            |                | 7811 14    |
|        |                 |            |                |            |
|        |                 |            |                | 100        |
|        |                 |            |                |            |
|        |                 |            |                |            |
|        |                 |            | 2              | mal Parele |

# Annexure 13: Photo Evidence of Environment Day Celebrations in different packages

#### **Kyoto Protocol Day**





C4 Package

Date – 16.2.23, Location – Ch.238 No. of participant - 38 Day Type – Kyoto protocol day celebrations.





C4 Package

Date and Time (Duration) - 16.02.23, 60 Mins, Location – PCY 359
Trainer Name and Topic – Mr. Tushar , Kyoto Protocol Day awareness program
No of Participant – 62 Nos





C4 Package

Tree plantation at various CYs on Kyoto Protocol Day (16.02.23)







C5 Package
Date: 16<sup>th</sup> Feb 2023

Awareness Training on Kyoto Protocol day



C6 Package
Tree plantation by Mrs. V. M. Panhalkar, Regional officer – Gujrat Pollution Control Board at Ch



C6 Package
Tree plantation by NHSRCL Site Team at Ch 471



C6 Package
Tree Plantation at Kumar School, Chikodra by EHS staff, students and school staff.



**C6 Package**Tree Plantation by EHS staff & workmen at Ch 434





C7 Package

Kyoto Protocol Day (Awareness on Global Warming) at

Sabarmati station





P1C Package
Awareness session on Green House Gases Effect & Global Warming on Kyoto Protocol Day-2023







P1C Package
Tree Plantation on 16<sup>th</sup> Feb,2023



P4 Package: GML Workshop, Bachau Awareness Session on 16<sup>th</sup> Feb 2023



**P4 Package:** TEIL Workshop, Trichy Awareness Session on 16<sup>th</sup> Feb 2023



**P4 Package: STEL Workshop, Hapur** Awareness Session on 16<sup>th</sup> Feb 2023



**P4 Package: ZMBL, Wardha** Awareness Session on 16<sup>th</sup> Feb 2023

#### **World Water Day**

#### C4 Package



Date – 22.3.23, Location – Ch.238 No. of participant - 18



Date – 22.3.23, Location – Ch.217 No. of participant - 43



Date – 22.3.23, Location – Ch.218 No. of participant – 17



Date: 22/03/2023, Location: Section 04
Topic: World Water Day Celebration & awareness
Training



Date: 22.03.2023, Location – Ch 268; World Water Day Awareness program No of Participant – 40 Nos



Type of Inspection and date: Executive Visit at CH-320 Narmada River and CH-322 Casting Yard



Awareness programs at nearest school





Water Conservation related paintings





TBTs conducted on the World Water Day
C5 Package



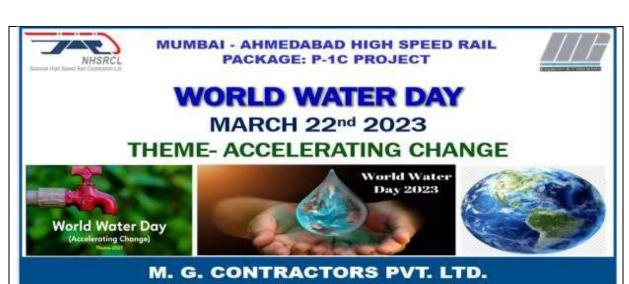
Awareness program at C5 Package on Water conservation







Awareness training on "world water day"


#### C8 Package





Awareness training on WORLD WATER DAY & RED CROSS MONTH conducted at safety training room. Theme for World Water Day is "Accelerating the change to solve the water and sanitation crisis".

#### P1C Package







#### Awareness training on World water day in P1C package

#### P1B Package



| -       | M C CONTE                | TCAP<br>ISR PMC CIVII<br>CACTORS PVT | LTD.      | NHSRCL           |
|---------|--------------------------|--------------------------------------|-----------|------------------|
|         | TRAINING A               | TTENDANCE SHI                        | EE.       |                  |
| Projec  |                          | ition/Venue: GAL                     | 3177104   | et 22/03/2015    |
| Topic   | Discussed: Awakeheld Sel | BECOM ON WORL                        | worker De | *                |
| SI. No. | Name of Participants     | Designation                          | Company   | Signature        |
| 1.      | Taj Uddin                | Super V.                             | MukaojAli | Tarida           |
| 2.      | Salfw Wlom               | toelder                              | - 11      | SATEUL           |
| A       | Eyasul Islam             | 11                                   | 11        | EYFIRM           |
| 4.      | Shehight                 | 12                                   | - 11      | SHADA            |
| 5.      | Yakub Ali                | Ges cuttos                           |           | EYAIQIBAL        |
| 6.      | Rejow                    | 1)                                   | "1        | OCO              |
| 7.      | M.D. Horoon              | Fitters                              | 11        | She Santa Barret |
| 8.      | Shafeek Ahemed           | 11                                   | 1,        | or chips on them |
| 9.      | Mohibul Islam            | Louman                               | 11        | Ma               |
| 10.     | Mominu Islam             | n                                    |           | mand             |
| 1).     | Molidu Ali               | Rigger                               |           | SHOULD HI        |
| 12.     | Shohor Ali               | 11                                   | - 11      | SHOUNK MI        |
| 13.     | NUT Ali                  | 11                                   | -         | AKKAS AM         |
| 14.     | Akkas Ali                | 2.5                                  | - 25      |                  |
| 15.     | Mobasok Ali              | 11                                   | - 12      | De la            |
| 16.     | Tipy sultan              | 13                                   | - "       | The salton       |
| 17.     | Abdul Barek              | 13                                   | 12        | Philippik        |
| 8.      | Ami's Hossia             | Helper                               | - 11      | HUMLA COURSE     |
| 19.     | Kelim Uddin              | 11                                   | 11.       | second tree      |
| 20.     | Taharw Hogue             | 11                                   | 74        | scaroud roy      |
| 21.     | SUMMI A19                | 11                                   | 19.       | soul nu          |
| 14.     | Dabbul                   | 11                                   | 4.5       | Rubbul           |
| 3.      | Romjan                   | 1.1                                  | **        | Rampa Q          |
|         | AINING CONDUCTED BY: Ame | art wounder                          |           |                  |

## **Annexure 14: Status of Public Grievances till March 2023**

Table 108: Construction related public grievances received till March 2023

| Sr. No. | Survey No  | Village Name | District | Brief of<br>Grievance                                                                                                                                                                                                                     | Grievance received from<br>Employer | Action by PMC | Grievanc<br>e Status |
|---------|------------|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------|----------------------|
|         |            |              |          | C4 P                                                                                                                                                                                                                                      | ackage                              |               |                      |
| 1       |            | Dora         | Bharuch  | Issue of inundation due to bullet train ROW, surrounding field are flooded with rain water. Crop Damage due to water discharge in rainy season                                                                                            | 09.07.2022                          |               | Resolved             |
| 2       | 1114, 1098 | Pariej       | Bharuch  | Crop Damage due to water flow and discharge due to construction activities Damage of crops due to flooding in the farm due to bullet train project.  Blockage of natural water drain, flooding during rainy season damaged the crops. Big | 28.07.2022<br>7.11.2022             |               | Resolved             |

| Sr. No. | Survey No | Village Name | District | Brief of<br>Grievance                                                        | Grievance received from<br>Employer | Action by PMC                       | Grievanc<br>e Status |
|---------|-----------|--------------|----------|------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|----------------------|
|         |           |              |          | creeks on the farm<br>field, 1114, 1098.<br>20-25 farmers<br>loss            |                                     |                                     |                      |
| 3       |           | Pariej       | Bharuch  | Damage of<br>farming and soil<br>erosion due to<br>construcion<br>actiivies  | 10.09.20022                         |                                     | Resolved             |
| 4       |           | Telod        | Bharuch  | House damage<br>due to<br>construction<br>activities                         | 05.07.2022                          |                                     | Resolved             |
| 5       |           | Tralsa       | Bharuch  | Damage of Huge farming by discharge of chemical mixed water outside the ROW. | 07.11.2022                          |                                     | Resolved             |
| 6       | 181       | Sisodara     | Navsari  | Crop & Land<br>damage due to<br>Heavy vehicle                                | 22.04.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699 | Resolved             |
| 7       | House no- | Nandrakha    | Navsari  | Damage of house due to construction activities                               | 27.09.2022                          |                                     | Resolved             |

| Sr. No. | Survey No         | Village Name | District | Brief of<br>Grievance                                                                                | Grievance received from<br>Employer | Action by PMC | Grievanc<br>e Status |
|---------|-------------------|--------------|----------|------------------------------------------------------------------------------------------------------|-------------------------------------|---------------|----------------------|
| 8       | House no-<br>1237 | Dungra       | Valsad   | House damage due to construction activities                                                          | 23.03.2022 & 25.04.2022             |               | Resolved             |
| 9       | 331               | Nagwas       | Valsad   | Damage of their Farm by dumping of construction machinery/materi als due to construction activities. | 05.01.2022                          |               | Resolved             |
| 10      | 71/P/13           | Nagwas       | Valsad   | Damage of house due to construction activities                                                       | 3.08.2022                           |               | Resolved             |
| 11      |                   | Balda        | Valsad   | Damage of farm<br>by dumping of<br>construction<br>machinery/materi<br>als etc                       | 05.01.2023                          |               | Resolved             |
| 12      | 424/1             | Endergotta   | Valsad   | Damage of Trees<br>due to<br>Construction<br>activities                                              | 3.08.2022                           |               | Resolved             |
| 13      | 564               | Endergotta   | Valsad   | Trespassing and tree damage due to construction activities                                           | 3.08.2022                           |               | Resolved             |
| 14      | 423/2             | Endergotta   | Valsad   | Damage of trees<br>and Crop due to<br>construction<br>activities                                     | 3.08.2022                           |               | Resolved             |

| Sr. No. | Survey No               | Village Name      | District | Brief of<br>Grievance                                                  | Grievance received from<br>Employer | Action by PMC                       | Grievanc<br>e Status |
|---------|-------------------------|-------------------|----------|------------------------------------------------------------------------|-------------------------------------|-------------------------------------|----------------------|
| 15      | 1343, 1344,<br>191      | Chanvai           | Valsad   | House damage due to construction activities                            | 18.06.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1649 | Resolved             |
| 16      | 1343, 1344,<br>191      | Chanvai           | Valsad   | House damage<br>due to<br>construction<br>activities                   | 18.06.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1649 | Resolved             |
| 17      | Whole<br>Amod<br>taluka | Amod              | Bharuch  | Distributing of canal flow due to construction activities              | 9.11.2022                           | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839 | Not<br>resolved      |
| 18      | 796,<br>801,808,809     | Tham              | Bharuch  | Damage of village crop outside the ROW due to construction activities. | 21.09.2022                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 19      |                         | Tham              | Bharuch  | Damage of village<br>road due to<br>construction<br>activities         | 28.07.2022                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 20      |                         |                   | Bharuch  | Damage to roads by construction activities.                            | 27.02.2023                          |                                     | Not<br>resolved      |
| 21      | House no-<br>98         | Kothi<br>Vantarsa | Bharuch  | May be damage of House                                                 | 03.01.2023                          |                                     | Not<br>resolved      |
| 22      | 118/1 &<br>118          | Amodpore          | Navsari  | House damage due to construction activities                            | 20.05.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699 | Not<br>resolved      |

| Sr. No. | Survey No        | Village Name | District | Brief of<br>Grievance                                                                                                                              | Grievance received from<br>Employer | Action by PMC                                                                                                     | Grievanc<br>e Status |
|---------|------------------|--------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------|
| 23      |                  | Amodpore     | Navsari  | Damage of trees<br>due to<br>construction<br>Activities                                                                                            | 04.07.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699                                                                               | Not<br>resolved      |
| 24      | Block no.<br>293 | Amodpore     | Navsari  | Damage of Trees<br>due to soil filling<br>due to<br>construction<br>activities.                                                                    | 02.01.2023                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839                                                                               | Not<br>resolved      |
| 25      |                  | Kesli        | Navsari  | Damage of House and in future it may collapse.                                                                                                     | 16.02.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699                                                                               | Not<br>resolved      |
| 26      | 194              | Manekpore    | Navsari  | Crop damage due to construction activites                                                                                                          | 23.05.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699<br>TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870                                        | Not<br>resolved      |
| 27      | 36,37            | Manekpore    | Navsari  | Underground<br>water pipeline<br>damage<br>Tree damage<br>ROW tresspassing                                                                         | 22.07.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699<br>TCAP/MAHSR/PMC/C4.202<br>2/SHE/2028<br>TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 28      | 42,47,28,33      | Nandrakha    | Navsari  | Earlier the water from canal used to come to their farm land is now blocked due to bullet train road. No provision of rain water discharge also if | 13.02.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699<br>TCAP/MAHSR/PMC/C4.202<br>2/SHE/2028                                        | Not<br>resolved      |

| Sr. No. | Survey No | Village Name | District | Brief of<br>Grievance                                                                                                                                             | Grievance received from<br>Employer | Action by PMC                                                              | Grievanc<br>e Status |
|---------|-----------|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------|----------------------|
|         |           |              |          | the raod is going to be there. Farming is stopped due to blocked canal water used for irrigation. No water supply to farming. Water logging in their factory area |                                     |                                                                            |                      |
| 29      |           | Nandrakha    | Navsari  | due to construction activity                                                                                                                                      | 13.07.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699                                        | Not<br>resolved      |
| 30      |           | Nandrakha    | Navsari  | Filling of Kotar (kans) due to construction activities Open the road for natural drain runoff to avoid water logging in variuos farm and houses of the village.   | 16.05.22                            | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699<br>TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 31      | 463       | Sisodara     | Navsari  | Rain water<br>through farm land<br>, and damaged the<br>crops. Resolve the<br>storm water drain<br>route for future<br>and pay                                    | 30.09.2022                          |                                                                            | Not<br>resolved      |

| Sr. No. | Survey No    | Village Name | District | Brief of<br>Grievance                                                             | Grievance received from<br>Employer | Action by PMC                                                                                                     | Grievanc<br>e Status |
|---------|--------------|--------------|----------|-----------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------|
|         |              |              |          | compensation for loss                                                             |                                     |                                                                                                                   |                      |
| 32      | 1120<br>1130 | Sisodara     | Navsari  | Water distribution<br>due to<br>construction<br>activities                        | 19.05.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699<br>TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839<br>TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 33      | 1116         | Sisodara     | Navsari  | Crop may<br>damage due to<br>water discharge in<br>rainy season                   | 25.04.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699<br>TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870                                        | Not<br>resolved      |
| 34      | 184+185      | Dhanori      | Navsari  | Damage of farm<br>and trees towards<br>farms due to<br>construction<br>activities | 08.09.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/2027                                                                               | Not resolved         |
| 35      | 83/5         | Kocharva     | Valsad   | Damage of trees<br>due to<br>construction<br>activities                           | 20.06.2022 & 19.12.2022             | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870                                                                               | Not<br>resolved      |
| 36      | Pond         | Kachol       | Navsari  | Filling of pond<br>due to<br>construction<br>activities                           | 24.05.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1700<br>TCAP/MAHSR/PMC/C4/202<br>2/SHE/1506<br>TCAP/MAHSR/PMC/C4/202<br>2/SHE/1637 | Not<br>resolved      |

| Sr. No. | Survey No            | Village Name | District | Brief of<br>Grievance                                                                                                                                             | Grievance received from<br>Employer | Action by PMC                                                              | Grievanc<br>e Status |
|---------|----------------------|--------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------|----------------------|
| 37      | 1109<br>&1110        | Sisodara     | Navsari  | Crop may<br>damage due to<br>water discharge in<br>rainy season                                                                                                   | 25.04.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699<br>TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 38      | 1117                 | Sisodara     | Navsari  | Crop may<br>damage due to<br>water discharge in<br>rainy season                                                                                                   | 09.05.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699<br>TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 39      | ROW Ch. 235-236      | Sisodara     | Navsari  | Crop may<br>damage due to<br>water discharge in<br>rainy season                                                                                                   | 23.05.2022<br>08.09.2022            | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699<br>TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 40      | New Block<br>no. 468 | Vadsangal    | Navsari  | Damage of trees<br>by discharging of<br>chemical water<br>due to<br>construction<br>activities.                                                                   | 19.12.2022                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839                                        | Not<br>resolved      |
| 41      | 1170                 | Sisodara     | Navsari  | Damage of Farm and 13 Trees (saffron mango trees) due to heavy vehicle movement. Dumping materials on land and damaging crops. Demand compensastion for the loss. | 22.11.2022                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839                                        | Not<br>resolved      |

| Sr. No. | Survey No                           | Village Name | District | Brief of<br>Grievance                                                                             | Grievance received from<br>Employer | Action by PMC                                                              | Grievanc<br>e Status |
|---------|-------------------------------------|--------------|----------|---------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------|----------------------|
| 42      | 463                                 | Sisodara     | Navsari  | Damage of crop<br>and trees due to<br>construction<br>activities                                  | 12.08.2022                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839                                        | Not<br>resolved      |
| 43      |                                     |              | Navsari  | Damage of<br>Village Road due<br>to construction<br>activities                                    | 18.08.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1699<br>TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 44      | 1091, 1080,<br>1088, 1085<br>& 1086 | Sisodara     | Navsari  | Damage of farm<br>and trees by<br>breaking of water<br>pipe due to<br>construction<br>activities. | 03.03.2023                          |                                                                            | Not<br>resolved      |
| 45      |                                     | Khadsupa     | Navsari  | Damage to roads<br>by construction<br>activities                                                  | 03.02.2023                          |                                                                            | Not<br>resolved      |
| 46      |                                     | Kachol       | Navsari  | Damage of pipeline of the pond towards farms due to construction activities                       | 29.08.2022                          |                                                                            | Not<br>resolved      |
| 47      | 62                                  | Kathore      | Surat    | House damage<br>due to<br>construction<br>activities                                              | 25.05.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1650<br>TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 48      | Block no. 652                       | Kunwarda     | Surat    | Damage of trees<br>and farm due to<br>water logging<br>while constrion<br>work is ongoing.        | 20.02.23                            |                                                                            | Not<br>resolved      |

| Sr. No. | Survey No            | Village Name | District | Brief of<br>Grievance                                                                                                                  | Grievance received from<br>Employer | Action by PMC                       | Grievanc<br>e Status |
|---------|----------------------|--------------|----------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|----------------------|
| 49      | 49/2/6               | Acchari      | Valsad   | Damage of Trees<br>by Excavation<br>soil outside of the<br>RoW                                                                         | 16.12.2022                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839 | Not<br>resolved      |
| 50      |                      | Acchari      | Valsad   | Trees damage: 10 mango trees of 10 years, 4 sangwan trees, 3 other big trees, 1 bamboo tree.                                           | 7.11.2022                           |                                     | Not<br>resolved      |
| 51      | 951                  | Borigram     | Valsad   | Damage of House outside RoW due to construction activities                                                                             | 04.01.2023                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839 | Not<br>resolved      |
| 52      | 313/B (505-<br>New ) | Chanvai      | Valsad   | Damage of trees,<br>fruit trees & land<br>due to<br>construction<br>activities                                                         | 23.04.2022                          | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1649 | Not<br>resolved      |
| 53      | 920                  | Chanvai      | Valsad   | Already given property under the project remaining is also getting Damaged due to construction activities. In future it will collapse. | 27.09.2022                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 54      | 73                   | Chanvai      | Valsad   | Crop Damage due<br>to water discharge<br>in rainy season                                                                               | 3.08.2022                           |                                     | Not<br>resolved      |

| Sr. No. | Survey No | Village Name | District | Brief of<br>Grievance                                                                                | Grievance received from<br>Employer                                           | Action by PMC                                                              | Grievanc<br>e Status |
|---------|-----------|--------------|----------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------|
| 55      |           | Chanvai      | Valsad   | Damage of Canal<br>bank near Pier<br>No. 194.700 (Vill.<br>Chanvai, dist<br>Valsad) section 1<br>C4. | 17.10.2022<br>16.09.2022                                                      | TCAP/MAHSR/PMC/C4/202<br>2/SHE/1991                                        | Not<br>resolved      |
| 56      | 1619      | Chanvai      | Valsad   | Damage of House<br>outside RoW due<br>to construction<br>activities                                  | 15.12.2022                                                                    | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839                                        | Not<br>resolved      |
| 57      | 2645/1    | Dungri       | Valsad   | Damage of Trees<br>due to<br>construction<br>activities                                              | 3.08.2022                                                                     |                                                                            | Not<br>resolved      |
| 58      |           | Khajurdi     | Valsad   | Damage of Tress<br>outside RoW due<br>to construction<br>activities                                  | 05.01.2023                                                                    | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870                                        | Not<br>resolved      |
| 59      | 45/1      | Kocharva     | Valsad   | Damage of trees,<br>fencing, chemical<br>water discahrge<br>on land                                  | 23.04.2022<br>23.04.2022<br>23.11.2022 18.01.2023<br>24.08.2022<br>23.11.2022 | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1649                                        | Not<br>resolved      |
| 60      | 74/1      | Kocharva     | Valsad   | Trees and compound wall damage due to construction ctivities                                         | 01.06.2022                                                                    | TCAP/MAHSR/PMC/C4.202<br>2/SHE/1649<br>TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not resolved         |
| 61      |           | Kocharva     | Valsad   | Damage of House outside RoW due to construction activities                                           | 12.01.2023                                                                    | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870                                        | Not<br>resolved      |

| Sr. No. | Survey No             | Village Name | District | Brief of<br>Grievance                                                             | Grievance received from<br>Employer | Action by PMC                       | Grievanc<br>e Status |
|---------|-----------------------|--------------|----------|-----------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|----------------------|
| 62      | 93/2/A/Paki<br>-1     | Kocharva     | Valsad   | Damage of House outside RoW due to construction activities                        | 16.12.2022                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 63      | 276,277,278<br>&71/P1 | Nagwas       | Valsad   | Tresspassing on<br>their land outside<br>RoW due to<br>construction<br>activities | 24.02.2022                          |                                     | Not resolved         |
| 64      |                       | Nagwas       | Valsad   | Damage of Trees<br>by logging of<br>water due to<br>construction<br>activities    | 02.01.2023                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839 | Not<br>resolved      |
| 65      | House no-<br>594      | Rata         | Valsad   | Damage of House outside RoW due to construction activities                        | 04.01.2023                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2870 | Not<br>resolved      |
| 66      | Block no.<br>159      | Nagwas       | Valsad   | Damage of Trees<br>by logging of<br>water due to<br>construction<br>activities    | 02.01.2023                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839 | Not<br>resolved      |
| 67      | 233                   | Sukhlav      | Valsad   | Damage of Trees<br>by Excavation<br>soil outside of the<br>RoW                    | 05.01.2023                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839 | Not<br>resolved      |
| 68      |                       | Vaghaldara   | Valsad   | Crop damage due to machine movement for construction activities                   | 3.08.2022                           |                                     | Not resolved         |

| Sr. No. | Survey No | Village Name | District | Brief of<br>Grievance                                                                             | Grievance received from<br>Employer | Action by PMC                       | Grievanc<br>e Status |
|---------|-----------|--------------|----------|---------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------|----------------------|
| 69      | 912       | Vaghaldara   | Valsad   | Damage of Trees<br>by Excavation<br>soil outside of the<br>RoW                                    | 12.01.2023                          | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839 | Not<br>resolved      |
| 70      |           | Rata         | Valsad   | Damage of their house outside the ROW due to construction activities                              |                                     | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839 | Not<br>resolved      |
| 71      | 236       | Khajurdi     | Valsad   | Damage of their<br>Farm and Trees<br>outside the ROW<br>due to<br>construction<br>activities      | 20.01.23                            | TCAP/MAHSR/PMC/C4/202<br>3/SHE/2839 | Not<br>resolved      |
| 72      |           | Balitha      | Valsad   | Construction of illegal compound wall at Damnganga Canal land                                     | 27.02.23                            |                                     | Not resolved         |
| 73      |           | Nagwas       | Valsad   | Damage of farm<br>and trees by<br>breaking of water<br>pipe due to<br>construction<br>activities. | 28.02.2023                          |                                     | Not<br>resolved      |
| 74      |           | Chanvai      | Valsad   | Damage of trees<br>and dumping of<br>construction<br>materials outside<br>the ROW due to          | 31.01.23                            |                                     | Not resolved         |

| Sr. No. | Survey No | Village Name | District | Brief of<br>Grievance                                                                | Grievance received from<br>Employer | Action by PMC | Grievanc<br>e Status |
|---------|-----------|--------------|----------|--------------------------------------------------------------------------------------|-------------------------------------|---------------|----------------------|
|         |           |              |          | construction activities.                                                             |                                     |               |                      |
| 75      |           | Chanvai      | Valsad   | Damage of house and trees outside the ROW due to construction—activities.            | 31.01.23                            |               | Not<br>resolved      |
| 76      |           | Pariya       | Valsad   | Disturbance in water flow of pond due to construction activities:                    | 05.01.23                            |               | Not<br>resolved      |
| 77      |           | Ambach       | Valsad   | Damage of trees, fencing & Pipeline outside the ROW due to) construction activities. | 28.02.2023                          |               | Not<br>resolved      |
| 78      |           | Kocharva     | Valsad   | Damage of house due to construction activities.                                      | 31.01.2023                          |               | Not<br>resolved      |
| 79      |           | Khajurdi     | Valsad   | Damage of their farm and trees outside the ROW due to construction activities.       | 27.02.2023                          |               | Not<br>resolved      |
| 80      | 71/P/13   | Nagwas       | Valsad   | Damage of house due to construction activities                                       | 3.08.2022                           |               | Not<br>resolved      |

| Sr. No. | Survey No                                  | Village Name | District | Brief of<br>Grievance                                                                            | Grievance received from<br>Employer | Action by PMC | Grievanc<br>e Status |
|---------|--------------------------------------------|--------------|----------|--------------------------------------------------------------------------------------------------|-------------------------------------|---------------|----------------------|
| 81      |                                            | Kocharva     | Valsad   | Damage of house due to construction activities                                                   | 26.03.2023                          |               | Not<br>resolved      |
| 82      | 1077<br>1078<br>1088, 1086<br>1164<br>1125 | Sisodara     | Navsari  | Damage of farming by disturbing irrigation water due to construction activities                  | 10.03.2023                          |               | Not<br>resolved      |
| 83      |                                            | Tralsa       | Bharuch  | Damage of farm<br>by soil excavation<br>outside the ROW<br>due to<br>construction<br>activities. | 13.03.2023                          |               | Not<br>resolved      |
| 84      |                                            | Chanvai      | Valsad   | Damage of house due to construction activities                                                   | 13.03.2023                          |               | Not<br>resolved      |
| 85      | 1013/2                                     | Jujwa        | Valsad   | Damage of Trees<br>outside the ROW<br>due to<br>construction<br>activities                       | 13.03.2023                          |               | Not<br>resolved      |
| 86      |                                            | Endergotta   | Valsad   | Damage of farm<br>and trees by<br>filling of water<br>pipeline with soil<br>mixture due to       | 14.03.2023                          |               | Not<br>resolved      |

| Sr. No. | Survey No             | Village Name      | District | Brief of<br>Grievance                                                                                                                                                   | Grievance received from<br>Employer | Action by PMC                                                                     | Grievanc<br>e Status |
|---------|-----------------------|-------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------|----------------------|
|         |                       |                   |          | construction activities.                                                                                                                                                |                                     |                                                                                   |                      |
| 87      |                       | Dungri            | Valsad   | Damage of large<br>no. of trees by<br>water logging due<br>to construction<br>activities.                                                                               | 16.03.2023                          |                                                                                   | Not<br>resolved      |
| 88      |                       | Kocharva          | Valsad   | Damage of house due to construction activities                                                                                                                          | 21.03.2023                          |                                                                                   | Not<br>resolved      |
|         |                       |                   |          | C5 Pa                                                                                                                                                                   | ackage                              |                                                                                   |                      |
| 1       | Savgan<br>Society- C5 | Vadodara<br>Kasba | Vadodara | Savgan Soceity<br>reprenetatives<br>urge that set up<br>construction plant<br>away from the<br>society -Impact of<br>health and peace<br>issue of the<br>Society member | 26.09.2022                          | TCAP/MAHSR/PMC/C5/202<br>2/CON/0314 and<br>TCAP/MAHSR/PMC/C5/202<br>2/CON/418     | Resolved             |
| 2       | Amarkunj<br>Soc.      | Manjalpur         | Vadodara | Beyond ROW house damaged                                                                                                                                                | 13-01-2022                          | (TCAP/MAHSR/PMC/C5/202<br>3/CNT/0638 and<br>TCAP/MAHSR/PMC/C5/202<br>3/CNT/0671 ) | Not<br>Resolved      |
| 3       | Amarkunj<br>Society   | Manjalpur         | Vadodara | Damage of houses due to vibration                                                                                                                                       | 29-03-2023                          | TCAP/MAHSR/PMC/C5/202<br>3/CNT/0833 and<br>TCAP/MAHSR/PMC/C5/202<br>3/CNT/0899    | Not<br>Resolved      |

| Sr. No. | Survey No                               | Village Name       | District | Brief of<br>Grievance                                       | Grievance received from<br>Employer | Action by PMC                                                                  | Grievanc<br>e Status             |
|---------|-----------------------------------------|--------------------|----------|-------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------|----------------------------------|
|         |                                         |                    |          | C6 & P10                                                    | C Packages                          |                                                                                |                                  |
| 1       | 1003                                    | Boriyavi           | Anand    | Beyond ROW-<br>Agriculture and<br>Crop damage               | 29-07-2022                          | TCAP/MAHSR/PMC/C6/202<br>2/CNT/1440 and<br>TCAP/MAHSR/PMC/C6/202<br>2/CNT/1673 | Invalid<br>Applicatio<br>n found |
| 2       | 327, 336,<br>319/A,<br>319/B and<br>321 | Padamla            | Vadodara | Beyond ROW-<br>wire fencing and<br>water pipeline<br>damage | 02.07.2022                          | TCAP/MAHSR/PMC/C6/202<br>2/CNT/1247                                            | Resolved                         |
| 3       | 383 + 384<br>P1/P2                      | Chhapra/Goth<br>aj | Kheda    | Beyond ROW-<br>water pipeline<br>damage                     | 02.07.2022                          | TCAP/MAHSR/PMC/C6/202<br>2/CNT/1393 and<br>TCAP/MAHSR/PMC/C6/202<br>2/CNT/1672 | Resolved                         |
| 4       | 388                                     | Gothaj             | Kheda    | Beyond ROW-<br>water pipeline<br>damage                     | 02.08.2022                          | TCAP/MAHSR/PMC/C6/202<br>2/CNT/1466 and<br>TCAP/MAHSR/PMC/C6/202<br>2/CNT/1672 | Resolved                         |
| 5       | 395                                     | Gothaj             | Kheda    | Beyond ROW-<br>water pipeline<br>damage                     | 02.08.2022                          | TCAP/MAHSR/PMC/C6/202<br>2/CNT/1466 and<br>TCAP/MAHSR/PMC/C6/202<br>2/CNT/1672 | Resolved                         |

| Sr. No. | Survey No                                              | Village Name | District                                              | Brief of<br>Grievance                                                                                                        | Grievance received from<br>Employer | Action by PMC                                                                                  | Grievanc<br>e Status |
|---------|--------------------------------------------------------|--------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------|----------------------|
| 6       | 9                                                      | Tundel       | Beyond ROW- damage of house 04.07.2022 2/CNT/1262 and |                                                                                                                              | TCAP/MAHSR/PMC/C6/202               | Not<br>Resolved                                                                                |                      |
| 7       | 525                                                    | Davda        | Kheda                                                 | Beyond ROW-<br>Pipe broken and<br>Agriculture land<br>damage                                                                 | 1 and 18.08.2022 2/CNT/1673 and     |                                                                                                | Resolved             |
| 8       | 131, 132,<br>134, 135                                  | Mogar        | Anand                                                 | Beyond ROW-<br>Agriculture land,<br>road, crops<br>damage                                                                    | 02.11.2022                          | TCAP/MAHSR/PMC/C6/202<br>2/CNT/1946 and<br>TCAP/MAHSR/PMC/C6/202<br>2/CNT/2080, dt: 02/12/2022 | Not<br>Resolved      |
| 9       | Repeated<br>Application<br>with<br>additional<br>issue | Tundel       | Kheda                                                 | Measurement of<br>house and damage<br>of house walls<br>during piling<br>works                                               | 29-03-2023                          | TCAP/MAHSR/PMC/C6/202<br>3/SHE/2725                                                            | Not<br>Resolved      |
| 10      | Repeated<br>application<br>with same<br>PAHs           | Padamla      | Vadodara                                              | Repairing of Wire<br>fencing and water<br>pipeline of<br>landowner Shri.<br>Vimal<br>Prakashbhai Patel<br>(public grievance) | 29-03-2023                          | TCAP/MAHSR/PMC/C6/202<br>3/SHE/2724                                                            |                      |
| 11      | 156 Paiky                                              | Piplag (P1C) | Kheda                                                 | Beyond ROW-<br>compound wall &<br>bore well damage                                                                           | 30.09.2022                          | 1.)<br>TCAP/MAHSR/PMC/C6/202<br>2/CNT/1731<br>2.)                                              |                      |

| Sr. No. | Survey No                                                                                                     | Village Name | District      | Brief of<br>Grievance                                                                                                                                                                                         | Grievance received from<br>Employer                                        | Action by PMC                                                                                                                    | Grievanc<br>e Status |  |  |
|---------|---------------------------------------------------------------------------------------------------------------|--------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|--|--|
|         |                                                                                                               |              |               |                                                                                                                                                                                                               |                                                                            | TCAP/MAHSR/PMC/P1C/20<br>22/CNT/1474 3.)<br>TCAP/MAHSR/PMC/P1C/20<br>22/CNT/1625<br>4.)<br>TCAP/MAHSR/PMC/P1C/20<br>22/CNT/1520, |                      |  |  |
|         | C7 & C8 Packages                                                                                              |              |               |                                                                                                                                                                                                               |                                                                            |                                                                                                                                  |                      |  |  |
| 1       | Mohjagat Society (Vinzol Crossing) to Midco- bridge to Durganagr to Thirthay Apartment to Punitnagar Crossing | Near Vatva   | Ahmedaba<br>d | Regarding reparing of the road from Mohjagat Society (Vinzol Crossing) to Midco- bridge to Durganagr to Thirthay Apartment to Punitnagar Crossing and not sprinkling water during ongoing traffic on the road | 22-10-2022<br>(NHSRCL/ADI/MA/02/PM<br>C/505/.1/2849/ dated 28-11-<br>2022) | TCAP/MAHSR/PMC/C7/202<br>2/CNT/0537                                                                                              | Not<br>Resolved      |  |  |

## **Submission of Legal Documents**

### **INDEX**

| # | Legal requirement                                                      | Document<br>attached in Qtly<br>Report 1<br>(Apr-Jun 2022) | Document<br>attached in Qtly<br>Report 2<br>(Jul-Sep 2022) | Document<br>attached in<br>present Qtly<br>Report 3<br>(Oct-Dec 2022) | Document attached<br>in present Qtly<br>Report 4<br>(Jan-Mar 2023) |
|---|------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|
|   |                                                                        | C4 Package                                                 |                                                            |                                                                       |                                                                    |
| 1 | CRZ Clearance                                                          | Clearance for Narmada River                                | -                                                          | -                                                                     | -                                                                  |
| 2 | Forest Permission                                                      | Permission for 5.8470 ha                                   |                                                            | -                                                                     | -                                                                  |
| 3 | Consent for Batching Plants                                            | CTE for 18 BPs<br>CTO for 15 BPs                           | CTO for 3 BPs                                              | -                                                                     | CTO- 3 BPs                                                         |
| 4 | Consent Crusher Units                                                  | CTE – 6 no.<br>CTO – 5 no.                                 |                                                            | CCA – 1 no.<br>Zankhav crusher                                        | -                                                                  |
| 5 | Environmental Clearance & Consent of Stone Quarry                      | -                                                          | EC & CTE                                                   | CCA- Sondhalwada quarry  Request letter to subcontractor.             | -                                                                  |
| 6 | Permission from Inland<br>Water Authority of India                     | Permission for<br>Narmada & Tapi<br>rivers                 | -                                                          | -                                                                     | -                                                                  |
| 7 | Permission for working on<br>State Rivers from Water<br>Resources Dept |                                                            | 6 no. river<br>Applications                                | 4 no. river permissions (Kharera ,Kaveri, Ambika and Purna River)     | -                                                                  |

| #  | Legal requirement                                 | Document<br>attached in Qtly<br>Report 1<br>(Apr-Jun 2022) | Document<br>attached in Qtly<br>Report 2<br>(Jul-Sep 2022) | Document<br>attached in<br>present Qtly<br>Report 3<br>(Oct-Dec 2022) | Document attached<br>in present Qtly<br>Report 4<br>(Jan-Mar 2023) |
|----|---------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|
| 8  | Permission for working on<br>Ponds/ canals/ lakes | Applications for 2 ponds                                   | -                                                          | -                                                                     | -                                                                  |
| 9  | Permission for Storing<br>Petroleum Products      | Permission for 8 locations                                 |                                                            | -                                                                     | Permission for 3 locations (renewed)                               |
| 10 | Permission for abstracting Groundwater            | 1                                                          | Permission for 38<br>borewells                             | Permission for 15 Borewells, Application for 4 Borewells              | Permission for 20 Borewells, Application for 2 Borewells           |
| 11 | Authorised Vendor for Biomedical waste disposal   | Tie up with Hospitals and 3 Authorised disposal agencies   |                                                            | -                                                                     | -                                                                  |
| 12 | Authorization for storage and handling of BMW     |                                                            |                                                            |                                                                       | Obtained for Sec 4                                                 |
|    |                                                   | C5 Package                                                 |                                                            |                                                                       |                                                                    |
| 13 | Consent for Batching Plants                       |                                                            |                                                            | CTE for 1 BP                                                          | -                                                                  |
|    |                                                   | C6 Package                                                 |                                                            |                                                                       |                                                                    |
| 14 | Consent for Batching Plants                       | CTE for 6 BPs<br>CTO for 6 BPs                             | -                                                          | -                                                                     | CTO- 2 amendment copy                                              |
| 15 | Consent Crusher Units                             | CTE - 3 no. $CTO - 3$ no.                                  | CTE (NOC) for 1<br>no. (Ajabpura)                          | -                                                                     | -                                                                  |
| 16 | Environmental Clearance & Consent of Stone Quarry | -                                                          | EC for 4 quarries<br>and application for<br>1 (Tulsigram)  | -                                                                     | -                                                                  |

| #  | Legal requirement                                                                                | Document<br>attached in Qtly<br>Report 1<br>(Apr-Jun 2022) | Document<br>attached in Qtly<br>Report 2<br>(Jul-Sep 2022) | Document<br>attached in<br>present Qtly<br>Report 3<br>(Oct-Dec 2022) | Document attached<br>in present Qtly<br>Report 4<br>(Jan-Mar 2023) |
|----|--------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|
| 17 | Permission from Inland<br>Water Authority of India                                               | Permission for<br>Mahi River                               | -                                                          | -                                                                     | -                                                                  |
| 18 | Permission for working on<br>State Rivers from WRD                                               | Permission for all 3 rivers                                |                                                            | -                                                                     | -                                                                  |
| 19 | Permission for working on<br>Ponds/ canals/ lakes                                                | 13 permissions                                             | -                                                          | -                                                                     | -                                                                  |
| 20 | Permission for Storing<br>Petroleum Products                                                     | PESO for 3 locations                                       | -                                                          | -                                                                     | PESO for all 4 locations.                                          |
| 21 | Permission for abstracting<br>Groundwater                                                        | Permission for 40 borewells                                | -                                                          |                                                                       | -                                                                  |
| 22 | Authorization from SPCB<br>for generation & handling<br>of BMW for all Health<br>Care facilities | Authorisation for 2 locations                              | -                                                          | Authorisation for 2 locations                                         |                                                                    |
|    |                                                                                                  |                                                            | C7 package                                                 |                                                                       |                                                                    |
| 23 | Consent for Batching Plants                                                                      | CTE Submitted for 3 BPs                                    | CTO Submitted for 3 BPs                                    |                                                                       | -                                                                  |
| 24 | Permission for working<br>near Archaeological Sites                                              | Permission for<br>Brick Minar, Sidi<br>Basir Minar         | -                                                          |                                                                       | -                                                                  |
| 25 | Permission from Inland<br>Water Authority of India                                               | -                                                          | Permission for Sabarmati River                             |                                                                       | -                                                                  |
|    |                                                                                                  |                                                            | C8 Package                                                 |                                                                       |                                                                    |
| 26 | Consent for Batching Plants                                                                      | -                                                          | -                                                          | CCA -1 no                                                             | -                                                                  |

| #  | Legal requirement                                  | Document<br>attached in Qtly<br>Report 1<br>(Apr-Jun 2022) | Document<br>attached in Qtly<br>Report 2<br>(Jul-Sep 2022) | Document<br>attached in<br>present Qtly<br>Report 3<br>(Oct-Dec 2022) | Document attached<br>in present Qtly<br>Report 4<br>(Jan-Mar 2023) |  |  |  |  |
|----|----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
|    |                                                    | P                                                          | 1 B Package                                                |                                                                       |                                                                    |  |  |  |  |
| 27 | Consent for Batching Plants                        | CTE for 4 BPs                                              | -                                                          | CTO for 4 BPs                                                         | -                                                                  |  |  |  |  |
| 28 | Permission for abstracting<br>Groundwater          | -                                                          | -                                                          | 4 NOCs                                                                | -                                                                  |  |  |  |  |
|    | P1C Package                                        |                                                            |                                                            |                                                                       |                                                                    |  |  |  |  |
| 29 | Consent for Batching Plants                        | -                                                          | CTO for 1 BP                                               | -                                                                     | CCA for 1 BP                                                       |  |  |  |  |
| 30 | Permission for abstracting<br>Groundwater          | -                                                          | Application for 1 location                                 | -                                                                     | 1 permission obtained                                              |  |  |  |  |
|    | P4 Workshop                                        |                                                            |                                                            |                                                                       |                                                                    |  |  |  |  |
| 1  | Legal documents of P4(X)                           |                                                            |                                                            |                                                                       | Renewal copies of<br>Consent of STEL                               |  |  |  |  |
| 2  | Legal documents of P4 (Y)<br>M/s Karbon steel mart |                                                            |                                                            |                                                                       | Copy of CTE &<br>CCA                                               |  |  |  |  |

# C4 Package



#### **Provisional Consent Order (CCA)**

Gujarat Pollution Control Board - Ankleshwar Plot No. 5009/4, GIDC Estate Ankleshwar,

Ankleshwar 393002 Tele: (02646) 222933

Consent No. AWH-61730 Valid upto: 27/01/2030

#### Application: CtO:CCA-Fresh, No. 273415 Dt. 28/01/2023, Granted On: 08/03/2023

PCB Id:91734

Besides streamlining and simplifying of regulatory regime, Gujarat Pollution Control Board has taken initiative in from of introduction of Consolidated Consent and Authorization (CC&A) which provides for a one shot application and clearance of the consents under Water Act, Air Act and Authorization under Hazardous Wastes Rules for a period of 5 years.

