

Thilawa Special Economic Zone (ZONE A) Development

Environmental Monitoring Report (Construction Phase)

Modification of Environmental Monitoring Form

Myanmar Japan Thilawa Development Limited.

September 2014

CONTENTS

- 1. Executive Summary
- 2. Summary of Monitoring Activities
- 3. Construction Progress
- 4. Monitoring Results

Appendix

- A. Water and Waste Water Monitoring Report July, 2014
- B. Air, Water and Waste Water Monitoring Report September, 2014
- C. Noise and Vibration Monitoring Report August, 2014
- D.Monthly Progress Report for June, 2014
- E. Monthly Progress Report for July, 2014
- F. Monthly Progress Report for August, 2014

1. Executive Summary

The environmental inspection and compliance monitoring program is implemented under the direction of Ministry of Environmental Conservation and Forestry with oversight by Thilawa SEZ Management Committee.

The monitoring record according to the Environment Monitoring Plan is submitted in conformity with the provision of Chapter 9.1, Table 9.1-2 and 9.2, Table 9.2-2 Content of the EIA Report of Thilawa SEZ Development Project (Zone A).

2. Summary of Monitoring Activities

a) Documentation of compliance with all Conditions;

Attached herewith is confirmation of Environmental Impact Assessment in Thilawa Special Economic Zone from Thilawa SEZ Management Committee.

b) Progress made to date on the implementation of the EMP against the submitted implementation schedule;

EMP for Pre-construction Phase was submitted on March 2014. The First implementation report during Construction Period was submitted on June 2014. The second report for Construction Period is submitted this day. Subsequent reports will be submitted on a quarterly base on at December 2014 and March 2015.

c) Difficulties encountered in implementing of the EMP and recommendations for remedying those difficulties and steps proposed to prevent or avoid similar future difficulties;

None

d) Number and type of non-compliance with the EMP and proposed remedial measures and timelines for completion of remediation;

None

e) Accidents or incidents relating to the occupational and community health and safety, and the environment:

Neither accidents nor incidents happen during this monitoring period from July 2014 to September 2014.

f) Monitoring data on environmental parameters and conditions as committed in the EMP or otherwise required.

Please refer to the attached Environmental Monitoring Form

g) Reporting data of Waste Disposal status

No.	Date	Description	No. of Loads	Remarks
1	30-June-14	Waste Disposal	1	YCDC
2	10-July-14	Waste Disposal	1	YCDC
3	11-Aug-14	Waste Disposal	1	YCDC
4	12.Aug-14	Waste Disposal	1	YCDC

^{*}Reference on Monthly Progress Report August 2014, 2.8, table 4

3. Construction Progress

Thilawa SEZ Class A Development Project, Phase 1 construction activities is submitted enclosed with monthly progress reports from contractor in Appendix A to C.

- Monthly Progress Report for June, 2014
- Monthly Progress Report for July, 2014
- Monthly Progress Report for August, 2014

4. Monitoring Result

Environmental Monitoring plan report for Construction Phase implemented according to the following table, reference on Table 4.2-2, Chapter 4, EIA report.

Monitoring Plan (Construction Phase)

Category	Item	Location	Frequency	Remark
Air Quality	No2, So2, Co, TSP, PM10	Construction site (1point)	Once/ 3month	Air, Water & Waste water Monitoring Report (September)
Water temperature, PH, DO, BOD, COD, coliform count, oil and grease, chromium		Construction site (1point) Well in the Monastery (1 point)	Once/2 month	Air, Water & Waste water Monitoring Report
Waste	Amount of solid waste Management of solid waste of construction	Construction site	Once/3month	(July, September)
Noise and Vibration	Noise and vibration level of	Preservation area such as residence around the proposed construction site (2 points)	Once/3moth (peak period)	Noise and Vibration monitoring report
Noise and Vibration	construction	Preservation site such as residence along the route for on- site vehicles (2points)	Once(peak period)	(August)
Ground Subsidence	Ground elevation Consumption of ground water	Representative (1 point)	Every week	Monthly progress
Hydrology	amount			(June,July, August)
Risk for infectious disease such as AIDS/HIV	Status of measures of infectious disease	Construction site	Once/month	Monthly progress report
Working conditions (including occupational safety)	Prehension of condition of occupational safety and health Prehension of infectious disease	Construction site	Once/ month	(June,July, August)
Accident	Existence of accident	Construction site	As occasion arise	

Thilawa Special Economic Zone CLASS A Development Project –Phase 1

Environment Monitoring Form

Environment Monitoring Form

The latest results of the below monitoring items shall be submitted to Authorities on once at Pre-construction phase and on quarterly basis at Construction Phase, and on bi-annually base at Operation Phase. The items, standards to be applied, measurement points, and frequency for each monitoring parameter are established based on the EIA Report for Thilawa Special Economic Zone Development Project (Class A). Should there be any changes to the original plan, such change shall be reviewed and evaluated by environmental expert.

(1) General

- 1) Phase of the Project
- Please mark the current phase.

□ Pre-Construction Phase

☑ Construction Phase

Operation Phase

2) Obtainment of Environmental Permits

Name of permits	Expected issuance date	Actual issuance date	Concerned authority	Remarks (Conditions, etc.)
ched approval letter:				

3) Response/Actions to Comments and Guidance from Government Authorities and the Public

Monitoring Item	Monitoring Results during Report Period	Duration of Report Period	Frequency
Number and contents of formal comments made by the public		Same timing of	
Number and contents of responses from Government agencies		submission of Monitoring Report	Upon receipt of comments/complaints

1

MYANMAR JAPAN THILAWA DEVELOPMENT LIMITED

(2) Monitoring Results

1) Ambient Air Quality - August

NO2, SO2, CO, TSP, PM10

Location	Item	Unit	Measured Value (Mean)	Measured Value (Min~Max.)	Country's Standard	Target value to be applied	Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
	NO ₂	ppm	0.0163	0.01~0.02	N/A	N/A	0.04	Once in three months	HAZSCANNER, EPAS	
	5O ₂	ppm	<0.01	0.00~0.00	N/A	N/A	0.12	Ditto	HAZSCANNER, EPAS	
Construction Area Near	со	ppm	0.0294	0.02~0.04	N/A	N/A	10	Ditto	HAZSCANNER, EPAS	
Gate 2	TSP	ppm	0,0514	0.02~0.12	N/A	N/A	0.33	Ditto	HAZSCANNER, EPAS	
	PM10	ppm	0.0229	0.02~0.03	N/A	N/A	0.12	Ditto	HAZSCANNER, EPAS	

^{*}Remark: Referred to the Japan and Thailand Standard (EIA Report, Table 6.4-1)

Complains from Residents

- Are there any complains from residents regarding air quality in this monitoring period?

Yes,
No

No

No

If yes, please describe the contents of complains and its countermeasures to fill in below the table.

Contents of Complains from Residents	Countermeasures
The state of the s	

2) (a) Water Quality - July

Measurement Point: Effluent of Wastewater

- Are there any effluents to water body in this monitoring period? □ Yes, ☑ No

If yes, please attach "Analysis Record" and fill in the items not to comply with Refereed International Standard.

MYANMAR JAPAN THILAWA DEVELOPMENT LIMITED

Location	Item	Unit	Measured Value	Country' s Standard	Target value to be applied	Referred Internation al Standard	Frequency	Method	Note (Reason of excess of the standard)*
5W-2	pH SS DO COD BOD Oil and Grease Cr Total coliforms	mg/l mg/l mg/l mg/l mg/l mg/l mg/l cfu/100ml	8.80 517 5.47 14.7 4 1.6 0.006 7x10 ²	None (Available Guideline Value determined by MOI)	5.0-9.0 Max.30 - Max. 60 Max. 20-60 Max. 5 Max. 0.5	>=4 7.5×10°	Once in two month	pH meter,HI7609829-1 pH Sensor Gravimetric method HI7609829-2,(D.O.)sensor Dichromate method Direct inoculation method APHA-AWWA-WEF Method APHA-AWWA-WEF Method AOAC Petrifilm Method	•
SW-3	pH SS DO COD BOD Oil and Grease Cr Total coliforms	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	8.17 802 6.49 23.5 10 1.9 0.026498 2.5×10°	Ditto	Ditto	Ditto	Once in two month	pH meter,HI7609829-1 pH Sensor Gravimetric method HI7609829-2,(D.O)sensor Dichromate method Direct inoculation method APHA-AWWA-WEF Method APHA-AWWA-WEF Method AOAC Petrifilm Method	
SW-4	pH SS DO COD BOD	mg/l mg/l mg/l mg/l mg/l	8.84 3601.5 6.45 21.5	Ditto	Ditto	Ditto	Once in two month	pH meter,HI7609829-1 pH Sensor Gravimetric method HI7609829-2,(D.O)sensor Dichromate method Direct inoculation method	*

MYANMAR JAPAN THILAWA DEVELOPMENT LIMITED

Location	Item	Unit	Measured Value	Country' s Standard	Target value to be applied	Referred Internation al Standard	Frequency	Method	Note (Reason of excess of the standard)*
	Oil and Grease Cr Total coliforms	mg/l mg/l cfu/100ml	9.2 0.013545 1.9×10°					APHA-AWWA-WEF Method APHA-AWWA-WEF Method AOAC Petrifilm Method	•
GW-1	pH SS DO COD BOD Oil and Grease Cr	mg/l mg/l mg/l mg/l mg/l mg/l mg/l cfu/100ml	7.49 376.3 3.59 13.8 6 ND 0.021698	N/A	N/A	5,5-9,0 50 >=4 30 15 0.1 0.04 7,5×10°	Once in two month	pH meter, H17609829-1 pH Sensor Gravimetric method H17609829-2, (D.O) sensor Dichromate method Direct inoculation method APHA-AWWA-WEF Method APHA-AWWA-WEF Method AOAC Petrifilm Method	

^{*}Remark: Referred to the Vietnam Standard (EIA Report) ,Reference to the Monitoring Report, July 2014.

(b) Water Quality - September <u>Measurement Point:</u> Effluent of Wastewater

- Are there any effluents to water body in this monitoring period? □ Yes, ☑ No

If yes, please attach "Analysis Record" and fill in the items not to comply with Refereed International Standard

Location	Item	Unit	Measured Value	Country' s Standard	Target value to be applied	Referred Internation al Standard	Frequency	Method	Note (Reason of excess of the standard) *
	рH	mg/l	6.74	None	5.0-9.0		Once in two	pH meter,H17609829-1 pH Sensor	

^{*}Remark: Total suspended solid has been exceeding the reference standard since before construction phase as reported in the result of EIA Monitoring report (Sep 2013).

