Figure 9-20: Photomontage for VSR8

Coordinate system WGS84-UTM 48N X 722913 Y 1676582

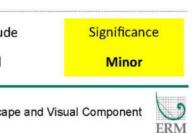
VSR view direction: 15°

1

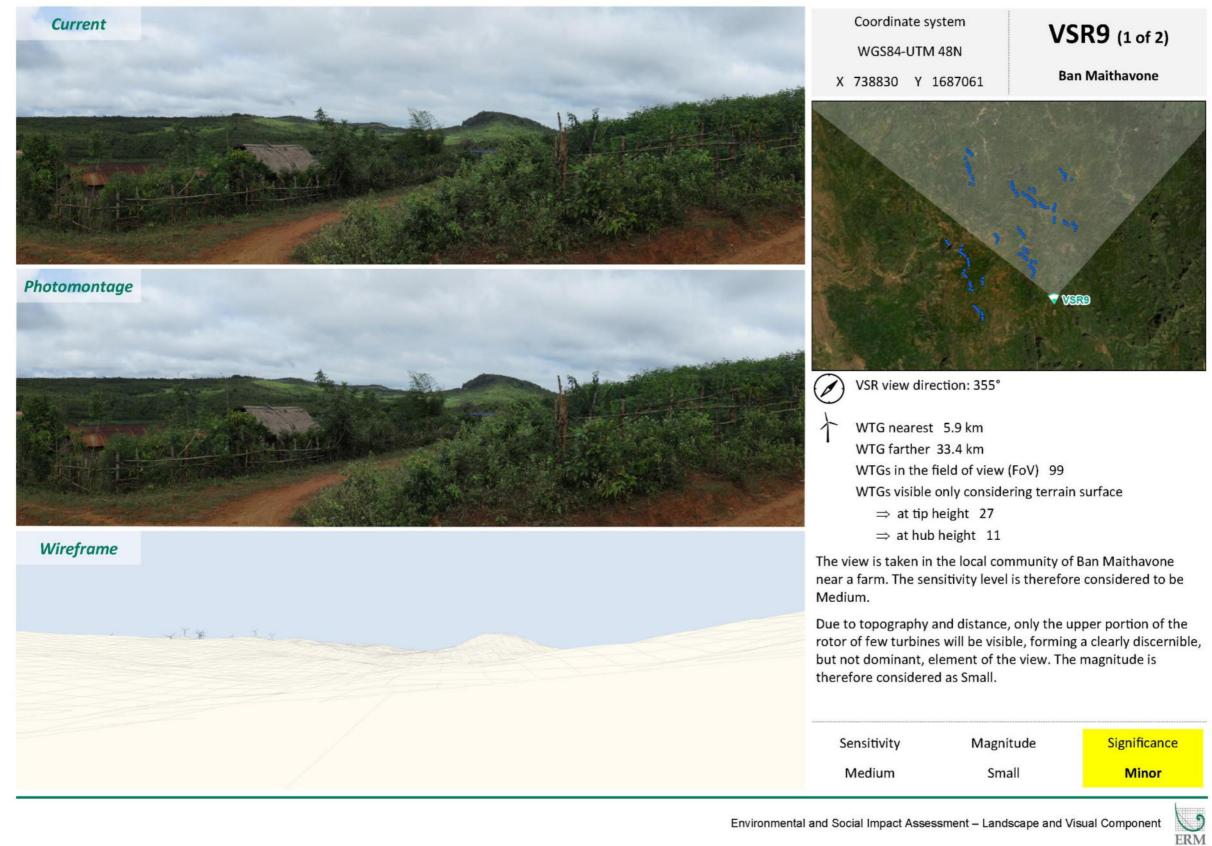
WTG nearest 6.8 km WTG farther 39.5 km WTGs in the field of view (FoV) 124 WTGs visible only considering terrain surface

 $\Rightarrow \text{ at tip height } 41$ $\Rightarrow \text{ at hub height } 29$

The view is taken along a road near the village of Ban Chalernxay in the Xanxay's district. The sensitivity level is therefore considered to be High.