Board issues consolidated consent and Authorization to an industrial unit for operation of plant/carrying out industrial activity specifying following conditions.

#### **Consolidated Consent and Authorisation**

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)Act-1981

and Authorization under rule 3(c)& 5(5)of the Hazardous Waste (Management, Handling and Transboundary Movement) Rules' 2008 framed under the E(P)Act-1986.

And whereas Board has received consolidated Application No.(CtO:CCA-Fresh) 273415 and Dated 28/01/2023 for the consolidated consent and authorization(CC&A) of this Board under the provisions / rules of the aforesaid Acts Consent & Authorization is hereby granted as under.

**CONSENT AND AUTHORISATION:** (under the provisions / rules of the aforesaid environmental acts)

To

#### M/s. LARSEN AND TOUBRO LIMITED,

28/P/2/1/1 AND 28/P/3/1, SURVEY NO.28/P/2/1/1\r\nAND 28/P/3/1, VILLAGE-SARFUDDIN,\r

\nTALUKA-ANKLESHWAR,\r\nDIST-BHARUCH-\r\n3,

City: SARFUDDIN,

Dist: Ankleshwar, Tal: Ankleshwar, SIDC: Ankleshwar

Phone: 8347619889

1. Consent Order No: AWH-61730 Valid Upto: 27/01/2030

2. All Conditions under the AIR ACT-1981 WATER ACT-1974 HAZARDOUS ACT-2008 shall be Applicable to you as mentioned in the detailed Consent Order \*\*\*

Consented CETP: Not Linked to any CETP
Consented TSDF: Not Regd with any TSDF

#### 3. GENERAL CONDITIONS:-

Printed On: 09/03/2023

- a) This order is provisional order and detailed order is considered as final.
- b) All the conditions & provisions under the Water Act 1974, the Air Act 1981 and the Environment (Protection) Act 1986 and the rules made there under shall be complied with \*.
- c) All the conditions & provisions under the Hazardous Waste (Management, Handling and Trans boundary Movement) Rules 2008 as amended shall be complied
- d) The applicant shall provide portholes, ladder, platform etc at chimney(s) for monitoring the air emissions and the same shall be open for inspection to/and for use of Board's staff. The chimney(s) vents attached to various sources of emission shall be designed by numbers such
- as S-1, S-2, etc. and these shall be painted/displayed to facilitate identification.
- e) The industry shall take adequate measures for control of noise levels from its own sources within the premises so as to maintain ambient air quality standards in respect of noise to less than 75dB(A) during day time and 70dB(A) during night time. Daytime is reckoned in between 6 a.m. and 10 p.m. and nighttime is reckoned between 10 p.m. and 6 a.m.
- f) In case of change of ownership/management the name and address of the new owners/ partners/ directors/ proprietor or equipment or working conditions as mentioned in the consents form / order should immediately be intimated to the Board.
- g) Industry shall have to display data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including waste water and air emissions and solid hazardous wastes generated within the factory premises.
- h) The CCA shall be produced for inspection at the request of an officer authorized by the Gujarat Pollution Control Board.
- i) Any unauthorized change in personnel, equipment or working conditions as mentioned in the CCA order by CCA holder shall constitute a breach of this CCA.
- j) Adequate plantation shall be carried out all along the periphery of the industrial premises in such a way that the density of plantation is at least 1000 trees per acre of land and a green belt of 5 meters width is developed.
- K) The applicant shall have to submit the returns in prescribed form regarding water consumption and shall have to make payment of water cess to the Board under the Water Cess Act- 1977.

\*\*\* Note: ACT-Specific, Industry-specific, Area-specific Conditions alongwith Product, Waste water effluent details shall be precisely mentioned in the DETAILED Consent Order.

\*\*\* Note: This is only provisional communication. The final Consent/Authorization in hard copy with duly signed by competent authority shall the final and valid Consent/Authorization.

For and on behalf of Gujarat Pollution Control Board

D. M. Thaker.

( Member Secretary )

Page 142 of 822







## **Gujarat Pollution Control Board**

Regional Office-SURAT

ISO-9001 & ISO-14001 Certified

Plot No.11-12/2,3, G.I.D.C., Pandesara, Dist.: Surat- 394221.

Phone: (0261) 2442696 Website: www.gpcb.gov.in

"CCA-Fresh" (AWH-48771)

NO: GPCB/ID-82272/SRT-G-524/92 \ | 5 /2023

**GPCB ID: 82272** 

20 FEB 2023

To,

Larsen and Toubro Limited (82272)

Survey No: 169, 193, And 194, Village: Bhatia-394150,

Tal: Choryasi, Dist: Surat

Sub: Extension in the interim Consolidated Consent & Authorization (CC&A) of the Board

Ref: 1. Your Application No.: 198806 Dated: 11/08/2021

2. CC&A issued vide this office letter No: GPCB/ID-82272/SRT-G-524/19965/2021 Dated: 04/09/2021

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)-1981 and Authorization under rule of the Hazardous and Other Waste (Management and Tran boundary Movement) Rules-2016 framed under the Environment (Protection) Act-1986, The Board has granted CCA-Renewal No:AWH-48771 Vide letter No: GPCB/ID-82272/SRT-G-524/19965/2021Dated: 04/09/2021 Valid Up to 10/08/2022 with specific conditions mentioned therein.

The Board has right to review and amend the conditions of the said CCA order. The said CCA order is further amended as below.

- 1. The Condition No: 2 of the said CCA order is amended herewith and shall be read as under,
- 2. The consent shall be valid up to 10/08/2026 for use of outlet for the discharge of trade effluent & emission due to operation of industrial plant for manufacture of the following items/products:

| SR.<br>NO. | PRODUCTS                | QUANTITY               |
|------------|-------------------------|------------------------|
| 1          | Concrete Batching Plant | 36000Cubic Meter/Month |

3. The rest of the conditions of the above referred CC & A order dtd:04/09/2021 shall remain Unchanged .You are directed to comply with these conditions.

For and on behalf of Gujarat Pollution Control Board

(Dr.J.D.Oza)

Regional Officer, Surat



## **Gujarat Pollution Control Board**

Regional Office-SURAT

ISO-9001 & ISO-14001 Certified

Plot No.11-12/2,3, G.I.D.C., Pandesara, Dist.: Surat- 394221.

Phone: (0261) 2442696 Website: www.gpcb.gov.in

> <u>"CCA-Fresh"</u> (AWH-52327)

20 FEB 2023

NO: GPCB/ID-85739/SRT-G-551/ 221 16 /2023

To.

Larsen and Toubro Limited (85739)

Plot No: 81 Survey No.81 (New), Village: Kosmada,

Tal: Kamrej Dist:Surat-395006

Sub: Extension in the interim Consolidated Consent & Authorization (CC&A) of the Board

Ref: 1. Your Application No.: 211237 Dated: 05/02/2022

2. CC&A issued vide this office letter No: GPCB/ID-85739/SRT-G-551/21018/2022 Dated: 07/05/2022

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)-1981 and Authorization under rule of the Hazardous and Other Waste (Management and Tran boundary Movement) Rules-2016 framed under the Environment (Protection) Act-1986, The Board has granted CCA-Renewal No:AWH-52327 Vide letter No: GPCB/ID-85739/SRT-G-551/21018/2022 Dated: 07/05/2022 Valid Up to 04/02/2023 with specific conditions mentioned therein.

The Board has right to review and amend the conditions of the said CCA order. The said CCA order is further amended as below.

- 1. The Condition No: 2 of the said CCA order is amended herewith and shall be read as under,
- 2. The consent shall be valid up to 20/03/2025 for use of outlet for the discharge of trade effluent & emission due to operation of industrial plant for manufacture of the following items/products:

| SR.<br>NO. | PRODUCTS                | QUANTITY                 |  |
|------------|-------------------------|--------------------------|--|
| 1          | Concrete Batching Plant | 32760 Cubic Meter/ Month |  |

3. The rest of the conditions of the above referred CC & A order dtd:07/05/2021 shall remain Unchanged . You are directed to comply with these conditions.

For and on behalf of Gujarat Pollution Control Board

(Dr.J.D.Oza)

Regional Officer, Surat



#### **REGIONAL OFFICE - ANKLESHWAR**

## **GUJARAT POLLUTION CONTROL BOARD**

Plot No.5009/4,G.I.D.C.,Estate,Ankleshwar.393 002 Dist.Bharuch. Tel.No.(02646) 222 933. Email id: ro-gpcb-ankl@gujarat.gov.in,

By RPAD

## Consent to Establish CTE No. - 60437

GPCB/RO/ANK/ID: 91734/eow: 16999 /2023

Dt:

2 7 JAN 2023

To,

LARSEN AND TOUBRO LIMITED. (ID: 91734),

Survey No: 28/P/2/1/1 & 28/P/3/1,

Vill: Sarfuddin-393001,

Tal: Ankleshwar, Dist: Bharuch.

**Sub:** Consent to Establish (NOC) under section 25 of Water act 1974 and section 21 of Air Act 1981.

Reference: Your application Inward ID No: 270335 Dt: 23/12/2022.

Sir,

Without prejudice to the powers of this Board under the Water (Prevention and Control of Pollution) Act-1974 the Air Act-1981 and the Environment (Protection) Act 1986 and without reducing your responsibilities under the said Acts in any way, this is to inform you that this Board is granting you **Consent to Establish (CTE-60437)** to your industrial plant to be located at above mentioned location to manufacture of the following items:

| Sr. No. | Product   | Max.<br>Quantity/month |
|---------|-----------|------------------------|
| 1.      | Concreate | 8365 Cu. Meter         |

The validity period of the order will be seven years from the date of application of CTE i.e. up to Dt: 22/12/2029.

#### **SPECIFIC CONDITION: -**

- > Unit shall maintain ZLD.
- > Unit shall use fresh raw material only.
- ➤ Unit shall not carry out any activities/ production which attracts EIA notification dated 14/09/2006 and amendment thereafter without obtaining Environment Clearance for the same.

#### **CONDITIONS UNDER THE WATER ACT-1974**

1. 15.8 KLD generated waste water from washing will be reuse within plant premises, hence the unit shall be maintained ZLD (**Zero Liquid discharge**).

2. The quantity of the total water consumption shall not exceed 65.425 KL/day.

Domestic purpose-

1.125 KL/day

Industrial-

64.30 KL/day

#### **REGIONAL OFFICE - ANKLESHWAR**

## **GUJARAT POLLUTION CONTROL BOARD**



Plot No. 5009/4, G.I.D.C. Estate, Ankleshwar-393 002. Dist. Bharuch. Tel. No. (02646) 222933, E-Mail: ro-gpcb-ankl@Gujarat.gov.in.

3. The quantity of the total waste water (Sewage) shall not exceed 16.180 KL/day.

Domestic purpose-

0.380 KL/day

Industrial-

15.80 KL/day

4. Sewage shall be disposed of through septic tank / soak pit system.

#### **CONDITIONS UNDER THE AIR ACT-1981**

1. The fuel and flue gas emission through stack attached to boiler shall conform to the following standards:

| Sr.<br>No. | Stack<br>Attached to  | Fuel   | Stack<br>Height<br>in meter | Air<br>Pollution<br>Control<br>Measure | Parameter         | Permissible<br>Limit                        |
|------------|-----------------------|--------|-----------------------------|----------------------------------------|-------------------|---------------------------------------------|
| 1.         | D.G. Set<br>(500 KVA) | Diesel | 4.7                         | NA                                     | SPM<br>SOx<br>NOx | 150 mg/Nm <sup>3</sup><br>100 ppm<br>50 ppm |

2. The process emission through various stack/vent of reactors, process, vessel shall conform to the following standards:

| Sr.<br>No. | Stack Attached to | Stack<br>Height in<br>meter | Air Pollution<br>Control Measure | Parameter | Permissible<br>Limit  |
|------------|-------------------|-----------------------------|----------------------------------|-----------|-----------------------|
| 1.         | Silo-1 & 2        | 3.34                        | Dust Collector-1                 |           |                       |
|            |                   |                             | (36 bag filters                  | 1*: 2     |                       |
|            |                   |                             | inside the system)               | 9 1 4     |                       |
| 2.         | Silo- 3 & 4       | 3.34                        | Dust Collector-2                 | w         |                       |
|            |                   |                             | (36 bag filters                  | PM        | $150 \text{ mg/Nm}^3$ |
|            |                   |                             | inside the system)               |           |                       |
| 3.         | Silo- 5           | 3.34                        | Dust Collector-3                 |           |                       |
|            |                   | -                           | (24 bag filters                  |           |                       |
|            |                   |                             | inside the system)               | , F       |                       |

- 3. The minimum height of stack to be provided with each of the generator set shall be H=h+0.2 (KVA)1/2, Where H= Total stack height in meter, h=Height of the building in meters where or by the side of which the generator set is installed
- 4. Noise from DG Set shall be controlled by providing an acoustic enclosure or by treating the room acoustically, at the users end.
- 5. The acoustic enclosure or acoustic treatment of the room shall be designed for minimum 25 Db (A) insertion loss or for meeting the ambient noise standards, whichever is on the higher side (if the actual ambient noise is on the higher side, it may not be possible to check the performance of the acoustic enclosure/acoustic treatment. Under such circumstances the performance may be checked for Nosie reduction up to actual ambient noise level, preferably, in the night time.) the measurement for insertion loss may be done at different points at 0.5m from the acoustic enclosure/room, and then averaged.
- 6. The D.G Set shall be provided with proper exhaust muffler with insertion loss of minimum 25 dB(A).
- 7. All efforts shall be made to bring down the noise levels due to the D.G. Set, outside the premises, within the ambient noise requirements by proper siting and control measures.
- 8. Installation of a D.G Sets must be strictly in compliance with the recommendations of the D.G Set manufacturer.



## **REGIONAL OFFICE - ANKLESHWAR**

## **GUJARAT POLLUTION CONTROL BOARD**

Plot No.5009/4, G.I.D.C., Estate, Ankleshwar. 393 002 Dist. Bharuch. Tel.No.(02646) 222 933. Email id: ro-gpcb-ankl@gujarat.gov.in,

- 9. A proper routine and preventive maintenance procedure for the D.G Set should be set and followed in consultation with the DG set manufacture which would help prevent noise levels of the DG set from deteriorating with use.
- 10. The Concentration of the following parameters in the ambient air within the premises of the unit shall not exceed the limits specified hereunder.

| Sr. No. | Parameter                             | Permissible Limit (Microgram/M <sup>3</sup> ) |                  |  |  |  |  |  |  |
|---------|---------------------------------------|-----------------------------------------------|------------------|--|--|--|--|--|--|
|         |                                       | Annual                                        | 24 Hours Average |  |  |  |  |  |  |
| 1.      | Particulate Matter(PM <sub>10</sub> ) | 60                                            | 100              |  |  |  |  |  |  |
| 2.      | Particulate Matter(PM <sub>25</sub> ) | 40                                            | 60               |  |  |  |  |  |  |
| 3.      | Oxides of Sulphur(SO <sub>x</sub> )   | 50                                            | 80               |  |  |  |  |  |  |
| 4.      | Oxides of Nitrogen(NO <sub>x</sub> )  | 40                                            | 80               |  |  |  |  |  |  |

- 11. All measures for the control of environmental pollution shall be provided before commencing production.
- 12. The concentration of Noise in ambient air within the premises of industrial unit shall not exceed following levels:

Between 6.00 am and 10.00 pm : 75 dB (A) i.

ii. Between 10.00 pm and 6.00 am

: 70 dB (A)

13. All efforts shall be made to control VOC emissions and odor problem, if any.

## CONDITION UNDER HAZARDOUS WASTE RULES:

- Applicant shall have to comply with provisions of Hazardous Waste (Management, Handling & Tran boundary Movement) Rules-2016, if applicable.
- The applicant shall obtain membership of Common TSDF site for disposal of Hazardous 2. waste if generates as categorized in Hazardous Waste (Management, Handling & Tran boundary Movement) Rules-2016, if applicable.
- The applicant shall provide temporary storage facilities for each type of Hazardous Waste 3. as per Hazardous Waste (Management, Handling & Tran boundary Movement) Rules-2016, if applicable.

FOR AND ON BEHALF OF GUJARAT POLLUTION CONTROL BOARD

> (V.D. Rakholia) REGIONAL OFFICER

## Copy to:

1) Office Copy (Technical)

## **REGIONAL OFFICE - ANKLESHWAR**

## **GUJARAT POLLUTION CONTROL BOARD**



Plot No. 5009/4, G.I.D.C. Estate, Ankleshwar-393 002. Dist. Bharuch. Tel. No. (02646) 222933, E-Mail: ro-gpcb-ankl@Gujarat.gov.in.

#### **GENERAL CONDITION**

- 1. Adequate plantation shall be carried out all along the periphery of the industrial premises in such a way that the density of plantation is at least 1000 trees per acre of land and a green belt of 5.00 meter width is developed.
- 2. The applicant shall have to submit the returns in prescribed form regarding water consumption and shall have to make payment of water cess to the Board under the Water Cess Act-1977.
- 3. In case of change of ownership/management the name and address of the new owners/ partners/ directors/ proprietors should immediately be intimated to the Board.
- 4. The applicant also complies with the General conditions as per Annexure I attached herewith (Whichever applicable)
- 5. The applicant shall however, not without the prior consent of the Board bring into use any new or altered outlet for discharge of effluent or gaseous emission or sewage waste from the proposed industrial plant. The applicant is required to make applications to his board for this purpose in the prescribed forms under the provision of the Water (Prevention and Control of Pollution) Act-1974 the Air Act-1981 and the Environment (Protection) Act 1986.
- 6. The applicant is required to comply with the manufacturing, Storage and import of Hazardous Chemicals Rules-1989 framed under the Environmental (Protection) Act 1986.
- 7. Environment Statement vide Form V shall be submitted to the Gujarat Pollution Control Board at the end of every financial year, latest by the 31<sup>st</sup> of September of the next financial year.
- 8. If it is established by any competent authority that the damage is caused due to their industrial activities to any person or his property in that case, they are obliged to pay the compensation as determined by the competent authority.





भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास और गंगा संरक्षण विभाग केन्द्रीय भूमि जल प्राधिकरण Government of India Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation Central Ground Water Authority

# (भूजल निकासी हेतु अनापत्ति प्रमाण पत्र) NO OBJECTION CERTIFICATE (NOC) FOR GROUND WATER ABSTRACTION

Larsen And Toubro Limited-construction

Project Name:

|                |                                                                                                                            |                        | Project Address: |           |                                                                                                                                 |         |                | Village-panoli, Taluka-ankleshwar, Dist-bharuch Panoli Block: Anklesvar |                         |        |                     |            |          |          |          |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------|---------|----------------|-------------------------------------------------------------------------|-------------------------|--------|---------------------|------------|----------|----------|----------|--|
| Pin (          | rict·                                                                                                                      | -                      |                  |           |                                                                                                                                 | i       |                |                                                                         |                         | Bloc   | k: An               | klesvar    | -//      | Spr.     |          |  |
|                | Pin Code:                                                                                                                  |                        |                  |           | Bharu                                                                                                                           | ch      |                |                                                                         |                         | State  | e: Gu               | Gujarat    |          |          |          |  |
| Com            | Code:                                                                                                                      |                        |                  |           |                                                                                                                                 |         |                |                                                                         |                         |        |                     | XX         |          |          |          |  |
|                | nmunicatio                                                                                                                 | on Addre               | ss:              |           |                                                                                                                                 |         |                |                                                                         | ed, Villaç<br>rat - 394 |        | noli,taluka         | a-ankleshv | var, Dis | t-bharud | ch,      |  |
| Addr           | ress of CC                                                                                                                 | GWB Re                 | gional C         |           | Central Ground Water Board West Central Region, Swami Narayan College, Building, Shah Alam Tolnaka, Ahmadabad, Gujarat - 380022 |         |                |                                                                         |                         |        |                     |            |          |          |          |  |
| 1. <b>N</b>    | 1. NOC No.: CGWA/NOC/INF/ORIG/202                                                                                          |                        |                  |           |                                                                                                                                 |         |                |                                                                         |                         | 7      | $\rightarrow$       |            |          |          |          |  |
| 2. A           | pplication                                                                                                                 | 9453/GJ/               | /INF/20          | 022       |                                                                                                                                 |         | 3.             |                                                                         | gory:<br>'RE 2020)      | Sat    | e e                 |            |          |          |          |  |
| 4. P           | roject Sta                                                                                                                 | ct Status: New Project |                  |           |                                                                                                                                 |         |                | - 1                                                                     | 5.                      | NOC    | Type:               | Ne         | New      |          |          |  |
| 6. <b>V</b>    | alid from                                                                                                                  | :                      | 28/12/           | /2022     |                                                                                                                                 |         |                | . (                                                                     | 7.                      | Valid  | d up to: 27/12/2027 |            |          |          |          |  |
| 8. G           | Fround Wa                                                                                                                  | ater Abst              | raction          | Permitte  | ed:                                                                                                                             |         | - 4            | 7//                                                                     |                         |        |                     |            |          |          |          |  |
|                | Fresh '                                                                                                                    | Water                  |                  |           | Saline                                                                                                                          | Water   | ater Dewaterin |                                                                         |                         |        |                     |            |          | Total    |          |  |
| m <sup>3</sup> | ³/day                                                                                                                      | m³/ye                  | ear              | m³/da     | day m³/year                                                                                                                     |         |                |                                                                         | m³/day                  |        | m³/year             | m³         | /day     | m³.      | /year    |  |
| 16             | 65.00                                                                                                                      | 60225                  | 5.00             |           |                                                                                                                                 |         |                |                                                                         |                         |        |                     |            |          |          |          |  |
| 9. D           | Details of g                                                                                                               | ground w               | ater ab          | straction | /Dew                                                                                                                            | atering | struc          | ctures                                                                  |                         |        |                     |            |          |          |          |  |
|                |                                                                                                                            |                        | Tota             | l Existir | ng No.                                                                                                                          | :0      |                |                                                                         |                         |        | Т                   | otal Prop  | osed N   | o.:10    |          |  |
|                |                                                                                                                            |                        |                  | DW        | DCB                                                                                                                             | BW      | TW             | MP                                                                      | MPu                     | DV     | V DCB               | BW         | TW       | MP       | MPu      |  |
| Ab             | bstraction                                                                                                                 | Structure              | e*               | 0         | 0                                                                                                                               | 0       | 0              | 0                                                                       | 0                       | 0      | 0                   | 10         | 0        | 0        | 0        |  |
|                | Dug Well; DC                                                                                                               |                        | -                |           |                                                                                                                                 |         |                |                                                                         | ne Pit;MP               | u-Mine | Pumps               |            |          |          |          |  |
| 10. G          | Fround Wa                                                                                                                  | ater Abst              | raction/         | Restora   | tion C                                                                                                                          | harges  | paid           | (Rs.):                                                                  |                         |        |                     | 6022       | 25.00    |          |          |  |
|                | <ol> <li>Number of Piezometers (Observation wells) to be<br/>constructed/ monitored &amp; Monitoring mechanism.</li> </ol> |                        |                  |           |                                                                                                                                 |         |                | No. of I                                                                | Piezome                 | eters  |                     | Monitorin  | ig Mech  | nanism   |          |  |
|                |                                                                                                                            | CN                     |                  |           |                                                                                                                                 |         |                |                                                                         |                         |        | Manual              | DWLR**     | DWLF     | R With T | elemetry |  |
| **             | DWLR - Dig                                                                                                                 | ital Water I           | Level Red        | corder    |                                                                                                                                 |         |                |                                                                         | 1                       |        | 0                   | 1          |          | 0        |          |  |

#### (Compliance Conditions given overleaf)

This is an auto generated document & need not to be signed.

18/11, जामनगर हाउस, मानसिंह रोड, नई दिल्ली - 110011 / 18/11, Jamnagar House, Mansingh Road, New Delhi-110011 Phone: (011) 23383561 Fax: 23382051, 23386743 Website: cgwa-noc.gov.in

> पानी बचाये – जीवन बचाये SAVE WATER - SAVE LIFE

#### Validity of this NOC shall be subject to compliance of the following conditions:

#### Mandatory conditions:

- 1) Installation of tamper proof digital water flow meter with telemetry on all the abstraction structure(s) shall be mandatory for all users seeking No Objection Certificate and intimation regarding their installation shall be communicated to the CGWA within 30 days of grant of No Objection Certificate.
- 2) Proponents shall mandatorily get water flow meter calibrated from an authorized agency once in a year.
- 3) Construction of purpose-built observation wells (piezometers) for ground water level monitoring shall be mandatory as per Section 14 of Guidelines. Water level data shall be made available to CGWA through web portal. Detailed guidelines for construction of piezometers are given in Annexure-II of the guidelines.
- 4) Proponents shall monitor quality of ground water from the abstraction structure(s) once in a year. Water samples from bore wells/ tube wells / tube wells shall be collected during April/May every year and analysed in NABL accredited laboratories for basic parameters (cations and anions), heavy metals, pesticides/ organic compounds etc. Water quality data shall be made available to CGWA through the web portal.
- 5) In case of mining projects, additional key wells shall be established in consultation with the Regional Director, CGWB for ground water level monitoring four (4) times a year (January, May, August and November) in core as well as buffer zones of the mine.
- 6) In case of mining project the firm shall submit water quality report of mine discharge/ seepage from Govt. approved/ NABL accredited lab.
- 7) The firm shall report compliance of the NOC conditions online in the website (www.cgwa-noc.gov.in) within one year from the date of issue of this NOC
- 8) Industries abstracting ground water in excess of 100 m 3 /d shall undertake annual water audit through certified auditors and submit audit reports within three months of completion of the same to CGWA. All such industries shall be required to reduce their ground water use by at least 20% over the next three years through appropriate means.
- 9) Application for renewal can be submitted online from 90 days before the expiry of NOC. Ground water withdrawal, if any, after expiry of NOC shall be illegal & liable for legal action as per provisions of Environment (Protection) Act. 1986.
- 10) This NOC is subject to prevailing Central/State Government rules/laws/norms or Court orders related to construction of tube well/ground water abstraction structure / recharge or conservation structure/discharge of effluents or any such matter as applicable.

#### **General conditions:**

- 11) No additional ground water abstraction and/or de-watering structures shall be constructed for this purpose without prior approval of the Central Ground Water Authority (CGWA).
- 12) The proponent shall seek prior permission from CGWA for any increase in quantum of groundwater abstraction (more than that permitted in NOC for specific period)
- 13) Proponents shall install roof top rain water harvesting in the premise as per the existing building bye laws in the premise.
- 14) The project proponent shall take all necessary measures to prevent contamination of ground water in the premises failing which the firm shall be responsible for any consequences arising thereupon.
- 15) In case of industries that are likely to contaminate the ground water, no recharge measures shall be taken up by the firm inside the plant premises. The runoff generated from the rooftop shall be stored and put to beneficial use by the firm.
- 16) Wherever feasible, requirement of water for greenbelt (horticulture) shall be met from recycled / treated waste water
- 17) Wherever the NOC is for abstraction of saline water and the existing wells (s) is /are yielding fresh water, the same shall be sealed and new tubewell(s) tapping saline water zone shall be constructed within 3 months of the issuance of NOC. The firm shall also ensure safe disposal of saline residue, if any.
- 18) Unexpected variations in inflow of ground water into the mine pit, if any, shall be reported to the concerned Regional Director, Central Ground Water Board.
- 19) In case of violation of any NOC conditions, the applicant shall be liable to pay the penalties as per Section 16 of Guidelines.
- 20) This NOC does not absolve the proponents of their obligation / requirement to obtain other statutory and administrative clearances from appropriate authorities
- 21) The issue of this NOC does not imply that other statutory / administrative clearances shall be granted to the project by the concerned authorities. Such authorities would consider the project on merits and take decisions independently of the NOC.
- 22) In case of change of ownership, new owner of the industry will have to apply for incorporation of necessary changes in the No Objection Certificate with documentary proof within 60 days of taking over possession of the premises.
- 23) This NOC is being issued without any prejudice to the directions of the Hon'ble NGT/court orders in cases related to ground water or any other related matters.
- 24) Proponents, who have installed/constructed artificial recharge structures in compliance of the NOC granted to them previously and have availed rebate of upto 50% (fifty percent) in the ground water abstraction charges/ground water restoration charges, shall continue to regularly maintain artificial recharge structures.
- 25) Industries which are likely to cause ground water pollution e.g. Tanning, Slaughter Houses, Dye, Chemical/ Petrochemical, Coal washeries, pharmaceutical, other hazardous units etc. (as per CPCB list) need to undertake necessary well head protection measures to ensure prevention of ground water pollution as per Annexure III of the guidelines.
- 26) In case of new infrastructure projects having ground water abstraction of more than 20 m3/day, the firm/entity shall ensure implementation of dual water supply system in the projects.
- 27) In case of infrastructure projects, paved/parking area must be covered with interlocking/perforated tiles or other suitable measures to ensure groundwater infiltration/harvesting.
- 28) In case of coal and other base metal mining projects, the project proponent shall use the advance dewatering technology (by construction of series of dewatering abstraction structures) to avoid contamination of surface water.
- 29) The NOC issued is conditional subject to the conditions mentioned in the Public notice dated 27.01.2021 failing which penalty/EC/cancellation of NOC shall be imposed as the case may be.
- 30) This NOC is issued subject to the clearance of Expert Appraisal Committee (EAC) (if applicable)

(Non-compliance of the conditions mentioned above is likely to result in the cancellation of NOC and legal action against the proponent.)



भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास और गंगा संरक्षण विभाग केन्द्रीय भूमि जल प्राधिकरण Government of India Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation Central Ground Water Authority

# (भूजल निकासी हेतु अनापत्ति प्रमाण पत्र) NO OBJECTION CERTIFICATE (NOC) FOR GROUND WATER ABSTRACTION

Larsen And Toubro Limited-construction

Project Name:

|     | •                                |             |           |          |          |                                                                                                                    |         |            |                    |         |                         |                         |          |          |           |
|-----|----------------------------------|-------------|-----------|----------|----------|--------------------------------------------------------------------------------------------------------------------|---------|------------|--------------------|---------|-------------------------|-------------------------|----------|----------|-----------|
| Pı  | oject Addre                      | Mahs        | r C4 Pı   | roject   | (bullet  | Γrain )vil                                                                                                         | lage-   | kukarwac   | la, Taluka         | -bharuc | h, Dist-                | bharuch                 |          |          |           |
| Vi  | llage:                           |             |           |          | Kukaı    | rwada                                                                                                              |         |            |                    | Bloc    | k: Bh                   | aruch                   | N        | Tay-     |           |
| Di  | strict:                          |             |           |          | Bharuch  |                                                                                                                    |         |            |                    |         | e: Gu                   | ujarat                  | V        |          |           |
| Pi  | n Code:                          |             |           |          |          |                                                                                                                    |         |            |                    |         |                         | 7.7                     |          |          |           |
| C   | ommunication                     | on Addre    | ss:       |          |          | Larsen And Toubro Limited, Mahsr-c4 Project (bullet Train), Village-kukarwada,, Bharuch, Bharuch, Gujarat - 392012 |         |            |                    |         |                         |                         |          |          |           |
| A   | ddress of Co                     | GWB Re      | gional C  | Office : |          |                                                                                                                    |         |            |                    |         |                         | on, Swam<br>arat - 3800 |          | an Colle | ege,      |
| 1.  | NOC No.:                         |             | CGWA      | A/NOC    | /INF/O   | RIG/20                                                                                                             | 23/17   | '819       | 2.                 | Dat     | e of Issu               | ence 2                  | 3/02/202 | 23       |           |
| 3.  | Application                      | 667/G       | J/INF/2   | 2022     |          |                                                                                                                    | 4.      |            | egory:<br>VRE 2020 |         | afe                     |                         |          |          |           |
| 5.  | Project Sta                      | atus:       | New F     | roject   |          |                                                                                                                    |         |            | 6.                 | NO      | C Type:                 | ew                      |          |          |           |
| 7.  | 7. <b>Valid from:</b> 23/02/2023 |             |           |          |          |                                                                                                                    |         | . (1)      | 8.                 | Vali    | Valid up to: 22/02/2028 |                         |          |          |           |
| 9.  | Ground Wa                        | ater Abst   | raction   | Permi    | tted:    |                                                                                                                    | - 4     | -7/        |                    |         |                         |                         |          |          |           |
|     | Fresh                            | Water       |           |          | Saline   | e Water                                                                                                            |         |            | De                 | wate    | ring                    |                         | -        | Total    |           |
|     | m³/day                           | m³/ye       | ear       | m³/      | 'day     | day m³/year                                                                                                        |         |            | m³/day             |         | m³/year                 | · m                     | ³/day    | m        | ³/year    |
|     | 165.00                           | 60225       | 5.00      |          |          |                                                                                                                    |         |            |                    |         |                         |                         |          |          |           |
| 10. | Details of g                     | ground w    | ater abs  | stractio | on /Dew  | /atering                                                                                                           | g strud | ctures     |                    |         |                         |                         |          |          |           |
|     |                                  |             | Tota      | I Exist  | ing No   | .:0                                                                                                                |         |            |                    | T       |                         | otal Prop               | osed N   | o.:10    |           |
|     |                                  |             |           | DW 🦠     | DCB      | BW                                                                                                                 | TW      | MP         | MPu                | DV      | V DCB                   | BW                      | TW       | MP       | MPu       |
|     | Abstraction                      | Structur    | e*        | 0        | 0        | 0                                                                                                                  | 0       | 0          | 0                  | 0       | 0                       | 10                      | 0        | 0        | 0         |
| *DV | /- Dug Well; Do                  | CB-Dug-cu   | m-Bore W  | /ell; BW | -Bore We | ell; TW-T                                                                                                          | ube W   | ell; MP-Mi | ne Pit;MPı         | u-Mine  | Pumps                   |                         |          |          |           |
| 11. | Ground Wa                        | ater Abst   | raction/  | Resto    | ration C | harges                                                                                                             | paid    | (Rs.):     |                    |         |                         | 602                     | 25.00    |          |           |
| 12. | Number of constructe             |             |           |          |          |                                                                                                                    |         | No. of     | Piezome            | eters   |                         | Monitori                | ng Mecl  | nanism   |           |
|     |                                  | CP          |           |          |          |                                                                                                                    |         |            |                    |         | Manual                  | DWLR*                   | DWLF     | R With 1 | Γelemetry |
|     | **DWLR - Dig                     | gital Water | Level Red | corder   |          |                                                                                                                    |         |            | 1                  |         | 0                       | 1                       |          | 0        |           |

#### (Compliance Conditions given overleaf)

This is an auto generated document & need not to be signed.