MYANMAR JAPAN THILAWA DEVELOPMENT LIMITED

Location	Item	Unit	Measured Value	Country' s Standard	Target value to be applied	Referred Internation al Standard	Frequency	Method	Note (Reason of excess of the standard)
5W-2	SS	mg/l	146	(Available	Max.30		month	Gravimetric method	
	DO	mg/l	8.9	Guideline		>=4		H17609829-2,(D.O)sensor	
	COD	mg/l	13	Value	Max. 60			Dichromate method	
	BOD	mg/l	5.2	by MOI)	Max. 20-60			Direct inoculation method	
	Oil and Grease	mg/l	ND	by acti	Max. 5			APHA-AWWA-WEF Method	
	Cr	mg/1	ND		Max. 0.5			APHA-AWWA-WEF Method	
	Total coliforms	cfu/100ml	49			7.5×10³		AOAC Petrifilm Method	
SW-3	pН	mg/l	6.85					pH meter, HI7609829-1 pH Sensor	
	SS	mg/l	143					Gravimetric method	
	DO	mg/l	8.3					H17609829-2,(D.O)sensor	
	COD	mg/l	10			- T	Once in two	Dichromate method	
	BOD	mg/l	4	Ditto	Ditto	Ditto	month	Direct inoculation method	h h h
	Oil and Grease	mg/l	ND					APHA-AWWA-WEF Method	
	Cr	mg/l	ND					APHA-AWWA-WEF Method	
	Total coliforms	cfu/100ml	110					AOAC Petrifilm Method	
SW-I	pH	mg/l	7.04					pH meter,HI7609829-1 pH Sensor	
	SS	mg/l	316					Gravimetric method	
	DO	mg/l	8.5				Once in two	H17609829-2,(D.O)sensor	
	COD	mg/l	14.5	Ditto	Ditto	Ditto	month	Dichromate method	
	BOD	mg/l	5,8					Direct inoculation method	
	Oil and Grease	mg/l	7.4					APHA-AWWA-WEF Method	1000

5

MYANMAR JAPAN THILAWA DEVELOPMENT LIMITED

Location	Item	Unit	Measured Value	Country' s Standard	Target value to be applied	Referred Internation al Standard	Frequency	Method	Note (Reason of excess of the standard)
-	Cr Total coliforms	mg/l cfu/100ml	ND 330					APHA-AWWA-WEF Method AOAC Petrifilm Method	
5W-6	pH 55 DO COD BOD Oil and Grease Cr	mg/l mg/l mg/l mg/l mg/l mg/l mg/l cfu/100ml	7.65 177 8.7 10.5 4.2 0 0	Ditto	Ditto	Ditto	Once in two month	pH meter,HI7609829-1 pH Sensor Gravimetric method HI7609829-2,(D.O.)sensor Dichromate method Direct inoculation method APHA-AWWA-WEF Method APHA-AWWA-WEF Method AOAC Petrifilm Method	•
GW-1	pH SS DO COD BOD Oil and Grease Cr	mg/l mg/l mg/l mg/l mg/l mg/l mg/l cfu/100ml	7.89 28 9.2 9 3.6 ND ND	N/A	N/A	5.5-9.0 50 >=4 30 15 0.1 0.04 7.5×10	Once in two month	pH meter,HI7609829-1 pH Sensor Gravimetric method HI7609829-2,(D.O)sensor Dichromate method Direct inoculation method APHA-AWWA-WEF Method APHA-AWWA-WEF Method AOAC Petrifilm Method	

^{*}Remark: Referred to the Vietnam Standard (EIA Report) ,Reference to the Monitoring Report, Sep 2014.

^{*}Remark: Total suspended solid has been exceeding the reference standard since before construction phase as reported in the result of EIA Monitoring report (Sep 2013).

^{*}Remark: Oil& Grease has exceeded target standard in SW 4. It may be because of diesel or petrol oil from some vehicles nearby the channel outside of Thilawa SEZ.

3) Soil Contamination (only operation phase)

Situations environmental report from tenants

□ Yes, 🗹 No - Are there any serious issues regarding soil contamination in this monitoring period?

If yes, please describe the contents of complains and its countermeasures to fill in below the table.

Contents of Issues on Soil Contamination	Countermeasures

4) Noise - August

Location	Item	Unit	Measured Value (Mean)	Measured Value (Min~Max)	Country's Standard	Target value to be applied	Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
	Leq (day)	dB(A)	58	52-64	-	ECON.	75	Once (peak	Sound Level	
TNV-1	Leg(eve)	ceq (city) do(1)	57-60	N/A	N/A	70	period)	Meter	_	

^{*}Remark: Referred to the Japan Standard (EIA Report). Reference to the Noise and Vibration Report (August).

Location	Item	Unit	Measured Value (Mean)	Measured Value (Min~Max)	Country's Standard	Target value to be applied	Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
-0.000	Leq (day)	dB(A)	48	37-62	Total Control	75		Once in 3	Sound Level	
TNV-2	Leg(eve)	dB(A)	52	51-53	N/A	60	Singapore	months	Meter	

7

MYANMAR JAPAN THILAWA DEVELOPMENT LIMITED

						_				
	Leg(night)	dB(A)	46	34-53		55				
TNV-3	Leg(day)	dB(A)	52	33-62	<u> </u>	75		Once in 3	Sound level	
	Leg(eve)	Leg(eve)	dB(A)	49	47-52	N/A	60	Singapore	months	Meter
	Leg(night)	dB(A)	45	31-52		55		II(UIIIII)	1.0000.000	

^{*}Remark: Referred to the Singapore Target Noise Standard (EIA Report), Reference to the Noise and Vibration Report (August).

Complains from Residents

- Are there any complains from residents regarding noise in this monitoring period? $\,\underline{\square}\,$ Yes, $\,\underline{\square}\,$ No

If yes, please describe the contents of complains and its countermeasures to fill in below the table.

Contents of Complains from Residents	Countermeasures
Contents of Conf.	

5) Solid Waste

Measurement Point: Construction Site (Construction Phase), Storage for Sludge (Operation Phase)

- Are there any wastes of sludge in this monitoring period?

Yes,

No

If yes, please report the amount of sludge and fill in the results of solid waste management Activities.

Item	Generated from	Unit	Value	Solid Waste Management Activities
mount of Cluden				- L-100

6) Ground Subsidence and Hydrology-June

Duration (Week)	Water Con	sumption	Ground Level		Frequency	Note
	Quantity	Unit	Quantity	Unit	riequency	
05-June-2014	35.0	m3/week	+7.000	m		
12-June-2014	60.0	m3/week	+7.000	m	Once a week	
19-June-2014	53.0	m3/week	+7,000	m		
26-June-2014	51.0	m3/week	+7,000	m		

MYANMAR JAPAN THILAWA DEVELOPMENT LIMITED

*Reference to the Monthly Progress Report July 2014.

Ground Subsidence and Hydrology-July

Duration (Week)	Water Cor	sumption	Ground Level		T	Note
	Quantity	Unit	Quantity	Unit	Frequency	Note
03-July-2014	67.0	m3/week	+6.999	m		
10-July-2014	46.0	m3/week	+6.999	m		
17-July-2014	83.0	m3/week	+7,000	m	Once a week	
24-July-2014	93.0	m3/week	+7.000	m		
31-July-2014	121.0	m3/week	+7.000	m		

^{*}Reference to the Monthly Progress Report July 2014.

Ground Subsidence and Hydrology-August

Duration (Week)	Water Cor	sumption	Ground Level			Note
	Quantity	Unit	Quantity	Unit	Frequency	Note
07-Aug-2014	120.0	m3/week	+7.000	m		
14-Aug-2014	153.0	m3/week	+7.000	m	Once a week	
21-Aug-2014	175.0	m3/week	+7,000	m	[
28-Aug-2014	182.0	m3/week	+7,000	m		

^{*}Reference to the Monthly Progress Report August 2014.

- 7) Offensive Odor (only operation phase) Not Applicable at Construction Phase Report
- Complains from Residents
- Are there any complains from residents regarding offensive odor in this monitoring period? <u>• Yes</u>, <u>• No</u> If yes, please describe the contents of complains and its countermeasures to fill in below the table.

9

MYANMAR JAPAN THILAWA DEVELOPMENT LIMITED

Countermeasures

Situations environmental report from tenants Not Applicable at Construction Phase Report

- Are there any serious issues regarding offensive odor in this monitoring period? <u>— Yes, — No</u>

If yes, please describe the contents of complains and its countermeasures to fill in below the table.

Contents of Issues on Soil Contamination	Countermeasures		

8) Infectious disease, Working Environment, Accident

Information from contractor (construction phase) or tenants (operation phase)

- Are there any incidents regarding Infectious disease, Working Environment, Accident in this monitoring period?

If yes, please describe the contents of complains and its countermeasures to fill in below the table.

Contents of Incidents	Countermeasures

Note: If emergency incidents are occurred, the information shall be reported to the relevant organizations and authorities immediately.

End of Document

Thilawa Special Economic Zone CLASS A Development Project –Phase 1

Appendix

Air, Water and Waste Water Monitoring Report September, 2014

MONITORING REPORT FOR CLASS A THILAWA SPECIAL ECONOMIC ZONE

(September 2014)

Resource & Environment Myanmar Ltd.

B-702/401 Delta Plaza Building, Shwegondaing Rd., Bahan, Yangon. MYANMAR Tel: (959) 7301 3448; Fax: (951) 552901

www.enviromyanmar.net

Contents

		Page
1.	Introduction	1
2.	Description of the air quality monitoring station	4
3.	Water Quality Monitoring	7

RESULT OF AIR AND WATER QUALITY MONITORING

1. Introduction

This is the third report for Air and water quality monitoring at Thilawa Special Economic Zone (TSEZ). This report sets out the environmental monitoring required throughout the construction of the Thilawa Special Economic Zone. The terms of reference for monitoring are shown in Table 1. The location of air and water monitoring points are shown in Figure 1 and Table 1.

Terms of Reference for Monitoring

Table 1 Terms of reference for air and water quality monitoring at TSEZ.

Description	items	Frequency	Location
Air Quality	TSP / PM10	1 time / 3months	At construction site (1point)
Waste water quality	pH, SS, DO, BOD, COD, Coliform count, oil and grease, chromium	1time / 2months	At the creek upstream and downstream which is crossed the car road (4points)
Underground water	pH, SS, DO, BOD, COD, Coliform count, oil and grease, chromium	1time /2months	Tube well inside of Moegyoswan Monastery (1 point)

Monitoring Instrument for Air and water

No.	Instrument	Brand & Model	Measurement/ Parameter	
1.	Environmental Perimeter Air Monitoring System	HAZ- SCANNER EPAS	CO, NO ₂ , NO, SO ₂ , PM (2.5), PM (10), VOCS, Relative Humidity, Temperature, Wind Speed, Wind Direction	HAZ SCANNER TOURS OF THE PARTY
3	Alpha Bottle (Water Sampler)	Wildlife Supply Company® Indonesia		

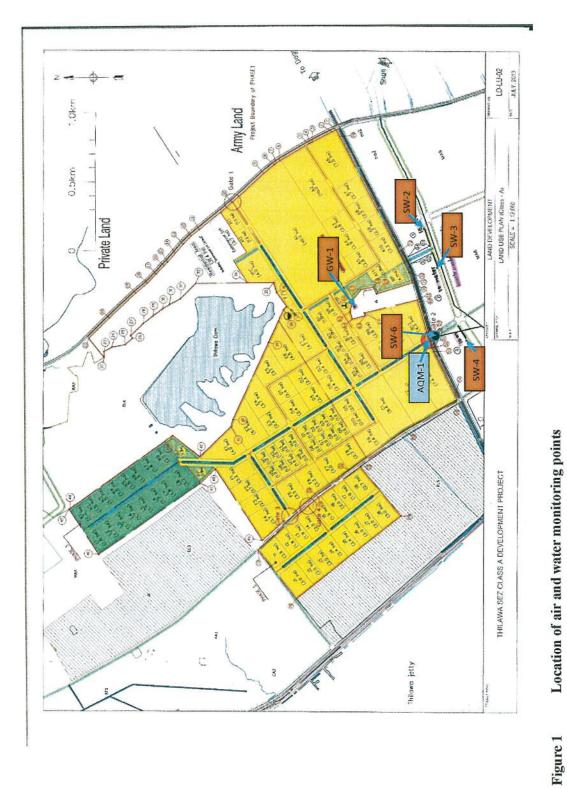

So far, there is no environmental standard for ambient air quality in Republic of Myanmar, the survey result was evaluated by comparing with the standards in neighbouring country like Thailand, Vietnam, Japan and IFC (Table 2). The consultant will apply the air quality standard in Thailand, Vietnam, Japan and IFC as shown in Table 1.As for TSP and PM10, the standards in Thailand were applied and the others were compared with the standards in Japan.