Due to topography and distance, only the upper portion of the rotor of few turbines will be visible, forming a clearly discernible, but not dominant, element of the view. The magnitude is therefore considered as Small.

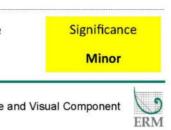
Sensitivity	Magnitu
Medium	Small


Environmental and Social Impact Assessment – Landscape and Visual Component

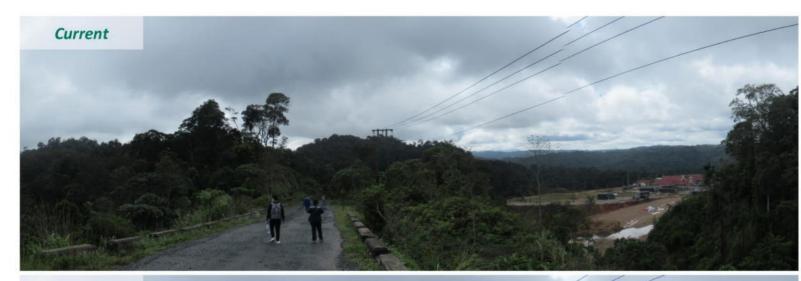
Ban Chalernxay

Figure 9-21: Photomontage for VSR9 (1)

Figure 9-22: Photomontage for VSR9 (2)