18/11, जामनगर हाउस, मानसिंह रोड, नई दिल्ली - 110011 / 18/11, Jamnagar House, Mansingh Road, New Delhi-110011 Phone: (011) 23383561 Fax: 23382051, 23386743 Website: cgwa-noc.gov.in

> पानी बचाये – जीवन बचाये SAVE WATER - SAVE LIFE

#### Validity of this NOC shall be subject to compliance of the following conditions:

#### Mandatory conditions:

- 1) Installation of tamper proof digital water flow meter with telemetry on all the abstraction structure(s) shall be mandatory for all users seeking No Objection Certificate and intimation regarding their installation shall be communicated to the CGWA within 30 days of grant of No Objection Certificate.
- 2) Proponents shall mandatorily get water flow meter calibrated from an authorized agency once in a year.
- 3) Construction of purpose-built observation wells (piezometers) for ground water level monitoring shall be mandatory as per Section 14 of Guidelines. Water level data shall be made available to CGWA through web portal. Detailed guidelines for construction of piezometers are given in Annexure-II of the guidelines.
- 4) Proponents shall monitor quality of ground water from the abstraction structure(s) once in a year. Water samples from bore wells/ tube wells / dug wells shall be collected during April/May every year and analysed in NABL accredited laboratories for basic parameters (cations and anions), heavy metals, pesticides/ organic compounds etc. Water quality data shall be made available to CGWA through the web portal.
- 5) In case of mining projects, additional key wells shall be established in consultation with the Regional Director, CGWB for ground water level monitoring four (4) times a year (January, May, August and November) in core as well as buffer zones of the mine.
- 6) In case of mining project the firm shall submit water quality report of mine discharge/ seepage from Govt. approved/ NABL accredited lab.
- 7) The firm shall report compliance of the NOC conditions online in the website (www.cgwa-noc.gov.in) within one year from the date of issue of this NOC
- 8) Industries abstracting ground water in excess of 100 m 3 /d shall undertake annual water audit through certified auditors and submit audit reports within three months of completion of the same to CGWA. All such industries shall be required to reduce their ground water use by at least 20% over the next three years through appropriate means.
- 9) Application for renewal can be submitted online from 90 days before the expiry of NOC. Ground water withdrawal, if any, after expiry of NOC shall be illegal & liable for legal action as per provisions of Environment (Protection) Act. 1986.
- 10) This NOC is subject to prevailing Central/State Government rules/laws/norms or Court orders related to construction of tube well/ground water abstraction structure / recharge or conservation structure/discharge of effluents or any such matter as applicable.

#### **General conditions:**

- 11) No additional ground water abstraction and/or de-watering structures shall be constructed for this purpose without prior approval of the Central Ground Water Authority (CGWA).
- 12) The proponent shall seek prior permission from CGWA for any increase in quantum of groundwater abstraction (more than that permitted in NOC for specific period)
- 13) Proponents shall install roof top rain water harvesting in the premise as per the existing building bye laws in the premise.
- 14) The project proponent shall take all necessary measures to prevent contamination of ground water in the premises failing which the firm shall be responsible for any consequences arising thereupon.
- 15) In case of industries that are likely to contaminate the ground water, no recharge measures shall be taken up by the firm inside the plant premises. The runoff generated from the rooftop shall be stored and put to beneficial use by the firm.
- 16) Wherever feasible, requirement of water for greenbelt (horticulture) shall be met from recycled / treated waste water
- 17) Wherever the NOC is for abstraction of saline water and the existing wells (s) is /are yielding fresh water, the same shall be sealed and new tubewell(s) tapping saline water zone shall be constructed within 3 months of the issuance of NOC. The firm shall also ensure safe disposal of saline residue, if any.
- 18) Unexpected variations in inflow of ground water into the mine pit, if any, shall be reported to the concerned Regional Director, Central Ground Water Board.
- 19) In case of violation of any NOC conditions, the applicant shall be liable to pay the penalties as per Section 16 of Guidelines.
- 20) This NOC does not absolve the proponents of their obligation / requirement to obtain other statutory and administrative clearances from appropriate authorities
- 21) The issue of this NOC does not imply that other statutory / administrative clearances shall be granted to the project by the concerned authorities. Such authorities would consider the project on merits and take decisions independently of the NOC.
- 22) In case of change of ownership, new owner of the industry will have to apply for incorporation of necessary changes in the No Objection Certificate with documentary proof within 60 days of taking over possession of the premises.
- 23) This NOC is being issued without any prejudice to the directions of the Hon'ble NGT/court orders in cases related to ground water or any other related matters.
- 24) Proponents, who have installed/constructed artificial recharge structures in compliance of the NOC granted to them previously and have availed rebate of upto 50% (fifty percent) in the ground water abstraction charges/ground water restoration charges, shall continue to regularly maintain artificial recharge structures.
- 25) Industries which are likely to cause ground water pollution e.g. Tanning, Slaughter Houses, Dye, Chemical/ Petrochemical, Coal washeries, pharmaceutical, other hazardous units etc. (as per CPCB list) need to undertake necessary well head protection measures to ensure prevention of ground water pollution as per Annexure III of the guidelines.
- 26) In case of new infrastructure projects having ground water abstraction of more than 20 m3/day, the firm/entity shall ensure implementation of dual water supply system in the projects.
- 27) In case of infrastructure projects, paved/parking area must be covered with interlocking/perforated tiles or other suitable measures to ensure groundwater infiltration/harvesting.
- 28) In case of coal and other base metal mining projects, the project proponent shall use the advance dewatering technology (by construction of series of dewatering abstraction structures) to avoid contamination of surface water.
- 29) The NOC issued is conditional subject to the conditions mentioned in the Public notice dated 27.01.2021 failing which penalty/EC/cancellation of NOC shall be imposed as the case may be.
- 30) This NOC is issued subject to the clearance of Expert Appraisal Committee (EAC) (if applicable)

(Non-compliance of the conditions mentioned above is likely to result in the cancellation of NOC and legal action against the proponent.)



#### **BMW AUTHORIZATION FORM-III(Rule 10)**

Larsen & Toubro Limited, Construction (406779)

Gujarat Pollution Control Board C-1/119/3, GIDC Phase-2 Narmadanagar , Bharuch-392015

> PCB Id: 0 BMW Id: 406779

Tele:

Under the Rule-10 of the Biomedical waste (Management and Handling) Rules, 2016 framed under the EPACT'86

Authorization for operating a facility for Collection, Generation, Segregation, Packaging, Storage of biomedical wastes.

BMW AUTH NO :BMW-363045, VALID UPTO : 31/12/2075

Application Inward No: 90574, Date: 09/12/2022

**CCA No: ()** 

File No: , (Out No: 16660)

No of Beds: 0, Investment(in lakh): 5.00, Act: B
No of H.W: 0, Water Consumption(klpd): 0.00, Scale: S

In exercise of power conferred by this Board and after scrutiny of above referred application, Superintendent / Incharge of Larsen & Toubro Limited, Construction at CH 321, Larsen & Toubro

Ltd, Construction, MAHSR C4 Dahej, Village-Kukarwada-392001, Tal: Vagra Dist: Bharuch is here by granted an Authorisation to operate Health Care facility for

Collection, Generation, Segregation, Packaging, Storage of biomedical wastes on the premises of

M/S. Globe Bio Care (CBWTF-Incinerator) situated at

P.no. 144/B,GIDC Sachin, Surat Dist: GIDC Ankleshwar Under

CBWTF Reg. No: IN0264, Valid Upto:

1. The Authorisation is granted for **0** nos. of beds with generation of

| Type of Waste Category (Kgs/Month) | YELLOW | WHITE (Translucent) | RED   | BLUE |
|------------------------------------|--------|---------------------|-------|------|
| Qty permitted for Handling         | 15.00  | 3.00                | 15.00 | 3.00 |

category of biomedical wastes. (Unit - Kgs/Month)

- 2. This BMW Authorisation shall be in force for a period of (year, Valid Upto 31/12/2075)(LifeTime)
- 3. This Authorisation is subject to the conditions stated in the Annexure-I attached here with and to such other conditions as may be specified in the Rules for the time being in force under the Environment (Protection) Act 1986.
- 4. The authorization shall comply with the provisions of the Environment (Protection) Act, 1986 and the rules made there under.
- 5. The authorization or its renewal shall be produced for inspection at the request of an officer authorised by the prescribed authority.

#### **BMW AUTHORIZATION FORM-III(Rule 10)**

Larsen & Toubro Limited, Construction (406779)

Gujarat Pollution Control Board C-1/119/3, GIDC Phase-2 Narmadanagar , Bharuch-392015

Tele:

#### Under the Rule-10 of the Biomedical waste (Management and Handling) Rules, 2016 framed under the EPACT'86

- 6. The person authorised shall not rent, lend, sell, transfer or otherwise transport the biomedical waste without obtaining prior permission of the prescribed authority.
- 7. Any unauthorised changes in personnel, equipment or working conditions as mentioned in the application by the person authorised shall constitute a breach of his authorisation.
- 8. It is the duty of the authorised person to take prior permission of the prescribed authority to close down the fecility and such other terms and conditions may be stipulated by the prescribed authority.

For & On behalf of Gujarat Pollution Control Board

Grant date: 09/02/2023 23:27:35

TPAV # Q1L2X91F9W

M

**R.O Head: Bharuch** 



#### Remark:

**Specific Condition :**: (1) HCU shall comply with all the provisions of the Bio-Medical Waste Rules, 2016. (2) HCU shall

get the membership of the authorized common facility renewed/extended prior to expiry of its existing validity.

Encl.: Annexure-I

Issued to , AMIT NAIK, Larsen & Toubro Limited, Construction, CH 321,Larsen & Toubro Ltd,Construction,, MAHSR C4 Dahej , Village-Kukarwada-392001 , Tal :Vagra Dist :Bharuch (BMW Id: 406779 )

Copy to Regional Office - Bharuch/ H.O

With a request to carry out periodically monitoring of above said hospital/clinic and submit the visit report to this Office.



Government of India वाणिज्य और उद्योग मंत्रालय Ministry of Commerce & Industry पेट्रोलियम तथा विस्फोटक सुरक्षा संगठन (पैसो) Petroleum & Explosives Safety Organisation (PESO) आंठवी मंजिल, यश कमल बिल्डींग, सयाजी गंज वडोदरा- 390020 8th Floor, Yash Kamal Building, Sayajigunj,

Vadodara - 390020

E-mail: dyccebaroda@explosives.gov.in

Phone/Fax No: 0265 - 2225159

दिनांक /Dated : 03/01/2023

संख्या /No. : P/WB/GJ/14/7670 (P507160)

PIN: 395007

सेवा में /To,

> M/s. LARSEN AND TOUBRO LIMITED, L&T MAHSR C4,Building B,201, Swastik Universal, Opp. Central Mall,Dumas Road,, Rundh, Surat City, Taluka: Surat City, District: SURAT, State: Gujarat

विषय /Sub : Survey No, Block no. 81, old survey no.74, Survey No 74,L&T MAHSR C4,Section 3,Ch 268.5,Vill Kosmada, Taluk Kamrej , dt Surat 395006, KOSMADA, Kamrej, Taluka: Kamrej, District: SURAT, State: Gujarat, PIN: 394326 में स्थित विद्यमान पेट्रोलियम वर्ग B Consumer Pump की अनज़प्ति संख्या P/WB/GJ/14/7670 (P507160) - नवीकरण के संदर्भ में ।

Existing Petroleum Class B Consumer Pump at Survey No, Block no. 81, old survey no.74, Survey No 74,L&T MAHSR C4,Section 3,Ch 268.5,Vill Kosmada, Taluk Kamrej, dt Surat 395006, KOSMADA, Kamrej, Taluka: Kamrej, District: SURAT, State: Gujarat, PIN: 394326 - Licence No. P/WB/GJ/14/7670 (P507160) - Reg Renewal of Licence.

महोदय /Sir(s),

> कृपया आपके उपर्युक्त विषय से संबंधित पत्र संख्या OIN1262556 दिनांक 29/12/2022 का संदर्भ ग्रहण करें । Please refer to your letter No. OIN1262556 dated 29/12/2022 on the subject.

अनुज्ञप्ति सं P/WB/GJ/14/7670 (P507160) दिनांक 27/12/2021 दिनांक 31/12/2023 तक नवीनीकृत कर लौटाई जा रही हैं ।

Licence No. P/WB/GJ/14/7670 (P507160) dated 27/12/2021 is returned herewith duly renewed upto 31/12/2023.

कृपया पेट्रोलियम नियम,2002 के अधीन बनाए गए नियम 148 में दी गई प्रक्रिया का कडाई से पालन करें । अनुज्ञप्ति के नवीकरण हेतु समस्त दस्तावेजों को दिनांक 31/12/2023 या उससे पहले इस कार्यालय में प्रस्तुत करें ।

Please follow the procedure strictly as laid down in rule 148 of the Petroleum Rules, 2002 and submit complete documents for the Renewal of the licence so as to reach this office on or before **31/12/2023**.

कृपया पावती दें । Please acknowledge the receipt.

भवदीय /Yours faithfully,

((आर.वेणुगोपाल) (Dr. R.Venugopal)) संयुक्त मुख्य विस्फोटक नियंत्रक Jt. Chief Controller of Explosives वडोदरा/Vadodara

(अधिक जानकारी जैसे आवेदन की स्थिति, शुल्क तथा अन्य विवरण के लिए हमारी वेबसाइट : http://peso.gov.in देखें) (For more information regarding status,fees and other details please visit our website: http://peso.gov.in)

Note:-This is system generated document does not require signature.



Government of India वाणिज्य और उद्योग मंत्रालय Ministry of Commerce & Industry पेट्रोलियम तथा विस्फोटक सुरक्षा संगठन (पैसो) Petroleum & Explosives Safety Organisation (PESO) आंठवी मंजिल, यश कमल बिल्डींग, सयाजी गंज वडोदरा- 390020 8th Floor, Yash Kamal Building, Sayajigunj, Vadodara - 390020

E-mail: dyccebaroda@explosives.gov.in

Phone/Fax No: 0265 - 2225159

दिनांक /Dated : 03/01/2023

संख्या /No. : P/WB/GJ/14/7602 (P507158)

PIN: 395007

सेवा में /To,

> M/s. LARSEN AND TOUBRO LIMITED, L&T MAHSR C4,Building B,201, Swastik Universal, Opp. Central Mall,Dumas Road,, Rundh, Surat City, Taluka: Surat City, District: SURAT, State: Gujarat

विषय /Sub : Survey No, Block no. 50, L&T MAHSR C4, Section 3, Ch.290.5, Opposite R.K. Shopping Center, Mulad, Vadoli Kim Road, Olpad, Surat - 394 110., MULAD, Olpad, Taluka: Olpad, District: SURAT, State: Gujarat, PIN: 394110 में स्थित विद्यमान पेट्रोलियम वर्ग B Consumer Pump की अनज्ञप्ति संख्या P/WB/GJ/14/7602 (P507158) - नवीकरण के संदर्भ में ।

Existing Petroleum Class B Consumer Pump at Survey No, Block no. 50, L&T MAHSR C4, Section 3, Ch.290.5, Opposite R.K. Shopping Center, Mulad, Vadoli Kim Road, Olpad, Surat - 394 110., MULAD, Olpad, Taluka: Olpad, District: SURAT, State: Gujarat, PIN: 394110 - Licence No. P/WB/GJ/14/7602 (P507158) - Reg Renewal of Licence.

महोदय /Sir(s),

> कृपया आपके उपर्युक्त विषय से संबंधित पत्र संख्या OIN1262575 दिनांक 29/12/2022 का संदर्भ ग्रहण करें । Please refer to your letter No. OIN1262575 dated 29/12/2022 on the subject.

अनुज्ञप्ति सं P/WB/GJ/14/7602 (P507158) दिनांक 18/11/2021 दिनांक 31/12/2023 तक नवीनीकृत कर लौटाई जा रही हैं। Licence No. P/WB/GJ/14/7602 (P507158) dated 18/11/2021 is returned herewith duly renewed upto 31/12/2023.

कृपया पेट्रोलियम नियम,2002 के अधीन बनाए गए नियम 148 में दी गई प्रक्रिया का कडाई से पालन करें। अनुज्ञप्ति के नवीकरण हेतु समस्त दस्तावेजों को दिनांक 31/12/2023 या उससे पहले इस कार्यालय में प्रस्तुत करें।

Please follow the procedure strictly as laid down in rule 148 of the Petroleum Rules, 2002 and submit complete documents for the Renewal of the licence so as to reach this office on or before 31/12/2023.

कृपया पावती दें । Please acknowledge the receipt.

भवदीय /Yours faithfully,

((आर.वेणुगोपाल) (Dr. R.Venugopal)) संयुक्त मुख्य विस्फोटक नियंत्रक Jt. Chief Controller of Explosives वडोदरा/Vadodara

(अधिक जानकारी जैसे आवेदन की स्थिति, शुल्क तथा अन्य विवरण के लिए हमारी वेबसाइट : http://peso.gov.in देखें) (For more information regarding status,fees and other details please visit our website: http://peso.gov.in)

Note:-This is system generated document does not require signature.



Government of India वाणिज्य और उद्योग मंत्रालय

Ministry of Commerce & Industry पेट्रोलियम तथा विस्फोटक सुरक्षा संगठन (पैसो) Petroleum & Explosives Safety Organisation (PESO) आंठवी मंजिल, यश कमल बिल्डींग, सयाजी गंज

वडोदरा- 390020 8th Floor, Yash Kamal Building, Sayajigunj, Vadodara - 390020

E-mail: dyccebaroda@explosives.gov.in

Phone/Fax No : 0265 - 2225159

दिनांक /Dated : 03/01/2023

संख्या /No.: P/WB/GJ/14/7603 (P507097)

सेवा में /To,

> M/s. LARSEN AND TOUBRO LIMITED, L&T MAHSR C4,Building B,201,

Swastik Universal, Opp. Central Mall, Dumas Road,,

Rundh, Surat City,

Taluka: Surat City, District: SURAT, State: Gujarat PIN: 395007

विषय /Sub : Survey No, 33, L & T MAHSR C4, Section 4, Ch. 321, Village Kukarwada, Taluka Bharuch, District Bharuch, 392012.,

KUKARWADA, Bharuch, Taluka: Bharuch, District: BHARUCH, State: Gujarat, PIN: 392012 में स्थित विद्यमान पेट्रोलियम वर्ग B

Consumer Pump की अनुज्ञप्ति संख्या P/WB/GJ/14/7603 (P507097) - नवीकरण के संदर्भ में ।

Existing Petroleum Class B Consumer Pump at Survey No, 33, L & T MAHSR C4, Section 4, Ch. 321, Village Kukarwada, Taluka Bharuch, District Bharuch, 392012., KUKARWADA, Bharuch, Taluka: Bharuch, District: BHARUCH, State: Gujarat, PIN: 392012

- Licence No. P/WB/GJ/14/7603 (P507097) - Reg Renewal of Licence.

महोदय /Sir(s),

कृपया आपके उपर्युक्त विषय से संबंधित पत्र संख्या OIN1262590 दिनांक 29/12/2022 का संदर्भ ग्रहण करें।

Please refer to your letter No. OIN1262590 dated 29/12/2022 on the subject.

अनजप्ति सं P/WB/GJ/14/7603 (P507097) दिनांक 18/11/2021 दिनांक 31/12/2023 तक नवीनीकृत कर लौटाई जा रही हैं।

Licence No. P/WB/GJ/14/7603 (P507097) dated 18/11/2021 is returned herewith duly renewed upto 31/12/2023.

कृपया पेट्रोलियम नियम,2002 के अधीन बनाए गए नियम 148 में दी गई प्रक्रिया का कडाई से पालन करें। अनुज्ञप्ति के नवीकरण हेतु समस्त दस्तावेजों को दिनांक **31/12/2023** या उससे पहले इस कार्यालय में प्रस्तुत करें।

Please follow the procedure strictly as laid down in rule 148 of the Petroleum Rules, 2002 and submit complete documents for the Renewal of the licence so as to reach this office on or before **31/12/2023**.

कृपया पावती दें । Please acknowledge the receipt.

भवदीय /Yours faithfully,

((आर.वेणुगोपाल) (Dr. R.Venugopal)) संयुक्त मुख्य विस्फोटक नियंत्रक Jt. Chief Controller of Explosives वडोदरा/Vadodara

(अधिक जानकारी जैसे आवेदन की स्थिति, शुल्क तथा अन्य विवरण के लिए हमारी वेबसाइट : http://peso.gov.in देखें) (For more information regarding status, fees and other details please visit our website: http://peso.gov.in) Note:-This is system generated document does not require signature.

# C6 Package

Annexure-2 for Letter no. L&T/TIIC-TFL/RREC/TCAP/MAHSR/C6/2023/3645 dated 28-02-2023 ગુજરાત પ્રદૂષણ નિયત્રણ બોર્ડ



પ્રાદેશિક કચેરી, નડીચાદ. (ખેડા)

૨૦૧-૨૦૩, "બી" બ્લોક, સરદાર પટેલ ભવન, નડીચાદ, ફોન : ૦૨૬૮-૨૫૫૧૪૨૭/૨૫૫૧૪૨૮ વેબ સાઇટ : http://www.gpcb.gov.in, ઇમેલ : ro-gpcb-nadi@gujarat.gov.in ओनलार्धन એप्लीडेशन सार्धट : http://gpcbxgn.gujarat.gov.in

## તપાસ માટે દાખલ થવાની સૂચના (નોટીસ)

પાણી અધિનિયમ ૧૯૭૪ ની કલમ ૨૩, હવા અધિનિયમ ૧૯૮૧ ની કલમ ૨૪ અને પર્યાવરણ (સુરક્ષા) અદિનિયમ ૧૯૮૬ ની કલમ ૧૦ દેઠળ અમોને મળેલ સત્તાની રૂએ અમો નીચે સહી કરનાર અમોને જરૂરી લાગે તેની સહાય લઈને તમામ સમચે નીચેના હેતુઓ માટે આપની જગ્યામાં દાખલ થવાનો અને તપાસ કરવાનો અધિકાર ધરાવીએ છીએ.

અમોને સોંપેલા રાજચ બોર્ડ /કેન્દ્ર સરકારના કાર્ચ બજાવવાના હેતુ માટે

માટે અમે નીચે જણાવેલ સમયે દાખલ થઇએ છીએ.

- આવા કોઇ કાર્યો બજાવવાના છે કે કેમ અને તેમ હોચ તો કઇ રીતે બજાવવાના છે અથવા આ અધિનિચમ અથવા તે હેઠળ કરેલા નિયમોની અથવા આ અધિનિયમ હેઠળ બજાવેલી કોઇ નોટીસની કરેલા કોઇ હુકમની, આદેશની અથવા આપેલા કોઇ અધિકારપત્રની કોઇ જોગવાઇનું પાલન કરવામાં આવી રહ્યું છે કે કેમ તે નકકી કરવાના હેતુ માટે.
- કોઇ સાધન સામગ્રી, ઔદ્યોગિક પ્લાન્ટ, રેકર્ડ, રજીસ્ટર, દસ્તાવેજ અથવા અન્ય કોઇ મહત્વની વસ્તુની તપાસ કરવા અને તેની કસોટી કરવાના હેતુ માટે અથવા જે જગામાં તેને એમ માનવાને કારણ હોય કે આ કાયદા કે તે હેઠળ કરેલ નિયમો મુજબ કોઇ ગુનો કરવામાં આવ્યો છે અથવા થવાની તૈયારીમાં છે. તેવી કોઇ જગ્યાની ઝડતી લેવા માટે અને તેને એમ માનવાને કારણ હોય કે આ કાયદા કે તે હેઠળ કરેલ નિયમો હેઠળ શિક્ષાપાત્ર કોઇ ગુનો કર્યાનો પુરાવો, તેવા સાધન સામગ્રી, ઔદ્યોગીક પ્લાન્ટ, રેકર્ડ, રજીસ્ટર, દસ્તાવેજ અથવા અન્ય મહત્વની વસ્તુઓ કબજે લેવા.

ઉદ્યોગ/કારખાનામાં દાખલ થવાનો સમય: अने ता. 16 / 02/2023 અમારી સાથે સહાચ માટે નીચેની વ્યક્તિઓ પણ છે. 5) 20101) Vehicle movement क्रांभियानी दिवयं भीत उथां के अबुकार्न दिवयं में (9) R. B. JADESA, SO (ह) हाता अधि अध्या मार्गिका वित्रमा ਮੁਨਿ. Shoi, Nilay D. Bati, Insmager अधिडारीनुं नाभ : V. M. Parthal. 723 78 Fb3 PL CHAGD09 िक- Mehmedoland, DEF- )-आ सूचना (नोटीस) मेंपपनारनी सही:-

નોંધ :- આજ રોજ આપના એકમની તપાસ દરમ્યાન જોવા મળેલ નીચે મુજબની વિસંગતતા/અપૂર્ણતાઓ માટે જરૂરી સુધારાત્મક પગલાંની પૂર્વતા દિન (૩)માં કરી તેની જાણ અત્રેની કચેરી, વડી કચેરી ગાંધીનગર કરવી તેમજ

2. O Chisal CCA Si STE D.G. Set HOHER EN OF SHOON ON SHOON OF SHOO easter Borey water plant- [For Domestic West air Aeration system aria) area area, of Grans against seai. Desemblyon defail majori Earracht.

## REGIONAL OFFICE, NADIAD

## GUJARAT POLLUTION CONTROL BOARD

201-203, "B" Block, Sardar Patel Bhavan, Nadiad Phone: (0268) 2551427/28 Web Site: gpcb.gov.in, Email: ro-gpcb-nadi@gujarat.gov.in, Online Application Site: https://gpcbxgn.gujarat.gov.in/



#### CONSENTS AND AUTHORISATION Order No. AWH - 50802

(Under the provisions / rules of the aforesaid environmental acts)

Annexure-1 for Letter no. L&T/TIIC-TFL/RREC/TCAP/MAHSR/C6/2023/3645 dated 28-02-2023

M/s. Larsen and Toubro Limited (PCB ID: 82518) SURVEY NO 383, 384, 385, 404 & 405, Ratanba Filling Station,

Indian Oil Corporation Ltd, Near GEB Sub-Station

Mahij - 387120,

Ta. Kheda, Dist: Kheda.

Ref:- 1) Your CCA application Inward No. 205621 dated 26/11/2021.

In exercise to the power conferred under section-25 of the water (Prevention & Control of Pollution) Act 1974, under section-21 of the Air (Prevention & Control) Act, 1981 and Authorization under rule 6(2) of the Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016 framed under the Environmental (Protection) Act, 1986 and without reducing your previous responsibilities under said Acts in any way, this is to inform you that this Board grants amendment to the Consolidated Consent and Authorization (CC&A) at M/s. Larsen and Toubro Limited. located at SURVEY NO 383, 384, 385, 404 & 405, Ratanba Filling Station, Indian Oil Corporation Ltd, Near GEB Sub-Station, Mahij -387120, Ta. Kheda, Dist: Kheda is subjected to following conditions:

1) The Consent AWH -50802 shall be valid up to 19/10/2026.

2) The other conditions of the CCA Order No. AWH - 50802 vide letter No. GPCB/Nadiad/TECH/ID-82518/16194/2021 dated 21/12/2021 shall remain unchanged.

3) You are directed to comply these conditions judiciously.

For and On Behalf of **Gujarat Pollution Control Board** 

V.M. Panhalker (V.M.Panhalkar) 11/22 ONAL OFFICE

REGIONAL OFFICER

NO: GPCB / Nadiad / TECH / ID- 82518/ 6 49 /2022

To.

M/s. Larsen and Toubro Limited (PCB ID: 82518)

SURVEY NO 383, 384, 385, 404 & 405, Ratanba Filling Station,

Indian Oil Corporation Ltd, Near GEB Sub-Station

Mahij - 387120,

Ta. Kheda, Dist: Kheda

## प्ररूप XIV (प्रथम अनुसूची का अनुच्छेद 5 देखिए) FORM XIV (see Article 5 of the First Schedule)

## मोटर वाहनों में ईंधन डालने के लिए पम्प आउटिफट के संबंध में टैंक या टैंकों में पेट्रोलियम भंडारकरण के लिए अनुज्ञप्ति LICENCE TO STORE PETROLEUM IN TANK/S IN CONNECTION WITH PUMP OUTFIT FOR FUELING MOTOR CONVEYANCES

अनुज्ञप्ति सं. (Licence No.): P/WB/GJ/14/7702(P509827)

फीस रूपए (Fee Rs.) 5000/- per year

पेट्रोलियम अधिनियम, 1934 के उपबंधों और उसके अधीन बनाए गए नियमों तथा इस अनुज्ञप्ति की अतिरिक्त शर्तों के अधीन रहते हुए 20.00 KL of Petroleum class B को टैंक/टैंको में भण्डारकरण मात्र के लिए M/s. LARSEN & TOUBRO LTD, C6 Package - MAHSR,TFL Office,6th Floor,Lilleria 1, DASHRATH, Vadodara, Taluka: Vadodara, District: VADODARA, State: Gujarat, PIN: 391740 को नीचे वर्णित अनुज्ञप्त परिसरों में जो कि इससे उपबध्द नक्शा संख्यां P/WB/GJ/14/7702(P509827) तारीख 21/12/2022 में दिखाया गया है, के लिए विधिमान्य अनुज्ञप्ति अनुदत्त की जाती हैं।

Licence is hereby granted to M/s. LARSEN & TOUBRO LTD, C6 Package - MAHSR,TFL Office,6th Floor,Lilleria 1, DASHRATH, Vadodara, Taluka: Vadodara, District: VADODARA, State: Gujarat, PIN: 391740 valid only for the storage of 20.00 KL of Petroleum class B in tank/s in the licensed premises described below and shown on the plan no: P/WB/GJ/14/7702(P509827) dated 21/12/2022 attached hereto subject to the provisions of the Petroleum Act, 1934 and the rule made thereunder and to the further conditions of this Licence.

यह अनुज्ञप्ति 31st day of December 2023 तक विधिमान्य रहेगी। The Licence shall remain in force till the 31st day of December 2023

January 21, 2022

Jt. Chief Controller of Explosives WB. Vadodara

## अनुज्ञप्त परिसरों का विवरण और अवस्थान DESCRIPTION AND LOCATION OF THE LICENSED PREMISES

अनुज्ञप्त परिसर जिसकी सीमाएं संलग्न नक्शे में दिखाई गई हैं Survey No: 823, At Village Dashrath, Dashrath, Vadodara, Taluka: Vadodara, District: VADODARA, State: Gujarat, PIN: 391740 में स्थित हैं और उसमें निम्नलिखित सम्मिलित हैं:

The licensed premises, the boundaries of which are shown in the attached plan, are situated at Survey No: 823, At Village Dashrath, Dashrath, Vadodara, Taluka: Vadodara, District: VADODARA, State: Gujarat, PIN: 391740 and consist of:

- क पेट्रोलियम वर्ग क परिसर के लिए NIL किलोलिटर क्षमता के/क्रमश: NIL क्षमता के भूमिगत गैस टाईट टैंक, जो विद्युतचालित/हस्तचालित NIL डिस्पेन्सिंग पम्पो से जुड़े हुए हैं।
- a **NIL** number(s) underground gas tight tanks of capacity **NIL** kilolitres respectively of petroleum Class A connected with **NIL** number(s) electrically/manually operated dispensing pump(s)
- ख पेट्रोलियम वर्ग ख/ग परिसर के लिए **20.00** किलोलिटर क्षमता के/क्रमश: **1** क्षमता के भूमिगत गैस टाईट टैंक, जो विद्युतचालित/हस्तचालित **2** डिस्पेन्सिंग पम्पो से जुड़े हुए हैं।
- b 1 number(s) underground gas tight tanks of capacity 20.00 kilolitres respectively of petroleum Class B connected with 2 number(s) electrically/manually operated dispensing pump(s).
- ग एक विक्रय कक्ष/कियोस्क
- c A sales room/kiosk
- घ सर्विस सम्बन्धी सुविधाएं जिनमें consumer pump सम्मिलित हैं।
- d Servicing facilities consisting of consumer pump As per attached plan

Note:-This is system generated document does not require signature.

## प्ररूप XIV (प्रथम अनुसूची का अनुच्छेद 5 देखिए) FORM XIV (see Article 5 of the First Schedule)

मोटर वाहनों में ईंधन डालने के लिए पम्प आउटिफट के संबंध में टैंक या टैंकों में पेट्रोलियम भंडारकरण के लिए अनुज्ञप्ति LICENCE TO STORE PETROLEUM IN TANK/S IN CONNECTION WITH PUMP OUTFIT FOR FUELING MOTOR CONVEYANCES

अनुज्ञप्ति सं. (Licence No.): P/WB/GJ/14/7682(P509945)

फीस रूपए (Fee Rs.) 5000/- per year

पेट्रोलियम अधिनियम, 1934 के उपबंधों और उसके अधीन बनाए गए नियमों तथा इस अनुज्ञप्ति की अतिरिक्त शर्तों के अधीन रहते हुए 20.00 KL of Petroleum class B को टैंक/टैंको में भण्डारकरण मात्र के लिए M/s. LARSEN & TOUBRO LTD, C6 Package - MAHSR,TFL Office,6th Floor,, Lilleria 1038,Gotri-Sevasi Road, New Alkapuri,Laxmipura, GAMDI, Taluka: Vadodara, District: VADODARA, State: Gujarat, PIN: 390021 को नीचे वर्णित अनुज्ञप्त परिसरों में जो कि इससे उपबध्द नक्शा संख्यां P/WB/GJ/14/7682(P509945) तारीख 20/12/2022 में दिखाया गया है, के लिए विधिमान्य अनुज्ञप्ति अनुदत्त की जाती हैं।

Licence is hereby granted to M/s. LARSEN & TOUBRO LTD, C6 Package - MAHSR,TFL Office,6th Floor,, Lilleria 1038,Gotri-Sevasi Road, New Alkapuri,Laxmipura, GAMDI, Taluka: Vadodara, District: VADODARA, State: Gujarat, PIN: 390021 valid only for the storage of 20.00 KL of Petroleum class B in tank/s in the licensed premises described below and shown on the plan no: P/WB/GJ/14/7682(P509945) dated 20/12/2022 attached hereto subject to the provisions of the Petroleum Act, 1934 and the rule made thereunder and to the further conditions of this Licence.

यह अनुज्ञप्ति 31st day of December 2023 तक विधिमान्य रहेगी। The Licence shall remain in force till the 31st day of December 2023

**December 31, 2021** 

For Jt. Chief Controller of Explosives WB. Vadodara

## अनुज्ञप्त परिसरों का विवरण और अवस्थान DESCRIPTION AND LOCATION OF THE LICENSED PREMISES

अनुज्ञप्त परिसर जिसकी सीमाएं संलग्न नक्शे में दिखाई गई हैं Survey No: 695 / P 1 & 695 / P 2, At Village Gamdi, Tal.Anand, Gamdi, Anand, Taluka: Anand, District: ANAND, State: Gujarat, PIN: 388320 में स्थित हैं और उसमें निम्नलिखित सम्मिलित हैं:

The licensed premises, the boundaries of which are shown in the attached plan, are situated at Survey No: 695 / P 1 & 695 / P 2, At Village Gamdi, Tal.Anand, Gamdi, Anand, Taluka: Anand, District: ANAND, State: Gujarat, PIN: 388320 and consist of:

- क पेट्रोलियम वर्ग क परिसर के लिए NIL किलोलिटर क्षमता के/क्रमश: NIL क्षमता के भूमिगत गैस टाईट टैंक, जो विद्युतचालित/हस्तचालित NIL डिस्पेन्सिंग पम्पो से जुडे हुए हैं ।
- a **NIL** number(s) underground gas tight tanks of capacity **NIL** kilolitres respectively of petroleum Class A connected with **NIL** number(s) electrically/manually operated dispensing pump(s)
- ख पेट्रोलियम वर्ग ख/ग परिसर के लिए **20.00** किलोलिटर क्षमता के/क्रमश: **1** क्षमता के भूमिगत गैस टाईट टैंक, जो विद्युतचालित/हस्तचालित **2** डिस्पेन्सिंग पम्पो से जुड़े हुए हैं।
- b 1 number(s) underground gas tight tanks of capacity 20.00 kilolitres respectively of petroleum Class B connected with 2 number(s) electrically/manually operated dispensing pump(s).
- ग एक विक्रय कक्ष/कियोस्क
- c A sales room/kiosk
- घ सर्विस सम्बन्धी सुविधाएं जिनमें D.P.Switch, As per attached drawing सम्मिलित हैं।
- d Servicing facilities consisting of D.P.Switch, As per attached drawing As per attached plan

Note:-This is system generated document does not require signature.