Table 2 Survey Parameters for Air Quality

ltem	Averaging neriod	Japan	Thailand	Vietnam	IFC
5O ₂	10 min	+	-	-	0,5mg/m³
	1hour	0.1ppm	0.3ppm	0.35mg/m ³	0.125mg/m³(InterimTarget-1)
				i	0.05mg/m³(InterImTarget-2)
				1	0.02mg/m³(Guideline)
	245	0.040000	0.12ppm	0.125 mg/m³	-
	24hours	0.04ppm	<u> </u>	0.125 (1)2/11 0.05 mg/m ³	•
NO.	1 year 1hour	 :	0.17ppm	0.05(112710	0.2mg/m ³
NO ₂	24hours	0.04-0.06ppm	0.17 pp.m		<u> </u>
	1 year	0.04-0.00ppm	0.03ppm	······································	0.04mg/m ³
NOx	1hour	_	-	0.2mg/m ³	
NOX	24hours	_		0.04mg/m ³	
CO	1hour		30ppm	30mg/m³	•
CO	Shours	20ppm	-	10mg/m³	<u> </u>
	24hours	10ppm	9ppm	-	
TSP	1hour	-	- 1	0.3mg/m³	-
	24hours		0.33mg/m ³	0.2mg/m ³	
	1 year	7	0.10mg/m ³	0.14mg/m ³	<u> </u>
PM ₁₀	24hours	-	0.12mg/m ³	0.15mg/m ³	0.15mg/m ⁸ (InterimTarget-1)
r 101 ₁₀					0.10mg/m ³ (InterimTarget-2)
					0.07mg/m³(interimTarget-3)
			0.05mg/m³	0.05mg/m³	0.07mg/m³(InterimTarget-1)
	1 year	1	0.051118/111	0.03(118)111	0.05mg/m³(InterimTarget-2)
		i	ļ		<u>-</u> -
	-				0.03mg/m³(InterimTarget-3)
SPM	1hour	0.2mg/m ³	-		-
	24hours	0.1mg/m ³	-		
PM _{2.5}	24hours	0.035mg/m³	0.05mg/m ³	-	0.075mg/m³(InterimTarget-1)
		1	i		0.05mg/m³(InterimTarget-2)
		1			0.0375mg/m³(InterimTarget-3)
	1 year	0.015mg/m ³	0.025mg/m ^a	-	0.035mg/m³(InterimTarget-1)
	2,000	0.022	3.0		0.025mg/m³(InterimTarget-2)
		[]			0.015mg/m³(InterimTarget-3)
Ozone	1hour	 	0.10ppm	0.3mg/m ³	-
020116	8hourdaily	· ·	0.07ppm	0.2mg/m³	0.16mg/m³(InterimTarget-1)
	J.,				0.1mg/m³(Guideline)
	mavimum 1 year		0.04ppm	0.14mg/m³	
L	1 year 1hour	0.06ppm	0.04ppm		-
Ox Pb	24hours	0.00ppin		0.0015mg/m ³	
PD	1 month		0.0015mg/m ³		
	1 year	 	0.00±3/11g/11	0.0005mg/m³	<u> </u>

Source: National Air Quality Standard in Japan (CircularNo.25,1973, originally), Ministry of Environment, Japan Notificationsof National Environmental Board No.10, 24,28,33, and 36, Ministry of Natural Resources and Environment, Thailand

National Ambient Air Quality Standard (TCVN5973:2005), Ministry of Science and Technology in Vietnam Environmental, Health, and Safety Guidelines, General EHS Guidelines, IFC, 2007

Location of air and water monitoring points

2. Description of the air quality monitoring station

Survey Period

Air quality survey was conducted once per 3 months as per specification provided by the client. The monitoring period was about 7 consecutive days. The sampling duration for each day is as shown in Table 3. Air quality monitoring location is shown in Figure 2.

Table 3. Sampling Duration for Air Quality Survey

Day	Third Survey (August 25 th – September 1 st)
Day 1	Aug. 25 th - 26 th
Day 2	Aug. 26 th - 27 th
Day 3	Aug. 27 th - 28 th
Day 4	Aug. 28 th - 29 th
Day 5	Aug. 29 th –30 th
Day 6	Aug. 30 th – 31 st
Day 7	Aug. 31 st – 1 st September

Source: Source: Resource & Environment Myanmar Co., Ltd.

Survey Method

Sampling and analysis of ambient air pollutants was conducted by referring to the recommendation of United States Environmental Protection Agency (U.S. EPA). The Haz-Scanner Environmental Perimeter Air Station (EPAS) was used to collect Ambient Air Monitoring data. The characteristics of the instrument are:

- Portable direct reading
- Configure up to 14 simultaneous air measurements including U.S. EPA criteria air pollutants The basic specification of the instrument are as follow.

Instrument	Brand	Model	Measurement/ Parameter
Environmental	HAZ-SCANNER	EPAS	CO, NO ₂ , NO, SO ₂ , PM
Perimeter Air			(2.5), PM (10), VOCS,
Monitoring System			Relative Humidity,
			Temperature, Wind
			Speed, Wind Direction

Figure 2 Location and site condition of air quality monitoring station.

Table 4. Sampling and Analysis Method for Air Quality

No.	Parameter	Analysis Method	
1	Sulfur dioxide (SO ₂)	On site reading	
2	Carbon monoxide (CO)	On site reading	
3	Nitrogen dioxides (NO ₂)	On site reading	
4	Total suspended particle (TSP)	On site reading	
5 -	Particle matter 10 (PM10)	On site reading	

Source: Resource & Environment Myanmar Co., Ltd.

Target Ambient Air Quality Level

Parameters	Averaging Period	Value
SO ₂	24 hours	0.12 ppm ¹
СО	24 hours	9 ppm ¹
NO ₂	24 hours	0.04 – 0.06 ppm ²
TSP	24 hours	0.33 mg/m3 ¹
PM10	24 hours	0.12g/m3 ¹

¹ Thailand Standard

Survey Result

One day average concentration of CO, NO₂, TSP, PM 10 and SO₂ are shown in Table 5. Hourly average data are presented in Appendix -1.

Table 5 one day average concentration of CO, NO2, TSP, PM10 and SO2

	Date	Time	СО	NO2	TSP	PM10	SO2
	D.M.Y	hours	ppm	ppm	mg/m3	mg/m3	ppm
1	25th-26th Aug, 2014	24	0.03	0.02	0.03	0.02	< 0.01
2	26th-27th Aug, 2014	24	0.02	0.02	0.03	0.02	< 0.01
3	27th-28th Aug, 2014	24	0.02	0.02	0.03	0.02	< 0.01
4	28th-29th Aug, 2014	24	0.04	0.02	0.09	0.02	< 0.01
5	29th-30th Aug, 2014	24	0.04	0.02	0.12	0.02	< 0.01
6	30th-31st Aug, 2014	24	0.02	0.01	0.02	0.02	< 0.01
7	31st Aug-1st Sep, 2014	24	0.04	0.01	0.04	0.03	< 0.01
Maximum		24	0.04	0.02	0.12	0.03	0.00
Average		24	0.0294	0.0163	0.0514	0.0229	< 0.01
Minimum		24	0.02	0.01	0.02	0.02	0.00
Target Value		24	10	< 0.06	< 0.33	< 0.12	< 0.04

Japan Japan Thailand Japan

Source: Resource & Environment Myanmar Co., Ltd

² Japan Standard

Concentration level of all parameters are within the standard in this month.

3. Water Quality Monitoring

Methodology

Sampling and preservation method

Water samples were taken by Alpha horizontal water sampler and collected in sterilized sample containers. All sampling was in strict accordance with recognized standard procedures. The parameters pH, temperature, dissolved oxygen (DO), electrical conductivity (EC), were measured at each site concurrently with sample collection. All samples were kept in iced boxes and were transported to the laboratory and stored at 2-4 °C refrigerators.

Table 7 Field Equipment for Water Quality Survey

No.	Equipment	Manufacturer	Originate Country	Model
1	pH meter	HANNA	USA	HI7609829-1 pH Sensor
2	DO meter	HANNA	USA	HI7609829-2
3	Digital Water Velocity Meter	Global Water Flow Probe	USA	FP 211
4	Alpha Bottle (Water Sampler)	Wildlife Supply Company®	Indonesia	-

Table 8 Container and Preservation Method for Water Samples

No	Parameter	Container	Preservation
1	Oil and Grease	1000 ml glass bottle	Sulfuric acid, Refrigerate
2	COD	500 ml plastic bottle	Sulfuric acid, Refrigerate
3	BOD ₅	1,800 mi piastic bottle	Refrigerate
4	Heavy metals	500 ml plastic bottle	HNO ₃ Refrigerate
5	Bacteria	200 ml glass bottle (Sterilize)	Refrigerate
6	Others	1,800 ml polyethylene bottle	Refrigerate

Test method

The following table provides the test method for water quality.

No	!tem	Analysis method			
1	рН	Hi7609829-1 pH Sensor			
2	Suspended Solids	Gravimetric method			
3	Dissolved Oxygen (DO)	HI7609829-2 Galvanic dissolved oxygen (D.O) sensor			
4	Chemical oxygen demand(COD)	Dichromate method			
5	Biochemical oxygen demand(BOD ₅₎	Direct inoculation method			
6	Oil & Grease	APHA-AWWA-WEF Method			
7	Chromium (Cr) (mg/i)	APHA-AWWA-WEF Method			
8	E. coliform, Fecal coliforms, total coliforms	AOAC Petrifilm Method			

Monitoring Result (August)

No	Item	GW-I	SW-2	SW-3	SW-4	SW-6	Standard*	Unit
1	pH	7.89	6.74	6.85	7.04	7.65	5-9	
2	Suspended Solids	28	146	143	316	177	Max, 30	mg/l
3	Dissolved Oxygen (DO)	9.2	8.9	8.3	8.5	8.7	-	mg/l
4	Chemical oxygen demand(COD)	9	13	10	14.5	10.5	Max. 60	mg/l
5	Biochemical oxygen demand(BOD ₅₎	3.6	5.2	4	5.8	4,2	Max. 20-60	mg/l
6	Oil & Grease	ND	ND	ND	7.4	ND	Max. 5	mg/l
7	Chromium (Cr) (mg/l)	ND	ND	ND	ND	ND	Max. 0.5	mg/l
8	E. coliform	<1.1	12	>23	12	16	-	MPN/100ml
	Fecal coliforms	<1.1	49	79	330	130	<u> </u>	MPN/100ml
	Total coliforms	1.1	49	110	330	130		MPN/100ml

^{*} Waste water quality standard, Ministry of Industry.

Shaded area shows higher than Standard.

Result of the Water Quality Monitoring (August)

The result of August water quality monitoring was shown in above table. The monitoring results in GW1 (Tube well in Monastery) are under the limit (lower than the standard) of MOI standard. The suspended solids were high in all locations except GW1 (Tube well in Monastery) compared to the MOI standard and the rest parameters were lower than the standard. Oil and grease content is detected in SW4 station only and it is higher than the MOI standard. The location of SW4 is the downstream channel and no trace of oil and grease content in all upstream stations (SW-2, SW-3 and SW-6). The possible reason for oil and grease content higher than the standard is release of diesel or petrol oil from some vehicles nearby the channel.

Detailed of laboratory result and hourly air quality data are provided in appendix.

Appendix 1

Hourly Air Quality Result

Client: Myanmar Japan Thilawa Development Ltd.

Issued Date: 25-8-2014

Analysis Report

Project Name: Thilawa Special Economic Zone (TSEZ) Sample Designated as: Ambient Air Quality Analysis

Sampling Location : AQM 1 (August _TSEZ)

Date	Time	co	NO2	TSP	PM10_	SO2
D.M.Y	H.M.S	ppb	ppb	μg/m3	μ g/m3	ppb
25.8.2014	12:00-13:00	0.00	67.50	1.00	2.20	0.00
25.8.2014	13:00-14:00	3.92	76.43	3.98	3.43	0.00
25.8.2014	14:00-15:00	10.53	21.57	11.45	15.78	0.00
25.8.2014	15:00-16:00	56.32	18.15	1.30	2.10	0.00
25.8.2014	16:00-17:00	91.13	26.68	4.30	5.28	11.35
25.8.2014	17:00-18:00	56.03	22.83	13.47	9.78	0.00
25.8.2014	18:00-19:00	59.90	19.03	66.87	44.30	0.00
25.8.2014	19:00-20:00	80.23	13.85	50.72	22.40	2.00
25.8.2014	20:00-21:00	80.42	13.42	47.18	34.27	0.00
25.8.2014	21:00-22:00	17.83	12.79	35.92	22.15	0.00
25.8.2014	22:00-23:00	12.34	5.24	31.56	24.24	0.00
25.8.2014	23:00-00:00	0.00	2.00	27.91	25.00	0.00
26.8.2014	00:00-01:00	2.02	11.28	15.63	12.75	0.00
26.8.2014	01:00-02:00	2.68	19.22	30.08	20.10	0.00
26.8.2014	02:00-03:00	4.33	15.17	11.72	11.95	10.00
26.8.2014	03:00-04:00	0.00	14.13	8.65	12.95	0.00
26.8.2014	04:00-05:00	9.06	12.94	21.47	29.24	0.00
26.8.2014	05:00-06:00	8.98	11.18	54.38	30.57	0.00
26.8.2014	06:00-07:00	45.43	12.23	45.83	32.28	0.00
26.8.2014	07:00-08:00	173.78	28.08	21.52	9.47	0.00
26.8.2014	08:00-09:00	55.12	35.52	19.38	10.93	0.00
26.8.2014		0.47	41.60	28.88	12.60	0.00
26.8.2014		0.00	31.62	48.47	28.98	0.00
26.8.2014		0.00	31.93	54.90	49.60	0.00
MAX	24hours	173.7833	76.4333	66.8667	49.6000	11.3500
MIN	24hours	0.0000	2.0000	1.0000	2.1000	0.0000
Average	24hours	32.1052	23.5168	27.3575	19.6818	0.9729

		ppm	ppm	mg/m3	mg/m3	ppm
MAX	24hours	0.1738	0.0764	0.0669	0.0496	0.0114
MIN	24hours	0.0000	0.0020	0.0010	0.0021	0.0000
Average	24hours	0.0321	0.0235	0.0274	0.0197	0.0010

Client: Myanmar Japan Thilawa Development Ltd.