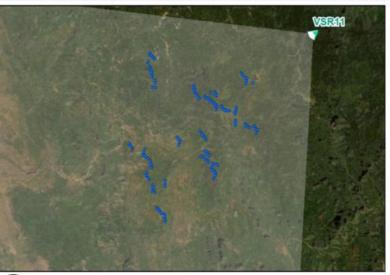

Environmental and Social Impact Assessment - Landscape and Visual Component

Medium


Ban Maithavone


Small

Figure 9-23: Photomontage for VSR11



Wireframe

Coordinate system WGS84-UTM 48N X 754164 Y 1719633

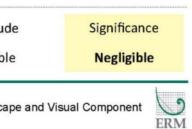
VSR view direction: 230°

1

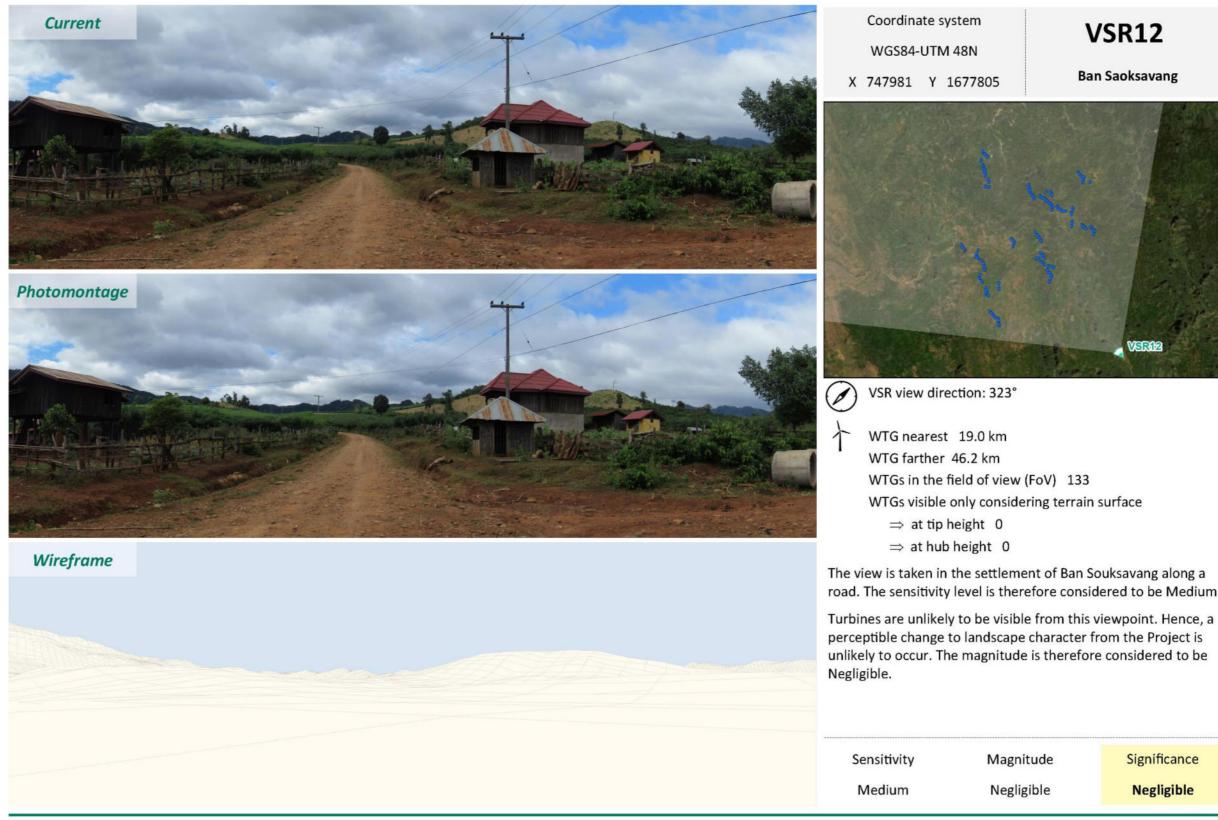
1

- WTG nearest 15.3 km WTG farther 46.9 km WTGs in the field of view (FoV) 133 WTGs visible only considering terrain surface \Rightarrow at tip height 79
 - \Rightarrow at hub height 57

The view is taken along a road near the border between Laos and Vietnam. The sensitivity level is therefore considered to be Low.


Due to topography and distance, not all wind turbines are visible at this location and do not constitute a perceptible change in landscape character. The magnitude is therefore considered Negligible.

Sensitivity	Magnitud
Low	Negligibl


Environmental and Social Impact Assessment - Landscape and Visual Component

VSR11

Boundary Laos/Vietnam

Figure 9-24: Photomontage for VSR12

Significance Magnitude Negligible Negligible Environmental and Social Impact Assessment - Landscape and Visual Component ERM

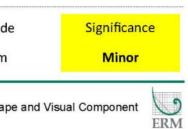
Ban Saoksavang

The view is taken in the settlement of Ban Souksavang along a road. The sensitivity level is therefore considered to be Medium.