Digitally signed by KUNWAR PAL SINGH Reason: Licence No.: P/WB/GJ/14/7682 Location:Vadodara [P509945] Date:20-12-2022 19:12:57 PM

## प्ररूप XIV (प्रथम अनुसूची का अनुच्छेद 5 देखिए) FORM XIV (see Article 5 of the First Schedule)

## मोटर वाहनों में ईंधन डालने के लिए पम्प आउटिफट के संबंध में टैंक या टैंकों में पेट्रोलियम भंडारकरण के लिए अनुज्ञप्ति LICENCE TO STORE PETROLEUM IN TANK/S IN CONNECTION WITH PUMP OUTFIT FOR FUELING MOTOR CONVEYANCES

अनुज्ञप्ति सं. (Licence No.) : P/WB/GJ/14/7772(P509557)

फीस रूपए (Fee Rs.) 5000/- per year

पेट्रोलियम अधिनियम, 1934 के उपबंधों और उसके अधीन बनाए गए नियमों तथा इस अनुज्ञप्ति की अतिरिक्त शर्तों के अधीन रहते हुए 20.00 KL of Petroleum class B को टैंक/टैंको में भण्डारकरण मात्र के लिए M/s. LARSEN & TOUBRO LTD, C6 Package - MAHSR,TFL Office,6th Floor,Lilleria 1, UTTARSANDA, Nadiad, Taluka: Nadiad, District: KHEDA, State: Gujarat, PIN: 387370 को नीचे वर्णित अनुज्ञप्त परिसरों में जो कि इससे उपबध्द नक्शा संख्यां P/WB/GJ/14/7772(P509557) तारीख 23/12/2022 में दिखाया गया है, के लिए विधिमान्य अनुज्ञप्ति अनुदत्त की जाती हैं।

Licence is hereby granted to M/s. LARSEN & TOUBRO LTD, C6 Package - MAHSR,TFL Office,6th Floor,Lilleria 1, UTTARSANDA, Nadiad, Taluka: Nadiad, District: KHEDA, State: Gujarat, PIN: 387370 valid only for the storage of 20.00 KL of Petroleum class B in tank/s in the licensed premises described below and shown on the plan no: P/WB/GJ/14/7772(P509557) dated 23/12/2022 attached hereto subject to the provisions of the Petroleum Act, 1934 and the rule made thereunder and to the further conditions of this Licence.

यह अनुज्ञप्ति 31st day of December 2023 तक विधिमान्य रहेगी। The Licence shall remain in force till the 31st day of December 2023

March 9, 2022

Jt. Chief Controller of Explosives WB, Vadodara

## अनुज्ञप्त परिसरों का विवरण और अवस्थान DESCRIPTION AND LOCATION OF THE LICENSED PREMISES

अनुज्ञप्त परिसर जिसकी सीमाएं संलग्न नक्शे में दिखाई गई हैं Survey No: 1402, At Village Utarsanda, Utarsanda, Kheda, Taluka: Nadiad, District: KHEDA, State: Gujarat, PIN: 387370 में स्थित हैं और उसमें निम्नलिखित सम्मिलित हैं:

The licensed premises, the boundaries of which are shown in the attached plan, are situated at Survey No: 1402, At Village Utarsanda, Utarsanda, Kheda, Taluka: Nadiad, District: KHEDA, State: Gujarat, PIN: 387370 and consist of:

- क पेट्रोलियम वर्ग क परिसर के लिए NIL किलोलिटर क्षमता के/क्रमश: NIL क्षमता के भूमिगत गैस टाईट टैंक, जो विद्युतचालित/हस्तचालित NIL डिस्पेन्सिंग पम्पो से जुडे हुए हैं ।
- a **NIL** number(s) underground gas tight tanks of capacity **NIL** kilolitres respectively of petroleum Class A connected with **NIL** number(s) electrically/manually operated dispensing pump(s)
- ख पेट्रोलियम वर्ग ख/ग परिसर के लिए **20.00** किलोलिटर क्षमता के/क्रमश: **1** क्षमता के भूमिगत गैस टाईट टैंक, जो विद्युतचालित/हस्तचालित **2** डिस्पेन्सिंग पम्पो से जड़े हए हैं।
- b 1 number(s) underground gas tight tanks of capacity 20.00 kilolitres respectively of petroleum Class B connected with 2 number(s) electrically/manually operated dispensing pump(s).
- ग एक विक्रय कक्ष/कियोस्क
- c A sales room/kiosk
- घ सर्विस सम्बन्धी सुविधाएं जिनमें 2 MPDs and 1 U/G of 20 KL सम्मिलित हैं।
- d Servicing facilities consisting of 2 MPDs and 1 U/G of 20 KL As per attached plan

Note:-This is system generated document does not require signature.

Doc Status

Print Back



#### भारत मरकार

## Government of India वाणिज्य और उदयोग मंत्रालय

Ministry of Commerce & Industry

पेट्रोलियम तथा विस्फोटक सुरक्षा संगठन (पैसो) Petroleum & Explosives Safety Organisation (PESO)

आंठवी मंजिल, यश कमल बिल्डींग, सयाजी गंज

वडोदरा- 390020 8th Floor, Yash Kamal Building, Sayajigunj, Vadodara - 390020

E-mail: dyccebaroda@explosives.gov.in

Phone/Fax No: 0265 - 2225159

सेवा में

/To,

M/s. M/s. LARSEN & TOUBRO LIMITED,

**SURVEY NO.-19 PAIKI, VILLAGE CHHAPRA, TALUKA,** 

CHHAPRA, mehmedabad,

Taluka: Mehmedabad,

District: KHEDA, State: Gujarat PIN: 387130

ਰਿਲਮ Survey No, 19 PAIKI, CHHAPRA, CHHAPRA, Mehmedabad, Taluka: Mehmedabad, District: KHEDA, State:

/Sub: Gujarat, PIN: 387130 में पेट्रोलियम वर्ग B Consumer Pump।

Petroleum Class B Consumer Pump at Survey No, 19 PAIKI, CHHAPRA, CHHAPRA, Mehmedabad, Taluka:

Mehmedabad, District: KHEDA, State: Gujarat, PIN: 387130

महोदय

/Sir(s),

कृपया आपके पत्र क्रमांक OIN1178291 दिनांक 13/10/2022 का अवलोकन करें।

Please refer to your letter No. OIN1178291 dated 13/10/2022

विषयान्तर्गत पेट्रोल पम्प में निम्नलिखित पेट्रोलियम पदार्थों के वर्ग तथा मात्रा के भंडारण के लिए पेट्रोलियम नियम, 2002 के अधीन प्ररूप - XIV में स्वीकृत तथा दिनांक 31/12/2023 तक वैध अनुज्ञप्ति संख्या P/WB/GJ/14/7967 (P531668) दिनांक 20/10/2022 भेजी जा रही है।

Licence No. **P/WB/GJ/14/7967 (P531668)** dated **20/10/2022** granted in Form XIV under the Petroleum Rules, 2002 and valid till **31/12/2023** for the storage of the following kind and quantities of Petroleum at the subject petrol pump is forwarded herewith.

<%----%> <%----%><%----%>

पेटोलियम का विवरण /Description of Petroleum

किलोलीटरों में अनुज्ञप्त क्षमता

10/21/22, 10:53 AM Doc Status

/Quantity licenced in KL

| वर्ग क प्रपुंज पेट्रोलियम /Petroleum Class A in bulk | NIL      |
|------------------------------------------------------|----------|
| Petroleum Class A, otherwise than in bulk            | NIL      |
| वर्ग ख प्रप्ंज पेट्रोलियम /Petroleum Class B in bulk | 40.00 KL |
| Petroleum Class B, otherwise than in bulk            | NIL      |
| Petroleum Class C in bulk                            | NIL      |
| Petroleum Class C,otherwise than in bulk             | NIL      |
| कुल क्षमता /Total Capacity                           | 40.00 KL |
|                                                      |          |

कृपया पेट्रोलियम नियम 2002 के अधीन बनाए गए नियम 148 में दी गई प्रक्रिया का कडाई से पालन करें तथा अन्जप्ति के नवीकरण हेत् समस्त प्रपत्रों को अन्ज्ञप्ति की वैधता समाप्ती की तारीख या उससे पूर्व to Jt. Chief Controller of Explosives, Vadodara, so as to reach his कार्यालय को प्रेषित करें । Please follow the procedure strictly as laid down in rule 148 of the

Petroleum Rules, 2002 and submit complete documents for the Renewal of the licence to Jt. Chief Controller of **Explosives, Vadodara**, so as to reach his office on or before the date on which Licence expires.

यह अनुमोदन/ अनुमति अन्य प्राधिकारियों से आवश्यक अनुमति/क्लीयरन्स प्राप्त करने से या यथा लागू अन्य विधियों से छूट नहीं देती है। This approval/permission, however, does not absolve from obtaining necessary permission/clearance from other authorities or under other statutes as applicable.

भवदीय /Yours faithfully,

((गणेश आर.) (GANESH R.)) उप विस्फोटक नियंत्रक Dy. Controller of Explosives कृते संयुक्त मुख्य विस्फोटक नियंत्रक For Jt. Chief Controller of Explosives वडोदरा/Vadodara

#### Copy forwarded to :-

1. The District Magistrate, KHEDA(Gujarat) with reference to his NOC No NO.POL/NOC/S.R.4/22/W.S./4313-16/2022 Dated 01/07/2022

> For Jt. Chief Controller of Explosives Vadodara

(अधिक जानकारी जैसे आवेदन की स्थिति, श्ल्क तथा अन्य विवरण के लिए हमारी वेबसाइट: http://peso.gov.in देखें)

(For more information regarding status, fees and other details please visit our website: http://peso.gov.in)

Note:-This is system generated document does not require physical signature.

Disclaimer: This page gives the latest action taken by this organization on your application. This page is made available for the information of concerned applicant/licensee only. All efforts have been made to secure this information. However, PESO will not be responsible for any misuse of the information by unauthorized persons including the hackers.



Project Name:

भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास और गंगा संरक्षण विभाग केन्द्रीय भूमि जल प्राधिकरण Government of India Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation Central Ground Water Authority

# (भूजल निकासी हेतु अनापत्ति प्रमाण पत्र) NO OBJECTION CERTIFICATE (NOC) FOR GROUND WATER ABSTRACTION

Larsen And Toubro Limited-mahsr-c6 Project

| Pr  | Project Address:                                                                           |             |         |                                                                                                                                    |         | Larsen And Toubro Limited, Mahsr C6 Project, Gutal Chowkdi.<br>Road, Near Sehanshah Peer Dargah, Behind Global Medicine                                                          |         |          |              |         |                    |           |         |                | a Village |  |
|-----|--------------------------------------------------------------------------------------------|-------------|---------|------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|--------------|---------|--------------------|-----------|---------|----------------|-----------|--|
| Vi  | llage:                                                                                     |             |         |                                                                                                                                    | Uttars  | sanda                                                                                                                                                                            |         |          |              | Bloc    | k: Na              | Nadiad    |         |                |           |  |
| Di  | strict:                                                                                    |             |         |                                                                                                                                    | Khed    | а                                                                                                                                                                                |         |          |              | Stat    | e: Gu              | ujarat    | 1       |                |           |  |
| Pi  | n Code:                                                                                    |             |         |                                                                                                                                    |         |                                                                                                                                                                                  |         |          |              |         |                    | 1,1,      |         |                |           |  |
| C   | ommunicatio                                                                                | on Addre    | ess:    |                                                                                                                                    | Road    | Larsen And Toubro Limited-mahsr-c6-project, Gutal Chowkdi, Uttarsanda Village Road,, Near Sehanshah Peer Dargah, Behind Global Medicine Factory, Nadiad, Kheda, Gujarat - 387370 |         |          |              |         |                    |           |         |                |           |  |
| Ad  | ddress of Co                                                                               | Office      |         | Central Ground Water Board West Central Region, Swami Narayan College,<br>Building, Shah Alam Tolnaka, Ahmadabad, Gujarat - 380022 |         |                                                                                                                                                                                  |         |          |              |         |                    |           |         |                |           |  |
| 1.  | NOC No.:                                                                                   |             | CGV     | VA/NOC                                                                                                                             | C/INF/O | RIG/20                                                                                                                                                                           | 21/14   | 164      | 3            | Deg.    |                    |           |         |                |           |  |
| 2.  | Application                                                                                | No.:        | 21-4    | /8064/0                                                                                                                            | J/INF/2 | 2021                                                                                                                                                                             |         | _ `      | 3.           |         | egory:<br>/RE 2020 |           | Safe    |                |           |  |
| 4.  | Project Sta                                                                                |             | 5. N    |                                                                                                                                    |         |                                                                                                                                                                                  |         |          | IOC Type: Ne |         |                    |           |         |                |           |  |
| 6.  | Valid from                                                                                 | 1:          | 27/1    | 2/2021                                                                                                                             |         |                                                                                                                                                                                  | - 1     | 6-77     | 7.           | Vali    | d up to:           | 26        | /12/202 | 6              |           |  |
| 8.  | Ground Wa                                                                                  | ater Abs    | tractio | n Permi                                                                                                                            | tted:   |                                                                                                                                                                                  | " P     | 3        |              |         |                    |           |         |                |           |  |
|     | Fresh                                                                                      | Water       |         |                                                                                                                                    | Saline  | Saline Water Dev                                                                                                                                                                 |         |          |              |         | ring               |           | -       | Γotal          |           |  |
|     | m³/day                                                                                     | m³/y        | ear     | m³                                                                                                                                 | /day    | day m³/year                                                                                                                                                                      |         |          | m³/day       |         | m³/yea             | r m       | ³/day   | m <sup>3</sup> | /year     |  |
|     | 145.00                                                                                     | 5292        | 5.00    |                                                                                                                                    |         | <u> </u>                                                                                                                                                                         |         |          |              |         |                    |           |         |                |           |  |
| 9.  | Details of o                                                                               | ground v    | vater a | bstracti                                                                                                                           | on /Dew | vatering                                                                                                                                                                         | g struc | ctures   |              |         |                    |           |         |                |           |  |
|     |                                                                                            |             | Tot     | tal Exis                                                                                                                           | ting No | .:0                                                                                                                                                                              |         |          |              |         | Т                  | otal Prop | osed N  | o.:10          |           |  |
|     |                                                                                            |             |         | DW                                                                                                                                 | DCB     | BW                                                                                                                                                                               | TW      | MP       | MPu          | _       |                    |           | TW      | MP             | MPu       |  |
|     | Abstraction                                                                                |             | - / /   | 0                                                                                                                                  | 0       | 0                                                                                                                                                                                | 0       | 0        | 0            | 0       |                    | 10        | 0       | 0              | 0         |  |
|     | /- Dug Well; Do                                                                            |             |         |                                                                                                                                    |         |                                                                                                                                                                                  |         |          | ne Pit;MF    | Pu-Mine | Pumps              | 500       | 05.00   |                |           |  |
|     | Ground Wa                                                                                  | -           |         |                                                                                                                                    |         |                                                                                                                                                                                  | •       | ` '      |              |         |                    |           | 25.00   |                |           |  |
| 11. | <ol> <li>Number of Piezometers (Observationstructed/ monitored &amp; Monitored)</li> </ol> |             |         |                                                                                                                                    |         |                                                                                                                                                                                  |         | No. of F | Piezom       | eters   |                    | Monitorii | ng Mech | nanism         |           |  |
|     |                                                                                            |             |         |                                                                                                                                    |         |                                                                                                                                                                                  |         |          |              |         | Manual             | DWLR**    | DWLF    | R With T       | elemetry  |  |
|     | **DWLR - Diç                                                                               | gital Water | Level R | Recorder                                                                                                                           |         |                                                                                                                                                                                  |         |          | 1            |         | 0                  | 1         |         | 0              |           |  |
|     |                                                                                            |             |         |                                                                                                                                    | (Con    | nnliano                                                                                                                                                                          | ۰۵ ۲۵   | nditions | aivon        | ovor    | loaf)              |           |         |                |           |  |

#### (Compliance Conditions given overleaf)

This is an auto generated document & need not to be signed.

18/11, जामनगर हाउस, मानसिंह रोड, नई दिल्ली - 110011 / 18/11, Jamnagar House, Mansingh Road, New Delhi-110011 Phone: (011) 23383561 Fax: 23382051, 23386743 Website: cgwa-noc.gov.in

#### Validity of this NOC shall be subject to compliance of the following conditions:

#### Mandatory conditions:

- 1) Installation of tamper proof digital water flow meter with telemetry on all the abstraction structure(s) shall be mandatory for all users seeking No Objection Certificate and intimation regarding their installation shall be communicated to the CGWA within 30 days of grant of No Objection Certificate.
- 2) Proponents shall mandatorily get water flow meter calibrated from an authorized agency once in a year.
- 3) Construction of purpose-built observation wells (piezometers) for ground water level monitoring shall be mandatory as per Section 14 of Guidelines. Water level data shall be made available to CGWA through web portal. Detailed guidelines for construction of piezometers are given in Annexure-II of the guidelines.
- 4) Proponents shall monitor quality of ground water from the abstraction structure(s) once in a year. Water samples from bore wells/ tube wells / tube wells shall be collected during April/May every year and analysed in NABL accredited laboratories for basic parameters (cations and anions), heavy metals, pesticides/ organic compounds etc. Water quality data shall be made available to CGWA through the web portal.
- 5) In case of mining projects, additional key wells shall be established in consultation with the Regional Director, CGWB for ground water level monitoring four (4) times a year (January, May, August and November) in core as well as buffer zones of the mine.
- 6) In case of mining project the firm shall submit water quality report of mine discharge/ seepage from Govt. approved/ NABL accredited lab.
- 7) The firm shall report compliance of the NOC conditions online in the website (www.cgwa-noc.gov.in) within one year from the date of issue of this NOC
- 8) Industries abstracting ground water in excess of 100 m 3 /d shall undertake annual water audit through certified auditors and submit audit reports within three months of completion of the same to CGWA. All such industries shall be required to reduce their ground water use by at least 20% over the next three years through appropriate means.
- 9) Application for renewal can be submitted online from 90 days before the expiry of NOC. Ground water withdrawal, if any, after expiry of NOC shall be illegal & liable for legal action as per provisions of Environment (Protection) Act. 1986.
- 10) This NOC is subject to prevailing Central/State Government rules/laws/norms or Court orders related to construction of tube well/ground water abstraction structure / recharge or conservation structure/discharge of effluents or any such matter as applicable.

#### **General conditions:**

- 11) No additional ground water abstraction and/or de-watering structures shall be constructed for this purpose without prior approval of the Central Ground Water Authority (CGWA).
- 12) The proponent shall seek prior permission from CGWA for any increase in quantum of groundwater abstraction (more than that permitted in NOC for specific period).
- 13) Proponents shall install roof top rain water harvesting in the premise as per the existing building bye laws in the premise.
- 14) The project proponent shall take all necessary measures to prevent contamination of ground water in the premises failing which the firm shall be responsible for any consequences arising thereupon.
- 15) In case of industries that are likely to contaminate the ground water, no recharge measures shall be taken up by the firm inside the plant premises. The runoff generated from the rooftop shall be stored and put to beneficial use by the firm.
- 16) Wherever feasible, requirement of water for greenbelt (horticulture) shall be met from recycled / treated waste water.
- 17) Wherever the NOC is for abstraction of saline water and the existing wells (s) is /are yielding fresh water, the same shall be sealed and new tubewell(s) tapping saline water zone shall be constructed within 3 months of the issuance of NOC. The firm shall also ensure safe disposal of saline residue, if any.
- 18) Unexpected variations in inflow of ground water into the mine pit, if any, shall be reported to the concerned Regional Director, Central Ground Water Board.
- 19) In case of violation of any NOC conditions, the applicant shall be liable to pay the penalties as per Section 16 of Guidelines.
- 20) This NOC does not absolve the proponents of their obligation / requirement to obtain other statutory and administrative clearances from appropriate authorities
- 21) The issue of this NOC does not imply that other statutory / administrative clearances shall be granted to the project by the concerned authorities. Such authorities would consider the project on merits and take decisions independently of the NOC.
- 22) In case of change of ownership, new owner of the industry will have to apply for incorporation of necessary changes in the No Objection Certificate with documentary proof within 60 days of taking over possession of the premises.
- 23) This NOC is being issued without any prejudice to the directions of the Hon'ble NGT/court orders in cases related to ground water or any other related matters.
- 24) Proponents, who have installed/constructed artificial recharge structures in compliance of the NOC granted to them previously and have availed rebate of upto 50% (fifty percent) in the ground water abstraction charges/ground water restoration charges, shall continue to regularly maintain artificial recharge structures.
- 25) Industries which are likely to cause ground water pollution e.g. Tanning, Slaughter Houses, Dye, Chemical/ Petrochemical, Coal washeries, pharmaceutical, other hazardous units etc. (as per CPCB list) need to undertake necessary well head protection measures to ensure prevention of ground water pollution as per Annexure III of the guidelines.
- 26) In case of new infrastructure projects having ground water abstraction of more than 20 m3/day, the firm/entity shall ensure implementation of dual water supply system in the projects.
- 27) In case of infrastructure projects, paved/parking area must be covered with interlocking/perforated tiles or other suitable measures to ensure groundwater infiltration/harvesting.
- 28) In case of coal and other base metal mining projects, the project proponent shall use the advance dewatering technology (by construction of series of dewatering abstraction structures) to avoid contamination of surface water.
- 29) The NOC issued is conditional subject to the conditions mentioned in the Public notice dated 27.01.2021 failing which penalty/EC/cancellation of NOC shall be imposed as the case may be.
- 30) This NOC is issued subject to the clearance of Expert Appraisal Committee (EAC) (if applicable)

(Non-compliance of the conditions mentioned above is likely to result in the cancellation of NOC and legal action against the proponent.)



भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास और गंगा संरक्षण विभाग केन्द्रीय भूमि जल प्राधिकरण Government of India Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation Central Ground Water Authority

# (भूजल निकासी हेतु अनापत्ति प्रमाण पत्र) NO OBJECTION CERTIFICATE (NOC) FOR GROUND WATER ABSTRACTION

M/s. Larsen And Toubro Ltd (dasharath)

Project Name:

| Project Address: Town:      |           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       | Dash                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | narath,, \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /adoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |  |  |
|-----------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
|                             |           | D                                                                                                                                                                                                                                 | asha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | arath (c                                                                                                                              | og)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bloc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | k: Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | adodara(ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ty And I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rural)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |  |  |
|                             |           | V                                                                                                                                                                                                                                 | 'adoc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dara                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e: Gu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ujarat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |  |  |
|                             |           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |  |  |
| ion Addre                   | ess:      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       | Dasł                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | harath,, \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | /adoda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ra, Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | adodara(d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | city And R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ural), Va                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | adodara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , Gujara                                           |  |  |
| GWB Re                      | gional C  |                                                                                                                                                                                                                                   | Central Ground Water Board West Central Region, Swami Narayan College,<br>Building, Shah Alam Tolnaka, Ahmadabad, Gujarat - 380022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |  |  |
|                             | CGWA      | A/NOC/IN                                                                                                                                                                                                                          | F/ORIG/2022/15297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |  |  |
| ''                          |           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mi Critio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |  |  |
| Project Status: New Project |           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | С Туре:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |  |  |
| n:                          | 26/04/    | 2022                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Vali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d up to: 25/04/2027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |  |  |
| /ater Abst                  | traction  | Permitted                                                                                                                                                                                                                         | d:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                       | - 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |  |  |
| Water                       |           | S                                                                                                                                                                                                                                 | aline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e Water Dewate                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Γotal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |  |  |
| m³/ye                       | ear       | m³/day                                                                                                                                                                                                                            | day m³/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n³/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m³/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r m <sup>s</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ³/day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /year                                              |  |  |
| 51282                       | 2.50      |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | کک                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |  |  |
| ground w                    | ater abs  | straction /                                                                                                                                                                                                                       | /Dew                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | atering                                                                                                                               | struc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ctures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |  |  |
|                             | Total     | l Existing                                                                                                                                                                                                                        | g No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | :0                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | otal Prop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | osed N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o.:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |  |  |
|                             |           | -                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BW                                                                                                                                    | TW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MPu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | V DCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MPu                                                |  |  |
|                             |           | 10                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                  |  |  |
|                             | -         |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne Pit;MP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | u-Mine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pumps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |  |  |
| ater Abst                   | traction/ | Restoration                                                                                                                                                                                                                       | on Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | harges                                                                                                                                | paid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Rs.):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 65.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |  |  |
|                             |           | <ol> <li>Number of Piezometers(Observation wells) to be<br/>constructed/ monitored &amp; Monitoring mechanism</li> </ol>                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No. of Piezometers Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng Mech                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ionitoring Mechanism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                    |  |  |
| ed/ monito                  | orea & iv | nonitoning                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DWLR With Telemetr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |  |  |
| ed/ monito                  |           |                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DWLR**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DWLF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R With T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | elemetry                                           |  |  |
|                             | ion Addre | ion Address:  CGWB Regional C  CGW/ In No.: 21-4/8  Tatus: New F  In: 26/04/ I/ater Abstraction In Water In: 51282.50 In Structure* In Structure* I/ater Abstraction/ I/ater Abstraction/ I/ater Abstraction/ I/ater Abstraction/ | ion Address:  CGWB Regional Office:  CGWA/NOC/IN  Catus:  New Project  Catus:  New Project  Catus:  New Project  Cature Abstraction Permitted  Water  Solution Mater  Solution Mater Abstraction Mater  Solution Mater Abstraction Mater Abstraction Mater Mater  Solution Mater Abstraction Mater Abstraction Mater Abstraction Mater Abstraction Materials Mater Abstraction Materials Mat | ion Address:  Indirar - 3917 CGWB Regional Office:  CGWA/NOC/INF/OF Building  CGWA/NOC/INF/OF COME COME COME COME COME COME COME COME | Dasharath (convadodara)  John Address:  Indiranagar, 1991740  CGWB Regional Office:  CGWA/NOC/INF/ORIG/20  John No.:  21-4/8343/GJ/INF/2022  John No.:  26/04/2022  John Address:  New Project  The Company of the conversal of the | Dasharath (og)  Vadodara  ion Address:  Indiranagar,, Daslar 391740  CGWB Regional Office:  Central Ground Walding, Shah Alax  CGWA/NOC/INF/ORIG/2022/15  In No.:  21-4/8343/GJ/INF/2022  In No.:  26/04/2022  Vater Abstraction Permitted:  Water  Saline Water  May an may | Dasharath (og)  Vadodara  Indiranagar,, Dasharath,, Vadodara  Indiranagar,, Dasharath,, Vadodara  CGWB Regional Office: Central Ground Water Boad Building, Shah Alam Tolnate  CGWA/NOC/INF/ORIG/2022/15297  In No.: 21-4/8343/GJ/INF/2022  In No.: 26/04/2022  Vater Abstraction Permitted: In Water Saline Water Saline Water Saline Water S1282.50  Iground water abstraction /Dewatering structures  Total Existing No.:0  DW DCB BW TW MP  In Structure* O O O O O  CCB-Dug-cum-Bore Well; BW-Bore Well; TW-Tube Well; MP-Mir Vater Abstraction/Restoration Charges paid (Rs.): | Dasharath (og)  Vadodara  ion Address:  Indiranagar,, Dasharath,, Vadoda - 391740  CGWB Regional Office:  Central Ground Water Board Wes Building, Shah Alam Tolnaka, Ahr  CGWA/NOC/INF/ORIG/2022/15297  In No.:  21-4/8343/GJ/INF/2022  3.  atus:  New Project  5.  The state Abstraction Permitted:  In Water  Saline Water  Saline Water  De m³/year  m³/day  51282.50  ground water abstraction /Dewatering structures  Total Existing No.:0  DW DCB BW TW MP MPu  In Structure*  O O O O O  OCB-Dug-cum-Bore Well; BW-Bore Well; TW-Tube Well; MP-Mine Pit; MP-Mater Abstraction/Restoration Charges paid (Rs.): | Dasharath (og)  Vadodara  State  Vadodara  Indiranagar,, Dasharath,, Vadodara, Variania - 391740  CGWB Regional Office:  Central Ground Water Board West Central Ground Water Abstraction Permitted:  1. CGWA/NOC/INF/ORIG/2022/15297  1. A Cate (GW Water Board West Central Ground Water Boa | Dasharath (og) Vadodara  State:  Gu Vadodara  Vadodara, Vadodara, Vadodara CegwB Regional Office:  Central Ground Water Board West Central Regi Building, Shah Alam Tolnaka, Ahmadabad, Guja  CGWA/NOC/INF/ORIG/2022/15297  In No.:  21-4/8343/GJ/INF/2022  3. Category: (GWRE 2020  Ratus:  New Project  5. NOC Type:  Mater Abstraction Permitted:  Mater Saline Water  Dewatering  Maryear  Maryear | Dasharath (og) Vadodara State:  Gujarat  Indiranagar,, Dasharath,, Vadodara, Vadodara(city And Re-391740  CGWB Regional Office: Central Ground Water Board West Central Region, Swam Building, Shah Alam Tolnaka, Ahmadabad, Gujarat - 3800  CGWA/NOC/INF/ORIG/2022/15297  In No.: 21-4/8343/GJ/INF/2022 3. Category: (GWRE 2020)  In No.: 21-4/8343/GJ/INF/2022 3. Category: (GWRE 2020)  In No.: 26/04/2022 7. Valid up to: 25/ Vater Abstraction Permitted: In Water Saline Water Dewatering  m³/year m³/day m³/year  m³/day m³/year m³/day m³/year m³/day m³/year  Total Existing No.:0  Total Proposite Structures  Total Existing No.:0  DW DCB BW TW MP MPu DW DCB BW m Structure* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Dasharath (og)  Vadodara  Vadodara  State: Gujarat  Indiranagar,, Dasharath,, Vadodara, Vadodara(city And Rural), Va-391740  CGWB Regional Office: Central Ground Water Board West Central Region, Swami Naraya Building, Shah Alam Tolnaka, Ahmadabad, Gujarat - 380022  CGWA/NOC/INF/ORIG/2022/15297  In No.: 21-4/8343/GJ/INF/2022  Satus: New Project  The image of the image | Dasharath (og)   Block:   Vadodara(city And Rural) |  |  |

#### (Compliance Conditions given overleaf)

This is an auto generated document & need not to be signed.

18/11, जामनगर हाउस, मानसिंह रोड, नई दिल्ली - 110011 / 18/11, Jamnagar House, Mansingh Road, New Delhi-110011 Phone: (011) 23383561 Fax: 23382051, 23386743 Website: cgwa-noc.gov.in

#### Validity of this NOC shall be subject to compliance of the following conditions:

#### Mandatory conditions:

- 1) Installation of tamper proof digital water flow meter with telemetry on all the abstraction structure(s) shall be mandatory for all users seeking No Objection Certificate and intimation regarding their installation shall be communicated to the CGWA within 30 days of grant of No Objection Certificate.
- 2) Proponents shall mandatorily get water flow meter calibrated from an authorized agency once in a year.
- 3) Construction of purpose-built observation wells (piezometers) for ground water level monitoring shall be mandatory as per Section 14 of Guidelines. Water level data shall be made available to CGWA through web portal. Detailed guidelines for construction of piezometers are given in Annexure-II of the guidelines.
- 4) Proponents shall monitor quality of ground water from the abstraction structure(s) once in a year. Water samples from bore wells/ tube wells / tube wells shall be collected during April/May every year and analysed in NABL accredited laboratories for basic parameters (cations and anions), heavy metals, pesticides/ organic compounds etc. Water quality data shall be made available to CGWA through the web portal.
- 5) In case of mining projects, additional key wells shall be established in consultation with the Regional Director, CGWB for ground water level monitoring four (4) times a year (January, May, August and November) in core as well as buffer zones of the mine.
- 6) In case of mining project the firm shall submit water quality report of mine discharge/ seepage from Govt. approved/ NABL accredited lab.
- 7) The firm shall report compliance of the NOC conditions online in the website (www.cgwa-noc.gov.in) within one year from the date of issue of this NOC
- 8) Industries abstracting ground water in excess of 100 m 3 /d shall undertake annual water audit through certified auditors and submit audit reports within three months of completion of the same to CGWA. All such industries shall be required to reduce their ground water use by at least 20% over the next three years through appropriate means.
- 9) Application for renewal can be submitted online from 90 days before the expiry of NOC. Ground water withdrawal, if any, after expiry of NOC shall be illegal & liable for legal action as per provisions of Environment (Protection) Act. 1986.
- 10) This NOC is subject to prevailing Central/State Government rules/laws/norms or Court orders related to construction of tube well/ground water abstraction structure / recharge or conservation structure/discharge of effluents or any such matter as applicable.

#### **General conditions:**

- 11) No additional ground water abstraction and/or de-watering structures shall be constructed for this purpose without prior approval of the Central Ground Water Authority (CGWA).
- 12) The proponent shall seek prior permission from CGWA for any increase in quantum of groundwater abstraction (more than that permitted in NOC for specific period).
- 13) Proponents shall install roof top rain water harvesting in the premise as per the existing building bye laws in the premise.
- 14) The project proponent shall take all necessary measures to prevent contamination of ground water in the premises failing which the firm shall be responsible for any consequences arising thereupon.
- 15) In case of industries that are likely to contaminate the ground water, no recharge measures shall be taken up by the firm inside the plant premises. The runoff generated from the rooftop shall be stored and put to beneficial use by the firm.
- 16) Wherever feasible, requirement of water for greenbelt (horticulture) shall be met from recycled / treated waste water.
- 17) Wherever the NOC is for abstraction of saline water and the existing wells (s) is /are yielding fresh water, the same shall be sealed and new tubewell(s) tapping saline water zone shall be constructed within 3 months of the issuance of NOC. The firm shall also ensure safe disposal of saline residue, if any.
- 18) Unexpected variations in inflow of ground water into the mine pit, if any, shall be reported to the concerned Regional Director, Central Ground Water Board.
- 19) In case of violation of any NOC conditions, the applicant shall be liable to pay the penalties as per Section 16 of Guidelines.
- 20) This NOC does not absolve the proponents of their obligation / requirement to obtain other statutory and administrative clearances from appropriate authorities
- 21) The issue of this NOC does not imply that other statutory / administrative clearances shall be granted to the project by the concerned authorities. Such authorities would consider the project on merits and take decisions independently of the NOC.
- 22) In case of change of ownership, new owner of the industry will have to apply for incorporation of necessary changes in the No Objection Certificate with documentary proof within 60 days of taking over possession of the premises.
- 23) This NOC is being issued without any prejudice to the directions of the Hon'ble NGT/court orders in cases related to ground water or any other related matters.
- 24) Proponents, who have installed/constructed artificial recharge structures in compliance of the NOC granted to them previously and have availed rebate of upto 50% (fifty percent) in the ground water abstraction charges/ground water restoration charges, shall continue to regularly maintain artificial recharge structures.
- 25) Industries which are likely to cause ground water pollution e.g. Tanning, Slaughter Houses, Dye, Chemical/ Petrochemical, Coal washeries, pharmaceutical, other hazardous units etc. (as per CPCB list) need to undertake necessary well head protection measures to ensure prevention of ground water pollution as per Annexure III of the guidelines.
- 26) In case of new infrastructure projects having ground water abstraction of more than 20 m3/day, the firm/entity shall ensure implementation of dual water supply system in the projects.
- 27) In case of infrastructure projects, paved/parking area must be covered with interlocking/perforated tiles or other suitable measures to ensure groundwater infiltration/harvesting.
- 28) In case of coal and other base metal mining projects, the project proponent shall use the advance dewatering technology (by construction of series of dewatering abstraction structures) to avoid contamination of surface water.
- 29) The NOC issued is conditional subject to the conditions mentioned in the Public notice dated 27.01.2021 failing which penalty/EC/cancellation of NOC shall be imposed as the case may be.
- 30) This NOC is issued subject to the clearance of Expert Appraisal Committee (EAC) (if applicable)

(Non-compliance of the conditions mentioned above is likely to result in the cancellation of NOC and legal action against the proponent.)



भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास और गंगा संरक्षण विभाग केन्द्रीय भूमि जल प्राधिकरण Government of India Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation Central Ground Water Authority

# (भूजल निकासी हेतु अनापत्ति प्रमाण पत्र) NO OBJECTION CERTIFICATE (NOC) FOR GROUND WATER ABSTRACTION

Larsen And Toubro Ltd (gamdi - Anand)

Project Name:

|                                                                                                    | ,                              |           |           |                    | \0                                                                                                                                 |                   |                      | ,        |                    |             |                 |                 |          |       |
|----------------------------------------------------------------------------------------------------|--------------------------------|-----------|-----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|----------|--------------------|-------------|-----------------|-----------------|----------|-------|
| Pr                                                                                                 | oject Addre                    | ess:      |           | At.ga              | mdi Vill                                                                                                                           | lage,,            | Anand (1             | aluk Ar  | nd Dis             | stict) Guja | arat            |                 | 11 11    |       |
| To                                                                                                 | wn:                            |           |           | Gamo               | di (ct)                                                                                                                            |                   |                      |          | Bloc               | k: An       | and             |                 | Spr.     |       |
| Di                                                                                                 | strict:                        |           |           | Anan               | d                                                                                                                                  |                   |                      |          | State              | e: Gu       | ıjarat          | V               |          |       |
| Pi                                                                                                 | n Code:                        |           |           |                    |                                                                                                                                    |                   |                      |          |                    |             | XX              |                 |          |       |
| Co                                                                                                 | ommunication                   | on Addre  | ss:       | At.ga<br>3880      |                                                                                                                                    | lage,,            | Anand (1             | taluk Ar | nd Dis             | stict) Guja | arat, Anan      | d, Anan         | d, Gujaı | rat - |
| Ac                                                                                                 | ddress of Co                   | GWB Re    | gional Of |                    | Central Ground Water Board West Central Region, Swami Narayan College,<br>Building, Shah Alam Tolnaka, Ahmadabad, Gujarat - 380022 |                   |                      |          |                    |             |                 |                 |          |       |
| 1.                                                                                                 | NOC No.:                       |           | CGWA      | /NOC/INF/O         | RIG/20                                                                                                                             | 22/14             | 350                  |          | <                  |             |                 |                 |          |       |
| 2.                                                                                                 | Application                    | n No.:    | 21-4/81   | 021                |                                                                                                                                    |                   | 3.                   |          | gory:<br>'RE 2020) | Sa          | fe              |                 |          |       |
| 4.                                                                                                 | 4. Project Status: New Project |           |           |                    |                                                                                                                                    |                   |                      | 5.       | NOC                | Type:       |                 |                 |          |       |
| 6.                                                                                                 | Valid from                     | n:        | 18/01/2   | 2022               |                                                                                                                                    |                   |                      | 7.       | Valid              | d up to:    | 17.             | /01/202         | 7        |       |
| 8.                                                                                                 | Ground Wa                      | ater Abst | raction F | Permitted:         |                                                                                                                                    | - 4               |                      |          |                    |             |                 |                 |          |       |
|                                                                                                    | Fresh                          | Water     |           | Saline             | Water                                                                                                                              | 6                 |                      | De       | wate               | ring        |                 | 7               | Γotal    |       |
|                                                                                                    | m³/day                         | m³/ye     | ear       | m³/day             | day m³/year                                                                                                                        |                   |                      | n³/day   |                    | m³/year     | m <sup>i</sup>  | ³/day           | m³.      | /year |
|                                                                                                    | 145.00                         | 52925     | 5.00      |                    |                                                                                                                                    |                   |                      |          |                    |             |                 |                 |          |       |
| 9.                                                                                                 | Details of                     | ground w  | ater abs  | traction /Dew      | atering                                                                                                                            | g struc           | ctures               |          |                    |             |                 |                 |          |       |
|                                                                                                    |                                |           | Total     | <b>Existing No</b> | .:0                                                                                                                                |                   |                      | Total    |                    |             |                 | Proposed No.:10 |          |       |
|                                                                                                    |                                |           | 1         | DW DCB             | BW                                                                                                                                 | TW                | MP                   | MPu      | DV                 | V DCB       | BW              | TW              | MP       | MPu   |
|                                                                                                    | Abstraction                    | Structure | e*        | 0 0                | 0                                                                                                                                  | 0                 | 0                    | 0        | 0                  | 0           | 10              | 0               | 0        | 0     |
|                                                                                                    | _                              |           | -/-       | ell; BW-Bore We    |                                                                                                                                    |                   |                      | e Pit;MP | u-Mine             | Pumps       |                 |                 |          |       |
| 10.                                                                                                | Ground Wa                      | ater Abst | raction/F | Restoration C      | paid                                                                                                                               | d (Rs.): 52925.00 |                      |          |                    |             |                 |                 |          |       |
| 11. Number of Piezometers (Observation wells) to be constructed/ monitored & Monitoring mechanism. |                                |           |           |                    |                                                                                                                                    |                   | No. of P             | iezome   | eters              |             | Monitorii       | ng Mech         | nanism   |       |
|                                                                                                    |                                |           |           |                    |                                                                                                                                    |                   | Manual DWLR** DWLR \ |          |                    |             | R With Telemetr |                 |          |       |
|                                                                                                    |                                | 1 1       |           |                    |                                                                                                                                    |                   |                      |          |                    |             |                 |                 |          |       |

#### (Compliance Conditions given overleaf)

This is an auto generated document & need not to be signed.

18/11, जामनगर हाउस, मानसिंह रोड, नई दिल्ली - 110011 / 18/11, Jamnagar House, Mansingh Road, New Delhi-110011 Phone: (011) 23383561 Fax: 23382051, 23386743 Website: cgwa-noc.gov.in

#### Validity of this NOC shall be subject to compliance of the following conditions:

#### Mandatory conditions:

- 1) Installation of tamper proof digital water flow meter with telemetry on all the abstraction structure(s) shall be mandatory for all users seeking No Objection Certificate and intimation regarding their installation shall be communicated to the CGWA within 30 days of grant of No Objection Certificate.
- 2) Proponents shall mandatorily get water flow meter calibrated from an authorized agency once in a year.
- 3) Construction of purpose-built observation wells (piezometers) for ground water level monitoring shall be mandatory as per Section 14 of Guidelines. Water level data shall be made available to CGWA through web portal. Detailed guidelines for construction of piezometers are given in Annexure-II of the guidelines.
- 4) Proponents shall monitor quality of ground water from the abstraction structure(s) once in a year. Water samples from bore wells/ tube wells / tube wells shall be collected during April/May every year and analysed in NABL accredited laboratories for basic parameters (cations and anions), heavy metals, pesticides/ organic compounds etc. Water quality data shall be made available to CGWA through the web portal.
- 5) In case of mining projects, additional key wells shall be established in consultation with the Regional Director, CGWB for ground water level monitoring four (4) times a year (January, May, August and November) in core as well as buffer zones of the mine.
- 6) In case of mining project the firm shall submit water quality report of mine discharge/ seepage from Govt. approved/ NABL accredited lab.
- 7) The firm shall report compliance of the NOC conditions online in the website (www.cgwa-noc.gov.in) within one year from the date of issue of this NOC
- 8) Industries abstracting ground water in excess of 100 m 3 /d shall undertake annual water audit through certified auditors and submit audit reports within three months of completion of the same to CGWA. All such industries shall be required to reduce their ground water use by at least 20% over the next three years through appropriate means.
- 9) Application for renewal can be submitted online from 90 days before the expiry of NOC. Ground water withdrawal, if any, after expiry of NOC shall be illegal & liable for legal action as per provisions of Environment (Protection) Act. 1986.
- 10) This NOC is subject to prevailing Central/State Government rules/laws/norms or Court orders related to construction of tube well/ground water abstraction structure / recharge or conservation structure/discharge of effluents or any such matter as applicable.

#### **General conditions:**

- 11) No additional ground water abstraction and/or de-watering structures shall be constructed for this purpose without prior approval of the Central Ground Water Authority (CGWA).
- 12) The proponent shall seek prior permission from CGWA for any increase in quantum of groundwater abstraction (more than that permitted in NOC for specific period).
- 13) Proponents shall install roof top rain water harvesting in the premise as per the existing building bye laws in the premise.
- 14) The project proponent shall take all necessary measures to prevent contamination of ground water in the premises failing which the firm shall be responsible for any consequences arising thereupon.
- 15) In case of industries that are likely to contaminate the ground water, no recharge measures shall be taken up by the firm inside the plant premises. The runoff generated from the rooftop shall be stored and put to beneficial use by the firm.
- 16) Wherever feasible, requirement of water for greenbelt (horticulture) shall be met from recycled / treated waste water.
- 17) Wherever the NOC is for abstraction of saline water and the existing wells (s) is /are yielding fresh water, the same shall be sealed and new tubewell(s) tapping saline water zone shall be constructed within 3 months of the issuance of NOC. The firm shall also ensure safe disposal of saline residue, if any.
- 18) Unexpected variations in inflow of ground water into the mine pit, if any, shall be reported to the concerned Regional Director, Central Ground Water Board.
- 19) In case of violation of any NOC conditions, the applicant shall be liable to pay the penalties as per Section 16 of Guidelines.
- 20) This NOC does not absolve the proponents of their obligation / requirement to obtain other statutory and administrative clearances from appropriate authorities
- 21) The issue of this NOC does not imply that other statutory / administrative clearances shall be granted to the project by the concerned authorities. Such authorities would consider the project on merits and take decisions independently of the NOC.
- 22) In case of change of ownership, new owner of the industry will have to apply for incorporation of necessary changes in the No Objection Certificate with documentary proof within 60 days of taking over possession of the premises.
- 23) This NOC is being issued without any prejudice to the directions of the Hon'ble NGT/court orders in cases related to ground water or any other related matters.
- 24) Proponents, who have installed/constructed artificial recharge structures in compliance of the NOC granted to them previously and have availed rebate of upto 50% (fifty percent) in the ground water abstraction charges/ground water restoration charges, shall continue to regularly maintain artificial recharge structures.
- 25) Industries which are likely to cause ground water pollution e.g. Tanning, Slaughter Houses, Dye, Chemical/ Petrochemical, Coal washeries, pharmaceutical, other hazardous units etc. (as per CPCB list) need to undertake necessary well head protection measures to ensure prevention of ground water pollution as per Annexure III of the guidelines.
- 26) In case of new infrastructure projects having ground water abstraction of more than 20 m3/day, the firm/entity shall ensure implementation of dual water supply system in the projects.
- 27) In case of infrastructure projects, paved/parking area must be covered with interlocking/perforated tiles or other suitable measures to ensure groundwater infiltration/harvesting.
- 28) In case of coal and other base metal mining projects, the project proponent shall use the advance dewatering technology (by construction of series of dewatering abstraction structures) to avoid contamination of surface water.
- 29) The NOC issued is conditional subject to the conditions mentioned in the Public notice dated 27.01.2021 failing which penalty/EC/cancellation of NOC shall be imposed as the case may be.
- 30) This NOC is issued subject to the clearance of Expert Appraisal Committee (EAC) (if applicable)

(Non-compliance of the conditions mentioned above is likely to result in the cancellation of NOC and legal action against the proponent.)



Larsen And Toubro Ltd - Mahij

Project Name:

भारत सरकार जल शक्ति मंत्रालय जल संसाधन, नदी विकास और गंगा संरक्षण विभाग केन्द्रीय भूमि जल प्राधिकरण Government of India Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation Central Ground Water Authority

# (भूजल निकासी हेतु अनापत्ति प्रमाण पत्र) NO OBJECTION CERTIFICATE (NOC) FOR GROUND WATER ABSTRACTION

| ١   | 1 Tojout Hamo.                                                                                |             |          |          |                 |                                                                                                                                    |        |          |            |         |                      |            |         |                |          |  |
|-----|-----------------------------------------------------------------------------------------------|-------------|----------|----------|-----------------|------------------------------------------------------------------------------------------------------------------------------------|--------|----------|------------|---------|----------------------|------------|---------|----------------|----------|--|
| Pı  | roject Addre                                                                                  | ess:        |          |          | At : M          | lahij Vi                                                                                                                           | llage, | , Tahsil | – Kheda    | a, Dis  | t - Kheda            | l          |         | 1              |          |  |
| Vi  | llage:                                                                                        |             |          |          | Mahij           |                                                                                                                                    |        |          |            | Bloc    | k: K                 | heda       | ~//     | Sur            |          |  |
| Di  | istrict:                                                                                      |             |          |          | Kheda           | а                                                                                                                                  |        |          |            | Stat    | e: G                 | Gujarat    |         |                |          |  |
| Pi  | n Code:                                                                                       |             |          |          |                 |                                                                                                                                    |        |          |            |         |                      | 7.7        |         |                |          |  |
| C   | ommunicati                                                                                    | on Addre    | ess:     |          | At : M          | lahij Vi                                                                                                                           | llage, | Tahsil - | - Kheda    | ı,, Dis | t - Kheda            | , Kheda, K | heda, C | Gujarat -      | 387120   |  |
| A   | ddress of C                                                                                   | GWB Re      | gional   | Office : |                 | Central Ground Water Board West Central Region, Swami Narayan College,<br>Building, Shah Alam Tolnaka, Ahmadabad, Gujarat - 380022 |        |          |            |         |                      |            |         |                |          |  |
| 1.  | NOC No.:                                                                                      |             | CGW      | /A/NOC   | C/INF/O         | IF/ORIG/2022/14384                                                                                                                 |        |          |            |         |                      |            |         |                |          |  |
| 2.  | Application                                                                                   | n No.:      | /8133/G  | SJ/INF/2 | J/INF/2021 3. 0 |                                                                                                                                    |        |          |            |         | Sa <sup>-</sup>      | fe         |         |                |          |  |
| 4.  | I. Project Status: New Project                                                                |             |          |          |                 |                                                                                                                                    |        |          | 5.         | NO      | С Туре:              | Ne         | New     |                |          |  |
| 6.  | Valid fron                                                                                    | n:          | 20/01    | 1/2022   |                 |                                                                                                                                    |        |          | 7.         | Vali    | id up to: 19/01/2027 |            |         |                |          |  |
| 8.  | Ground W                                                                                      | ater Abst   | traction | n Permi  | tted:           |                                                                                                                                    |        |          |            |         |                      |            |         |                |          |  |
|     | Fresh                                                                                         | Water       |          |          | Saline          | Saline Water Dev                                                                                                                   |        |          |            |         |                      |            | -       | Total          |          |  |
|     | m³/day                                                                                        | m³/ye       | ear      | m³       | /day            | m <sup>3</sup>                                                                                                                     | ³/year |          | m³/day     |         | m³/yea               | r m³       | day     | m <sup>3</sup> | /year    |  |
|     | 145.00                                                                                        | 52925       | 5.00     |          |                 | (                                                                                                                                  | )~     |          |            |         |                      |            |         |                |          |  |
| 9.  | Details of                                                                                    | ground w    | ater at  | ostracti | on /Dew         | /atering                                                                                                                           | g stru | ctures   |            |         |                      |            |         |                |          |  |
|     |                                                                                               |             | Tota     | I Exist  | ing No.         | :10                                                                                                                                |        |          |            |         |                      | Total Prop | osed N  | lo.:0          |          |  |
|     |                                                                                               |             |          | DW       | DCB             | BW                                                                                                                                 | TW     | MP       | MPu        | D۱      | N DC                 | BW         | TW      | MP             | MPu      |  |
|     | Abstraction                                                                                   |             | -        | 0        | 0               | 10                                                                                                                                 | 0      | 0        | 0          | С       |                      | 0          | 0       | 0              | 0        |  |
|     | /- Dug Well; D                                                                                |             |          |          |                 |                                                                                                                                    |        |          | ine Pit;MF | Pu-Mine | e Pumps              |            | 25.00   |                |          |  |
|     | Ground W                                                                                      |             |          | -        |                 |                                                                                                                                    | •      | ` ,      |            |         |                      |            | 25.00   |                |          |  |
| 11. | <ol> <li>Number of Piezometers(Observation constructed/ monitored &amp; Monitoring</li> </ol> |             |          |          |                 |                                                                                                                                    |        | No. of   | Piezom     | eters   |                      | Monitorir  | ng Mech | nanism         |          |  |
|     |                                                                                               |             |          |          |                 |                                                                                                                                    |        |          |            |         | Manual               | DWLR**     | DWLF    | R With T       | elemetry |  |
|     | **DWLR - Di                                                                                   | gital Water | Level Re | ecorder  |                 |                                                                                                                                    |        |          | 1          |         | 0                    | 1          |         | 0              |          |  |

#### (Compliance Conditions given overleaf)

This is an auto generated document & need not to be signed.

18/11, जामनगर हाउस, मानसिंह रोड, नई दिल्ली - 110011 / 18/11, Jamnagar House, Mansingh Road, New Delhi-110011 Phone: (011) 23383561 Fax: 23382051, 23386743 Website: cgwa-noc.gov.in

#### Validity of this NOC shall be subject to compliance of the following conditions:

#### Mandatory conditions:

- 1) Installation of tamper proof digital water flow meter with telemetry on all the abstraction structure(s) shall be mandatory for all users seeking No Objection Certificate and intimation regarding their installation shall be communicated to the CGWA within 30 days of grant of No Objection Certificate.
- 2) Proponents shall mandatorily get water flow meter calibrated from an authorized agency once in a year.
- 3) Construction of purpose-built observation wells (piezometers) for ground water level monitoring shall be mandatory as per Section 14 of Guidelines. Water level data shall be made available to CGWA through web portal. Detailed guidelines for construction of piezometers are given in Annexure-II of the guidelines.
- 4) Proponents shall monitor quality of ground water from the abstraction structure(s) once in a year. Water samples from bore wells/ tube wells / tube wells shall be collected during April/May every year and analysed in NABL accredited laboratories for basic parameters (cations and anions), heavy metals, pesticides/ organic compounds etc. Water quality data shall be made available to CGWA through the web portal.
- 5) In case of mining projects, additional key wells shall be established in consultation with the Regional Director, CGWB for ground water level monitoring four (4) times a year (January, May, August and November) in core as well as buffer zones of the mine.
- 6) In case of mining project the firm shall submit water quality report of mine discharge/ seepage from Govt. approved/ NABL accredited lab.
- 7) The firm shall report compliance of the NOC conditions online in the website (www.cgwa-noc.gov.in) within one year from the date of issue of this NOC
- 8) Industries abstracting ground water in excess of 100 m 3 /d shall undertake annual water audit through certified auditors and submit audit reports within three months of completion of the same to CGWA. All such industries shall be required to reduce their ground water use by at least 20% over the next three years through appropriate means.
- 9) Application for renewal can be submitted online from 90 days before the expiry of NOC. Ground water withdrawal, if any, after expiry of NOC shall be illegal & liable for legal action as per provisions of Environment (Protection) Act. 1986.
- 10) This NOC is subject to prevailing Central/State Government rules/laws/norms or Court orders related to construction of tube well/ground water abstraction structure / recharge or conservation structure/discharge of effluents or any such matter as applicable.

#### **General conditions:**

- 11) No additional ground water abstraction and/or de-watering structures shall be constructed for this purpose without prior approval of the Central Ground Water Authority (CGWA).
- 12) The proponent shall seek prior permission from CGWA for any increase in quantum of groundwater abstraction (more than that permitted in NOC for specific period).
- 13) Proponents shall install roof top rain water harvesting in the premise as per the existing building bye laws in the premise.
- 14) The project proponent shall take all necessary measures to prevent contamination of ground water in the premises failing which the firm shall be responsible for any consequences arising thereupon.
- 15) In case of industries that are likely to contaminate the ground water, no recharge measures shall be taken up by the firm inside the plant premises. The runoff generated from the rooftop shall be stored and put to beneficial use by the firm.
- 16) Wherever feasible, requirement of water for greenbelt (horticulture) shall be met from recycled / treated waste water.
- 17) Wherever the NOC is for abstraction of saline water and the existing wells (s) is /are yielding fresh water, the same shall be sealed and new tubewell(s) tapping saline water zone shall be constructed within 3 months of the issuance of NOC. The firm shall also ensure safe disposal of saline residue, if any.
- 18) Unexpected variations in inflow of ground water into the mine pit, if any, shall be reported to the concerned Regional Director, Central Ground Water Board.
- 19) In case of violation of any NOC conditions, the applicant shall be liable to pay the penalties as per Section 16 of Guidelines.
- 20) This NOC does not absolve the proponents of their obligation / requirement to obtain other statutory and administrative clearances from appropriate authorities
- 21) The issue of this NOC does not imply that other statutory / administrative clearances shall be granted to the project by the concerned authorities. Such authorities would consider the project on merits and take decisions independently of the NOC.
- 22) In case of change of ownership, new owner of the industry will have to apply for incorporation of necessary changes in the No Objection Certificate with documentary proof within 60 days of taking over possession of the premises.
- 23) This NOC is being issued without any prejudice to the directions of the Hon'ble NGT/court orders in cases related to ground water or any other related matters.
- 24) Proponents, who have installed/constructed artificial recharge structures in compliance of the NOC granted to them previously and have availed rebate of upto 50% (fifty percent) in the ground water abstraction charges/ground water restoration charges, shall continue to regularly maintain artificial recharge structures.
- 25) Industries which are likely to cause ground water pollution e.g. Tanning, Slaughter Houses, Dye, Chemical/ Petrochemical, Coal washeries, pharmaceutical, other hazardous units etc. (as per CPCB list) need to undertake necessary well head protection measures to ensure prevention of ground water pollution as per Annexure III of the guidelines.
- 26) In case of new infrastructure projects having ground water abstraction of more than 20 m3/day, the firm/entity shall ensure implementation of dual water supply system in the projects.
- 27) In case of infrastructure projects, paved/parking area must be covered with interlocking/perforated tiles or other suitable measures to ensure groundwater infiltration/harvesting.
- 28) In case of coal and other base metal mining projects, the project proponent shall use the advance dewatering technology (by construction of series of dewatering abstraction structures) to avoid contamination of surface water.
- 29) The NOC issued is conditional subject to the conditions mentioned in the Public notice dated 27.01.2021 failing which penalty/EC/cancellation of NOC shall be imposed as the case may be.
- 30) This NOC is issued subject to the clearance of Expert Appraisal Committee (EAC) (if applicable)

(Non-compliance of the conditions mentioned above is likely to result in the cancellation of NOC and legal action against the proponent.)

# P1B Package

## नेशनलहाईस्पीडरेलकॉर्पोरेशनलिमिटेड

(केन्द्रसरकारएवंभागलेनेवालीराज्यसरकारोंकीसयुंक्तक्षेत्रकंपनी)

## **National High Speed Rail Corporation Limited**

(A Joint Sector Company of Govt. of India and Participating State Government)



No. NHSRCL/ST/MA/04/P1B Corres. TCAP/115/.1/OST- 3893 Date: 29.03.2023

Chief Contract Manager
TCEL-CEGL-AARVEE ASSOCIATES-PADECO JV
B-1007 to 1012, 10TH Floor, Tower B, Swastik Universal,
Opposite Central Mall, Dumas Road, New Magdalla,
Piplod, Surat, Gujarat – 395 007

Email: s.sreedharan@tcappmc.in

Kind Attention: Mr. S. Sreedharan

**Sub:** Construction of Bridges for Double Line High Speed Railway for 04 No. PSC Bridges (GAD 9, 10, 11 & 1441) and 07 No. Steel Truss Bridges (GAD 68, 1134, 12, 61, 14, 15 & 62) [excluding fabrication and transportation of steel truss girders] between Zaroli Village at Maharashtra-Gujarat Border (MAHSR Km. 156.600) and Vadodara (MAHSR Km. 393.700), in the State of Gujarat and the Union Territory of Dadra and Nagar Haveli for the Project for Construction of Mumbai-Ahmedabad High Speed Rail.

**Reg.** - Six monthly Compliance report for forest clearance conditions during construction phase.

**Ref**: (i) LOA no. NHSRCL - CO/MA/CA/01/PKG-P1(B)/29/.2/OHQ4514 dated 23-08-2021

(ii) NHSRCL-CO/MA/EHS/01/FOREST.ENV.CELE-VOL-1/633/.1/10207 dated 04/01/2023

Dear Sir,

With reference mentioned in letter at sl. no. (ii) above, kindly submit the compliance at the earliest of all stipulated conditions of forest clearance those are applicable during construction phase for submission of Six-monthly compliance report to Ministry of Environment Forest and Climate Change (MoEFCC).

D/A: As above

Thanking You,

SATYA

PRAKASH

PRAKASH MITTAL

Date: 2023.03.29

Chief Project Manager-2/ Surat



Date: 04.01.2023

#### No. NHSRCL-CO/MA/EHS/01/FOREST.ENV.CELE-VOL-I/633/.1/OHQ10207

To Chief Project Manager, Surat, NHSRCL

Subject

Six Monthly Compliance Report of Condition of Forest Clearance for Diversion of 5.8470 ha. (out of 6.1034 ha) of Protected/Reserved Forest land in Valsad, Surat, Navsari, Bharuch, Vadodara, Anand, Kheda and Ahmedabad Districts of Gujarat

Reference

- (i) Govt. of Gujarat Forest & Environment Department Letter No. FCA-1018/10-05/18/S. F-186/F Dated 19 June 2020 (enclosed)
- (ii) Gol, MoEF, Bhopal Letter No 6-GJC 081/2018-BHO/309 Dated 13 March 2020 (enclosed)

With reference to subject and letter under ref (i) & (ii), it is herewith informed that a compliance report to the condition of conditions of forest clearance is required to be submitted to MoEF&CC and State Forest Department. In this regard, we request you to kindly confirm that the conditions as applicable during construction phase are being complied in C4 & P1B Package and are not being violated by the contractor.

Forest Clearance Letter (Ref ii)

| Condition No of Clearance Letter | Points as applicable during construction phase                                                                                                                                                                                                      |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6                                | Speed regulating signage will be erected along the railway line at regular intervals in the Protected Areas/ Forest Areas.                                                                                                                          |
| 10                               | No labour camp shall be established on the forest land.                                                                                                                                                                                             |
| 11                               | Sufficient firewood, preferably alternate fuel, shall be provided by the User Agency to the labourers after purchasing the same from the State Forest Department or the Forest Development Corporation or any other legal source of alternate fuel. |
| 12                               | The boundary of the diverted forest land shall be suitably demarcated on ground at the project cost. as per the directions of the concerned Divisional Forest Officer.                                                                              |
| 13                               | No additional or new path will be constructed inside the forest area for transportation of construction materials for execution of the project work.                                                                                                |
| 15                               | The forest land shall not be used for any purpose other than that specified in the project proposal.                                                                                                                                                |

Thanking you,

For & on the behalf of National High Speed Rail Corporation Limited

> Martand Singh Rathore JGM/HSSE

नेशनल हाई स्पीड रेल कॉर्पोरेशन लिमिटेड (केन्द्र सरकार एवं माग लेने वाली राज्य सरकारों की संयुक्त क्षेत्र कंपनी)

National High Speed Rail Corporation Limited
(A Joint Sector Company of Govt. of India and Participating State Government)



भारत सरकार

#### **GOVERNMENT OF INDIA** पर्यावरण, वन एवं जलवायु परिवर्तन मंत्रालय

## MINISTRY OF ENVIRONMENT, FOREST & CLIMATE CHANGE

क्षेत्रीय कार्यालय, पश्चिम क्षेत्र Regional Office, Western Region ''केन्द्रीय पर्यावरण भवन'' "Kendriya Paryavaran Bhavan" लिन्क रोड नं0-3,Link Road No. 3 E-5,रविशंकर नगर/Ravi Shankar Nagar भोपाल (म०प्र०)/Bhopal-462016 (M.P.) Phone No. 0755-& 2466525, 2465496 फैक्स नं. / Fax No. 0755-2463102 अणुडाक /E-mail: rowz.bpl-mef@nic.in

No: 6-GJC 081/2018-BHO/ 309

Daje-13/03/2020 The Additional Chief Secretary (Forest)

Govt. of Gujarat, Forest and Environment Department, Block No14, 8th Floor, New Sachivalaya, Gandhinagar, Gujarat.

Sub: Diversion of 5.8470 ha (out of 6.1034 ha) Protected/ Reserved Forest land for construction of viaduct for laying the dedicated track for Mumbai-Ahmedabad high speed railway project in favour of OSD, National High Speed Rail Corporation Ltd, New Delhi in Valsad, Surat, Navsari, Bharuch, Vadodara, Anand, Kheda and Ahmedabad Districts of Gujarat.

Ref: 1) In-principle approval letter No. 6-GJC 081/2018-BHO/452 dated 06/06/2019.

2) Govt. of Gujarat Compliance report letter No. FCA-1018/10-05/18/S.F-186/F dated 03/12/2019.

3) Online payment transaction dated 25/07/2019...

Sir,

I am directed to invite a reference to your letter No. FCA-1018/10-05/18/S.F-186/F dated 18/12/2018 and letter of even dated 15/05/2019 on the above mentioned subject seeking prior approval of the Central Government under Section-2 of the Forest (Conservation) Act, 1980.

The Central Government vide letter (1) referred above had agreed In principle for diversion of 5.8470 ha (out of 6.1034 ha) ha Protected forest land of above forest land for the purpose mentioned above subject to the fulfilment of conditions stipulated therein.

The State Government vide letter (2) referred above have reported compliance on the fulfillment of the conditions of the In-principle approval letter.

Therefore, the undersigned is hereby directed to convey formal approval of the Government of India under Section-2 of the Forest (Conservation) Act, 1980 for diversion of 5.8470 ha (out of 6.1034 ha) Protected/ Reserved Forest land for construction of viaduct for laying the dedicated track for Mumbai-Ahmedabad high speed railway project in favour of OSD, National High Speed Rail Corporation Ltd, New Delhi in Valsad, Surat, Navsari, Bharuch, Vadodara, Anand, Kheda and Ahmedabad Districts of Gujarat subject to the following terms and conditions:-

1. Legal status of the forest land shall remain unchanged.

Forest land will be handed over only after required non-forest land for the project is handed over to the 2. user agency.

3. Compensatory afforestation:

a. Compensatory afforestation shall be taken up by the Forest Department over 13.00 ha degraded forest land (Survey No. 337, Village-Zaroli, Taluka-Umergam, District-Valsad) at the cost of the user agency. As far as possible, a mixture of local indigenous species shall be planted and monoculture of any species may be avoided.

b. Total no. of saplings to be planted shall not be less than 13,000 (13.00 ha X 1000) Nos. in CA land. The composition of saplings (number species wise) to be planted shall be as per the National Forest Policy and record shall be kept. CA scheme shall be modified to minimum 1000 per ha.

5.8470 mg

c. The standard size saplings (minimum height & minimum collar girth species wise) as approved by the State Govt. shall be planted in the selected CA land.

d. The height and collar girth (specie wise) shall be measured & recorded at the time of plantation and in November of plantation year. Further, data of height, collar girth and survival percentage (species wise) twice a year (April & November month) shall be recorded & records shall be maintained.

e. Plantation shall be taken up before end of 2021 monsoon season.

f. All the live stumps & pollards upto 90 cm Girth shall be dressed for the purpose of regeneration & record shall be kept in plantation Journal.

4. User agency shall restrict the felling of trees up to 2018 numbers & minimum numbers in the diverted forest land and the trees shall be felled under the strict supervision of the State Forest Department and cost of felling of trees shall be deposited by the User Agency with the State Forest Department. Year-wise tree felling data by the project shall be recorded.

5. User agency shall raise strip plantation on both sides and central verge of the road as per the IRC norms.

6. Speed regulating sinages will be erected along the road at regular intervals in the Protected Areas/ Forest Areas.

7. The user agency shall provide suitable under/ over pass in Protected Area/ Forest Area.

8. The user agency shall obtain Environmental Clearance as per the provisions of the Environmental (Protection) Act, 1986, if applicable.

9. The layout plan of the proposal shall not be changed without prior approval of Central Government.

10. No labour camp shall be established on the forest land.

11. Sufficient firewood, preferably the alternate fuel, shall be provided by the User Agency to the labourers after purchasing the same from the State Forest Department or the Forest Development Corporation or any other legal source of alternate fuel.

12. The boundary of the diverted forest land shall be suitable demarcated on ground at the project cost, as per

the directions of concerned Divisional Forest Officer.

13. No additional or new path will be constructed inside the forest area for transportation of construction materials for execution of the project work.

14. The period of diversion under this approval shall be co-terminus with the period of lease to be granted in favour of the user agency or the project life, whichever is less.

15. The forest land shall not be used for any purpose other than that specified in the project proposal.

16. The forest land proposed to be diverted shall under no circumstances be transferred to any other agencies, department or person without prior approval of Govt. of India.

17. Violation of any of these conditions will amount to violation of Forest (Conservation) Act, 1980 and action would be taken as per the para 1.21 of Forest (Conservation)Act, 1980 Handbook, 2019.

18. All the conditions stipulated in Stage-I/In-principle approval shall be strictly complied.

19. The six monthly compliance reports for all the conditions stipulated in this approval every year on 1st January and 1st July shall be uploaded on e.portal by the State Govt and submitted to this office also.

20. Any other condition that the Ministry of Environment, Forest & Climate Change may stipulate from time to time in the interest of conservation, protection and development of forests & wildlife.

(B. Achty Bhaskar)
Asstt. Inspector General of Forests (Central)

Copy to :-

1. The Principal Chief Conservator of Forests & Head of Forest Force, Aranya Bhavan, Block No. A/3, Near "Ch" Circle, Opposite St. Xaviers High School, Sector-10A, Gandhinagar (Gujarat)

2. Director, (ROHQ), Govt. of India, Ministry of Environment and Forests and Climate Change, Agni, C-wing, 3<sup>rd</sup> Floor, Indira Paryavaran Bhawan, Jor Bagh Road, Aliganj, New Delhi – 110003.

NHORC, ND

Page 2 of 3

- 3. The Addl. Principal Chief Conservator of Forests and Nodal Officer (Forest Conservation) Act, Aranya Bhavan, Block No. A/3, Opposite St. Xaviers High School, Sector-10A, Gandhinagar (Gujarat)
- 4. The Dy. Conservator of Forests, Valsad (South) Forest Division, District-Valsad, Gujarat.
- 5. The Dy. Conservator of Forests, Valsad (North) Forest Division, District-Valsad, Gujarat.
- 6. The Dy. Conservator of Forests, Social Forestry Division Valsad, District-Valsad, Gujarat.
- 7. The Dy. Conservator of Forests, Social Forestry Division Navsari, District-Navsari, Gujarat.
- 8. The Dy. Conservator of Forests, Social Forestry Division Surat, District-Surat, Gujarat.
- 9. The Dy. Conservator of Forests, Social Forestry Division Bharuch, District-Bharuch, Gujarat.
- 10. The Dy. Conservator of Forests, Social Forestry Division Vadodara, District-Vadodara, Gujarat.
- 11. The Dy. Conservator of Forests, Social Forestry Division Anand, District-Anand, Gujarat.
- 12. The Dy. Conservator of Forests, Social Forestry Division Nadiad, District-Nadiad, Gujarat.
- 13. The Dy. Conservator of Forests, Social Forestry Division Ahmedabad, Ahmedabad, Gujarat.
- 14. The Special Duty, National High Speed Rail Corporation Ltd, Asia Bhawan, Second Floor, Road No. 205, Sector-9, Dwarka, New Delhi- 110077.

15. Order File / NIC for upload.

5.8470hm, NH SKC, ND. (B. Abhay Bhaskar) Asstt. Inspector General of Forests (Central)





# Government of Gujarat Forests & Environment Department

Block No. 14, 8th Floor, New Sachivalaya, Gandhinagar, Gujarat- 382010, Tel: 079-23251071, Fax: 079-23252156.

#### No. FCA-1018/10-05/18/S.F-186/F

Date: 19 JUN 2020

Subject: Diversion of 5.8470 ha. Protected/Reserved Forest land for construction of viaduct for laying the dedicated track for Mumbai-Ahmedabad High Speed Railway Project in Valsad, Surat, Navsari, Bharuch, Vadodara, Anand, Kheda & Ahmedabad District in favour of Officer on Special Duty, National High Speed Rail Corporation Ltd., New Delhi.

Ref. (1) GoI, MoEF, Bhopal Letter No. 6-GJC081/2018-BHO/309 dated 13.03.2020

(2) Nodal officer (FCA) Gujarat's note on Single file No. FCA-1018/10-05/18/S.F-186/F dated 06.11.2018

## **MEMORANDUM:-**

The GOI, MOEF, Bhopal has given formal approval of Diversion of **5.8470 ha**. Protected/Reserved Forest land for construction of viaduct for laying the dedicated track for Mumbai-Ahmedabad High Speed Railway Project in Valsad, Surat, Navsari, Bharuch, Vadodara, Anand, Kheda & Ahmedabad District in favour of Officer on Special Duty, National High Speed Rail Corporation Ltd., New Delhi vide their letter dated 13.03.2020 referred at Sr. (1) above.

The undersigned is pleased to convey the formal approval of the Government under section 2 of the Forest (Conservation) Act, 1980, subject to the following conditions:-

- 1. Legal status of the forest land shall remain unchanged.
- 2. Forest land will be handed over only after required on-forest land for the project is handed over to the user agency.
- 3. Compensatory afforestation.
  - a. Compensatory afforestation shall be taken up by the Forest Department over 13.00 ha degraded forest land (Survey No. 337, Village-Zaroli, Taluka-Umergam, District-Valsad) at the cost of the user agency. As far as possible, a mixture of local indigenous species shall be planted and monoculture of any species may be avoided.
  - b. Total No. of sapling to be planted shall be not less than 13,000 nos.(13.00 ha.× 1000) in CA land. The composition of saplings(number of species-wise) to be planted in the CA land shall be as per National Forest Policy and record shall be kept. CA scheme shall be modified to minimum 1000 per ha.