Issued Date: 25-8-2014

Analysis Report

Project Name: Thilawa Special Economic Zone (TSEZ) Sample Designated as: Ambient Air Quality Analysis

Sampling Location : AQM 1 (August _TSEZ)

Date	Time	co	NO2	TSP	PM10	SO2
D.M.Y	H.M.S	ppb	ppb	μg/m3	μ g/m3	ppb
26.8.2014	12:00-13:00	0.00	16.35	29.07	22.75	0.00
26.8.2014	13:00-14:00	0.00	17.75	34.02	31.75	12.50
26.8.2014	14:00-15:00	1.15	15.60	49.40	40.87	0.00
26.8.2014	15:00-16:00	0.33	13.10	27.52	20.12	0.00
26.8.2014	16:00-17:00	26.77	23.32	37.68	23.82	5.00
26.8.2014	17:00-18:00	2.72	16.17	75.85	67.03	6.45
26.8.2014	18:00-19:00	5.70	5.43	56.73	41.85	0.00
26.8.2014	19:00-20:00	14.52	5.68	57.03	46.30	0.00
26.8.2014	20:00-21:00	5.35	10.05	27.23	20.20	0.00
26.8.2014	21:00-22:00	0.21	15.77	37.23	29.40	0.00
26.8.2014	22:00-23:00	0.08	6.20	38.24	20.16	0.00
26.8.2014	23:00-00:00	4.18	13.92	18.03	18.00	0.00
27.8.2014	00:00-01:00	1.10	14.03	7.26	7.23	0.00
27.8.2014	01:00-02:00	0.90	8.28	7.02	11.53	0.00
27.8.2014	02:00-03:00	6.70	14.42	13.82	11.38	0.15
27.8.2014	03:00-04:00	0.83	14.35	13.50	12.42	0.00
27.8.2014	04:00-05:00	0.00	12.33	5.42	6.42	0.00
27.8.2014	05:00-06:00	0.00	11.77	1.31	2.00	0.00
27.8.2014	06:00-07:00	0.00	2.05	8.05	6.35	0.00
27.8.2014	07:00-08:00	59.63	8.27	59.30	25.07	0.00
27.8.2014	08:00-09:00	146.82	20.55	88.62	45.25	0.00
27.8.2014	09:00-10:00	79.83	23.25	53.98	24.92	21.00
27.8.2014	10:00-11:00	18.95	44.92	13.08	10.38	0.00
27.8.2014	11:00-12:00	0.00	38.32	45.27	31.70	0.00
MAX	24hours	146.8167	44.9167	88.6167	67.0333	21.0000
MIN	24hours	0.0000	2.0500	1.3077	2.0000	0.0000
Average	24hours	15.6574	15.4945	33.5270	24.0373	1.8792

		ppm	ppm	mg/m3	mg/m3	ppm
MAX	24hours	0.1468	0.0449	0.0886	0.0670	0.0210
MIN	24hours	0.0000	0.0021	0.0013	0.0020	0.0000
Average	24hours	0.0157	0.0155	0.0335	0.0240	0.0019

Client: Myanmar Japan Thilawa Development Ltd.

Issued Date: 25-8-2014

Analysis Report

Project Name: Thilawa Special Economic Zone (TSEZ) Sample Designated as: Ambient Air Quality Analysis

Sampling Location : AQM 1 (August _TSEZ)

Date	Time	co	NO2	TSP	PM10	SO2
D.M.Y	H.M.S	ppb	ppb	μ g/m3	μ g/m3	ppb_
27.8.2014	12:00-13:00	0.00	21.35	22.55	23.55	0.25
27.8.2014	13:00-14:00	10.07	12.42	19.28	13.93	0.10
27.8.2014	14:00-15:00	0.00	14.87	17.48	19.58	0.00
27.8.2014	15:00-16:00	0.00	17.22	50.85	40.45	0.00
27.8.2014	16:00-17:00	0.00	8.47	177.33	104.72	0.00
27.8.2014	17:00-18:00	6.32	3.18	85.07	51.13	0.00
27.8.2014	18:00-19:00	0.45	6.88	30.52	29.53	11.56
27.8.2014	19:00-20:00	28.10	10.58	72.92	41.15	0.00
27.8.2014	20:00-21:00	8.32	16.77	17.32	13.00	0.00
27.8.2014	21:00-22:00	2.95	17.43	9.20	11.42	0.00
27.8.2014	22:00-23:00	2.75	19.62	19.45	15.85	0.00
27.8.2014	23:00-00:00	1.30	17.18	14.72	13.47	2.00
28.8.2014	00:00-01:00	7.05	16.48	15.82	20.00	1.00
28.8.2014	01:00-02:00	0.00	14.17	17.60	23.05	0.15
28.8.2014	02:00-03:00	0.00	14.17	14.98	15.07	0.00
28.8.2014	03:00-04:00	0.00	18.72	31.34	24:10	0.00
28.8.2014	04:00-05:00	0.00	15.50	1.80	13.70	0.00
28.8.2014	05:00-06:00	0.00	6.88	4.18	5.75	0.00
28.8.2014	06:00-07:00	60.87	12.02	32.88	23.80	0.00
28.8.2014	07:00-08:00	100.60	19.03	18.70	17.95	0.00
28.8.2014	08:00-09:00	128.70	17.05	6.22	4.57	25.45
28.8.2014	09:00-10:00	15.33	29.10	30.57	29.87	0.00
28.8.2014	 	16.57	16.28	3.53	3.12	0.00
28.8.2014		0.00	26.22	31.97	23.77	0.00
MAX	24hours	128.7000	29.1000	177.3333	104.7167	25.4500
MIN	24hours	0.0000	3.1833	1.8000	3.1167	0.0000
Average	24hours	16.2236	15.4830	31.0949	24.2717	1.6879

		ppm	ppm	mg/m3	mg/m3	ppm
MAX	24hours	0.1287	0.0291	0.1773	0.1047	0.0255
MIN	24hours	0.0000	0.0032	0.0018	0.0031	0.0000
Average	24hours	0.0162	0.0155	0.0311	0.0243	0.0017

Client: Myanmar Japan Thilawa Development Ltd.

Issued Date: 25-8-2014

Analysis Report

Project Name: Thilawa Special Economic Zone (TSEZ) Sample Designated as: Ambient Air Quality Analysis

Sampling Location: AQM 1 (August _TSEZ)

Date	Time	co	NO2	TSP	PM10	SO2
D.M.Y	H.M.S	ppb	ppb	μ g/m3	μ g/m3	ppb
28.8.2014	12:00-13:00	22,52	15.15	12.43	5.98	0.00
28.8.2014	13:00-14:00	13.47	18.13	28.43	18.10	0.00
28.8.2014	14:00-15:00	0.00	27.05	45.25	32.82	0.00
28.8.2014	15:00-16:00	0.00	15.47	35.33	21,10	26.00
28.8.2014	16:00-17:00	0.00	27.42	59.42	39.55	0.00
28.8.2014	17:00-18:00	0.00	17.85	24.58	14.40	2.55
28.8.2014	18:00-19:00	0.00	23.60	63.22	41.80	0.00
28.8.2014	19:00-20:00	0.00	4.55	37.12	25.72	0.00
28.8.2014	20:00-21:00	6.22	12.30	47.50	39.02	1.50
28.8.2014	21:00-22:00	678.57	14.80	48.58	45.12	0.00
28.8.2014	22:00-23:00	76.18	13.87	899.62	47.20	0.00
28.8.2014	23:00-00:00	8.83	16.30	711.35	18.93	11.55
29.8.2014	00:00-01:00	1.88	17.97	1.00	31.42	0.00
29.8.2014	01:00-02:00	0.00	17.02	1.00	24.78	0.00
29.8.2014	02:00-03:00	1.17	18.13	1.00	17.58	0.00
29.8.2014	03:00-04:00	0.00	18.67	1.00	18.98	2.00
29.8.2014	04:00-05:00	0.00	17.35	1.00	16.57	0.00
29.8.2014	05:00-06:00	0.00	14.54	1.00	13.92	0.00
29.8.2014	06:00-07:00	0.00	3.80	1.00	3.00	0.00
29.8.2014	07:00-08:00	0.28	4.45	4.18	2.18	2.15
29.8.2014	08:00-09:00	5.32	22.03	13.17	2.52	0.00
29.8.2014	09:00-10:00	18.73	21.18	1.00	4.43	0.00
29.8.2014	10:00-11:00	7.89	25.39	1.00	9.79	0.00
29.8.2014	11:00-12:00	1.12	15.95	59.56	16.73	0.11
MAX	24hours	678.5667	27.4167	899.6167	47.2000	26.0000
MIN	24hours	0.0000	3.8000	1.0000	2.1833	0.0000
Average	24hours	35.0910	16.7900	87.4477	21.3185	1.9108

		ppm	ppm	mg/m3	mg/m3	ppm
MAX	24hours	0.6786	0.0274	0.8996	0.0472	0.0260
MIN	24hours	0.0000	0.0038	0.0010	0.0022	0.0000
Average	24hours	0.0351	0.0168	0.0874	0.0213	0.0019

Client: Myanmar Japan Thilawa Development Ltd.

Issued Date: 25-8-2014

Analysis Report

Project Name: Thilawa Special Economic Zone (TSEZ) Sample Designated as: Ambient Air Quality Analysis

Sampling Location: AQM 1 (August _TSEZ)

Date	Time	co	NO2	TSP	PM10	SO2
D.M.Y	H.M.S	ppb	ppb	μ g/m3	μ g/m3	ppb
29.8.2014	12:00-13:00	0.00	13.92	1.00	8.85	2.40
29.8.2014	13:00-14:00	0.00	18.02	3.43	9.78	0.14
29.8.2014	14:00-15:00	0.00	20.55	110.78	18.48	0.00
29.8.2014	15:00-16:00	0.00	18.42	111.30	15.87	2.00
29.8.2014	16:00-17:00	0.00	17.20	125.63	31.83	0.00
29.8.2014	17:00-18:00	0.00	18.33	167.87	22.83	0.00
29.8.2014	18:00-19:00	21.32	16.12	71.00	44.70	0.00
29.8.2014	19:00-20:00	2.92	14.37	1.00	44.12	0.00
29.8.2014	20:00-21:00	0.00	12.28	1.00	40.22	0.00
29.8.2014	21:00-22:00	0.28	12.20	1.00	29.08	0.00
29.8.2014	22:00-23:00	0.00	14.33	1.00	23.08	0.00
29.8.2014	23:00-00:00	0.00	17.42	1.00	40.65	18.25
30.8.2014	00:00-01:00	17.83	5.77	35.00	20.05	0.00
30.8.2014	01:00-02:00	87.75	10.77	7.12	18.72	0.00
30.8.2014	02:00-03:00	175.32	14.03	1.00	15.92	0.00
30.8.2014	03:00-04:00	222.56	12.32	1.00	15.32	0.00
30.8.2014	04:00-05:00	201.13	14.00	22.20	15.40	0.00
30.8.2014	05:00-06:00	189.34	18.00	42.34	11.23	11.85
30.8.2014	06:00-07:00	50.00	23.00	64.00	30.60	0.00
30.8.2014	07:00-08:00	0.00	38.68	182.84	2.36	0.00
30.8.2014	08:00-09:00	0.37	30.82	98.38	3.88	0.00
30.8.2014	09:00-10:00	0.00	16.45	692.85	7.00	3.00
30.8.2014		22.53	14.18	1105.13	13.50	0.00
30.8.2014		31.20	14.40	39.08	9.90	0.00
MAX	24hours	222.5588	38.6800	1105.1333	44.7000	18.2500
MIN	24hours	0.0000	5.7667	1.0000	2.3600	0.0000
Average	24hours	42.6061	16.8988	120.2901	20.5575	1.5683

		ppm	ppm	mg/m3	mg/m3	ppm
MAX	24hours	0.2226	0.0387	1.1051	0.0447	0.0183
MIN	24hours	0.0000	0.0058	0.0010	0.0024	0.0000
Average	24hours	0.0426	0.0169	0.1203	0.0206	0.0016