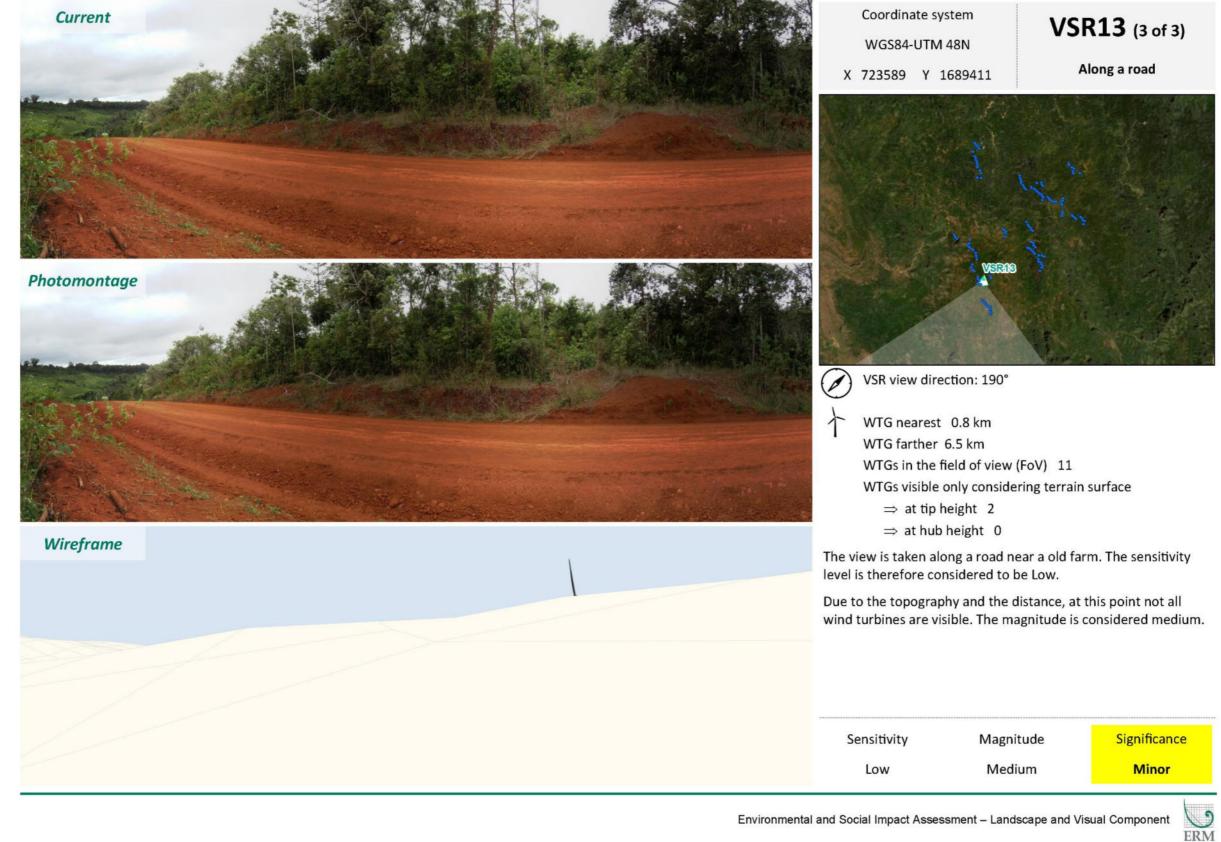
perceptible change to landscape character from the Project is unlikely to occur. The magnitude is therefore considered to be

Figure 9-25: Photomontage for VSR13 (1)

Figure 9-26: Photomontage for VSR13 (2)



Environmental and Social Impact Assessment - Landscape and Visual Component


VSR13 (2 of 3)

Along a road

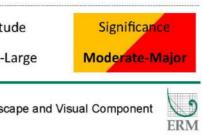

Figure 9-27: Photomontage for VSR13 (3)

Figure 9-28: Photomontage for VSR15

Figure 9-29: Photomontage for VSR16

ERM

Figure 9-30: Photomontage for VSR17 (1)



Environmental and Social Impact Assessment - Landscape and Visual Component

School

Figure 9-31: Photomontage for VSR17 (2)

Coordinate system WGS84-UTM 48N X 718596 Y 1698390

VSR view direction: 117°

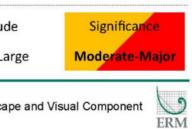
1

WTG nearest 2.8 km WTG farther 24.6 km WTGs in the field of view (FoV) 82 WTGs visible only considering terrain surface

 \Rightarrow at tip height 82

 \Rightarrow at hub height 73

The view is taken from the school in Daktiem village. The sensitivity level is therefore considered to be Medium.


The turbines are visible at a short distance affecting part of the view. The magnitude is therefore considered as Medium-Large.