NHSRCL: DISTRIBUTION STAMP Remarks DIR (P) DIR (F) DIR (E&S) DIR (RS) CVO JGM (CC) CS ED (PI) ED (D) GM (O&S) GM (CF) GM (SF) GM (HR) GM (0) Ch. Arch. GM (USC) GM (Civ.) GM (S&T) GM (Cont) AGM/CC Sr. Mgr. (08GA)

- e. The standard size sapling (minimum height & minimum collar girth species wise) as approved by the State Govt. shall be planted in the selected CA land.
- d. The height and collar girth (species wise) shall be measured & recorded at the time of plantation and in November of plantation year. Further, data of height, collar girth and survival percentage (species wise) twice a year (April & November month) shall be recorded & records shall be maintained.
- e. The CA plantation shall be taken place before end of 2021 monsoon.
- f. All the live stumps & pollards upto 90 cm Girth shall be dressed for the purpose of regeneration & record shall be kept in plantation Journal.
- 4. User agency shall restrict the felling of trees up to 2018 numbers & minimum numbers in the diverted forest land and the trees shall be felled under the strict supervision of the State Forest Department and cost of felling of trees shall be deposited by the User Agency with the State Forest Department. Year-wise tree felling data by the project shall be recorded.
- 5. User agency shall raise strip plantation on both sides of the road and central verge of the road as per IRC norms.
- 6. Speed regulating sinages will be erected along the road at regular intervals in the Protected Areas/ Forest/Areas.
- 7. The user agency shall provide suitable under/over pass in Protected Area/ Forest Area.
- 8. The user agency shall obtain Environmental Clearance as per the provisions of the Environmental (Protection) Act, 1986, if applicable.
- 9. The layout plan of the proposal shall not be changed without prior approval of Central Government.
- 10. No labour camp shall be established on the forest land.
- 11. Sufficient firewood, preferably alternate fuel, shall be provided by the user agency to the labourer after purchasing the same from the State Forest Department or the Forest Development Corporation or any other legal source of alternate fuel.
- 12. The boundary of the diverted forest land shall be suitably demarcated on ground at the project cost, as per the directions of concerned Divisional Forest Officer.
- 13. No additional or new path will be constructed inside the forest area for transportation of construction materials for executive of the project work.
- 14. The period of diversion under this approval shall be co-terminus with the period of lease to be granted in favour of the user agency or the project life, whichever is less.
- 15. The Forest land shall not be used for any purpose other than that specified in the project proposal.
- 16. The forest land proposed to be diverted shall under no circumstances be transferred to any other agencies, department or person without prior approval of Govt. of India.

- 17. Violation of any of these conditions will amount to violation of Forest (Conservation) Act, 1980 and action would be taken as per the para 1.21 of Forest (Conservation) Act, 1980 Handbook, 2019.
- 18. All the condition stipulated in Stage-I/In-principle approval shall be strictly Complied.
- 19. The six (6) monthly compliance report for all the condition stipulated in this Stage-II approval every year on 1<sup>st</sup> January & 1<sup>st</sup> July shall be uploaded on e.portal by the State Govt. and submitted to this office also.
- 20. Any other condition that the Ministry of Environment, Forest & Climate Change may stipulate from time to time in the interest of conservation, protection and development of forests & wildlife.

Any other condition, which the Nodal officer (FCA) may stipulate from time to time.

(S. M. Saiyad)
Additional Secretary
Forest & Environment Department

#### copy to:-

1) Director (RO HQ), Ministry of Environment, Forests and Climate Change, AGNI, C-Wing, 3rd Floor, Indira Paryavaran Bhawan, Jor Bagh Road, Aliganj, New Delhi-1 10003.

 Addl. Principal Chief Conservator of Forests(Central), Ministry of Environment and Forests and Climate Change, Regional Office, Western Region, "Kendriya Paryavaran Bhavan", Link Road No.3, E-5, Ravi Shankar Nagar, Bhopal-462016 (M.P.)

3) Nodal officer (FCA), Pr. Chief Conservator of Forest's Office. Gujarat State, 'Aranya Bhavan' Sector-10/A, Gandhinagar

- 4) Deputy Conservator of Forest, Valsad(South) Division, Valsad, Gujarat.
- 5) Deputy Conservator of Forest, Valsad(North) Division, Valsad, Gujarat.
- 6) Deputy Conservator of Forest, Social Forestry Division, Valsad, Gujarat.
- 7) Deputy Conservator of Forest, Social Forestry Division, Navsari, Gujarat.
- 8) Deputy Conservator of Forest, Social Forestry Division, Surat, Gujarat.
- 9) Deputy Conservator of Forest, Social Forestry Division, Bharuch, Gujarat.
- 10) Deputy Conservator of Forest, Social Forestry Division, Vadodara, Gujarat.
- 11) Deputy Conservator of Forest, Social Forestry Division, Anand, Gujarat.
- 12) Deputy Conservator of Forest, Social Forestry Division, Nadiad, Gujarat.
- 13) Deputy Conservator of Forest, Social Forestry Division, Ahmedabad, Gujarat.
- Special Duty, National High Speed Rail Corporation Ltd., Asia Bhawan, Second Floor, Road No.205. Sector-9, Dwarka, New Delhi-110077.
  - 15) Select File.

A STATE OF THE STA 7 35 The state of the s

# P1C Package

# GUJARAT POLLUTION CONTROL BOARD

(IS/ISO 9001:2008 & IS/ISO 14001:2004 CERTIFIED ORGANISATION)

201-203, "B" Block, Sardar Patel Bhavan, Nadiad Phone: (0268) 2551427/28 Web Site: gpcb.gov.in, Email: <u>ro-upcb-nadf@guiarat.gov.in</u>.

Online Application Site: https://gpcbxgn.gujarat.gov.in



By R. P. A. D

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution) Act-1981 and Authorization under rule 6(2) of the Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016, framed under the Environment (Protection) Act-1986.

And whereas Board has received on line consolidated re-application Inward ID No: 258708 dated 11/06/2022 for the Consolidated consent and authorization (CC & A) of this Board under the provisions / rules of the aforesaid Acts Consent & Authorization is hereby granted as under.

# CONSENT AND AUTHORISATION:

(Under the provisions / rules of the aforesaid environmental acts)

Tø.

M/s. M.G.CONTRACTORS PRIVATE LIMITED

SURVEY NO. 188,189,190

VILL: DANTALL

TALUKA-NADIAD, DIST. KHEDA

Consent Order No: AWH - 55510, Date of Issue: 30/06/2022

 The consents shall be valid up to 01/06/2023 for use of outlet for the discharge of trade effluent and emissions due to operation of industrial plant for manufacturing of following items / Products:

| Sr. No. | Product            | Max. Quantity           |  |
|---------|--------------------|-------------------------|--|
| 1.      | Ready Mix Concrete | 30 m <sup>3</sup> / Hr. |  |

# 2. SPECIFIC CONDITIONS:

- 2.1 Applicant shall obtain the permission from all the relevant Agencies / Authorities as applicable.
- 2.2 Applicant shall obtain prior permission of Ground Water Authority for withdraw of ground water/use of Bore-wells.
- 2.3 Management of Solid waste generated from the industrial activities shall be as per Solid Waste Management Rules 2016 (solid waste as defined in Rule-3(46)).(if applicable)
- 2.4 As per provision of Rule-18 of Solid Waste Management Rules 2016, all industrial units using fuel and located within 100 km from the refused derived fuel (RDF) plant shall be made an arrangement to replace at least five percent of their fuel requirement by refused derived fuel so produced.
- 2.5 Applicant shall Nave to comply with the provisions of Plastic Waste Management Rules, 2016 and e-Waste Management Rules 2016. (if applicable)

# GUJARAT POLLUTION CONTROL BOARD

(IS/ISO 9001:2008 & IS/ISO 14001:2004 CERTIFIED ORGANISATION)

201-203, "B" Block, Sardar Patel Bhavan, Nadiad Phone: (0268) 2551427/28
Web Site: gpcb.gov.in, Email: no-apsh-nadiagonarat.gov.in.
Online Application Site: https://gpcbxgn.gujarat.gov.in



# 3. CONDITION UNDER THE WATER ACT:

3.1 The water consumption shall be as under.

| Sr. | Total Domestic Water | Total Industrial Water consumption | Total Water |
|-----|----------------------|------------------------------------|-------------|
| No. | consumption          |                                    | Consumption |
| I   | 1 KL/day             | 6 KL/day                           | 7 KL/day    |

- 3.2 There quantity of the industrial effluent from the manufacturing process and other ancillary industrial operations shall be 0.700 KLPD which shall be reused and maintained zero liquid discharge.
- 3.3 The total quantity of domestic wastewater (sewage) from the factory shall not exceed 0.500 KL/Day.
- 3.4 Sewage shall be disposed of through septic tank/ soak pit system. OR Sewage shall be treated separately to conform to the following standards and utilized on land for irrigation/ plantation gardening within factory premises.

| PARAMETER            | PERMISSIBLE LIMIT |  |
|----------------------|-------------------|--|
| BOD (5 days at 20°C) | Less than 20 mg/l |  |
| Suspended Solids     | Less than 30 mg/l |  |

3.5 Industry shall install meters for measuring consumption of water, generation & reuse of wastewater.

# 4. CONDITIONS UNDER THE AIR ACT:

 The following shall be used as fuel in Boiler/ Furnace/ Heater/ Kiln/ D.G. set respectively.

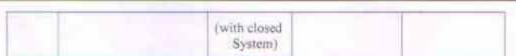
| Sr. No. | Fuel   | Quantity     |
|---------|--------|--------------|
| 1       | Diesel | 20 Lit/Hour. |

- 4.2. The applicant shall install & operate comprehensive adequate air pollution control measure in order to achieve prescribed norms control system so as to achieve standards.
- 4.3 The fuel gas emission through stack attached to Boiler/Furnace/Heater/Kiln/D.G. set shall conform to the following standards:

| Stack<br>No. | Stack Attached to                            | Stack<br>Height                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Parameter                                                | Permissible<br>Limit                           |
|--------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| L            | D. G. Set- 125 KVA<br>(As stand by use only) | Total Control of the | Particulate Matter<br>SO <sub>2</sub><br>NO <sub>X</sub> | 150<br>mg/NM <sup>3</sup><br>100 ppm<br>50 ppm |

4.4 Process gas emission from stack/vent/process attached to above shall conform to the following stagoards:

| Stack<br>No. | Stack Attached to     | APCM       | Parameter             | Permissible<br>Limit   |
|--------------|-----------------------|------------|-----------------------|------------------------|
| 100          | Silo Storage (2 Nos.) | Bag filter | Particulate<br>Matter | 150 mg/NM <sup>3</sup> |


otiviated &

# GUJARAT POLLUTION CONTROL BOARD

(IS/ISO 9001:2008 & IS/ISO 14001:2004 CERTIFIED ORGANISATION)

201-203, "B" Block, Sardar Patel Bhavan, Nadiad Phone: (0268) 2551427/28 Web Site: gpcb.gov.in, Email: po-gpcb-nadi@gujarat.gov.in.

Online Application Site: https://gpcbxgn.gujarat.gov.in



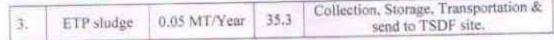
4.5 The concentration of the following parameters in the ambient air within the premises of the industry and at a distance from source (other than the stack/vent) shall not exceed the following levels. Applicant shall comply with National Ambient Air Quality Standards notified by Central Pollution Control Board, New Delhi from time to time under the provision of the Environment (Protection) Act 1986 for all the parameters.

| Parameters                               | Permissible Limit |                 |  |  |
|------------------------------------------|-------------------|-----------------|--|--|
|                                          | Annual            | 24 Hrs. Average |  |  |
| Particulate Matter-10(PM <sub>10</sub> ) | 60 Microgram/M3   | 100 Microgram/M |  |  |
| Particulate Matter-2.5(PM2 s)            | 40 Microgram/M3   | 60 Microgram/M3 |  |  |
| SO <sub>2</sub>                          | 50 Microgram/M3   | 80 Microgram/M3 |  |  |
| NO.                                      | 40 Microgram/M3   | 80 Microgram/M3 |  |  |

- 4.6 The applicant shall operate industrial plant / air pollution control equipment very efficiently and continuously so that the gaseous emission always conforms to the standards specified in condition no.4.3, 4.4 & 4.5 above.
- 4.7 The consent to operate the industrial plant shall lapse if at any time the parameters of the gaseous emission are not within the tolerance limits specified in the condition no. 4.3, 4.4 & 4.5 above.
- 4.8 The applicant shall provide portholes, ladder, platform etc at chimney(s) for monitoring the air emissions and the same shall be open for inspection to/and for use of Board's staff. The chimney(s) vents attached to various sources of emission shall be designed by numbers such as S-1, S-2, etc. and these shall be painted /displayed to facilitate identification.
- 4.9 The Industry shall take adequate measures for control of noise levels from its own sources within the premises so as to maintain ambient air quality standards in respect of noise to less than 75 dB(a) during day time and 70 dB (A) during night time. Daytime is reckoned in between 6a.m. and 10 p.m. and night time is reckoned between 10 p.m. and 6 a.m.
- 5. AUTHORIZATION FOR THE MANAGEMENT & HANDLING OF HAZARDOUS WASTE Form-2 (See rules 6(2))
- 5.1 M/s. M.G.CONTRACTORS PRIVATE LIMITED is hereby granted an authorization to operate facility for following hazardous wastes on the premises situated at SURVEY NO. 188,189,190 VILL: DANTALI, TALUKA-NADIAD, DIST. KHEDA, DIST. KHEDA

| Sr.<br>No. | Waste 1                | Quantity/<br>Year | Sch. | Facility                                                                  |
|------------|------------------------|-------------------|------|---------------------------------------------------------------------------|
| 11.        | Used (SI               | 0.01 MT/Year      | 5.1  | Collection, Storage, and reused as a<br>lubricant in Plant & Machineries. |
| 2.         | Empty<br>Barrel/drums/ | 0.1 MT/Year       | 33.1 | Collection, Storage, return to Reg.<br>Recycler.                          |

OIL WOLLD


# GUJARAT POLLUTION CONTROL BOARD

(IS/ISO 9001:2008 & IS/ISO 14001:2004 CERTIFIED ORGANISATION)

201-203, "B" Block, Sardar Patel Bhavan, Nadiad Phone: (0268) 2551427/28

Web Site: gpcb.gov.in, Email: ps-gpcb-nadi@gularst.gov.in.

Online Application Site: https://gpcbxgn.gujarat.gov.in



- 5.2. The authorization is granted to operate a facility for collection, storage, within the factory premises and treatment, transportation and ultimate disposal of Hazardous wastes as per Hazardous and Other Wastes (Management and Transboundary Movement) Rules, 2016.
- 5.3. The authorization shall be in force for a period up to 01/06/2023.
- 5.4. The authorization is subject to the conditions stated below and such other conditions as may be specified in the rules from time to time under the Environment (Protection) Act-1986.

# 6. TERMS AND CONDITIONS OF AUTHORISATION:

- 6.1 The applicant shall comply with the provisions of the Environment (Protection) Act -1986 and the rules made there under.
- 6.2 The authorization shall be produced for inspection at the request of an officer authorized by the Gujarat Pollution Control Board.
- 6.3 The persons authorized shall not rent, lend, sell, and transfer of otherwise transport the hazardous and other wastes except what is permitted through this authorization without obtaining prior permission of the Gujarat Pollution Control Board.
- 6.4 Any unauthorized change in personnel, equipment or working conditions as mentioned in the authorization order by the persons authorized shall constitute a breach of this authorization.
- 6.5 The person authorized shall implement Emergency Response Procedure (ERP) for which this authorization is being granted considering all site specific possible scenarios such as spillages, leakages, fire etc. and their possible impacts and also carry out mock drill in this regard at regular interval of time;
- 6.6 The person authorized shall comply with the provisions outlined in the Central Pollution Control Board guidelines on "Implementing Liabilities for Environmental Damages due to Handling and Disposal of Hazardous Waste and Penalty"
- 6.7 It is the duty of the authorized person to take prior permission of the Gujarat Pollution Control Board to close down the facility.
- 6.8 The hazardous and other waste which gets generated during recycling or reuse or recovery or pre-processing or utilization of imported hazardous or other wastes shall be treated and disposed of as per specific conditions of authorization.
- 6.9 An application for the renewal of an authorization shall be made as laid down in rule
- 6.10 Annual return shall be filed by June 30th for the period ensuring 31st March of the
- 6.11 Any other conditions for compliance as per the Guidelines issued by the Ministry of Environment, Forest and Climate Change or Central Pollution Control Board from time to time.

7. GENERAL CONDITIONS

7.1 Any change in personal, equipment or working conditions as mentioned in the consents form/order should immediately be intimated to this Board.

torm.

# GUJARAT POLLUTION CONTROL BOARD

(IS/ISO 9001:2008 & IS/ISO 14001:2004 CERTIFIED ORGANISATION)

201-203, "B" Block, Sardar Patel Bhavan, Nadiad Phone: (0268) 2551427/28 Web Site: gpch.gov.in, Email: ro-uncb-nadiaeujarat.gov.in, Online Application Site: https://gpcbxgn.gojarat.gov.in



- 7.2 Whenever due to accident or other unforeseen act or event, such emissions occur or is apprehended to occur in excess of standards laid down, such information shall be forthwith reported to Board, concerned Police station, office of Directorate of Health Services, Department of Explosives, Inspector of Factories and local body. In case of failure of pollution control equipments the production process connected to it shall be stopped. Remedial actions/measures shall be implemented immediately to bring entire situation normal.
- 7.3 The Board reserves the right to review and / or revoke the consent and / or make variations in the conditions, which the Board deems, fit in accordance with Section 27 of the 'Act'.
- 7.4 In case of change of ownership / management the name and address of the new owners / partners / directors / proprietor should immediately be intimated to the Board.
- 7.5 The consent granted shall lapse at any time if any parameters or any condition of this Consent Order are not complied with.
- 7.6 If it is established by any competent authority that the damage is caused due to their industrial activities to any person or his property in that case they are obliged to pay the compensation as may be determined by the competent authority.
- 7.7 Industry shall have to display relevant information with regard to hazardous waste as indicated in the Hon. Supreme Court's order in W.P. No. 657 dated 14th October 2003.
- 7.8 In no case any kind of hazardous waste shall be imported without prior approval of appropriate authority.
- 7.9 As per "Public Liability Insurance Act-91" company shall get insurance Policy, if applicable.
- 7.10 Unit shall take all concrete measures to show tangible results in waste generation reduction, avoidance, reuse and recycle. Action taken in this regard shall be submitted within 03 months and also along with Form IV.

For and On Behalf of Gujarat Pollution Control Board

> (V. M. Panhalkar) REGIONAL OFFICER

V.m. Panhalkar

NO: GPCB /Nadiad/TECH / ID- 86422/

/2022

To,
M/s. M.G.CONTRACTORS PRIVATE LIMITED
SURVEY NO. 188,1830190
VILL: DANTALL,
TALUKA-NADIAD, DIST. KHEDA

Outracted to 16389



जल संसाधन, नदी विकास और गंगा संरक्षण विभाग केन्द्रीय भूमि जल प्राधिकरण Government of India Ministry of Jal Shakti Department of Water Resources, River Development & Ganga Rejuvenation Central Ground Water Authority

# (भूजल निकासी हेतु छूट प्रमाण पत्र) Certificate of Exemption for Ground Water Withdrawal

| Project Name:                     | Mg Contractors Private Limited                                                           |                                                                                                                                    |         |  |  |  |
|-----------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------|--|--|--|
| Project Address:                  | Mg Contractors Base Camp, Opposite To Decent Hotel, Nh-48                                |                                                                                                                                    |         |  |  |  |
| Village:                          | Dantali Block: Vaso                                                                      |                                                                                                                                    |         |  |  |  |
| District:                         | Kheda                                                                                    | State:                                                                                                                             | Gujarat |  |  |  |
| Pin Code:                         |                                                                                          |                                                                                                                                    |         |  |  |  |
| Communication Address:            | Mg Contractors Base Camp, Opposite To Decent Hotel, Nh-48, Vaso, Kheda, Gujarat - 387380 |                                                                                                                                    |         |  |  |  |
| Address of CGWB Regional Office : | Central Ground Water<br>Building, Shah Alam                                              | Central Ground Water Board West Central Region, Swami Narayan College,<br>Building, Shah Alam Tolnaka, Ahmadabad, Gujarat - 380022 |         |  |  |  |

| 1.   | Application No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21-4/10073/GJ/INF/2022 | 2. Category:<br>(GWRE 2020) | Safe       |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|------------|
| 3.   | Project Status:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | New Project            | 4. Valid From               | 14/11/2022 |
| 1700 | The second secon |                        |                             |            |

Ground Water Abstraction Permitted:

| Fresh  | Water   | Saline | Water   | Dewa   | atering | To     | otal    |
|--------|---------|--------|---------|--------|---------|--------|---------|
| m³/day | m³/year | m³/day | m³/year | m³/day | m³/year | m³/day | m³/year |
|        |         | 9.90   | 11      |        |         |        |         |

This is to certify that as per information furnished by the applicant, M/s MG CONTRACTORS PRIVATE LIMITED comes under Micro and Small Enterprises category and has ground water withdrawal of less than 10 cum/day. As per S.O. 3289(E) dated 24/09/2020 by Department Of Water Resources, River Development and Ganga Rejuvenation, guidelines to regulate and control ground water extraction in India, 2020 Micro and small Enterprises drawing ground water less than 10 cum/day are exempted.

The firm is exempted from seeking NOC. The firm shall install digital water flow meter on all ground water abstraction structures and maintain the logbook.

This certificate is system generated and based on information provided by the applicant. CGWA has not verified the claim made by applicant. Any false information furnished/ violation by the applicant, shall invite legal action against him/her as per S.O. 3289(E) dated 24/09/2020.

यह प्रमाणित किया जाता है कि आवेदक द्वारा दी गई सूबना के अनुसार मैसर्स ... सूक्ष्म और लघु उद्यम श्रेणी के अंतर्गत आता है और इसमें 10 m3 / दिन से कम भूजल निकासी है। जल संसाधन, नदी विकास और गंगा संरक्षण विभाग द्वारा दिनांक 24.09 2020 के SO 3289 (E) के अनुसार, भारत में भूजल निकर्षण को विनियमित और नियंत्रित करने के लिए दिशा-निर्देश, 2020 सूक्ष्म और लघु उद्यमों को 10 m3/ दिन से कम भूजल खींचने वाले को सूट दी गई है।

फर्म को NOC लेने से खुट दी गई है। फर्म सभी भूजल निष्कर्षण संरचनाजी पर ठिजिटल जल प्रवाह मीटर स्थापित करेगी और लॉगबुक बनाए रखेगी।

यह प्रमाण पत्र सिस्टम जनरेटेंह है और आवेदक द्वारा प्रदान की गई जानकारी पर आधारित है। CGWA ने आवेदक द्वारा किए गए दावे का सत्यापन नहीं किया है। आवेदक द्वारा दी गई कोई भी गतत सूचना/उल्लंघन, एसओ 3289(ई) दिनांक 24/09/2020 के अनुसार उसके खिलाफ कानुनी कार्रवाई को आमंत्रित करेगा।

This is an auto generated document & need not to be signed.

18/11, जामनगर हाउस, मानसिंह रोड, नई दिल्ली - 110011 / 18/11, Jamnagar House, Mansingh Road, New Delhi-110011 Phone: (011) 23383561 Fax: 23382051, 23386743 Website: cgwa-noc.gov.in

# P4 Package





# L&T-IHI CONSORTIUM

Ref: L&T-IHI/MAHSR/PKG/P4(Y)/EHS/2023/1425

Date: 18th Mar 2023

THE ENGINEER,

TCEL-CEGL-AARVEE ASSOCIATES-PADECO JV 1105 & 1106,11<sup>TH</sup> FLOOR, UNIVERSAL MAJESTIC PL LOKHANDE MARG, OPP. RBK INTERNATIONAL ACADEMY,

CHEMBUR WEST,

MUMBAI- 400043

EMAIL: MANOJ.SINGH@TCAPPMC.IN

Kind attention: Shri. Manoj Kumar Singh, Sr. Structural Design Expert, TCAP CONSORTIUM, Mumbai

**Sub**: Procurement, Fabrication, Check- Assembly and Painting at workshop and Transportation to various Bridge Sites of Steel Truss Superstructure along with bearings for 17 Nos. (GADs 65, 1, 57, 67, 3, 6, 68, 12, 61, 14, 15, 62, 31, 37, 2357-3, 54 & 55 and Diesel Shed) of Bridges for High Speed Rail Corridor for crossing Over Roads / Rivers / Railways / other structures for the Project for Construction of Mumbai – Ahmedabad High Speed Rail. [Package No MAHSR-P-4(Y]

Reg-Submission of requisite documents for M/s Karbon Steel Mart Pvt. Ltd.

Ref.:

(i) Contract Agreement: MAHSR-P-4(Y) dated 22-Feb-21

(ii) Clause 2.14.1 (2) SHE Submittals under Appendix 080001 of MAHSR P4(Y) Vol-2, Works Requirement-General Specifications

Dear Sir,

With reference to sl. no.(ii) cited above, the Contractor hereby submits the requisite documents pertaining to SHE for workshop at M/s Karbon Steel Mart Pvt. Ltd. Gujrat as Annexure 1-6.

Contractor humbly requests Engineer to kindly peruse and accord approval please.

MUMBAR

(INDIA)

Thanking you,

Your faithfully,

For L&T-IHI Consortium

N. h. you f.

Vijayakumar Gandhi Vasu

Project Manager - MAHSR P-4(Y)

Transportation Infrastructure IC / L&T Construction, Mumbai

Address: L&T - IHI Consortium,

Sai Samarth Commercial Park, 702 & 703 CTS NO-337/1, Deonar, Govandi East,

Mumbai, Maharashtra State, PIN Code - 400 088

PH: 9445006116





# L&T-IHI CONSORTIUM

Cc: Shri. Uday Prasad Singh, Chief Project Manager/NHSRCL/Mumbai

Enclosure: Annexure 1- Copy of Consent to Establish

Annexure 2- Copy of Consolidated Consent and Authorization

Annexure 3- Copy of ISO Certificate Annexure 4- Copy of Factory License

Annexure 5- Copy of Public Liability Insurance

Annexure 6- Copy of Agreement with Hazardous Waste Management Agency

# Annexure 1



# GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar 382 010

Phone: (079) 23222425

(079) 23232152

Fax: (079) 23232156

Website: www.gpcb.gov.in

BY:RPAD

Consent to Establish (CTE-103283)

NO: GPCB/SRG-NOC-258/ID:71350/516298

Date: 07/08/2019

TO.

M/s Karbon Steel Mart Private Limited Survey No-37/1/Paiki 20

Plot No: 17, Ohm Industrial Infrastructure Park,

Dehri-396171,

Tal. Umbergaon, Dist. Valsad - Sarigam.

SUB: Consent to Establish (NOC) under Section 25 of Water Act 1974, Section 21 of Air Act 1981 and EPA-1986.

REF: Your CTE application Inward ID No: 157222, dated 08/07/2019

Sir.

Without prejudice to the powers of this Board under the Water (Prevention and Central of Pollution) Act-1974, the Air Act-1981 and the Environment (Protection) Act-1986 and without reducing your responsibilities under the said Acts in any way, this is to inform you that this Board grant Consent to Establish (NOC) for setting up of an industrial plant/activities at Survey No-37/1/Paiki 20 Plot No:17, Ohm Industrial Infrastructure Park, Dehri-396171, Tal. Umbergaon, Dist. Valsad - Sarigam. for the manufacturing of the following items:

1. The list of the proposed products to be manufacture is as below:

| Sr. No. | Products              | Quantity      |
|---------|-----------------------|---------------|
| 1       | Fabricated Structures | 2000 MT/Month |

The validity of this order will be up to 07/07/2026

# **CONDITIONS UNDER WATER ACT 1974:**

1. The quantity of total water consumption shall not exceed 5 KLPD as per below break ир

a) Industrial: Nil

6) Domestic: 5 KLPD

M/s. Karbon Steel Mart Private Limited (ID: 71350) Page 1 of 4

Clean Gujarat Green Gujarat

ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

- 2. The quantity of total of waste water generation shall not exceed 4.8 KLPD as per below break up
  - a) Industrial: NIL
  - b) Domestic: 4.8 KLPD

# Trade Effluent

- 1. There shall be no generation and discharge of the industrial effluent from the manufacturing process and other ancillary industrial operations.
- 2. The GIDC drainage connection given by the GIDC for discharge of industrial effluent shall be disconnected & the outlet shall be sealed.
- 3. Domestic waste water shall be disposed off through septic tank/soak pit system.

# **CONDITIONS UNDER AIR ACT 1981:**

- 1. There shall be no use of any fuel anywhere in the manufacturing process and consequently there shall be no flue gas emission.
- 2. There shall be no process emission from the manufacturing process as well as any other ancillary operations.
- 3. The Stack monitoring facilities like port hole, platform/ladder etc., shall be provided with stacks/vents chimney in order to facilitate sampling of gases being emitted into the atmosphere.
- 4. Ambient air quality within the premises of the industry shall conform to the following standards:-

| PARAMETERS                                   | PERMISSIBLE LIMIT           |                              |  |
|----------------------------------------------|-----------------------------|------------------------------|--|
|                                              | Annual                      | 24 Hrs Average               |  |
| Particulate Matter-10 (PM 10)                | 60 microgram/m <sup>3</sup> | 100 microgram/m <sup>3</sup> |  |
| Particulate Matter- 2.5 (PM <sub>2.5</sub> ) | 40 microgram/m <sup>3</sup> | 60 microgram/m <sup>3</sup>  |  |
| $SO_2$                                       | 50 microgram/m <sup>3</sup> | 80 microgram/m <sup>3</sup>  |  |
| NO <sub>x</sub>                              | 40 microgram/m <sup>3</sup> | 80 microgram/m <sup>3</sup>  |  |

5. All measures for the control of environmental pollution shall be provided before commencing production.



# **GUJARAT POLLUTION CONTROL BOARD**

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar 382 010

Phone: (079) 23222425

(079) 23232152

Fax: (079) 23232156

Website: www.gpcb.gov.in

# CONDITIONS UNDER HAZARDOUS AND OTHER WASTE (MANAGEMENT AND TRANSBOUNDRY MOVEMENT) RULES, 2016:

Applicant shall have to comply with provisions of Hazardous and other Wastes (Management & Transboundry Movement) Rules, 2016.

- a) Industry shall provide adequate collection, storage, treatment & transportation system in accordance with the nature, quantity & compatibility of hazardous waste and shall offer their hazardous waste only to authorized operator of the ultimate disposal facility.
- b) Applicant shall comply all the directives issued by Honorable Courts, notifications issued by Ministry of Environment & Forest, Department of Environment & Forest, Central Pollution Control Board and other competent authorities time to time.
- c) Applicant shall comply all the guidelines published by Ministry of Environment & Forest, Department of Environment & Forest, Central Pollution Control Board and other competent authorities time to time.
- d) Industry shall also comply following directives issued by the Supreme Court of India dated.14.10.2003.
  - 1. Industry shall have to display the relevant information with regard to hazardous waste as indicated in the Court's order in W.P. No.657 of 1995 dated 14th October 2003.
  - II. Industry shall have to display on-line data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including wastewater and air emissions and solid hazardous wastes generated within the factory premises.
- e) The applicant shall obtain membership of common TSDF site for disposal of Haz. Waste as categorized in Hazardous and other wastes (Management & Transboundry Movement) Rules-2016 as amended from time to time.
- f) The applicant shall provide temporary storage facilities for each type of Haz. Waste as per Hazardous and other wastes (Management & Transboundry Movement) Rules-2016 as amended from time to time.

M/s. Karbon Steel Mart Private Limited (ID: 71350) Page 3 of 4

# GENERAL CONDITION:

- 1. Adequate plantation shall be carried out all along the periphery of the industrial premises and a green belt of adequate width is to be developed.
- 2. In case of change of ownership/management the name and address of the new owners/partners/directors/proprietor should immediately be intimated to the Board.
- 3. The applicant shall however, not without the prior consent to operate of the Board bring into use any new or altered outlet for the discharge of effluent or gaseous emission or sewage waste from the proposed industrial plant. The applicant is required to make applications to this Board for this purpose in the prescribed forms under the provisions of the Water Act-1974, the Air Act-1981 and the Environment (Protection) Act-1986.
- 4. The concentration of Noise in ambient air within the premises of industrial unit shall not exceed following levels:

Between 6 A.M. and 10 P.M: 75 dB (A) Between 10 P.M. and 6 A.M.: 70 dB (A)

- 5. Applicant is required to comply with the manufacturing, Storage and Import of Hazardous Chemicals Rules-1989 framed under the Environment (Protection) Act-1986.
- 5. If it is established by any competent authority that the damage is caused due to their industrial activities to any person or his property in that case they are obliged to pay the compensation as determined by the competent authority.
- 7. In case of any unauthorized discharge outside the factory premises, it would be considered as violation under the Water Act 1974.
- 8. Applicant is required to comply with Public Liability Insurance Act-1991.
- 9. Management of Solid Waste generated from industrial activities shall be as per Solid Waste Management Rules-2016 (solid waste as defined in Rules-3(46)).
- 10. As per provision of Rules-18 of Solid Waste Management Rules-2016 all industrial unit using fuel and located within 100 km from the refused derived fuel requirement by refused derived fuel so produced.

For and on behalf of Gujarat Pollution Control Board

(Sushii Vegda)

Senior Environmental Engineer

# Annexure 2



# **GUJARAT POLLUTION CONTROL BOARD**

Regional Office: SARIGAM

Survey No. 253/2, House No. 408, At-Ahir Falia, Bhandarwad, Sarigam

Tal. Umbergaon, Dist. Valsad.

Email: ro-gpcb-sari@gujarat.gov.in • Website: www.gpcb.gov.in

Ph.No.: 0260-2786044, 2786033

PCBID:71350

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)-1981 and Authorization under rule 6(1) & (2) of the Hazardous and other Waste (Management and Handling and Transboundary Movement) Rules'2016 framed under the Environment (Protection) Act-1986.

And whereas Board has received consolidated consent application Inward no.: 162680 dated 27/08/2019 for the Consolidated Consent and Authorization (CC & A) of this Board under the provisions/rules of the aforesaid acts. Consents & Authorization are hereby granted as under:

### **CONSENTS and AUTHORIZATION:**

(Under the provisions/rules of the aforesaid environmental acts)

M/s. Karbon Steel Mart Private Limited (71350), PLOT NO: 17, Survey No 37/1/Paiki 20, Ohm Industrial Infrastructure Park, Dehri, GIDC- Umbergaon. Ta: Umbergaon - 396171, Dist: Valsad.

- Consent Order No. WH- 38279 Date of issue: 05/09/2019.
- The consents shall be valid up to 30/06/2024 for use of outlet for the discharge of trade effluent & emission due to operation of industrial plant for manufacture of the following items/products:

| Sr. No. | Names of Product     | Quantity/Month |
|---------|----------------------|----------------|
| 1.      | Fabricated Structure | 2000MT/M       |

## CONDITION UNDER THE WATER ACT:

- 3.1 Source of water supply shall be its Own Borewell only.
- 3.1 There shall be total water consumption shall not exceed 5.0 KL/Day as per following breakup:
  - a) Domestic Purpose: 5.0 KL/Day
  - b) Industrial Purpose: 0.0 KL/Day
- 3.1 The quantity of the waste water shall not exceed 4.8 KL/Day.
  - Domestic: 4.8 KL/Day
  - Industrial: Nil b)
- 3.1 Domestic effluent shall be disposed off through Septic tank-Soak pit system.

# CONDITIONS UNDER THE AIR ACT:

4. 1 The following shall be used as fuel in D.G. Set:

| Sr. No. | Fuel   | Quantity  |
|---------|--------|-----------|
| 1.      | Diesel | 30 Lit/Hr |

- 4.2 The Applicant shall install & operate air pollution control system in order to achieve norms prescribed below.
- 4.3 The flue gas emission through D G Set shall conform to the following standards:

| Sr.<br>No. | Stack attached to | Stack height in meter (m) | APCM | Parameters                                              | Permissible Limits                           |
|------------|-------------------|---------------------------|------|---------------------------------------------------------|----------------------------------------------|
| 1.         | D G Set(300kva)   | 11                        |      | Particular matter<br>SO <sub>2</sub><br>NO <sub>x</sub> | 150 mg/N m <sup>3</sup><br>100 ppm<br>50 ppm |

4.4 Ambient Air Quality within the premises of the industry shall conform to the following standards.

| PARAMETERS                       | PERMISSIBLE LIMIT     |                        |  |
|----------------------------------|-----------------------|------------------------|--|
|                                  | Annual                | 24 h Average           |  |
| Particulate Matter-10 (PM 10)    | 60 μg/ m <sup>3</sup> | 100 μg/ m <sup>3</sup> |  |
| Particulate Matter- 2.5 (PM 2.5) | 40 μg/ m³             | 60 μg/m <sup>3</sup>   |  |
| SO <sub>2</sub>                  | 50 μg/ m <sup>3</sup> | 80 µg/m³               |  |
| NO <sub>x</sub>                  | 40 μg/ m³             | 80 μg/m <sup>3</sup>   |  |
|                                  |                       |                        |  |

- 4.5 The Applicant shall provide port holes, Platform etc. At chimney(s) for monitoring the Air emission and the same be open for inspection to/and for use board's staff. The chimney vent attached to source of emission shall be designated by number such as S1, S2 etc. And these shall be painted/displayed to the facilitate identification.
- 4.6 The industry shall take adequate measures for control of noise levels from its own sources within the premises so as to maintain ambient air quality standards in respect of noise to less than 75 dB(a) during day time and 70 dB (A) during night time. Daytime is reckoned in between 6 a.m. and 10 p.m. and night times is reckoned between 10 p.m. and 6 a.m.
- 4.7 The industry shall not cause any nuisance to the surrounding area.
- 4.8 All measure for the control of environmental pollution shall be provided before commencing production.
- 5. AUTHORIZATION FOR THE MANAGEMENT & HANDLING OF HAZARDOUS WASTES Form-2(See rule 3 (c) & 5 (5)) Form for grant of authorization for occupier or operator handling Hazardous waste.
  - 5.1 Number of Authorization No. WII-38279 Date of issue: 05/09/2019.
  - 5.2 M/S Karbon Steel Mart Private Limited. is hereby granted an Authorization to operate facility for following Hazardous Waste on premises situated Plot No: 17,Survey No 37/1/paikee 20,Ohm Industiral Infrastructure Pardk,Dehri,Taluka: Umbergaon -396171, Dist: Valsad

| Sr.<br>No. | Waste                                                          | Quantity/<br>Year | Schedule-1<br>Process no. | Facility                                                                                       |
|------------|----------------------------------------------------------------|-------------------|---------------------------|------------------------------------------------------------------------------------------------|
| 1.         | Empty barrels / Containers/ liners contaminated with hazardous | 2.0 MT/year       | 33.1                      | Collection, Storage<br>Transportation and<br>disposal by selling to<br>registered recycler     |
| 2.         | Used or Spent Oil                                              | 0.100MT/Y         | 5.1                       | Collection, Storage<br>Transportation and<br>disposal by selling to<br>registered re-refiners. |

- 5.3 The Authorization is granted to operate a facility for collection, storage, within the factory premises and ultimate disposal, by reusing Self.
- 5.4 The Authorization shall be Valid up to Date: 30/06/2024.
- 5.5 The authorization is subject to the conditions stated below and such other conditions as may be specified in the rules from time to time under the Environment (Protection) Act-1986.