Appendix 2

Laboratory Result

Ministry of Agriculture and Irrigation
Irrigation Department
Survey and Investigation Branch
Soil Survey Section
Soil and Water Analytical Laboratory
ANALYTICAL DATA FOR WATER SAMPLE

PROJECT NAME; Water Quality Monitoring in Thilawa SEZ

SAMPLE DESIGNATED AS; Water Quality

SAMPLING LOCATION; Near Thanlyin & Thilawa

SAMPLING DATE; 14.8.2014 ISSUED DATE ; 22.8.2014 SAMPLING BY ; Client

			Resul	ts (mg/l)	
Sr No	Station	BOD_5	COD	Chromium	Remark
1	GW-1	3.6	9.0	0.000000	
2	SW-2	5.2	13.0	0.000000	
3	SW-3	4	10	0.000000	
4	SW-4	5.8	14.5	0.000000	
5	SW-6	4.2	10.5	0.000000	
iter Standard	Highest desirable level	6 mg/l	10 mg/l	-	,
Drinking Water Standard (WHO)	Maximum permissible lcvel	in the state of th	n at maximum e pollution	0.01 mg/l	

Remark: Analytical mentions are ppb unit by AAS. But this unit is changed as mg/L

according to the standard of WHO unit for Cr.

(May Aye Lwin) Staff Officer (Laboratory)
Soil and Water Laboratory
Survey and Investigation Branch.
Infigation Department

RESULT OF AIR AND WATER QUALITY MONITORING

1. Introduction

This is the third report for Air and water quality monitoring at Thilawa Special Economic Zone (TSEZ). This report sets out the environmental monitoring required throughout the construction of the Thilawa Special Economic Zone. The terms of reference for monitoring are shown in Table 1. The location of air and water monitoring points are shown in Figure 1 and Table 1.

Terms of Reference for Monitoring

Table 1 Terms of reference for air and water quality monitoring at TSEZ.

Description	items	Frequency	Location
Air Quality	TSP / PM10	1 time / 3months	At construction site (1point)
Waste water quality	pH, SS, DO, BOD, COD, Coliform count, oil and grease, chromium	1time / 2months	At the creek upstream and downstream which is crossed the car road (4points)
Underground water	pH, SS, DO, BOD, COD, Coliform count, oil and grease, chromium	1time /2months	Tube well inside of Moegyoswan Monastery (1 point)

Monitoring Instrument for Air and water

No.	Instrument	Brand &	Measurement/	
NO.	instrument	Model	Parameter	
1.	Environmental Perimeter Air Monitoring System	HAZ- SCANNER EPAS	CO, NO ₂ , NO, SO ₂ , PM (2.5), PM (10), VOCS, Relative Humidity, Temperature, Wind Speed, Wind Direction	JAZ SCANNER WINDS
3	Alpha Bottle (Water Sampler)	Wildlife Supply Company® Indonesia		

So far, there is no environmental standard for ambient air quality in Republic of Myanmar, the survey result was evaluated by comparing with the standards in neighbouring country like Thailand, Vietnam, Japan and IFC (Table 2). The consultant will apply the air quality standard in Thailand, Vietnam, Japan and IFC as shown in Table 1.As for TSP and PM10, the standards in Thailand were applied and the others were compared with the standards in Japan.

Table 2 Survey Parameters for Air Quality

Item	Averaging	Japan	Thailand	Vietnam	IFC
502	10 min			-	0.Smg/m³
301	1hour	0.1ppm	0.3ppm	0.35mg/m³	0.125mg/m³{interimTarget-1} 0.05mg/m³(InterimTarget-2) 0.02mg/m³(Guideline)
	24hours	0.04ppm	0.12ppm	0.125 mg/m ³	<u> </u>
	1 year	-		0.05mg/m³	-
NO ₂	1hour		0.17ppm	-	0.2mg/m ³
1102	24hours	0.04-0.06ppm			-
	1 year	-	0.03ppm	-	0.04mg/m ³
NOx	1hour	-		0.2mg/m ³	
	24hours		·-	0.04mg/m ³	
CO	1hour		30ppm	30mg/m ³	<u> </u>
	8hours	20ppm		10mg/m³	
	24hours	10ppm	9ppm	·	<u> </u>
TSP	1hour_		-	0.3mg/m³	<u>-</u>
	24hours	-	0.33mg/m³	0.2mg/m ³	<u> </u>
	1 year		0.10mg/m ³	0.14mg/m ³	
PM ₁₀	24hours	-	0.12mg/m ⁵	0.15mg/m ³	0.15mg/m³(InterimTarget-1) 0.10mg/m³(InterimTarget-2) 0.07mg/m³(InterimTarget-3)
	1 year	•	0.05mg/m ³	0.05mg/m ³	0.07mg/m³(InterimTarget-1) 0.05mg/m³(InterimTarget-2) 0.03mg/m³(InterimTarget-3)
SPM	1hour	0.2mg/m³_	-	-	-
	24hours	0.1mg/m ³	-	-	
PM _{2.5}	24hours	0.035mg/m ³	0.05mg/m ³	<u>-</u>	0.075mg/m³(InterimTarget-1) 0.05mg/m³(InterimTarget-2) 0.0375mg/m³(InterimTarget-3)
	1 year	0.015mg/m³	0.025mg/m³	- -	0.035mg/m³(InterimTarget-1) 0.025mg/m³(InterimTarget-2) 0.015mg/m³(InterimTarget-3)
Ozone	1hour	-	0.10ppm_	0.3mg/m ³	
	8hourdaily		0.07ppm	0.2mg/m³	0.16mg/m ⁵ (InterimTarget-1) 0.1mg/m ³ (Guideline)
	1 year		0.04ppm	0.14mg/m ³	
Ох	1hour	0.06ppm	-	-	-
Pb	24hours	- 0.00ppm	_	0.0015mg/m ³	
, FU	1 month		0.0015mg/m³		
l	1 y <u>ear</u>			0.0005mg/m ³	ictor of Environment Janan

Source: National Air Quality Standard in Japan (CircularNo.25,1973, originally), Ministry of Environment, Japan Notificationsof National Environmental Board No.10, 24,28,33, and 36, Ministry of Natural Resources and Environment, Thailand

National Ambient Air Quality Standard (TCVN5973:2005), Ministry of Science and Technology in Vietnam Environmental, Health, and Safety Guidelines, General EHS Guidelines, IFC, 2007

Client: Myanmar Japan Thilawa Development Ltd.

Issued Date: 25-8-2014

Analysis Report

Project Name : Thilawa Special Economic Zone (TSEZ) Sample Designated as : Ambient Air Quality Analysis

Sampling Location: AQM 1 (August _TSEZ)

Date	Time	СО	NO2	TSP	PM10	SO2
D.M.Y	H.M.S	ppb	ppb	μ g/m3	μ g/m3	ppb
30.8.2014	12:00-13:00	90.50	14.60	7.48	17.30	0.00
30.8.2014	13:00-14:00	119.27	13.28	1.00	31.95	24.00
30.8.2014	14:00-15:00	0.00	13.15	12.67	48.17	0.00
30.8.2014	15:00-16:00	0.00	15.93	105.73	69.15	0.90
30.8.2014	16:00-17:00	0.00	18.55	55.07	48.80	0.00
30.8.2014	17:00-18:00	0.00	13.58	32.83	19.42	0.00
30.8.2014	18:00-19:00	0.00	13.05	29.98	18.48	31.60
30.8.2014	19:00-20:00	0.00	14.88	16.02	17.20	0.00
30.8.2014	20:00-21:00	0.00	5.90	3.75	3.70	0.00
30.8.2014	21:00-22:00	0.00	17.43	22.73	27.88	0.00
30.8.2014	22:00-23:00	0.00	12.79	9.29	14.98	0.00
30.8.2014	23:00-00:00	0.00	9.23	24.10	10.05	0.00
31.8.2014	00:00-01:00	0.00	7.18	5.37	4.25	0.00
31.8.2014	01:00-02:00	1.72	8.78	2.10	6.53	2.00
31.8.2014	02:00-03:00	0.00	9.82	16.58	12.68	0.00
31.8.2014	03:00-04:00	0.00	9.62	14.07	10.93	0.00
31.8.2014	04:00-05:00	0.00	10.68	11.08	12.10	0.00
31.8.2014	05:00-06:00	0.00	8.82	9.56	11.27	4.00
31.8.2014	06:00-07:00	0.00	8.59	7.07	7.78	0.00
31.8.2014	07:00-08:00	8.22	7.03	14.95	15.53	0.00
31.8.2014	08:00-09:00	168.32	26.25	61.50	46.45	0.00
31.8.2014	09:00-10:00	168.32	26.25	61.50	46.45	6.00
31.8.2014	10:00-11:00	0.00	17.75	26.12	28.43	0.00
31.8.2014	11:00-12:00	18.82	11.25	19.13	15.98	0.30
MAX	24hours	168.3167	26.2500	105.7333	69.1500	31.6000
MIN	24hours	0.0000	5.9000	1.0000	3.7000	0.0000
Average	24hours	23.9646	13.1005	23.7371	22.7282	2.8667

		ppm	ppm	mg/m3	mg/m3	ppm
MAX	24hours	0.1683	0.0263	0.1057	0.0692	0.0316
MIN	24hours	0.0000	0.0059	0.0010	0.0037	0.0000
Average	24hours	0.0240	0.0131	0.0237	0.0227	0.0029

Client: Myanmar Japan Thilawa Development Ltd.

Issued Date: 25-8-2014

Analysis Report

Project Name: Thilawa Special Economic Zone (TSEZ) Sample Designated as: Ambient Air Quality Analysis

Sampling Location: AQM 1 (August _TSEZ)

Date	Time	co	NO2	TSP	PM10	SO2
D.M.Y	H.M.S	ppb	ppb	μ g/m3	μ g/m3	ppb
31.8.2014	12:00-13:00	152.77	14.90	66.37	32.75	2.00
31.8.2014	13:00-14:00	82.50	22.35	42.58	33.42	0.00
31.8.2014	14:00-15:00	0.00	13.65	50.85	31.17	0.00
31.8.2014	15:00-16:00	0.00	17.75	60.37	49.92	0.00
31.8.2014	16:00-17:00	0.00	16.87	55.70	35.87	0.00
31.8.2014	17:00-18:00	0.00	13.38	23.87	20.80	0.00
31.8.2014	18:00-19:00	2.17	5.87	2,45	4.13	29.45
31.8.2014	19:00-20:00	28.63	14.08	17.18	11.27	0.00
31.8.2014	20:00-21:00	20.28	9.10	39.95	25.90	0.00
31.8.2014	21:00-22:00	12.93	10.70	38.53	23.00	0.00
31.8.2014	22:00-23:00	0.00	10.28	43.77	28.75	31.50
31.8.2014	23:00-00:00	0.00	9.75	73.90	50.88	0.00
1.9.2014	00:00-01:00	0.00	8.18	36.72	21.97	0.00
1.9.2014	01:00-02:00	0.00	11.48	10.13	17.75	0.00
1.9.2014	02:00-03:00	0.00	16.17	17.03	31.55	0.00
1.9.2014	03:00-04:00	0.00	10.08	5.52	12.55	14.00
1.9.2014	04:00-05:00	0.00	8.68	8.67	9.75	3.70
1.9.2014	05:00-06:00	0.35	12.90	29.58	32.12	0.00
1.9.2014	06:00-07:00	0.00	11.90	77.67	88.17	5.00
1.9.2014	07:00-08:00	26.78	6.88	25.00	19.00	0.00
1.9.2014	08:00-09:00	130.45	13.30	15.22	11.13	0.00
1,9.2014	09:00-10:00	206.55	14.28	46.92	31.67	0.65
1.9.2014	10:00-11:00	148.10	13.87	51.23	27.25	0.00
1.9.2014	11:00-12:00	148.00	14.28	38.03	20.73	0.00
MAX	24hours	206.5500	22.3500	77.6667	88.1667	31.5000
MIN	24hours	0.0000	5.8667	2.4500	4.1333	0.0000
Average	24hours	39.9799	12.5292	36.5514	27.9785	3.5958

		ppm	ppm	mg/m3	mg/m3	ppm
MAX	24hours	0.2066	0.0224	0.0777	0.0882	0.0315
MIN	24hours	0.0000	0.0059	0.0025	0.0041	0.0000
Average	24hours	0.0400	0.0125	0.0366	0.0280	0.0036

Report No. : 2014-00939 / 001-1 (Page 1 of 1) Issued date : September 4, 2014

CLIENT CONTACT : RESOURCE AND ENVIRONMENT MYANMAR CO., LTD.