Sensitivity Magnitude Medium Medium-Large

Environmental and Social Impact Assessment - Landscape and Visual Component

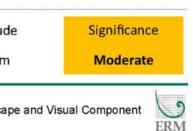
VSR17 (2 of 3)

School

Figure 9-32: Photomontage for VSR17 (3)

Figure 9-33: Photomontage for VSR18

Figure 9-34: Photomontage for VSR19 (1)



Environmental and Social Impact Assessment - Landscape and Visual Component

Dakyen



Figure 9-35: Photomontage for VSR19 (2)

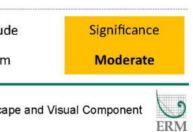
Figure 9-36: Photomontage for VSR19 (3)

Coordinate system WGS84-UTM 48N X 728863 Y 1699044

VSR view direction: 250"

- WTG nearest 0.8 km WTG farther 11.9 km WTGs in the field of view (FoV) 30 WTGs visible only considering terrain surface
 - \Rightarrow at tip height 26 \Rightarrow at hub height 20

The view is taken in the settlement of Dakyen. The sensitivity level is therefore considered to be Medium.


The closest turbine are visible clearly discernible but partially hidden by the vegetation and affecting part of the view. The magnitude is therefore considered as Medium.

Sensitivity	Magnitue
Medium	Mediun

Environmental and Social Impact Assessment - Landscape and Visual Component

Dakyen

9.3.7.3 Additional Mitigation, Management, and Monitoring Measures

Recommended Mitigation Measures - Landscape Value

In order to mitigate the landscape impacts, there are different actions that should be considered, especially during the construction phase, such as:

- Demarcate construction boundaries and minimize areas of surface disturbance;
- Where possible, locate laydown areas and construction camps in areas that are already disturbed or cleared of vegetation;
- For the construction site maintenance, conduct good housekeeping on site to avoid litter and minimize waste;
- Use existing tracks/roads for access, where possible; and
- Within the environmental management system, prepare a restoration management plan including replanting indigenous species, and landscaping and rehabilitating construction yards.

Recommended Mitigation Measures - Visual

The following identifies mitigation measures to be applied for visual impacts, including:

- Where possible, locate laydown areas and construction camps in areas that are already disturbed or cleared of vegetation;
- For the construction site maintenance, conduct good housekeeping on site to avoid litter and minimize waste;
- Minimize night lighting while guaranteeing the minimum safety level;
- Use of materials that will minimize light reflection should be used for all Project components;
- Bright patterns and obvious logos should be avoided on WTG;
- The replacement of wind turbines with visually different wind turbines can result in visual clutter, therefore wind turbines with the same or a visually similar model should be used for replacements; and
- Existing vegetation should be retained to the greatest extent possible. Vegetation should be retained along roads, and other Project infrastructure.

9.3.7.4 Residual Impact Significance

With the implementation of both the embedded control as well as the suggested additional mitigation measures, residual impact significance during construction and operation are expected to be **moderate** for landscape and **negligible** to **moderate** for visual, depending on the receptor (as provided in *Table 9-34* and *Table 9-35* respectively).

Table 9-34: Landscape Value Impacts (Construction and Operation Phase)

Significance of Impact					
Impact	Landscape value impacts during construction and operation.				
Impact Nature	Negative Positive Neutral				
	Potential impacts to landscape value would be considered to be negative				
Impact Type	Direct Indirect Induced				

Significance of Impact

	Impacts to landscape value would be direct impacts site preparation and clearance and presence of WTGs and transmission lines							
Impact	Temporary	Short-term		Long-term		Perma	Permanent	
Duration	The construction phase of the Project is expected to be completed in 30 months, whe would be considered long-term. Operational impacts are permanent.				ths, which			
Impact Extent	Local	Regio	onal			Interna	ational	
	The impact will only	/ be localized wi	thin the <i>i</i>	Area of Influ	uence	of the F	Project.	
Impact Scale	Impact scale is con	Impact scale is considered localized and small.						
Frequency	Impacts could occur during the construction and operation phase.							
Impact	Positive N	egligible	Smal	all Medium			Large	
Magnitude	Based on the characteristic above, the impact is likely to be medium.							
Receptor	Low Medium High							
Sensitivity	The value of the lar	ndscape is consi	dered to	be Mediun	n.			
Impact	Negligible	Minor		Moderate			Major	
Significance	The medium sensit	ivity and magnitu	ude are a	assessed a	s moo	derate.		
Residual Impact Magnitude	Positive	Negligible Smal		Small	Small		Medium	
Residual Magnitude	Negligible Minor Moderate Major				Major			
Significance	Upon considering the mitigation measure, the residual impact is assessed to be Mo			be Modera				