## 6. TERMS AND CONDITIONS OF AUTHORISATION:

- 6.1 The applicant shall comply with the provisions of the Environment (Protection) Act 1986 and the rules made there under.
- 6.2 The authorization shall be produced for inspection at the request of an officer authorized by the Gujarat Pollution Control Board.
- 6.3 The persons authorized shall not rent, lend, sell, and transfer of otherwise transport the hazardous wastes without obtaining prior permission of the Gujarat Pollution Control Board.
- 6.4 Any unauthorized change in personnel, equipment or working conditions as mentioned in the authorization order by the persons authorized shall constitute a breach of this authorization.
- 6.5 It is the duty of the authorized person to take prior permission of the Gujarat Pollution Control Board to close down the facility.
- 6.6 An application for the renewal of an authorization shall be made as laid down in rule 5 (6) (ii).
- 6.7 Industry shall manage wastes as per amended rules 2016.



**6.8** Industry shall submit annual report within 15 days and sub sequentially by **31st January every year.** 

6.9 Industry shall have to manage waste oil, discarded containers etc. as per amended rules 2016.  $6.10\,\mathrm{Any}$  change in personnel, equipment or working conditions as mentioned in the consents form/order should immediately be intimated to this Board.

6.11 Applicant shall also comply with the general conditions given in **Annexure I**.

6.12 If it is established by any competent authority that the damage is caused due to their industrial activities to any person or his property in that case they are obliged to pay the compensation as determined by the competent authority.

6.13 Industry shall have to display the relevant information with regard to hazardous waste as indicated in

the Supreme Court's order in W.P. No.: 657 of 1995 dated 14th October 2003.

6.14 Industry shall have to display on-line data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including waste water and air emissions and solid hazardous waste generated within the factory premises.

6.15 In case of any unauthorized discharge outside premises. It would be considered as violation under water -Act: 1974

> For and on behalf of Gujarat Pollution Control Board

> > (H.M.Ganvit) Regional Officer

NO: GPCB/RO/SAR/ID-71350/ / 82 /

/2019

Date:

2 3 SEP 2019

Issued to: M/s. Karbon Steel Mart Private Limited(71350), PLOT NO: 17, Survey No 37/1/Paiki 20, Ohm Industrial Infrastructure Park, Dehri, GIDC- Umbergaon. Ta: Umbergaon - 396171, Dist: Valsad Copy to:- The Member secretary, Gujarat Pollution Control Board,

Gandhinagar.....For information Please.

# Annexure 3



# Certificate of Registration

This is to certify that The Quality Management System of

# KARBON STEELMART PVT. LTD.

B- 8, Ratandeep Cosmopolitan Chs Ltd, 140-141 S. V. Road, Near Shoppers Stop, Andheri (W), Mumbai - 400058, Maharashtra, Factory: Om Industrial Park, New Gide, Opp Nipta Industries, Near Coastal Road, Umbergaon - 396171, Gujarat

has been assessed and found to be in compliance with the requirements of the standard

# ISO 9001:2015 for the following scope:

Fabricated Pipe Spools, Technological Structure, Carbon Steel Plates Profiles, Supply of Plates & Coils In Carbon Steel, Stainless Steel, Alloy Quality, and Pipe, & Fittings.

CERTIFICATE No. : 21ZCAK7245Q

ISSUED DATE : 16/02/2021 EXPIRY DATE : 15/02/2024

1ST SURVEILLANCE 2ND SURVEILLANCE 15/02/2022 15/02/2023

ISO





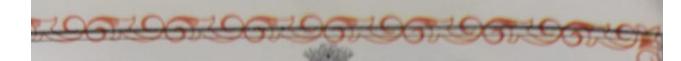


**Authorised Signatory** 

INTERNATIONAL QUALITY CERTIFICATION SERVICES UK LTD

272, Bath Street, Glasgow, G2 4JR, U.K.

This Certificate is intellectual Property of IQCS and can be maintained through surveillance and renewal audits.


Certificate should be returned to IQCS in case of non compliance of certification procedure.

Authenticity of this certificate can be verified at www.ukacert.co.uk / www.lqcscert.co.uk



# Annexure 4

Indira Nagar, Nashik - 42200 102, Plot No.26, Wadala n Consultant-(Near Guru Gobina e-Turn at Rai





# Directorate Industrial Bafety & Health

Licente BW HPa 4actory (Prescribed under Rule 5)

registration No. 3444/2511 27cense to work a factory IN S07033265A

License No. 33265 D.A. 01-Nov-2017

License is hereby granted to

Mr. SHRENIK KIRIT SHAH

For the premises known as

KARBONSTEEL ENGINEERING PVT. LTD.

situated at

Plot No. 17 & 091/Part-B Survey No. 37/1/P20 & 1945/91 Ohm Industrial Park New

Coastal Road Vill.: DEHARI. Tal. Umbergaon.

Ta.: Umbergaon Dist.: Valsad

for use as a factory within the limits specified in the plan approved by the

Director Industrial Safety & Health, Gujarat State

vide No. 283 Date 03-Feb-2018 subject to provisions of the

Factories Act. 1948 and the Rules made thereunder

le license is issued for

Maximum Number of workers to be employed on any day during the Year :"250" Maximum installed power in B.H.P. on any day during the year \*\*\*500\*\*\*

he license is valid up to 31st December 2027,

ees paid Rs. 53,050.00 ees due Rs. 53,050.00 Rs. 0.00 xcess

Valsad lace :

15-Dec-2022 ate :



Deputy Director ndustrial Safety and Health

# Annexure 5



# SBI General Bharat Laghu Udyam Suraksha UIN IRDAN144RP0031V01202021

Policy Schedule

(611-47932135328.

Policy Servicing Office: SBI General Insurance Company Ltd, 101 A & 101 B, New Manekial Estate, 1st Floor, Krishna Baug, LBS Road, Opposite Municipal School, Ghatkopar, 400086

| Intermediary Name            | SBI General Insurance Direct Code          |
|------------------------------|--------------------------------------------|
| Intermediary Code            | 0061174                                    |
| Intermediary Contact Details | Mobile No:<br>Landline No: +91-22-18002211 |

# Insured Details

| Previous Policy No (if any)      |                                                                                                                               |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| Policy No:                       | 000000029131718                                                                                                               |  |
| Policy Issue Date                | 24/06/2027                                                                                                                    |  |
| Insured Name                     | KARBONS TEEL ENGINEERING PVT.                                                                                                 |  |
| Communication Address            | B-8, 140-161, RATANDEEP COSMOPCLITAN CHSL, S. V. ROAD, NEAR SHOPPERS STOP, ANDHERI WEST, Mumbai, Maharashtra - 400058, India. |  |
| Email and Contact Details        | Email: and Contact Details: +91-<br>8291098002                                                                                |  |
| PAN/Form60                       |                                                                                                                               |  |
| Period of Insurance              | From: 22/0 3/2022 (00:00 Hrs) To: 21/06/2023 Midnight                                                                         |  |
| Premium frequency                |                                                                                                                               |  |
| Mortgaged to / Hypothecated with | Refer Hypothecation details                                                                                                   |  |
| Loan Account No.:                | 32127508366                                                                                                                   |  |
| Coinsurance Details:             | SBIG own Share 100%                                                                                                           |  |

SBI General Insurance Company Limited. Registered and Corporate Cffice: 9th Floor, A&B Wing, Fulcrom Building, Sahar Road, Andheri East, Mumbai – 400099|CIN: U66000N/-: 2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For the details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings statefully before concluding a sale| SBI Logo displayed belongs to State Bank of India and used by SBI General SBI General Company Limited under license | IRDAI Reg No: 144 | UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha – Policy Schedule



# **Summary Particulars of Property Insured**

| Sr.<br>No | Location of Risk                                                                                               | Occupancy                                                                                      | Sum Insured (I                                                | ₹s.)           |
|-----------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|
| 1.        | NEW COSTAL<br>ROAD,,<br>PLOT NO 91, (PART-<br>B) S NO - 36/1,<br>KHATA NO 501,,<br>VILLAGE DAHERI<br>UMBERGAON | Engineering<br>Workshop -<br>Structural<br>Steel<br>fabricators,<br>Sheet Metal<br>fabricators | Building including plinth, basement and additional structures | 161,500,000.00 |
|           | VALSD,<br>Valsad,<br>Gujarat-396170.<br>Contact Details: +91-<br>8291098002                                    |                                                                                                | Total                                                         | 161,500,000.00 |

# Standard Add on Cover Details

| Add on Cover | Sum Insured(Rs.) |  |
|--------------|------------------|--|
| Description  |                  |  |

| Sr.<br>No | Location of Risk                                                                                                       | Occupancy                                                                                      | Sum Insured (R                                                                  | ?s.)          |
|-----------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------|
| 2.        | VILLAGE DAHERI,,<br>PLOT NO 17,<br>SURVEY NO 37/1,<br>NEW COSTAL RD,,<br>UMARGAM VALSAD,<br>Valsad,<br>Gujarat-396170. | Engineering<br>Workshop -<br>Structural<br>Steel<br>fabricators,<br>Sheet Metal<br>fabricators | Building<br>including<br>plinth,<br>basement<br>and<br>additional<br>structures | 26,700,000.00 |
|           | Contact Details: +91-<br>8291098002                                                                                    |                                                                                                | Contents                                                                        | 55,000,000.00 |
|           | 0231030002                                                                                                             |                                                                                                | Tota!                                                                           | 81,700,000.00 |

# Standard Add on Cover Details

SBI General Insurance Company Limited. Registered and Corporate Office: 9th Floor, A&B Wing, Fulcrum Building, Sahar Road, Andheri East, Mumbai – 400099|CIN: U66000MH2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For more details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings carefully before concluding a sale| SBI Logo displayed belongs to State Bank of India and used by SBI General Insurance Company Limited under license | IRDAI Reg No: 144 |UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha – Policy Schedule



| Description | Add on Cover<br>Description | Sum Insured(Rs.) |
|-------------|-----------------------------|------------------|
|-------------|-----------------------------|------------------|

# Other Add on Cover Details

| Add on Cover Description                                                                                                   | Sum Insured(Rs.) |
|----------------------------------------------------------------------------------------------------------------------------|------------------|
| SBI General Bharat Laghu Udyam Suraksha<br>-Accidental Damage Cover Clause                                                 |                  |
| SBI General Bharat Laghu Udyam Suraksha<br>-Involuntary betterment/technological<br>advancements/obsolete equipment clause |                  |
| SBI General Bharat Laghu Udyam Suraksha<br>-Impact damage by insured own vehicle                                           |                  |

# In Built Covers:

| Sr.No.                                                                                                                             | Covers                                                                                                               | SI Limits                                              |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 1                                                                                                                                  | Additions, alterations or extensions                                                                                 | 15% of Sum Insured ( Excluding Stocks)                 |
| 2                                                                                                                                  | Temporary removal of stocks                                                                                          | 10% of the Sum Insured of Stock                        |
| Contents  Money  Deeds, manus business book drawings, secu obligations or of any kind  Computer prog information and Employees', D | Cover for Specific<br>Contents                                                                                       | **                                                     |
|                                                                                                                                    | Money                                                                                                                | Upto Rs.50,000                                         |
|                                                                                                                                    | Deeds, manuscripts and<br>business books, plans,<br>drawings, securities,<br>obligations or documents<br>of any kind | Upto Rs.50,000                                         |
|                                                                                                                                    | Computer programmes, information and data                                                                            | Upto Rs. 5,00,000                                      |
|                                                                                                                                    | Employees', Directors', visitors' personal effects                                                                   | Upto Rs.15,000 per person for a maximum of 20 persons. |
| 4                                                                                                                                  | Start-Up Expenses                                                                                                    | Upto Rs.5,00,000                                       |
| 5                                                                                                                                  | Professional fees                                                                                                    | 5 % of the claim amount                                |
| 6                                                                                                                                  | Costs for removal of debris                                                                                          | 2 % of the claim amount.                               |
| 7                                                                                                                                  | Cost compelled by<br>Municipal Regulations                                                                           | Upto Sum Insured                                       |

# Deductibles \*\*

SBI General Insurance Company Limited. Registered and Corporate Office: 9th Floor, A&B Wing, Fulcrum Building, Sahar Road, Andheri East, Mumbai – 400099|CIN: U66000MH2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For more details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings carefully before concluding a sale| SBI Logo displayed belongs to State Bank of India and used by SBI General Insurance Company Limited under license | IRDAI Reg No: 144 |UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha – Policy Schedule



5% of each claim, subject to a minimum of ₹ 10,000 for each claim

| Shops & Residential Risks | 1 % of claim amount for each and every claim subject to a minimum of Rs.10000 and a maximum of Rs.500,000   |
|---------------------------|-------------------------------------------------------------------------------------------------------------|
| Non-Industrial Risks      | 1 % of claim amount for each and every claim subject to a minimum of Rs.25000 and a maximum of Rs.1000,000  |
| Industrial Risks          | 5 % of claim amount for each and every claim subject to a minimum of Rs.100000 and a maximum of Rs.2500,000 |

# **Premium Computation**

| Particulars             | Amount (Rs) |  |
|-------------------------|-------------|--|
| Net Premium             | 137,817.49  |  |
| Terrorism Premium       | 53,139.20   |  |
| Discount/Loading if any |             |  |
| Taxes as applicable     | 34,372.20   |  |
| Add Kerala Cess:        | 0.00        |  |
| Final Premium           | 225,329.00  |  |

# Collection Details

| Receipt No | Receipt Date |
|------------|--------------|
| 26126694   | 24/06/2022   |

P.S. If premium paid through cheque, the policy is void abinitio in case of dishonour of cheque.

Consolidated Stamp Duty Rs. 0.50 paid towards Insurance Policy Stamps vide Order LOA/CSD/323/2022/(Validity Period Dt.18/04/2022 to Dt. 14/04/2023)/1652 Date:-13/04/2022 Dated: 2022-05-05 11:20:06.0 of General Stamp Office, Mumbai.

| Place: HO | For SBI General Insurance Company     |
|-----------|---------------------------------------|
|           | Limited                               |
|           | · · · · · · · · · · · · · · · · · · · |

SBI General Insurance Company Limited. Registered and Corporate Office: 9th Floor, A&B Wing, Fulcrum Building, Sahar Road, Andheri East, Mumbai – 400099|CIN: U66000MH2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For more details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings carefully before concluding a sale| SBI Logo displayed belongs to State Bank of India and used by SBI General Insurance Company Limited under license | IRDAI Reg No: 144 | UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha — Policy Schedule



This Document is Digitally Signed
Signer: PANKAJ VERMA
Date (Eli Jun 24, 2022 16:06) 77 IS
Location: Mumbai

**Authorized Signatory** 

# Additional Conditions/Endorsements/Warranties/Clauses applicable

Attached to and forming part of the Schedule to the Policy No:

Additional Conditions: Subject to the following additional Conditions and attached Clauses / Endorsements / Warranties:

# Clauses Applicable:

- 1. Sanction Limitation And Exclusion Clause: It is hereby declared and agreed that no insurer shall be deemed to provide cover and no insurer shall be liable to pay any claim or provide any benefit hereunder to the extent that the provision of such cover, payment of such claim or provision of such benefit would expose that insurer to any sanction, prohibition or restriction under United Nations resolutions or the trade or economic sanctions, laws or regulations of the European Union, United Kingdom or United States of America.
- 2. Additions, alterations or extensions Clause
- 3. Cover for Specific Contents
- 4. Professional fees
- Cost for Removal of debris
- Costs compelled by Municipal Regulations
- Waiver of Underinsurance upto 15%

SBI General Insurance Company Limited. Registered and Corporate Office: 9th Floor, A&B Wing, Fulcrum Building, Sahar Road, Andheri East, Mumbai – 400099|CIN: U66000MH2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For more details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings carefully before concluding a sale| SBI Logo displayed belongs to State Bank of India and used by SBI General Insurance Company Limited under license | IRDAI Reg No: 144 |UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha – Policy Schedule



- 8. Sanction Limitation And Exclusion Clause
- 9. Cyber Loss Limited Exclusion Clause LMA 5410
- 10. Communicable Disease Exclusion Clause
- 11. Agreed Bank Clause
- 12. Basis of Valuation
- Policy shall stand canceled ab intio in the event of non-realization of the premium
- 14. Terrorism damage inclusion
- 15. Temporary removal of stocks
- 16. Start-Up Expenses
- 17. Designation of Property Clause
- 18. Earthquake (Fire and Shock)

### Location wise Clauses/Warranties etc.:

# Clauses Applicable:

For Risk Location Address: NEW COSTAL ROAD, PLOT NO 91, (PART-B) S NO - 36/1, KHATA NO 501, VILLAGE DAHERI UMBERGAON VALSD, Valsad, Gujarat-396170

Kutcha construction is excluded under scope of this policy

For Risk Location Address: VILLAGE DAHERI, PLOT NO 17, SURVEY NO 37/1, NEW COSTAL RD, UMARGAM VALSAD, Valsad, Gujarat-396170

2. Kutcha construction is excluded under scope of this policy

SBI General Insurance Company Limited. Registered and Corporate Office: 9th Floor, A&B Wing, Fulcrum Building, Sahar Road, Andheri East, Mumbai – 400099[CIN: U66000MH2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For more details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings carefully before concluding a sale SBI Logo displayed belongs to State Bank of India and used by SBI General Insurance Company Limited under license | IRDAI Reg No: 144 | UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha – Policy Schedule



# Hypothecation Details:

| Sr.No | Name of the financial Institution | Address of the Financial Institution |
|-------|-----------------------------------|--------------------------------------|
| 1.    | SBI MIDC ANDHERI EAST<br>BRANCH   | SBI MIDC ANDHERI EAST BRANCH         |

# Important Note

- Please examine this Policy including its attached Schedules/ Annexure if any. In the event
  of any discrepancy please contact the office of the Company immediately, it being noted that
  this Policy shall be otherwise considered as being entirely in order.
- Please refer the Claims Settlement & Grievance Redressal procedure document attached herein for ready references.

# Intimating a Claim

For Intimating a Claim with us please contact us through the following channels:

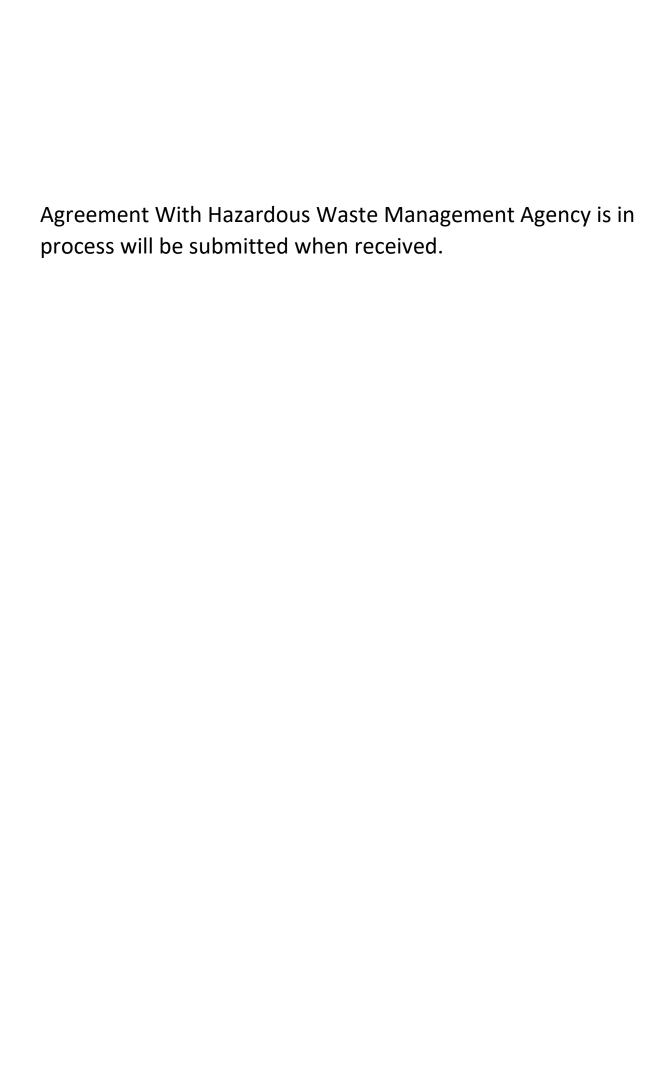
Phone: 1800-102-1111/1800-22-1111(Toll Free 8:00 am to 8:00 pm (Monday to Saturday)

E mail - customer.care@sbigeneral.in

Facsimile - 1800-102-7244/1800-22-7244(Toll Free)

# Claim Settlement

The company will settle the claim under this Policy within 30 days from the date of receipt of necessary document required for assessing the claims In the event that the company decides to reject a claim made under this Policy, the Company shall do so within a period of thirty days of the Survey Report or additional Survey report, as the case may be, in accordance with the provision of Protection of Policyholder's Interest Regulations 2017.


Annexure 1

Floater risk locations

SBI General Insurance Company Limited. Registered and Corporate Office: 9th Floor, A&B Wing, Fulcrum Building, Sahar Road, Andheri East, Mumbai – 400099|CIN: U66000MH2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For more details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings carefully before concluding a sale| SBI Logo displayed belongs to State Bank of India and used by SBI General Insurance Company Limited under license | IRDAI Reg No: 144 | UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha – Policy Schedule

# Annexure 6



# Annexure-3 Consent to Operate STEL Workshop

### U.P. Pollution Control Board

# **CONSENT ORDER**

# Ref No. - 51024/UPPCB/Circle1(UPPCBHO)/CTO/air/HAPUR/2019 Dated: 04/05/2019

To,

Shri ALOK KUMAR

M/s SALASAR TECHNO ENGINEERING LIMITED FORMERLY SALASAR STAINLESS

LIMITED

Khasara No. 686/6, 687, 688, 1202, 1202/2, 1240, 1253, 1254 Vill. Kheda Pilakhuwa Distt.

Hapur, HAPUR, 245101

**HAPUR** 

Sub: Consent under section 21/22 of the Air (Prevention and control of Pollution) Act, 1981 (as amended) to M/s. SALASAR TECHNO ENGINEERING LIMITED FORMERLY SALASAR STAINLESS LIMITED

Reference Application No. 4663369

- 1. With reference to the application for consent for emission of air pollutants from the plant of M/s SALASAR TECHNO ENGINEERING LIMITED FORMERLY SALASAR STAINLESS LIMITED. under Air Act 1981. It is being authorised for said emissions, as per the standards, in environment, by the Board as per enclosed conditions.
- 2. This consent is valid for the period from 15/02/2019 to 31/12/2023.
- 3. Inspite of the conditions and provisions mentioned in this consent order UP Pollution Control Board reserves its right and powers to reconsider/amend any or all conditions under section 21 (6) of the Air (Previntion and Controt of Pollution) Act, 1981 as amended.

This consent is being issued with the permission of competent authority.

ASHOK KUMAR TIWARI Digitally signed b ASHOK KUMAR TIWARI Date: 2019.07.19 14:48:07 +05'30'

Dated: 04/05/2019

# For and on behalf of U.P. Pollution Control Board

C.E.O

C-1

**Enclosed : As above** (condition of consent):

Copy to: Regional Office, U.P.Pollution Control Board, Ghaziabad

ASHOK KUMAR TIWARI Date: 2019.07.19 14:48:33 +05:30"

C.E.O C-1

## **U.P. Pollution Control Board**

Dated: 04/05/2019

## CONDITIONS OF CONSENT

- 1. This consent is valid only for the approved production capacity of G.I structure, M.S Structure, Tower and lightning Pole 5000 Ton per Year, S.S Tube 2500 Ton per Year, M.S Steel (Galvanised and Non-Galvanised 5000 Ton per Year).
- 2. This consent is valid only for products and quantity mentioned above. Industry shall obtain prior approval before making any modification in product/ process /fuel/ plant machinery failing which consent would be deemed void.
- 3(a) The maximum rate of emission of flue gas should not be more than the emission norms for the stacks.
- 3(b) Air Pollution Source Details.

|      | Air Pollution Source Details |              |           |                    |                                                                        |  |  |
|------|------------------------------|--------------|-----------|--------------------|------------------------------------------------------------------------|--|--|
| S.No | Air Polution<br>Source       | Type of Fuel | Stack No. | Parameters         | Height                                                                 |  |  |
| 1    | Furnace (100<br>Ton/Day)     | Diesel       | 1         | Sulphur<br>Dioxide | 15 meter<br>stack with<br>acid fume<br>scrubbing<br>system, I.D<br>Fan |  |  |
| 2    | D.G Set 500<br>KVA           | Diesel       | 2         | Sulphur<br>Dioxide | 4.5 mt. above from the nearest roof                                    |  |  |
| 3    | D.G Set 250<br>KVA           | Diesel       | 3         | Sulphur<br>Dioxide | 3.5 mt above nearest roof                                              |  |  |

3(c) The emissions by various stacks into the environment should be as per the norms of the Board.

| Emission Quality Details Detail |          |                    |                          |  |  |
|---------------------------------|----------|--------------------|--------------------------|--|--|
| S.No                            | Stack No | Parameter          | Standard                 |  |  |
| 1                               | 1        | Particulate Matter | As per E.P Rules<br>1986 |  |  |
| 2                               | 1        | Sulphur Dioxide    | As per E.P Rules<br>1986 |  |  |
| 3                               | 1        | Oxides of Nitrogen | As per E.P Rules<br>1986 |  |  |
| 4                               | 2        | Particulate Matter | As per E.P Rules<br>1986 |  |  |
| 5                               | 2        | Sulphur Dioxide    | As per E.P Rules<br>1986 |  |  |
| 6                               | 2        | Oxides of Nitrogen | As per E.P Rules<br>1986 |  |  |
| 7                               | 3        | Particulate Matter | As per E.P Rules<br>1986 |  |  |
| 8                               | 3        | Sulphur Dioxide    | As per E.P Rules<br>1986 |  |  |
| 9                               | 3        | Oxides of Nitrogen | As per E.P Rules<br>1986 |  |  |

- 4. Quantity of other pollutants should also be as per the norms prescribed by the Board/MOEF & CC/or otherwise mandatory .
- 5. The equipment for air pollution control system and monitoring ,as proposed by the industry and approved by the Board should be installed in their premises itself .

- 6. The modification or installation in the existing pollution control equipments should be done only by prior approval of Board .
- 7. The operation of air pollution control system and maintenance be done in such a way that the quantity of pollutants should be in accordance with the standards prescribed by the Board/MoEF & CC/or otherwise mandatory.
- 8. Unit should do provisions for fugitive emissions chimney/stack as per the norms of the Board/MOEF & CC/or otherwise mandatory.
- The unit should submit the stack emissions monitoring report within one month from issuance of
  consent order along with the point wise compliance report of the consent order. Further quarterly
  monitering report should be submitted.

### **Specific Conditions:**

- 1. The industry should be operated in such a manner that it does not adversely affect the environment and the solid waste generated such must be disposed in eco friendly manner.
- 2. Any source of emission other than that mentioned in the Air consent seeking application will not be permitted by the Board.
- 3.The industry should ensure the operation of the air pollution control system (APCS) in such a manner that the air emission confirms with the standards prescribed under the E.P Act 1986 as amended.
- 4.Industry shall submit Environmental Statement in prescribed format as per rule no.14 as per E.P Rules 1986.
- 5. This consent is valid only for products and quantity mentioned above. Industry shall obtain prior approval before making any modification in product/ process /fuel/ plant machinery failing which consent would be deemed void.
- 6.Industry shall abide by orders / directions issued by Hon'ble Supreme court Hon'ble High Court, Hon'ble National Green tribunal, Central Pollution Control Board and U.P Pollution Control Board for protection and safe guard of environment from time to time.
- 7.Industry shall submit monitoring reports of all stacks and ambient air quality from a certified / approved laboratory under E.P. Act 1986.
- 8. Industry shall comply with various provisions of Air (Prevention and Control of Pollution) Act 1981 as amended, Water (Prevention and Control of Pollution) Act 1974 as amended and all other applicable rules notified under E.P. Act 1986.
- 9.The unit shall submit the audited balance sheet for the current year and the details of fees deposited during last three years within a month.
- 10. The unit shall obtain prior consents in the event of any addition of new emission generation sources such as-Boiler/Furnace/Heaters/D.G. Sets or alteration of existing emission sources in accordance with section- 21/22 of air Act 1981 (as amended respectively).
- 11. The use of Pet coke and Furnace oil as a fuel is restricted in compliance of the Hon'ble Supreme court order.
- 12. The Industry will use minimum 20% Bio Briquette as fuel in the Boiler depending upon its availability
- 13.Minimum 33% of the land on which industry is established will be covered by the plantation of tall trees of suitable species as per the guidelines set up by the Board vide its Office Order no.H-16405/220/2018/02 dt. 16/02/2018. The copy of this guideline is available at URL http://www.uppcb.com/pdf/Green-Belt-Guidle 160218.pdf .

Issued with the permission of competent authority.



For and on behalf of U.P. Pollution Control Board.

#### **U.P. Pollution Control Board**

## CONSENT ORDER

Ref No. - Dated: 04/05/2019 51028/UPPCB/Circle1(UPPCBHO)/CTO/water/H

APUR/2019

To,

Shri ALOK KUMAR

M/s SALASAR TECHNO ENGINEERING LIMITED FORMERLY SALASAR STAINLESS

LIMITED

Khasara No. 686/6, 687, 688, 1202, 1202/2, 1240, 1253, 1254 Vill. Kheda Pilakhuwa Distt.

Hapur,HAPUR,245101

**HAPUR** 

Sub: Consent under Section 25/26 of The Water (Prevention and control of Pollution) Act, 1974 (as amended) for discharge of effluent to M/s. SALASAR TECHNO ENGINEERING LIMITED FORMERLY SALASAR STAINLESS LIMITED

Reference Application No :4663520

For disposal of effluent into water body or drain or land under The Water (Prevention and control of Pollution) Act,1974 as amended (here in after referred as the act ) M/s. SALASAR TECHNO ENGINEERING LIMITED FORMERLY SALASAR STAINLESS LIMITED is hereby authorized by the board for discharge of their industrial effluent generated through ETP for irrigation/river through drain and disposal of domestic effluent through septic tant/soak pit subject to general and special conditions mentioned in the annexure ,in refrence to their foresaid application .

- 2. This consent is valid for the period from 15/02/2019 to 31/12/2023.
- 3. In spite of the conditions and provisions mentioned in this consent order UP Pollution Control Board reserves its right and powers to reconsider/amend any or all conditions under section 27(2) of the Water (Previntion and Controt of Pollution) Act, 1974 as amended.

This consent is being issued with the permission of competent authority.

ASHOK KUMAR TIWARI Digitally signed by ASHOK KUMAR TIWARI Date: 2019.07.19 14:51:03 + 05'30'

Dated: 04/05/2019

For and on behalf of U.P. Pollution Control Board

C.E.O C-1

**Enclosed : As above** (condition of consent):

Copy to: Regional Office, U.P.Pollution Control Board, Ghaziabad

ASHOK Digitally signed by ASHOK KUMAR TWARI Date: 2019.07.11

C.E.O C-1

## U.P. POLLUTION CONTROL BOARD, LUCKNOW

## Annexure to Consent issued to M/s.SALASAR TECHNO ENGINEERING LIMITED FORMERLY SALASAR STAINLESS LIMITED vide

Consent Order No. 4663520/ Water

#### CONDITIONS OF CONSENT

Dated: 04/05/2019

- 1. This consent is valid only for the approved production capacity of G.I structure, M.S Structure, Tower and lightning Pole 5000 Ton per Year, S.S Tube 2500 Ton per Year, M.S Steel (Galvanised and Non-Galvanised 5000 Ton per Year).
- 2. The quantity of maximum daily effluent discharge should not be more than the following:

| Effluent Discharge Details |                  |                                   |                                        |  |
|----------------------------|------------------|-----------------------------------|----------------------------------------|--|
| S.No                       | Kind of Effulant | Maximum daily<br>discharge,KL/day | Treatment facility and discharge point |  |
| 1                          | Domestic         | 2 KLD                             | Septic Tank                            |  |
| 2                          | Industrial       | 30 KLD                            | ETP                                    |  |

- 3. Arrangement should be made for collection of water used in process and domestic effluent separately in closed water supply system. The treated domestic and industrial effluent if discharged outside the premises, if meets at the end of final discharge point, arrangement should be made for measurement of effluent and for collecting its sample. Except the effluent informed in the application for consent no other effluent should enter in the said arrangements for collection of effluent. It should also be ensured that domestic effluent should not be discharged in storm water drain
- 4(a) The domestic effluent should be treated in treatment plant so that the should be in conformity with the following norms dated treated effluent.

| Domestic Effulant |                        |                       |  |  |
|-------------------|------------------------|-----------------------|--|--|
| S.No              | Parameter              | Standard              |  |  |
| 1                 | Total Suspended Solids | As per E.P Rules 1986 |  |  |
| 2                 | BOD                    | As per E.P Rules 1986 |  |  |
| 3                 | COD                    | As per E.P Rules 1986 |  |  |
| 4                 | Oil & Grease           | As per E.P Rules 1986 |  |  |
| 5                 | Quantity of Discharge  | 2 KLD                 |  |  |

4(b). The industrial effluent should be treated in treatment plant so that the treated effluent should be in conformity with the following norms.

|      | Industrial Effulant    |                       |  |  |  |
|------|------------------------|-----------------------|--|--|--|
| S.No | Parameter              | Standard              |  |  |  |
| 1    | Total Suspended Solids | As per E.P Rules 1986 |  |  |  |
| 2    | BOD                    | As per E.P Rules 1986 |  |  |  |
| 3    | COD                    | As per E.P Rules 1986 |  |  |  |
| 4    | Oil & Grease           | As per E.P Rules 1986 |  |  |  |
| 5    | Quantity of Discharge  | 30 KLD                |  |  |  |

- 5. Effluent generated in all the processes, bleed water, cooling effluent and the effluent generated from washing of floor and equipments etc should be treated before its disposal with treated industrial effluent so that it should be according to the norms prescribed under The Environment (Protection) Act,1986 or otherwise mandatory.
- 6. The other pollutant for which norms have not been prescribed, the same should not be more than the norms prescribed for the water used in manufacturing process of the industry.
- 7. The method for collecting industrial and domestic effluent and its analysis should be as per legal Indian standards and its subsequent amendments/standards prescribed under The Environment (Protection) Act, 1986.

8. The treated domestic and industrial effluent be mixed (as per the provisions of Condition No. 2) and disposed of on one disposal point. This common effluent disposal point should have arrangement for flow meter/V Notch for measuring effluent and its log book be maintained.

## **Specific Conditions:**

- 1- The industry shall maintain strict supervision on fluctuations in operating parameters with respect to each treatment unit of the Effluent treatment plant.
- 2- The industry will ensure the continuous and uninterrupted data supply from the OCEEMS to the SPCB and CPCB server.
- 3- The industry should ensure the operation of the ETP in such a manner that it confirm the standards lay down under the E.P.Rules 1986
- 4- The treated effluent shall be allowed to be discharged in the ambient environment only after exhausting options for reuse in industrial process/irrigation in order to minimise freshwater usage.
- 5- Flow meter to be installed in all water abstraction points and usage of fresh water to be minimized.
- 6- The industry will have to ensure permission from the CGWA for ground water extraction and it will be the responsibility of the industry to comply with the various conditions of the permission taken.
- 7- The industry shall submit the audited balance sheet for the current year and the details of fees deposited within a month.
- 8- If the CPCB or UPPCB issues the Closure order against the industry this consent order stands automatically suspended for that period.
- 9- The industry shall submit Environmental Statement in prescribed form V as per rule no.14 of E.P Rules 1986.
- 10- This consent is valid only for products and quantity mentioned above. Industry shall obtain prior approval before making any modification in product/process /fuel/ Plant machinery failing which consent would be deemed void.
- 11- The industry shall abide by orders/directions issued by Hon'ble Supreme Court Hon'ble High Court, Hon'ble National Green Tribunal, Central Pollution Control Board and U.P Pollution Control Board for protection and safeguard of environment from time to time.
- 12- The industry shall comply with various provisions of Air (Prevention and Control of Pollution) Act 1981 as amended, Water (Prevention and Control of Pollution) Act 1974 as amended and all other applicable rules notified under E.P. Act 1986.
- 13- Minimum 33% of the land on which industry is established will be covered by the plantation of tall trees of suitable species as per the guidelines set up by the Board vide its Office Order no.H-16405/220/2018/02 dt. 16/02/2018. The copy of this guideline is available at URL http://www.uppcb.com/pdf/Green-Belt-Guidle\_160218.pdf.