ADDRESS

: Ms. Pwint Pwint: B702 Delta Plaza, Shwegondaing Rd., Bahan, Yangon, Myanmar

Tel. +959-73013448

Fax. +951-552901

E-mail: pwint@enviromyanmar.net

Analysis Report

PROJECT NAME

: Water Quality Monitoring in Thilawa SEZ

SAMPLE DESIGNATED AS: Water Quality

SAMPLING DATE: August 14, 2014

SAMPLING LOCATION : Thilawa, Myanmar

SAMPLING BY : Client

	Units	L00*	Results					
Parameters	Unites	LUG	GW-1	SW-2	SW-3	SW-4	SW-6	
Total Coliform Bacteria	MPN/100mL	-	1.1	49	110	330	130	
Fecal Coliform Bacteria	MPN/100mL	-	< 1.1	49	79	330	130	
E.Coli	MPN/100mL	-	< 1.1	12	> 23	12	16	

Remark:

- Analysis Methods followed to the Standard Methods for the Examination of Water and Wastewater endorsed by American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF).
- LOQ = Limit of Quantitation

(Siriporn Imwilaiwan)

License ID : ว-010-ค-1793

(Thepson Yommana)

License ID : ว-010-ฅ-333

SGS (THAILAND) LIMITED

TY/Client/VV/Ws

WARNING: The sample(s) to which the findings recorded herein (the 'Findings') relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

ANALYSIS REPORT

ORIGINAL

Job Ref: 5873/2014 Date: 22.08.2014 Page 1 of 1

Client Name

RESOURCE AND ENVIRONMENT CO., LTD

B-702 Delta Plaza, Shwegondaing Rd, Bahan Township,

Yangon, Myanmar

Project Name

Water Quality Monitoring in Thilawa SEZ (Near Thanlyin & Thilawa)

Sample Brought By :

Client

Sample Received Date :

18.08.2014

Analysed Date

21.08.2014

			Results (mg/l)			
Stations	Commodity Name	Lab Code	Total Suspended Solid	Oil & Grease		
Method	-	-	APHA 2540 D	APHA 5520 B		
GW -1	Ground Water	151/14	28	ND		
SW-2	Surface Water	152/14	146	ND		
SW-3	Surface Water	153/14	143	ND		
SW-4	Surface Water	154/14	316	7.4		
SW-6	Surface Water	155/14	177	ND		
-	Detection Limit	2	0.2			

End Of Report

SGS (Myanmar) Limited

Nu Nu Yi) Manager

WARNING. The sample(s) to which the singlings recorded herein (the "Findings") relate was/were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The I indings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company excepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted "Titis document is issued by the Company under its General Conditions of Service printed excelled or available on request and accessible at <a href="https://document.originals.origina

Unless otherwise stated the results shown in this test report refer only to the sample (a) tested and such sample (a) are retained for 7 days (in case of penshable sems) and 30 days for all other samples. The samples from regulatory bodies are to be retained as specified. This document cannot be reproduced except in full, without prior written approval.

Thilawa Special Economic Zone CLASS A Development Project –Phase 1

Appendix

Water and Waste Water Monitoring Report

July, 2014

MONITORING REPORT FOR CLASS A THILAWA SPECIAL ECONOMIC ZONE

(JULY 2014)

Resource & Environment Myanmar Ltd.

B-702/401 Delta Plaza Building, Shwegondaing Rd., Bahan, Yangon. MYANMAR Tel: (959) 7301 3448; Fax: (951) 552901

www.enviromyanmar.net

RESULT OF WATER QUALITY MONITORING

1. Introduction

Water sample were collected on 9th June 2012 for water quality monitoring at Thilawa Special Economic Zone (TSEZ). This report sets out the environmental monitoring required throughout the construction of the Thilawa Special Economic Zone. The terms of reference for monitoring are shown in Table 1. The location of air and water monitoring points are shown in Figure 1 and Table 1.

Terms of Reference for Monitoring

Table 1 Terms of reference for air and water quality monitoring at TSEZ.

Description	items	Frequency	Location
Air Quality	TSP / PM10	1 time / 3months	At construction site (1point)
Waste water quality	pH, SS, DO, BOD, COD, Coliform count, oil and grease, chromium	1time / 2months	At the creek upstream and downstream which is crossed the car road (3points)
Underground water	pH, SS, DO, BOD, COD, Coliform count, oil and grease, chromium	1time /2months	Tube well, at inside of Moegyoswan Monastery (1 point)

Monitoring Instrument for Air and water

No.	Instrument	Brand & Model	Measurement/ Parameter	
1.	Environmental Perimeter Air Monitoring System	HAZ- SCANNER EPAS	CO, NO ₂ , NO, SO ₂ , PM (2.5), PM (10), VOCS, Relative Humidity, Temperature, Wind Speed, Wind Direction	FAZ SCANNER INDUSTRIAL CONTROL OF THE PARTY
3	Alpha Bottle (Water Sampler)	Wildlife Supply Company® Indonesia		

So far, there is no environmental standard for ambient air quality in Republic of Myanmar, the survey result was evaluated by comparing with the standards in neighbouring country like Thailand, Vietnam, Japan and IFC (Table 2). The consultant will apply the air quality standard in Thailand, Vietnam, Japan and IFC as shown in Table 1.As for TSP and PM10, the standards in Thailand were applied and the others were compared with the standards in Japan.

Table 2 Survey Parameters for Air Quality

ltem	Averaging period	Japan	Thailand	Vietnam	1FC
SO ₂	10 min			-	0.5mg/m ³
302	1hour	0.1ppm	0.3ppm	0.35mg/m ³	0.125mg/m³(interimTarget-1)
	1				0.05mg/m³(InterimTarget-2)
	i i	į]	0.02mg/m³(Guideline)
	<u> </u>				0.02(fig/fit (Odidesine)
	24hours	0.04ppm	0.12ppm	0.125 mg/m ⁵	<u> </u>
	1 year			0.05mg/m ³	3
NO₂	1hour		0.17ppm	-	0,2mg/m ³
	24hours	0.04-0.06ppm			
	1 year		0.03ppm	1	0.04mg/m³
NOx	1hour			0.2mg/m ³	
	24hours			0.04mg/m³	<u> </u>
CO	1hour		30ppm	30mg/m³	•
	8hours	20ppm		10mg/m³	
	24hours	10ppm	9ppm	0.3mg/m³	
TSP	1hour			0.3mg/m ³	
	24hours	-	0.33mg/m³	0.211g/m ³	
	1 year		0.10mg/m ³	0.15mg/m ³	0.15mg/m ⁸ (InterimTarget-1)
PM ₁₀	24hours	-	0.12mg/m³	0.12Hill\$\((1)	• •
			1		0.10mg/m³(InterimTarget-2)
		i			0.07mg/m³(InterimTarget-3)
	1 year		0.05mg/m ³	0.05mg/m ³	0.07mg/m³(InterimTarget-1)
	1 2,00	1			0.05mg/m³(InterimTarget-2)
					0.03mg/m³(InterimTarget-3)
					0.03trig/fit (listerintranget-3)
SPM	1hour_	0.2mg/m³	-		
	24hours	0.1mg/m ³			
PM _{2.5}	24hours	0.035mg/m ³	0.05mg/m³	•	0.075mg/m³(InterimTarget-1)
	1				0.05mg/m³(InterimTarget-2)
		}			0.0375mg/m³(InterimTarget-3)
	<u> </u>		2 222 - 4 - 3		0.035mg/m³(InterimTarget-1)
	1 year	0.015mg/m ²	0.025mg/m ⁸	-	
					0.025mg/m³(InterimTarget-2)
		1			0.015mg/m³(InterimTarget-3)
Ozone	1hour		0.10ppm	0.3mg/m³	-
Atone	8hourdaily	 	0.07ppm	0.2mg/m ³	0.16mg/m³(interimTarget-1)
	bilodidany			42	0.1mg/m³(Guideline)
	. mavimum	<u> _,</u>			O.Emg/III (Galdeline)
	1 year		0.04ppm	0.14mg/m ³	
Ох	1hour	0.06ppm			- · · · · · · · · · · · · · · · · · · ·
Pb	24hours	-		0.0015mg/m ³	
	1 month		0.0015mg/m ³		<u></u> -
1	1 year	T .		0.0005mg/m ³	·

Source: National Air Quality Standard in Japan (CircularNo.25,1973, originally), Ministry of Environment, Japan NotificationsofNationalEnvironmentalBoardNo.10, 24,28,33, and 36, Ministry of Natural Resources and Environment, Thailand

National Ambient Air Quality Standard (TCVN5973:2005), Ministry of Science and Technology in Vietnam Environmental, Health, and Safety Guidelines, General EHS Guidelines, IFC, 2007

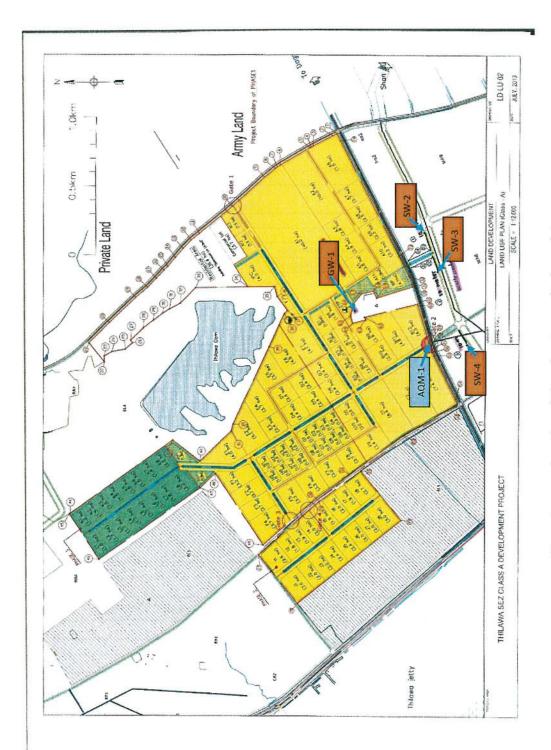


Figure 1 Location of air and water monitoring points

2. Water Quality Monitoring

Methodology

Sampling and preservation method

Water samples were taken by Alpha horizontal water sampler and collected in sterilized sample containers. All sampling was in strict accordance with recognized standard procedures. The parameters pH, temperature, dissolved oxygen (DO), electrical conductivity (EC), were measured at each site concurrently with sample collection. All samples were kept in iced boxes and were transported to the laboratory and stored at 2-4 °C refrigerators.

Table 1 Field Equipment for Water Quality Survey

No.	Equipment	Manufacturer	Originate Country	Model
1	pH meter	HANNA	USA	HI7609829-1 pH Sensor
2	DO meter	HANNA	USA	HI7609829-2
3	Digital Water Velocity Meter	Global Water Flow Probe	USA	FP 211
4	Alpha Bottle (Water Sampler)	Wildlife Supply Company	Indonesia	

Table 2 Container and Preservation Method for Water Samples

No	Parameter	Container	Preservation	
1	Oil and Grease	1000 ml glass bottle	Sulfuric acid, Refrigerate	
2	COD	500 ml plastic bottle	Sulfuric acid, Refrigerate	
3	BODs	1,800 ml plastic bottle	Refrigerate	
4	Heavy metals	500 ml plastic bottle	HNO₃ Refrigerate	
5	Bacteria	200 ml glass bottle (Sterilize)	Refrigerate	
6	Others	1,800 ml polyethylene bottle	Refrigerate	

Test method

The following table provides the test method for water quality.