Table 9-35: Visual Impacts (Construction and Operation Phase)

Significance of Impact									
Impact	Visual impace	Visual impacts during construction and operation.							
Impact Nature	Negative		Positive			Neut	ral		
	Potential impacts	s to visual w	ould be consid	lered to be r	negative	Э			
Impact Type	Direct		Indirect			Induc	ed		
	Impacts to visual would be direct impacts site preparation and clearance and presence of WTGs and transmission lines								
Impact	Temporary	Short-te	erm	Long-tern	n		Perma	Permanent	
Duration	The construction phase of the Project is expected to be completed in 30 months, which would be considered long-term. Operational impacts are permanent.				ths, which				
Impact Extent	Local		Regional			Interna	ational		
	The impact will only be localized within the Area of Influence of the Project.								
Impact Scale	Impact scale is considered localized and small.								
Frequency	Impacts could occur during the construction and operation phase.								
Impact	Positive Negligible Small Medium Large			Large					
Magnitude	Based on the characteristic above, the impact is likely to be negligible to Large depending on the receptor								
	Low	Low Medium High							

Significance of Impact

Receptor Sensitivity	The receptors are Low to medium sensitivity.					
Impact	Negligible	Negligible Minor Moderate Major				
Significance	The moderate to ma	ajor impacts are for VSF	k, 7, 17, 18, and 19.			
Residual Impact Magnitude	Positive	Negligible Small Medium				
Residual Magnitude	Negligible	Minor	Moderate	Major		
Significance	Upon considering the mitigation measure, the residual impact is assessed to be Moderate, at worst.					

9.3.8 Impacts Associated with Shadow Flicker

Shadow flicker is "the flickering effect caused when rotating wind turbine blades periodically cast shadows through constrained openings such as the windows of neighboring properties".⁶ Its occurrence in a specific location can be modelled and assessed⁷ taking into account the relative positions of the sun throughout the year (dependent on the latitude of the site), the wind turbine layout and orientation, and the presence of sensitive receptors (e.g., inhabitants of residential buildings).

9.3.8.1 Scope of Assessment

The likelihood and duration of the flicker effect depends upon a number of factors, including:

- Direction of the property relative to the turbine;
- Turbine height and rotor diameter;
- Time of day and year;
- Distance from the turbine (the further the observer is from the turbine, the less pronounced the effect will be);
- Wind direction (that affects potential wind turbine orientation); and
- Weather conditions (presence of cloud cover, fog, and humidity reduces the occurrence of shadow flicker as the visibility itself of the turbine is reduced).

In general, shadow flicker occurs during clear sky conditions, when the sun is low on the horizon. As the angle of the sun on the horizon changes throughout the year, the locations experiencing the phenomenon changes, so specific shadow receptors can be affected in different periods.

The theoretical number of hours of shadow flicker experienced annually at a given location can be calculated using modelling packages incorporating the sun path, topographic variation over the wind farm site, and wind turbine details, such as rotor diameter and hub height.

When assessing shadow flicker impacts, the worst case and/or real case impacts are determined by:

 Worst Case Scenario: the astronomical maximum possible shadow flicker duration is defined as the shadow flicker duration which occurs when the sun is always shining during daylight hours

Page 82

⁶ <u>https://www.gov.uk/government/news/wind-turbine-shadow-flicker-study-published</u>

⁷ It should be noted that modelling methods tend to be conservative and typically result in an over-estimation of the number of hours of shadow flicker likely to be experienced at the identified receptors.