Issued with the permission of competent authority.

ASHOK Digitally signed by ASHOK KUMAR KUMAR TIWARI Date: 2019.07.19 14:51:56 +05'30'

For and on behalf of U.P. Pollution Control Board.

C.E.O C-1





## L&T-IHI CONSORTIUM

Ref: L&T-IHI/MAHSR/PKG/P4(Y)/EHS/2023/1425

Date: 18th Mar 2023

THE ENGINEER,

TCEL-CEGL-AARVEE ASSOCIATES-PADECO JV 1105 & 1106,11<sup>TH</sup> FLOOR, UNIVERSAL MAJESTIC PL LOKHANDE MARG, OPP. RBK INTERNATIONAL ACADEMY,

CHEMBUR WEST,

MUMBAI- 400043

EMAIL: MANOJ.SINGH@TCAPPMC.IN

Kind attention: Shri. Manoj Kumar Singh, Sr. Structural Design Expert, TCAP CONSORTIUM, Mumbai

**Sub**: Procurement, Fabrication, Check- Assembly and Painting at workshop and Transportation to various Bridge Sites of Steel Truss Superstructure along with bearings for 17 Nos. (GADs 65, 1, 57, 67, 3, 6, 68, 12, 61, 14, 15, 62, 31, 37, 2357-3, 54 & 55 and Diesel Shed) of Bridges for High Speed Rail Corridor for crossing Over Roads / Rivers / Railways / other structures for the Project for Construction of Mumbai – Ahmedabad High Speed Rail. [Package No MAHSR-P-4(Y]

Reg-Submission of requisite documents for M/s Karbon Steel Mart Pvt. Ltd.

Ref.:

(i) Contract Agreement: MAHSR-P-4(Y) dated 22-Feb-21

(ii) Clause 2.14.1 (2) SHE Submittals under Appendix 080001 of MAHSR P4(Y) Vol-2, Works Requirement-General Specifications

Dear Sir,

With reference to sl. no.(ii) cited above, the Contractor hereby submits the requisite documents pertaining to SHE for workshop at M/s Karbon Steel Mart Pvt. Ltd. Gujrat as Annexure 1-6.

Contractor humbly requests Engineer to kindly peruse and accord approval please.

MUMBAR

(INDIA)

Thanking you,

Your faithfully,

For L&T-IHI Consortium

N. h. you f.

Vijayakumar Gandhi Vasu

Project Manager - MAHSR P-4(Y)

Transportation Infrastructure IC / L&T Construction, Mumbai

Address: L&T - IHI Consortium,

Sai Samarth Commercial Park, 702 & 703 CTS NO-337/1, Deonar, Govandi East,

Mumbai, Maharashtra State, PIN Code - 400 088

PH: 9445006116





## L&T-IHI CONSORTIUM

Cc: Shri. Uday Prasad Singh, Chief Project Manager/NHSRCL/Mumbai

Enclosure: Annexure 1- Copy of Consent to Establish

Annexure 2- Copy of Consolidated Consent and Authorization

Annexure 3- Copy of ISO Certificate Annexure 4- Copy of Factory License

Annexure 5- Copy of Public Liability Insurance

Annexure 6- Copy of Agreement with Hazardous Waste Management Agency



## **GUJARAT POLLUTION CONTROL BOARD**

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar 382 010

Phone: (079) 23222425

(079) 23232152

Fax: (079) 23232156

Website: www.gpcb.gov.in

BY:RPAD

Consent to Establish (CTE-103283)

NO: GPCB/SRG-NOC-258/ID:71350/516298

Date: 07/08/2019

TO.

M/s Karbon Steel Mart Private Limited Survey No-37/1/Paiki 20

Plot No: 17, Ohm Industrial Infrastructure Park,

Dehri-396171,

Tal. Umbergaon, Dist. Valsad - Sarigam.

SUB: Consent to Establish (NOC) under Section 25 of Water Act 1974, Section 21 of Air Act 1981 and EPA-1986.

REF: Your CTE application Inward ID No: 157222, dated 08/07/2019

Sir.

Without prejudice to the powers of this Board under the Water (Prevention and Central of Pollution) Act-1974, the Air Act-1981 and the Environment (Protection) Act-1986 and without reducing your responsibilities under the said Acts in any way, this is to inform you that this Board grant Consent to Establish (NOC) for setting up of an industrial plant/activities at Survey No-37/1/Paiki 20 Plot No:17, Ohm Industrial Infrastructure Park, Dehri-396171, Tal. Umbergaon, Dist. Valsad - Sarigam. for the manufacturing of the following items:

1. The list of the proposed products to be manufacture is as below:

| Sr. No. | Products              | Quantity      |
|---------|-----------------------|---------------|
| 1       | Fabricated Structures | 2000 MT/Month |

The validity of this order will be up to 07/07/2026

## **CONDITIONS UNDER WATER ACT 1974:**

 The quantity of total water consumption shall not exceed 5 KLPD as per below break up

a) Industrial: Nil

b) Domestic: 5 KLPD

M/s. Karbon Steel Mart Private Limited (ID: 71350) Page 1 of 4

Clean Gujarat Green Gujarat
ISO-9001-2008 & ISO-14001 - 2004 Certified Organisation

- 2. The quantity of total of waste water generation shall not exceed 4.8 KLPD as per below break up
  - a) Industrial: NIL
  - b) Domestic: 4.8 KLPD

## Trade Effluent

- 1. There shall be no generation and discharge of the industrial effluent from the manufacturing process and other ancillary industrial operations.
- 2. The GIDC drainage connection given by the GIDC for discharge of industrial effluent shall be disconnected & the outlet shall be sealed.
- 3. Domestic waste water shall be disposed off through septic tank/soak pit system.

## **CONDITIONS UNDER AIR ACT 1981:**

- 1. There shall be no use of any fuel anywhere in the manufacturing process and consequently there shall be no flue gas emission.
- 2. There shall be no process emission from the manufacturing process as well as any other ancillary operations.
- 3. The Stack monitoring facilities like port hole, platform/ladder etc., shall be provided with stacks/vents chimney in order to facilitate sampling of gases being emitted into the atmosphere.
- 4. Ambient air quality within the premises of the industry shall conform to the following standards:-

| PARAMETERS                                   | PERMISSIBLE LIMIT           |                              |  |
|----------------------------------------------|-----------------------------|------------------------------|--|
|                                              | Annual                      | 24 Hrs Average               |  |
| Particulate Matter-10 (PM 10)                | 60 microgram/m <sup>3</sup> | 100 microgram/m <sup>3</sup> |  |
| Particulate Matter- 2.5 (PM <sub>2.5</sub> ) | 40 microgram/m <sup>3</sup> | 60 microgram/m <sup>3</sup>  |  |
| $SO_2$                                       | 50 microgram/m <sup>3</sup> | 80 microgram/m               |  |
| NO <sub>x</sub>                              | 40 microgram/m <sup>3</sup> | 80 microgram/m               |  |

5. All measures for the control of environmental pollution shall be provided before commencing production.



## GUJARAT POLLUTION CONTROL BOARD

PARYAVARAN BHAVAN

Sector-10-A, Gandhinagar 382 010

Phone: (079) 23222425

(079) 23232152

Fax: (079) 23232156

Website: www.gpcb.gov.in

## CONDITIONS UNDER HAZARDOUS AND OTHER WASTE (MANAGEMENT AND TRANSBOUNDRY MOVEMENT) RULES, 2016:

Applicant shall have to comply with provisions of Hazardous and other Wastes (Management & Transboundry Movement) Rules, 2016.

- a) Industry shall provide adequate collection, storage, treatment & transportation system in accordance with the nature, quantity & compatibility of hazardous waste and shall offer their hazardous waste only to authorized operator of the ultimate disposal facility.
- b) Applicant shall comply all the directives issued by Honorable Courts, notifications issued by Ministry of Environment & Forest, Department of Environment & Forest, Central Pollution Control Board and other competent authorities time to time.
- c) Applicant shall comply all the guidelines published by Ministry of Environment & Forest, Department of Environment & Forest, Central Pollution Control Board and other competent authorities time to time.
- d) Industry shall also comply following directives issued by the Supreme Court of India dated.14.10.2003.
  - 1. Industry shall have to display the relevant information with regard to hazardous waste as indicated in the Court's order in W.P. No.657 of 1995 dated 14th October 2003.
  - II. Industry shall have to display on-line data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including wastewater and air emissions and solid hazardous wastes generated within the factory premises.
- e) The applicant shall obtain membership of common TSDF site for disposal of Haz. Waste as categorized in Hazardous and other wastes (Management & Transboundry Movement) Rules-2016 as amended from time to time.
- f) The applicant shall provide temporary storage facilities for each type of Haz. Waste as per Hazardous and other wastes (Management & Transboundry Movement) Rules-2016 as amended from time to time.

## GENERAL CONDITION:

- 1. Adequate plantation shall be carried out all along the periphery of the industrial premises and a green belt of adequate width is to be developed.
- 2. In case of change of ownership/management the name and address of the new owners/partners/directors/proprietor should immediately be intimated to the Board.
- 3. The applicant shall however, not without the prior consent to operate of the Board bring into use any new or altered outlet for the discharge of effluent or gaseous emission or sewage waste from the proposed industrial plant. The applicant is required to make applications to this Board for this purpose in the prescribed forms under the provisions of the Water Act-1974, the Air Act-1981 and the Environment (Protection) Act-1986.
- 4. The concentration of Noise in ambient air within the premises of industrial unit shall not exceed following levels:

Between 6 A.M. and 10 P.M: 75 dB (A) Between 10 P.M. and 6 A.M.: 70 dB (A)

- 5. Applicant is required to comply with the manufacturing, Storage and Import of Hazardous Chemicals Rules-1989 framed under the Environment (Protection) Act-1986.
- 5. If it is established by any competent authority that the damage is caused due to their industrial activities to any person or his property in that case they are obliged to pay the compensation as determined by the competent authority.
- 7. In case of any unauthorized discharge outside the factory premises, it would be considered as violation under the Water Act 1974.
- 8. Applicant is required to comply with Public Liability Insurance Act-1991.
- 9. Management of Solid Waste generated from industrial activities shall be as per Solid Waste Management Rules-2016 (solid waste as defined in Rules-3(46)).
- 10. As per provision of Rules-18 of Solid Waste Management Rules-2016 all industrial unit using fuel and located within 100 km from the refused derived fuel requirement by refused derived fuel so produced.

For and on behalf of Gujarat Pollution Control Board

(Sushii Vegda)

Senior Environmental Engineer



## **GUJARAT POLLUTION CONTROL BOARD**

Regional Office: SARIGAM

Survey No. 253/2, House No. 408, At-Ahir Falia, Bhandarwad, Sarigam

Tal. Umbergaon, Dist. Valsad.

Email: ro-gpcb-sari@gujarat.gov.in • Website: www.gpcb.gov.in

Ph.No.: 0260-2786044, 2786033

PCBID:71350

In exercise of the power conferred under section-25 of the Water (Prevention and Control of Pollution) Act-1974, under section-21 of the Air (Prevention and Control of Pollution)-1981 and Authorization under rule 6(1) & (2) of the Hazardous and other Waste (Management and Handling and Transboundary Movement) Rules'2016 framed under the Environment (Protection) Act-1986.

And whereas Board has received consolidated consent application Inward no.: 162680 dated 27/08/2019 for the Consolidated Consent and Authorization (CC & A) of this Board under the provisions/rules of the aforesaid acts. Consents & Authorization are hereby granted as under:

#### **CONSENTS and AUTHORIZATION:**

(Under the provisions/rules of the aforesaid environmental acts)

M/s. Karbon Steel Mart Private Limited (71350), PLOT NO: 17, Survey No 37/1/Paiki 20, Ohm Industrial Infrastructure Park, Dehri, GIDC- Umbergaon. Ta: Umbergaon - 396171, Dist: Valsad.

- Consent Order No. WH- 38279 Date of issue: 05/09/2019.
- The consents shall be valid up to 30/06/2024 for use of outlet for the discharge of trade effluent & emission due to operation of industrial plant for manufacture of the following items/products:

| Sr. No. | Names of Product     | Quantity/Month |
|---------|----------------------|----------------|
| 1.      | Fabricated Structure | 2000MT/M       |

## CONDITION UNDER THE WATER ACT:

- 3.1 Source of water supply shall be its Own Borewell only.
- 3.1 There shall be total water consumption shall not exceed 5.0 KL/Day as per following breakup:
  - a) Domestic Purpose: 5.0 KL/Day
  - b) Industrial Purpose: 0.0 KL/Day
- 3.1 The quantity of the waste water shall not exceed 4.8 KL/Day.
  - Domestic: 4.8 KL/Day
  - Industrial: Nil b)
- 3.1 Domestic effluent shall be disposed off through Septic tank-Soak pit system.

## CONDITIONS UNDER THE AIR ACT:

4. 1 The following shall be used as fuel in D.G. Set:

| Sr. No. | Fuel   | Quantity  |
|---------|--------|-----------|
| 1.      | Diesel | 30 Lit/Hr |

- 4.2 The Applicant shall install & operate air pollution control system in order to achieve norms prescribed below.
- 4.3 The flue gas emission through D G Set shall conform to the following standards:

| Sr.<br>No. | Stack attached to | Stack height in meter (m) | APCM | Parameters                                              | Permissible Limits                           |
|------------|-------------------|---------------------------|------|---------------------------------------------------------|----------------------------------------------|
| 1.         | D G Set(300kva)   | 11                        |      | Particular matter<br>SO <sub>2</sub><br>NO <sub>x</sub> | 150 mg/N m <sup>3</sup><br>100 ppm<br>50 ppm |

4.4 Ambient Air Quality within the premises of the industry shall conform to the following standards.

| PARAMETERS                       | PERMISSIBLE LIMIT     |                        |  |
|----------------------------------|-----------------------|------------------------|--|
|                                  | Annual                | 24 h Average           |  |
| Particulate Matter-10 (PM 10)    | 60 μg/ m <sup>3</sup> | 100 μg/ m <sup>3</sup> |  |
| Particulate Matter- 2.5 (PM 2.5) | 40 μg/ m³             | 60 μg/m <sup>3</sup>   |  |
| SO <sub>2</sub>                  | 50 μg/ m <sup>3</sup> | 80 µg/m³               |  |
| NO <sub>x</sub>                  | 40 μg/ m³             | 80 μg/m <sup>3</sup>   |  |
|                                  |                       |                        |  |

- 4.5 The Applicant shall provide port holes, Platform etc. At chimney(s) for monitoring the Air emission and the same be open for inspection to/and for use board's staff. The chimney vent attached to source of emission shall be designated by number such as S1, S2 etc. And these shall be painted/displayed to the facilitate identification.
- 4.6 The industry shall take adequate measures for control of noise levels from its own sources within the premises so as to maintain ambient air quality standards in respect of noise to less than 75 dB(a) during day time and 70 dB (A) during night time. Daytime is reckoned in between 6 a.m. and 10 p.m. and night times is reckoned between 10 p.m. and 6 a.m.
- 4.7 The industry shall not cause any nuisance to the surrounding area.
- 4.8 All measure for the control of environmental pollution shall be provided before commencing production.
- 5. AUTHORIZATION FOR THE MANAGEMENT & HANDLING OF HAZARDOUS WASTES Form-2(See rule 3 (c) & 5 (5)) Form for grant of authorization for occupier or operator handling Hazardous waste.
  - 5.1 Number of Authorization No. WII-38279 Date of issue: 05/09/2019.
  - 5.2 M/S Karbon Steel Mart Private Limited. is hereby granted an Authorization to operate facility for following Hazardous Waste on premises situated Plot No: 17,Survey No 37/1/paikee 20,Ohm Industiral Infrastructure Pardk,Dehri,Taluka: Umbergaon -396171, Dist: Valsad

| Sr.<br>No. | Waste                                                          | Quantity/<br>Year | Schedule-1<br>Process no. | Facility                                                                                       |
|------------|----------------------------------------------------------------|-------------------|---------------------------|------------------------------------------------------------------------------------------------|
| 1.         | Empty barrels / Containers/ liners contaminated with hazardous | 2.0 MT/year       | 33.1                      | Collection, Storage<br>Transportation and<br>disposal by selling to<br>registered recycler     |
| 2.         | Used or Spent Oil                                              | 0.100MT/Y         | 5.1                       | Collection, Storage<br>Transportation and<br>disposal by selling to<br>registered re-refiners. |

- 5.3 The Authorization is granted to operate a facility for collection, storage, within the factory premises and ultimate disposal, by reusing Self.
- 5.4 The Authorization shall be Valid up to Date: 30/06/2024.
- 5.5 The authorization is subject to the conditions stated below and such other conditions as may be specified in the rules from time to time under the Environment (Protection) Act-1986.

## 6. TERMS AND CONDITIONS OF AUTHORISATION:

- 6.1 The applicant shall comply with the provisions of the Environment (Protection) Act 1986 and the rules made there under.
- 6.2 The authorization shall be produced for inspection at the request of an officer authorized by the Gujarat Pollution Control Board.
- 6.3 The persons authorized shall not rent, lend, sell, and transfer of otherwise transport the hazardous wastes without obtaining prior permission of the Gujarat Pollution Control Board.
- 6.4 Any unauthorized change in personnel, equipment or working conditions as mentioned in the authorization order by the persons authorized shall constitute a breach of this authorization.
- 6.5 It is the duty of the authorized person to take prior permission of the Gujarat Pollution Control Board to close down the facility.
- 6.6 An application for the renewal of an authorization shall be made as laid down in rule 5 (6) (ii).
- 6.7 Industry shall manage wastes as per amended rules 2016.



**6.8** Industry shall submit annual report within 15 days and sub sequentially by **31st January every year.** 

6.9 Industry shall have to manage waste oil, discarded containers etc. as per amended rules 2016.  $6.10\,\mathrm{Any}$  change in personnel, equipment or working conditions as mentioned in the consents form/order should immediately be intimated to this Board.

6.11 Applicant shall also comply with the general conditions given in **Annexure I**.

6.12 If it is established by any competent authority that the damage is caused due to their industrial activities to any person or his property in that case they are obliged to pay the compensation as determined by the competent authority.

6.13 Industry shall have to display the relevant information with regard to hazardous waste as indicated in

the Supreme Court's order in W.P. No.: 657 of 1995 dated 14th October 2003.

6.14 Industry shall have to display on-line data outside the main factory gate with regard to quantity and nature of hazardous chemicals being handled in the plant, including waste water and air emissions and solid hazardous waste generated within the factory premises.

6.15 In case of any unauthorized discharge outside premises. It would be considered as violation under water -Act: 1974

> For and on behalf of Gujarat Pollution Control Board

> > (H.M.Ganvit) Regional Officer

NO: GPCB/RO/SAR/ID-71350/ / 82 /

/2019

Date:

2 3 SEP 2019

Issued to: M/s. Karbon Steel Mart Private Limited(71350), PLOT NO: 17, Survey No 37/1/Paiki 20, Ohm Industrial Infrastructure Park, Dehri, GIDC- Umbergaon. Ta: Umbergaon - 396171, Dist: Valsad Copy to:- The Member secretary, Gujarat Pollution Control Board,

Gandhinagar.....For information Please.



## Certificate of Registration

This is to certify that The Quality Management System of

## KARBON STEELMART PVT. LTD.

B- 8, Ratandeep Cosmopolitan Chs Ltd, 140-141 S. V. Road, Near Shoppers Stop, Andheri (W), Mumbai - 400058, Maharashtra, Factory: Om Industrial Park, New Gide, Opp Nipta Industries, Near Coastal Road, Umbergaon - 396171, Gujarat

has been assessed and found to be in compliance with the requirements of the standard

## ISO 9001:2015 for the following scope:

Fabricated Pipe Spools, Technological Structure, Carbon Steel Plates Profiles, Supply of Plates & Coils In Carbon Steel, Stainless Steel, Alloy Quality, and Pipe, & Fittings.

CERTIFICATE No. : 21ZCAK7245Q

ISSUED DATE : 16/02/2021 EXPIRY DATE : 15/02/2024

1ST SURVEILLANCE 2ND SURVEILLANCE 15/02/2022 15/02/2023

ISO



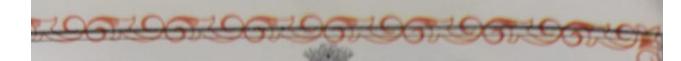




**Authorised Signatory** 

INTERNATIONAL QUALITY CERTIFICATION SERVICES UK LTD

272, Bath Street, Glasgow, G2 4JR, U.K.


This Certificate is intellectual Property of IQCS and can be maintained through surveillance and renewal audits.

Certificate should be returned to IQCS in case of non compliance of certification procedure.

Authenticity of this certificate can be verified at www.ukacert.co.uk / www.lqcscert.co.uk



Indira Nagar, Nashik - 42200 102, Plot No.26, Wadala n Consultant (Near Guru Gobina e-Turn at Rai





# Directorate Industrial Batety & Health

Licente BW HP a 4actory (Prescribed under Rule 5)

registration No. 3444/2511 27cense to work a factory IN S07033265A

License No. 33265 D.A. 01-Nov-2017

License is hereby granted to

Mr. SHRENIK KIRIT SHAH

For the premises known as

KARBONSTEEL ENGINEERING PVT. LTD.

situated at

Plot No. 17 & 091/Part-B Survey No. 37/1/P20 & 1945/91 Ohm Industrial Park New

Coastal Road Vill.: DEHARI. Tal. Umbergaon.

Ta.: Umbergaon Dist.: Valsad

for use as a factory within the limits specified in the plan approved by the

Director Industrial Safety & Health, Gujarat State

vide No. 283 Date 03-Feb-2018 subject to provisions of the

Factories Act. 1948 and the Rules made thereunder

le license is issued for

Maximum Number of workers to be employed on any day during the Year :"250" Maximum installed power in B.H.P. on any day during the year \*\*\*500\*\*\*

he license is valid up to 31st December 2027,

ees paid Rs. 53,050.00 ees due Rs. 53,050.00 Rs. 0.00 xcess

Valsad lace :

15-Dec-2022 ate :



Deputy Director ndustrial Safety and Health



## SBI General Bharat Laghu Udyam Suraksha UIN IRDAN144RP0031V01202021

Policy Schedule

(611-47932135328.

Policy Servicing Office: SBI General Insurance Company Ltd, 101 A & 101 B, New Manekial Estate, 1st Floor, Krishna Baug, LBS Road, Opposite Municipal School, Ghatkopar, 400086

| Intermediary Name            | SBI General Insurance Direct Code          |
|------------------------------|--------------------------------------------|
| Intermediary Code            | 0061174                                    |
| Intermediary Contact Details | Mobile No:<br>Landline No: +91-22-18002211 |

## Insured Details

| Previous Policy No (if any)      |                                                                                                                               |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Policy No:                       | 000000029131718                                                                                                               |
| Policy Issue Date                | 24/06/2027                                                                                                                    |
| Insured Name                     | KARBONS EEL ENGINEERING PVT.                                                                                                  |
| Communication Address            | B-8, 140-161, RATANDEEP COSMOPCLITAN CHSL, S. V. ROAD, NEAR SHOPPERS STOP, ANDHERI WEST, Mumbai, Maharashtra - 400058, India. |
| Email and Contact Details        | Email: and Contact Details: +91-<br>8291098002                                                                                |
| PAN/Form60                       |                                                                                                                               |
| Period of Insurance              | From: 22/0 3/2022 (00:00 Hrs) To: 21/06/2023 Midnight                                                                         |
| Premium frequency                |                                                                                                                               |
| Mortgaged to / Hypothecated with | Refer Hypothecation details                                                                                                   |
| Loan Account No.:                | 32127508366                                                                                                                   |
| Coinsurance Details:             | SBIG own Share 100%                                                                                                           |

SBI General Insurance Company Limited. Registered and Corporate Cffice: 9th Floor, A&B Wing, Fulcrom Building, Sahar Road, Andheri East, Mumbai – 400099|CIN: U66000N/-: 2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For the details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings statefully before concluding a sale| SBI Logo displayed belongs to State Bank of India and used by SBI General SBI General Company Limited under license | IRDAI Reg No: 144 | UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha – Policy Schedule



## **Summary Particulars of Property Insured**

| Sr.<br>No | Location of Risk                                                                                               | Occupancy                                                                                      | Sum Insured (I                                                | ₹s.)           |
|-----------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|
| 1.        | NEW COSTAL<br>ROAD,,<br>PLOT NO 91, (PART-<br>B) S NO - 36/1,<br>KHATA NO 501,,<br>VILLAGE DAHERI<br>UMBERGAON | Engineering<br>Workshop -<br>Structural<br>Steel<br>fabricators,<br>Sheet Metal<br>fabricators | Building including plinth, basement and additional structures | 161,500,000.00 |
|           | VALSD,<br>Valsad,<br>Gujarat-396170.<br>Contact Details: +91-<br>8291098002                                    |                                                                                                | Total                                                         | 161,500,000.00 |

## Standard Add on Cover Details

| Add on Cover | Sum Insured(Rs.) |  |
|--------------|------------------|--|
| Description  |                  |  |

| Sr.<br>No | Location of Risk                                                                                                       | Occupancy                                                                                      | Sum Insured (R                                                                  | ?s.)          |
|-----------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------|
| 2.        | VILLAGE DAHERI,,<br>PLOT NO 17,<br>SURVEY NO 37/1,<br>NEW COSTAL RD,,<br>UMARGAM VALSAD,<br>Valsad,<br>Gujarat-396170. | Engineering<br>Workshop -<br>Structural<br>Steel<br>fabricators,<br>Sheet Metal<br>fabricators | Building<br>including<br>plinth,<br>basement<br>and<br>additional<br>structures | 26,700,000.00 |
|           | Contact Details: +91-<br>8291098002                                                                                    |                                                                                                | Contents                                                                        | 55,000,000.00 |
|           | 0231030002                                                                                                             |                                                                                                | Tota!                                                                           | 81,700,000.00 |

## Standard Add on Cover Details

SBI General Insurance Company Limited. Registered and Corporate Office: 9th Floor, A&B Wing, Fulcrum Building, Sahar Road, Andheri East, Mumbai – 400099|CIN: U66000MH2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For more details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings carefully before concluding a sale| SBI Logo displayed belongs to State Bank of India and used by SBI General Insurance Company Limited under license | IRDAI Reg No: 144 |UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha – Policy Schedule



| Description | Add on Cover<br>Description | Sum Insured(Rs.) |
|-------------|-----------------------------|------------------|
|-------------|-----------------------------|------------------|

## Other Add on Cover Details

| Add on Cover Description                                                                                                   | Sum Insured(Rs.) |
|----------------------------------------------------------------------------------------------------------------------------|------------------|
| SBI General Bharat Laghu Udyam Suraksha<br>-Accidental Damage Cover Clause                                                 |                  |
| SBI General Bharat Laghu Udyam Suraksha<br>-Involuntary betterment/technological<br>advancements/obsolete equipment clause |                  |
| SBI General Bharat Laghu Udyam Suraksha<br>-Impact damage by insured own vehicle                                           |                  |

## In Built Covers:

| Sr.No. | Covers                                                                                                               | SI Limits                                              |
|--------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 1      | Additions, alterations or<br>extensions                                                                              | 15% of Sum Insured ( Excluding Stocks)                 |
| 2      | Temporary removal of stocks                                                                                          | 10% of the Sum Insured of Stock                        |
|        | Cover for Specific<br>Contents                                                                                       | **                                                     |
|        | Money                                                                                                                | Upto Rs.50,000                                         |
| 3      | Deeds, manuscripts and<br>business books, plans,<br>drawings, securities,<br>obligations or documents<br>of any kind | Upto Rs.50,000                                         |
|        | Computer programmes, information and data                                                                            | Upto Rs. 5,00,000                                      |
|        | Employees', Directors', visitors' personal effects                                                                   | Upto Rs.15,000 per person for a maximum of 20 persons. |
| 4      | Start-Up Expenses                                                                                                    | Upto Rs.5,00,000                                       |
| 5      | Professional fees 5 % of the claim amount                                                                            |                                                        |
| 6      | Costs for removal of debris                                                                                          | 2 % of the claim amount.                               |
| 7      | Cost compelled by<br>Municipal Regulations                                                                           | Upto Sum Insured                                       |

## Deductibles \*\*

SBI General Insurance Company Limited. Registered and Corporate Office: 9th Floor, A&B Wing, Fulcrum Building, Sahar Road, Andheri East, Mumbai – 400099|CIN: U66000MH2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For more details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings carefully before concluding a sale| SBI Logo displayed belongs to State Bank of India and used by SBI General Insurance Company Limited under license | IRDAI Reg No: 144 |UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha – Policy Schedule



5% of each claim, subject to a minimum of ₹ 10,000 for each claim

| Shops & Residential Risks | 1 % of claim amount for each and every claim subject to a minimum of Rs.10000 and a maximum of Rs.500,000   |
|---------------------------|-------------------------------------------------------------------------------------------------------------|
| Non-Industrial Risks      | 1 % of claim amount for each and every claim subject to a minimum of Rs.25000 and a maximum of Rs.1000,000  |
| Industrial Risks          | 5 % of claim amount for each and every claim subject to a minimum of Rs.100000 and a maximum of Rs.2500,000 |

## **Premium Computation**

| Particulars             | Amount (Rs) |  |
|-------------------------|-------------|--|
| Net Premium             | 137,817.49  |  |
| Terrorism Premium       | 53,139.20   |  |
| Discount/Loading if any |             |  |
| Taxes as applicable     | 34,372.20   |  |
| Add Kerala Cess:        | 0.00        |  |
| Final Premium           | 225,329.00  |  |

## Collection Details

| Receipt No | Receipt Date |
|------------|--------------|
| 26126694   | 24/06/2022   |

P.S. If premium paid through cheque, the policy is void abinitio in case of dishonour of cheque.

Consolidated Stamp Duty Rs. 0.50 paid towards Insurance Policy Stamps vide Order LOA/CSD/323/2022/(Validity Period Dt.18/04/2022 to Dt. 14/04/2023)/1652 Date:-13/04/2022 Dated: 2022-05-05 11:20:06.0 of General Stamp Office, Mumbai.

| Place: HO | For SBI General Insurance Company |
|-----------|-----------------------------------|
|           | Limited                           |
|           |                                   |

SBI General Insurance Company Limited. Registered and Corporate Office: 9th Floor, A&B Wing, Fulcrum Building, Sahar Road, Andheri East, Mumbai – 400099|CIN: U66000MH2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For more details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings carefully before concluding a sale| SBI Logo displayed belongs to State Bank of India and used by SBI General Insurance Company Limited under license | IRDAI Reg No: 144 | UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha — Policy Schedule



This Document is Digitally Signed
Signer: PANKAJ VERMA
Date (Eli Jun 24, 2022 16:06) 77 IS
Location: Mumbai

**Authorized Signatory** 

## Additional Conditions/Endorsements/Warranties/Clauses applicable

Attached to and forming part of the Schedule to the Policy No:

Additional Conditions: Subject to the following additional Conditions and attached Clauses / Endorsements / Warranties:

## Clauses Applicable:

- 1. Sanction Limitation And Exclusion Clause: It is hereby declared and agreed that no insurer shall be deemed to provide cover and no insurer shall be liable to pay any claim or provide any benefit hereunder to the extent that the provision of such cover, payment of such claim or provision of such benefit would expose that insurer to any sanction, prohibition or restriction under United Nations resolutions or the trade or economic sanctions, laws or regulations of the European Union, United Kingdom or United States of America.
- 2. Additions, alterations or extensions Clause
- 3. Cover for Specific Contents
- 4. Professional fees
- Cost for Removal of debris
- Costs compelled by Municipal Regulations
- Waiver of Underinsurance upto 15%

SBI General Insurance Company Limited. Registered and Corporate Office: 9th Floor, A&B Wing, Fulcrum Building, Sahar Road, Andheri East, Mumbai – 400099|CIN: U66000MH2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For more details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings carefully before concluding a sale| SBI Logo displayed belongs to State Bank of India and used by SBI General Insurance Company Limited under license | IRDAI Reg No: 144 |UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha – Policy Schedule



- 8. Sanction Limitation And Exclusion Clause
- 9. Cyber Loss Limited Exclusion Clause LMA 5410
- 10. Communicable Disease Exclusion Clause
- 11. Agreed Bank Clause
- 12. Basis of Valuation
- Policy shall stand canceled ab intio in the event of non-realization of the premium
- 14. Terrorism damage inclusion
- 15. Temporary removal of stocks
- 16. Start-Up Expenses
- 17. Designation of Property Clause
- 18. Earthquake (Fire and Shock)

#### Location wise Clauses/Warranties etc.:

## Clauses Applicable:

For Risk Location Address: NEW COSTAL ROAD, PLOT NO 91, (PART-B) S NO - 36/1, KHATA NO 501, VILLAGE DAHERI UMBERGAON VALSD, Valsad, Gujarat-396170

Kutcha construction is excluded under scope of this policy

For Risk Location Address: VILLAGE DAHERI, PLOT NO 17, SURVEY NO 37/1, NEW COSTAL RD, UMARGAM VALSAD, Valsad, Gujarat-396170

2. Kutcha construction is excluded under scope of this policy

SBI General Insurance Company Limited. Registered and Corporate Office: 9th Floor, A&B Wing, Fulcrum Building, Sahar Road, Andheri East, Mumbai – 400099[CIN: U66000MH2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For more details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings carefully before concluding a sale | SBI Logo displayed belongs to State Bank of India and used by SBI General Insurance Company Limited under license | IRDAI Reg No: 144 | UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha – Policy Schedule



## Hypothecation Details:

| Sr.No | Name of the financial Institution | Address of the Financial Institution |
|-------|-----------------------------------|--------------------------------------|
| 1.    | SBI MIDC ANDHERI EAST<br>BRANCH   | SBI MIDC ANDHERI EAST BRANCH         |

## Important Note

- Please examine this Policy including its attached Schedules/ Annexure if any. In the event
  of any discrepancy please contact the office of the Company immediately, it being noted that
  this Policy shall be otherwise considered as being entirely in order.
- Please refer the Claims Settlement & Grievance Redressal procedure document attached herein for ready references.

## Intimating a Claim

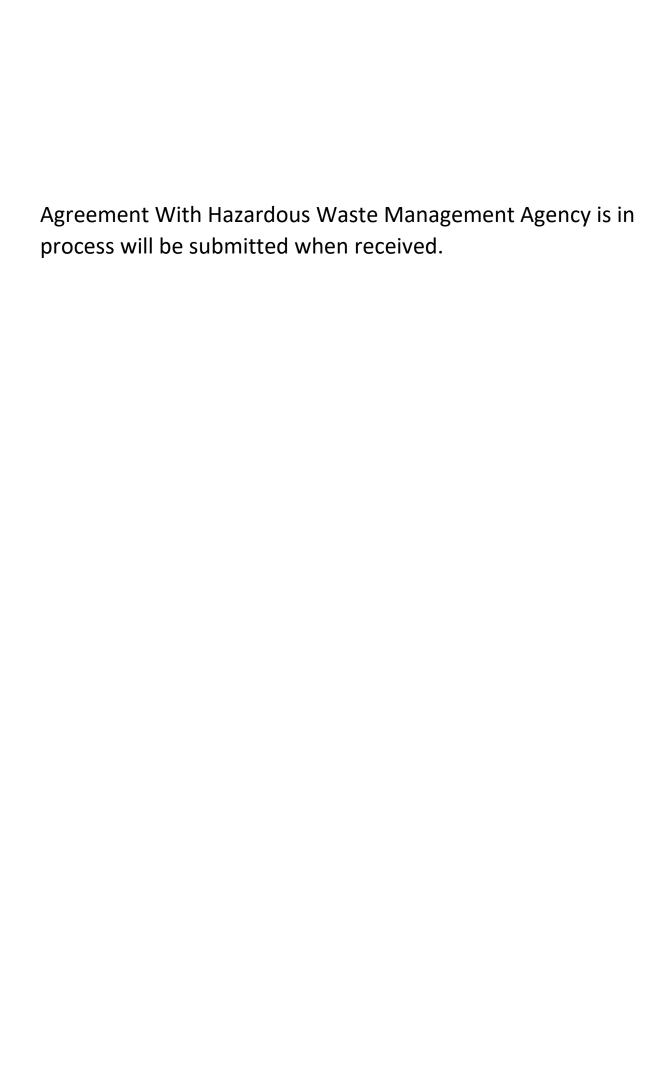
For Intimating a Claim with us please contact us through the following channels:

Phone: 1800-102-1111/1800-22-1111(Toll Free 8:00 am to 8:00 pm (Monday to Saturday)

E mail - customer.care@sbigeneral.in

Facsimile - 1800-102-7244/1800-22-7244(Toll Free)

## Claim Settlement


The company will settle the claim under this Policy within 30 days from the date of receipt of necessary document required for assessing the claims In the event that the company decides to reject a claim made under this Policy, the Company shall do so within a period of thirty days of the Survey Report or additional Survey report, as the case may be, in accordance with the provision of Protection of Policyholder's Interest Regulations 2017.

Annexure 1

Floater risk locations

SBI General Insurance Company Limited. Registered and Corporate Office: 9th Floor, A&B Wing, Fulcrum Building, Sahar Road, Andheri East, Mumbai – 400099|CIN: U66000MH2009PLC190546 | Toll free: 18001021111 | customer.care@sbigeneral.in | www.sbigeneral.in | For more details on the risk factor, terms, and conditions, please refer to the Sales Brochure and Policy Wordings carefully before concluding a sale| SBI Logo displayed belongs to State Bank of India and used by SBI General Insurance Company Limited under license | IRDAI Reg No: 144 | UIN:IRDAN144RP0031V01202021

SBI General Bharat Laghu Udyam Suraksha – Policy Schedule