No	Item	Analysis method
1	рН	HI7609829-1 pH Sensor
2	Suspended Solids	Gravimetric method
3	Dissolved Oxygen (DO)	HI7609829-2 Galvanic dissolved oxygen (D.O) sensor
4	Chemical oxygen demand(COD)	Dichromate method
5	Biochemical oxygen demand(BOD ₅₎	Direct inoculation method
6	Oil & Grease	APHA-AWWA-WEF Method
7	Chromium (Cr) (mg/l)	APHA-AWWA-WEF Method
8	E. coliform, Fecal coliforms, total coliforms	AOAC Petrifilm Method

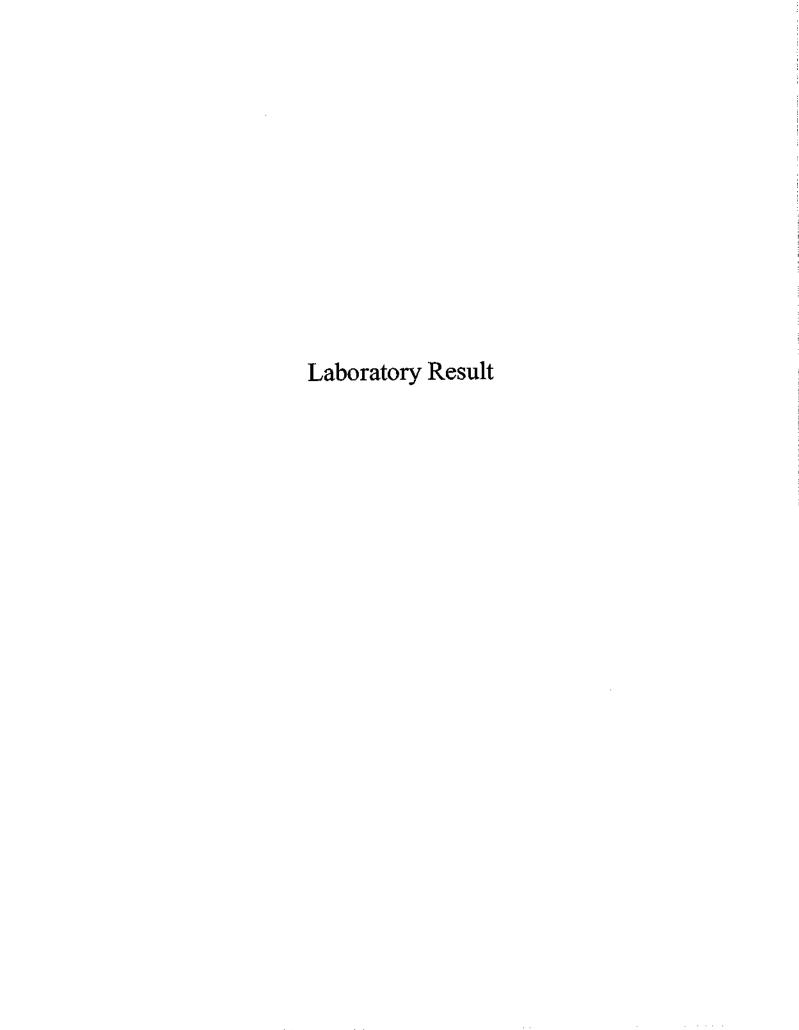
Monitoring Result (June)

Samples Collected Date - 9 June 2014

No	ltem	GW-1	SW-2	SW-3	SW-4	Standard*	Unit
1	pH	7.49	8.80	8.17	8.84	5-9	
2	Suspended Solids	376.3	517	802	3601.5	Max. 30	mg/l
3	Dissolved Oxygen (DO)	3.59	5.47	6.49	6.45	-	mg/l
4	Chemical oxygen demand(COD)	13.8	14.7	23.5	21.5	Max. 60	mg/l
5	Biochemical oxygen demand(BOD ₅₎	6	4	10	5	Max. 20-60	mg/l
6	Oil & Grease	ND	1.6	1.9	9.2	Max. 5	mg/l
7	Chromium (Cr) (mg/l)	0.021698	0.005955	0.026498	0.013545	Max. 0.5	mg/l
8	E. coliform	0	1x 10 ²	8x 10 ²	1x 10 ²	-	cfu/100ml
	Fecal coliforms	0	6x 10 ²	1.7x10 ³	1.8x10 ³	-	cfu/100ml
	Total coliforms	0	7x 10 ²	2.5x10 ³	1.9x10 ³	-	cfu/100ml

^{*} Waste water quality standard, Ministry of Industry.

Shaded area shows higher than Standard.


Result of the Water Quality Monitoring (August)

The result of August water quality monitoring was shown in above table. According to the laboratory analysis, suspended solids concentration of all sampling stations are higher than the standard. The possible reasons is the increasing of insoluble particulate matter during run off or discharging that can be generated from the some construction activities and direct discharge of waste water disposal from the upstream area. Oil and grease content in SW4 station is higher than the MOI standard. The location of SW4 is the downstream channel and oil and grease content in all upstream stations (SW-2 and SW-3). The possible reason for oil and grease content higher than the standard is release of diesel or petrol oil from some vehicles nearby the channel.

Compared with the previous monitoring result the following things are noted.

- 1. DO is decreased compared to the previous results.
- 2. BOD and COD are increased compared to the previous results.

Detailed of laboratory results are provided in appendix.

THE REPUBLIC OF THE UNION OF MYANMAR MINISTRY OF LIVESTOCK, FISHERIES AND RURAL DEVELOPMENT DEPARTMENT OF FISHERIES FISH INSPECTION AND QUALITY CONTROL DIVISION

YANGON, MYANMAR ANALYTICAL LABORATORY SECTION

Test Report for Microbiological Analysis

Name of Project : Water Quality Monitoring in Thilawa SEZ (June)

Name of Company: Resource and Environment Myanmar Co., Ltd.

Date of Received : 23.6.2014

Date of Analysis : 23.6.2014

Test Method : AOAC Petrifilm Method

No	Date of Analysis	Detail of Samples (Water)	Total Coliforms cfu/100ml	Fecal Coliforms cfu/100ml	E.coli cfu/100ml	Remarks
1	23.6.14	GW -1 Ground Water 9.6.14	0	0	0	
2	23.6.14	SW-2 surface Water 9.6.14	7x10 ²	6x10 ²	1x10²	
3	23.6.14	SW-3 surface Water 9.6.14	2.5 x10 ³	1.7x10 ³	8x10 ²	
4	23.6.14	SW-4 surface Water 9.6.14	1.9 x10 ³	1.8x10 ³	1 x10 ²	

Reference: The International Commission on Microbiological Specification for foods (ICMSF,1986), 98/93 EC, Guidelines for drinking water quality WHO 1997 (2nd Edition).

Analyzed by:

Than Than Myint Micro Lab

Evaluated by:

Dr.Su Myo Thwe Ph.D Japan TM, Head of Micro Lab Approved by

B.Sc (Chemistry)
Assistant Director
Analytical Laboratory Section
Department of Fisheries

Remarks: This result is responsible for the sample in the lab.

ANALYSIS REPORT

ORIGINAL

Job Ref: 4512/2014 Date: 13.06.2014

Page 1 of 1

Client Name

RESOURCE AND ENVIRONMENT CO., LTD

B-702 Delta Plaza, Shwegondaing Rd, Bahan Township,

Yangon, Myanmar

Project Name

Water Quality Monitoring In Thilawa SEZ

Sample Brought By

Client

Sample Received Date:

10.06.2014

Analysed Date

11.06.2014

Code - 1/14 2/14	Total Suspended Solid APHA 2540 D 376.3	Oil & Grease APHA 5520 B Not Detected
	376.3	Not Detected
		(25) 100 km (34) 17 (44) 17 (44) 18 (44) 18 (44) 18 (44) 18 (44) 18 (44) 18 (44) 18 (44) 18 (44) 18 (44) 18 (44)
2/14	517	
L7 1-7	517	1.6
3/14	802	1.9
4/14	3601.5	9.2
	2	0.2
	14/14	9999 C.

End Of Report

SGS (Myanmar) Limited

(Nu Nu Yi) Manager

WARNING: The sample(s) to which the Endings recorded hereis (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample(s) representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. This document is issued by the Company under its General Conditions of Service printed overlead or available on request and accessible at https://www.scs.com/terms.and.conditions.htm. Attention is drawn to the limitation of liability, information and jurisdiction issued defined therein, Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate perfect to a transaction document is advised by the fallost extended to the transaction document is un'awtul and offenders may be prosecuted to the fallost extend of the law.

Unless otherwise stated the results shown in this test report refer only to the sample (s) fested and such sample (s) are retained for 7 days (in case of perishable items) and 30 days for all other samples. The samples from regulatory bodies are to be retained as specified. This document cannot be reproduced except in full, without prior written approval of the company.

The Government of the Republic of the Union of Myanmar Ministry of Agriculture and Irrigation

Irrigation Department
Survey and Investigation Branch
Soil Survey Section
Soil and Water Analytical Laboratory

NALYTICAL DATA FOR WATER SAMPLE

PROJECT NAME; Water Quality Monitoring in Thilawa SEZ SAMPLE DESIGNATED AS; Water Quality SAMPLING LOCATION; Near Thanlyin & Thilawa

SAMPLING DATE; 9.6.2014 ISSUED DATE ; 20.6.2014 SAMPLING BY ; Client

Sr		A	Results (mg/)
No	Station	BOD5	COD	Chromium(Cr)
1	GW-1	6	13.8	0.021698
2	SW-2	4	14.7	0.005955
3	sw-3	10	23.5	0.026498
4	SW-4	5	21.5	0.013545
Standard	Highest desirable level	6 mg/l	10 mg/l	
Drinking Water Standard (WHO)	Maximum permissible level	Concentration at maximum permissible pollution		0.01mg/l

Remark: Analytical mentions are ppb unit by AAS. But this unit is changed as mg/L according to the standard of WHO unit.

(May Aye Lwin)
Staff Officer (Lab)
Soil Survey Section
Survey and Investigation Branch
Irrigation Department

RESULT OF WATER QUALITY MONITORING

1. Introduction

Water sample were collected on 9th June 2012 for water quality monitoring at Thilawa Special Economic Zone (TSEZ). This report sets out the environmental monitoring required throughout the construction of the Thilawa Special Economic Zone. The terms of reference for monitoring are shown in Table 1. The location of air and water monitoring points are shown in Figure 1 and Table 1.

Terms of Reference for Monitoring

Table 1 Terms of reference for air and water quality monitoring at TSEZ.

Description	items	Frequency	Location
Air Quality	TSP / PM10	1 time / 3months	At construction site (1point)
Waste water quality	pH, SS, DO, BOD, COD, Coliform count, oil and grease, chromium	1time / 2months	At the creek upstream and downstream which is crossed the car road (3points)
Underground water	pH, SS, DO, BOD, COD, Coliform count, oil and grease, chromium	1time /2months	Tube well, at inside of Moegyoswan Monastery (1 point)

Monitoring Instrument for Air and water

	T			
No.	Instrument	Brand &	Measurement/	
		Model	Parameter	
1.	Environmental Perimeter Air Monitoring System	HAZ- SCANNER EPAS	CO, NO ₂ , NO, SO ₂ , PM (2.5), PM (10), VOCS, Relative Humidity, Temperature, Wind Speed, Wind Direction	TAX SCANNER SERVICE SE
3	Alpha Bottle (Water Sampler)	Wildlife Supply Company® Indonesia		

So far, there is no environmental standard for ambient air quality in Republic of Myanmar, the survey result was evaluated by comparing with the standards in neighbouring country like Thailand, Vietnam, Japan and IFC (Table 2). The consultant will apply the air quality standard in Thailand, Vietnam, Japan and IFC as shown in Table 1.As for TSP and PM10, the standards in Thailand were applied and the others were compared with the standards in Japan.