(i.e., the sky is always clear), the wind turbine is always rotating and the rotor plane is always perpendicular to the line from the WTG to the sun;

Real Case Scenario: the expected shadow flicker duration is when the average sunshine hour probabilities and wind statistics of the particular region are taken into account.

The following section briefly describes the modelling package used, as well as the input criteria for assessing the shadow flicker throughout the different scenarios identified in the introduction.

Applicable Standards

In August 2015, the World Bank Group published the Environmental, Health and Safety (EHS) Guidelines for Wind Energy. These are technical reference documents containing examples of good industry practice.

The definition adopted in the EHS guidelines states that shadow flicker occurs when the sun passes behind the wind turbine and casts a shadow. As the rotor blades rotate, shadows pass over the same point causing an effect termed shadow flicker. Shadow flicker may become a problem when potentially sensitive receptors (e.g., residential properties, workplaces, learning and/or health care spaces/facilities) are located nearby, or have a specific orientation to the wind energy facility.

Key points identified in the guidelines include:

- Potential shadow flicker issues are more likely at higher latitudes where the sun is lower in the sky and therefore shadows are longer, which extends the radius where potentially significant shadow flicker impact will be experienced.
- If it is not possible to locate the wind turbines where neighboring receptors experience no shadow flicker effects, it is recommended that the predicted duration of shadow flicker effects experienced at a sensitive receptor should not exceed 30 hours per year and 30 minutes per day on the worst affected days, based on a worst-case scenario.
- Recommended prevention and control measures to avoid significant shadow flicker impacts include siting wind turbines appropriately to avoid shadow flicker being experienced or to meet limits placed on the duration of shadow flicker occurrence, as set out in the paragraph above, or programming turbines to shut down at times when shadow flicker limits are exceeded.

Globally, several countries have identified national guidelines to evaluate and assess the potential impacts related to shadow flickering. As the shadow flickering is affected by the angle of the sun at the horizon, it is considered to be more relevant at higher latitudes, leading northern and southern countries to publish specific technical guidelines. In the relatively few cases where the real case impact is regulated, the limit value for dwellings is 8 or 10 hours per year.

Table 9-36 outlines the most relevant guidelines currently in place worldwide and that are able to inform and influence international best practice and standards.

Country	Reference	Relevant Notes
England	 Planning for Renewable Energy - A companion guide to PPS22 (Planning policy statement 22) – Office of the Deputy Prime Minister 2004 Onshore Wind Energy Planning Conditions Guidance notes – Renewables Advisory Board and BERR (Business Enterprise and Regulatory Reform) 2007 	 Shadow flicker has been proven to occur only within a distance of 10 rotor diameters from the turbines. Shadow flicker only occurs inside buildings where the flicker appears through a narrow window opening.

Table 9-36: Relevant National Standards

Country	Reference	Relevant Notes
	 UK Government Department for Communities and Local Government (March 2012) National Planning Policy Framework UK Government Department for Communities and Local Government (July 2013) Planning practice guidance for renewable and low carbon energy 	
Northern Ireland	 Best Practice Guidance to Planning Policy Statement 18 'Renewable Energy' – Northern Ireland Department of the Environment 2009 	 Shadow flicker only occurs inside buildings through narrow window openings. The potential for shadow flicker at distances greater than 10 rotor diameters is very low. It is recommended that shadow flicker at neighboring residential buildings and offices should not exceed 30 hours per year.
Ireland	 Ireland Government Department of Environment (2013) Wind Energy Development Guidelines 	 Shadow flicker only occurs inside buildings through narrow window openings. The potential for shadow flicker at distances greater than 10 rotor diameters is very low. It is recommended that shadow flicker at neighboring residential buildings and offices should not exceed 30 hours per year.
Germany	 Länderausschuss für Immissionsschutz (2002) Hinweise zur Ermittlung und Beurteilung der optischen Immissionen von Windenergieanlagen (WEA- Schattenwurf-Hinweise) (Guideline for Identification and Evaluation of the Optical Emissions of Wind Turbines) 	 Worst case scenario limited to a maximum of 30 hours per year and 30 minutes per day. Real case limited to 8 hours per day (a limitation driven by sensor equipment and if worst case limit would be exceeded).
Australia	 Environment Protection and Heritage Council (EPHC) (2010) National Wind Farm Development Guidelines 	 Worst case: 30 hours/year. No daily limit. Real case: 10 hours/year (only required if worst case exceeds 30 hours/year).
Canada	 Natural Forces Wind Inc (June 2013) Gaetz Brook Wind Farm Shadow Flicker Assessment Report 	 Worst case: 30 hours/year and 30 min/day.
USA	 National Association of Regulatory Utility Commissioners (NARUC) Grants & Research Department (January 2012) Wind Energy & Wind Park Siting and Zoning Best Practices and Guidance for States 	 Worst case: 30 hours/year and 30 min/day.
Denmark	 Danish Government – Miljøministeriet Naturstyrelsen (2015) Vejledning om planlægning for og tilladelse til opstilling af vindmøller, 19-20 	 Real case: 10 hours/year
Netherlands	 Nederlandse overheid – Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer (2017) 	 Wind turbines shall be equipped with an automatic shadow flicker control system, which stalls the turbine if shadow flicker occurs at sensitive receptors and the distance

Country	Reference	Relevant Notes
	Regeling algemene regels voor inrichtingen milieubeheer, Art. 3.12	between the turbine and the sensitive receptor is less than 12 times the rotor diameter and if on average the shadow flicker occurs more than 17 days per year for more than 20 minutes per day.
		 Receptors like office buildings are not mapped as sensitive receptors.

Currently, **Laos has not defined national legislation or guidelines to assess shadow flickering** and there are no international guidelines on standards to be followed for the real case scenario. Among the above mentioned national standards, there are a few differences in the exact implementation of the shadow flicker regulation. Some countries and jurisdictions only consider the worst case scenario, relatively few countries also consider the real case impact.

The table shows that not all countries have guidelines or regulations for assessing and limiting shadow flicker impacts. In countries lacking regulations for shadow flicker, the German guideline is often applied as best practice.

As per this consideration, this study considered the IFC guidelines as a reference, integrating the results with a real case scenario modeling in order to assess the effect raised by the inclusion of more local conditions. Based on the analysis of the different national standards, it is proposed to take into consideration the most conservative ones that place the annual limits at 8 or 10 hours (Germany, Australia, and Denmark).

Receptors

Some internationally adopted reference standards (A.D. Clarke 1991)⁸ exclude the occurrence of flickering shadows beyond a distance of 10 times the rotor size (in this case 1,710m).

This approach has been criticized recently in 2017 by ClimateXChange (Scotland's centre of expertise connecting climate change research and policy) and LUC (landuse.co.uk), and suggested that the Scottish guidance should not include a reference to 10 times the rotor diameter.

Considering the receptor distribution and the characteristics of the local landscape, in order to apply a more conservative approach, it was assumed to consider a 2 km study area to map the receptors, beyond the more standard approach suggested by A.D. Clarke.

A total of 2,513 potential shadow flicker receptors (*Figure 9-37*) were identified in a desktop study using topographical maps, aerial photographs, and on site field visits. The project is located in a forested area (*Figure 9-38*).

There are sparsely populated settlements or small communities, where the land is mainly dedicated to agricultural activities. The largest residential area is Dak Chueng in the North East area.

Page 85

www.erm.com Version: 4.2 Project No.: 0598121 Client: Impact Energy Asia Development Limited (IEAD) 19 October 2022

⁸ Clarke A.D. 1991: A case of shadow flicker / flashing: assessment and solution. Techno Policy Group, Open University. Milton Keynes, UK