Table 2 Survey Parameters for Air Quality

Item	Averaging period	Japan	Thailand	Vietnam	IFC
SO₂	10 min	-		-	0.5mg/m³
	1hour	0.1ppm	0.3ppm	0.35mg/m ³	0.125mg/m³(InterimTarget-1) 0.05mg/m³(InterimTarget-2) 0.02mg/m³(Guideline)
	24hours	0.04ppm	0.12ppm	0.125 mg/m³	<u>-</u>
	1 year			0.05mg/m ³	<u> </u>
NO₂	1hour	-	0.17ppm	-	0.2mg/m ³
	24hours_	0.04-0.06ppm	-	-	<u> </u>
	1 year	-	0.03ppm		0.04mg/m³
NOx	1hour	-	•	0.2mg/m ³	<u> </u>
	24hours	-	-	0.04mg/m ³	
СО	1hour		30ppm	30mg/m ³	<u></u>
	8hours	20ppm		10mg/m³	_
	24hours	10ppm	9ppm		<u> </u>
TSP	1hour_			0.3mg/m ³	<u> </u>
	24hours		0.33mg/m³	0.2mg/m ³	
	1 year		0.10mg/m ³	0.14mg/m ³	
PM₂o	24hours	-	0.12mg/m³	0.15mg/m³	0.15mg/m ³ (InterimTarget-1) 0.10mg/m ³ (InterimTarget-2) 0.07mg/m ³ (InterimTarget-3)
	1 year	-	0.05mg/m ³	0.05mg/m ³	0.07mg/m³(InterimTarget-1) 0.05mg/m³(InterimTarget-2) 0.03mg/m³(InterimTarget-3)
SPM	1hour	0.2mg/m ³		-	<u>-</u>
_, ,,,	24hours	0.1mg/m ³	-		
P(M _{2.5}	24hours	0.035mg/m ³	0.05mg/m³		0.075mg/m³(InterimTarget-1) 0.05mg/m³(InterimTarget-2) 0.0375mg/m³(InterimTarget-3)
	1 уеаг	0.015mg/m³	0.025mg/m³	-	0.035mg/m³(InterimTarget-1) 0.025mg/m³(InterimTarget-2) 0.015mg/m³(InterimTarget-3)
Ozone	1hour	-	0.10ppm	0.3mg/m ³	
200110	8hourdaily	•	0.07ppm	0.2mg/m ³	0.16mg/m³(InterimTarget-1) 0.1mg/m³(Guideline)
	1 year	 	0.04ppm	0.14mg/m ³	
	1 year	0.06ppm	- 0.0469111	A-9-4111911114	•
Ox Pb	24hours	0,000,011		0.0015mg/m ³	
PO	1 month	-	0.0015mg/m³	<u> </u>	
I	1 year	1 .	CircularNo 25 10	0.0005mg/m³	<u></u>

Source: National Air Quality Standard in Japan (CircularNo.25,1973, originally), Ministry of Environment, Japan NotificationsofNationalEnvironmentalBoardNo.10, 24,28,33, and 36, Ministry of Natural Resources and Environment, Thailand

National Ambient Air Quality Standard (TCVN5973:2005), Ministry of Science and Technology in Vietnam Environmental, Health, and Safety Guidelines, General EHS Guidelines, IFC, 2007

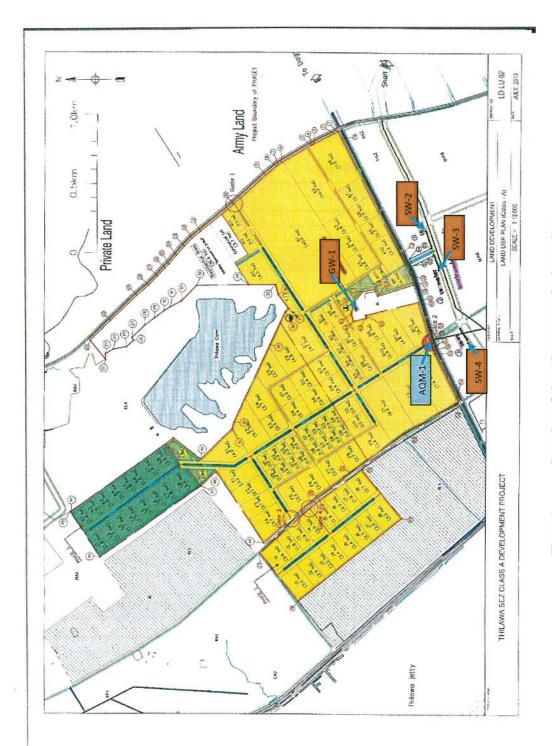


Figure 1 Location of air and water monitoring points

2. Water Quality Monitoring

Methodology

Sampling and preservation method

Water samples were taken by Alpha horizontal water sampler and collected in sterilized sample containers. All sampling was in strict accordance with recognized standard procedures. The parameters pH, temperature, dissolved oxygen (DO), electrical conductivity (EC), were measured at each site concurrently with sample collection. All samples were kept in iced boxes and were transported to the laboratory and stored at 2-4 °C refrigerators.

Table 1 Field Equipment for Water Quality Survey

No.	Equipment	Manufacturer	Originate Country	Model
1	pH meter	HANNA	USA	HI7609829-1 pH Sensor
2	DO meter	HANNA	USA	HI7609829-2
3	Digital Water Velocity Meter	Global Water Flow Probe	USA	FP 211
1	Alpha Bottle (Water Sampler)	Wildlife Supply Company	Indonesia	

Table 2 Container and Preservation Method for Water Samples

No	Parameter	Container	Preservation
1	Oil and Grease	1000 ml glass bottle	Sulfuric acid, Refrigerate
2	COD	500 ml plastic bottle	Sulfuric acid, Refrigerate
3	BOD ₅	1,800 ml plastic bottle	Refrigerate
4	Heavy metals	500 ml plastic bottle	HNO₃ Refrigerate
5	Bacteria	200 ml glass bottle (Sterilize)	Refrigerate
6	Others	1,800 ml polyethylene bottle	Refrigerate

Test method

The following table provides the test method for water quality.

No	Item	Analysis method
1	pH	HI7609829-1 pH Sensor
2	Suspended Solids Gravimetric method	
3	Dissolved Oxygen (DO)	HI7609829-2 Galvanic dissolved oxygen (D.O) sensor
4	Chemical oxygen demand(COD)	Dichromate method
5	Biochemical oxygen demand(BOD ₅₎	Direct inoculation method
6	Oil & Grease	APHA-AWWA-WEF Method
7	Chromium (Cr) (mg/l)	APHA-AWWA-WEF Method
8	E. coliform, Fecal coliforms, total coliforms	AOAC Petrifilm Method

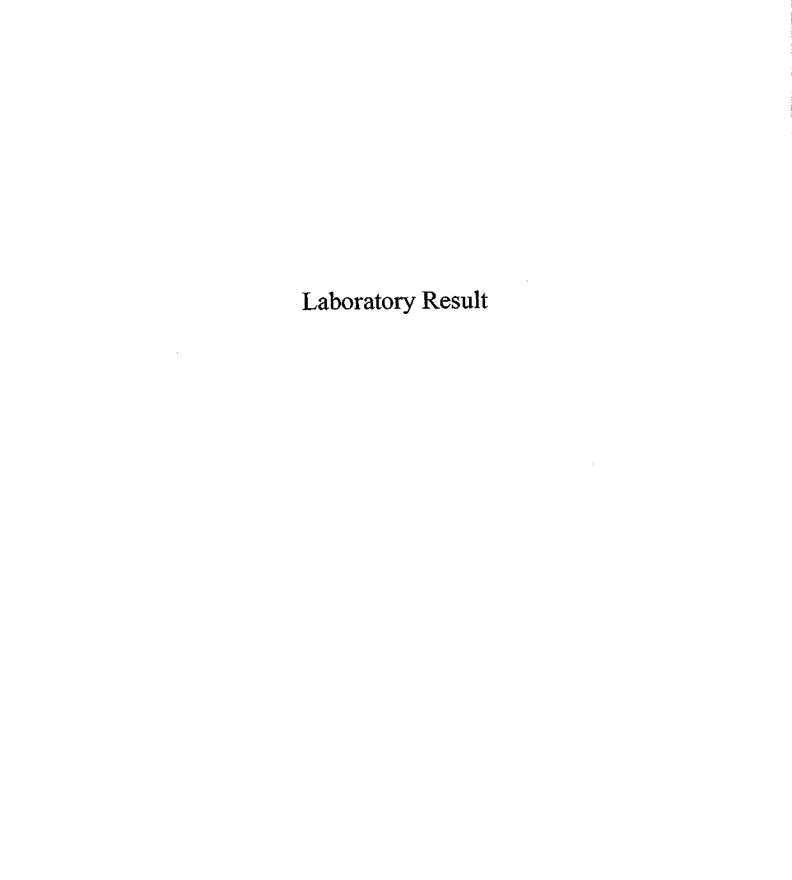
Monitoring Result (June)

Samples Collected Date - 9 June 2014

No	Item	GW-1	SW-2	SW-3	SW-4	Standard*	Unit
1	рН	7.49	8.80	8.17	8.84	5-9	
2	Suspended Solids	376.3	517	802	3601.5	Max. 30	mg/l
3	Dissolved Oxygen (DO)	3.59	5.47	6.49	6.45	-	mg/l
4	Chemical oxygen demand(COD)	13.8	14.7	23.5	21.5	Max. 60	mg/l
5	Biochemical oxygen demand(BODs)	6	4	10	5	Max. 20-60	mg/l
6	Oil & Grease	ND	1.6	1.9	9.2	Max. 5	mg/l
7	Chromium (Cr) (mg/l)	0.021698	0.005955	0.026498	0.013545	Max. 0.5	mg/l
8	E, coliform	0	1x10 ²	8x 10 ²	1x 10 ²	-	cfu/100ml
	Fecal coliforms	0	6x 10 ²	1.7x10 ³	1.8x10 ³	-	cfu/100ml
	Total coliforms	0	7x 10 ²	2.5x10 ³	1.9x10 ³	-	cfu/100ml

^{*} Waste water quality standard, Ministry of Industry.

Shaded area shows higher than Standard.


Result of the Water Quality Monitoring (August)

The result of August water quality monitoring was shown in above table. According to the laboratory analysis, suspended solids concentration of all sampling stations are higher than the standard. The possible reasons is the increasing of insoluble particulate matter during run off or discharging that can be generated from the some construction activities and direct discharge of waste water disposal from the upstream area. Oil and grease content in SW4 station is higher than the MOI standard. The location of SW4 is the downstream channel and oil and grease content in all upstream stations (SW-2 and SW-3). The possible reason for oil and grease content higher than the standard is release of diesel or petrol oil from some vehicles nearby the channel.

Compared with the previous monitoring result the following things are noted.

- 1. DO is decreased compared to the previous results.
- 2. BOD and COD are increased compared to the previous results.

Detailed of laboratory results are provided in appendix.

ANALYSIS REPORT

ORIGINAL

Job Ref: 4512/2014 Date: 13,06,2014 Page 1 of 1

Client Name

RESOURCE AND ENVIRONMENT CO., LTD

B-702 Delta Plaza, Shwegondaing Rd, Bahan Township,

Yangon, Myanmar

Project Name

Water Quality Monitoring In Thilawa SEZ

Sample Brought By

Client

Sample Received Date:

10.06.2014

Analysed Date

11.06.2014

			Results (mg/l)		
Stations	Commodity Name	Lab Code	Total Suspended Solid	Oil & Grease	
Method	-	•	APHA 2540 D	APHA 5520 B	
1. GW-1	GROUND WATER	111/14	376.3	Not Detected	
2. SW-2	SURFACE WATER	112/14	517	1.6	
3. SW-3	SURFACE WATER	113/14	802	1.9	
4. SW-4	SURFACE WATER	114/14	3601.5	9.2	
	Detection Limit		2	0.2	

End Of Report

SGS (Myanmar) Limited

(Nu Nu Yi) Manager

WARNING: The sample(s) to which the findings recorded herein (the "Findings") relate was (were) drown and I or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample(s representativeness of any goods and strictly relate to the sample(s). The Company accepts no lisability with regard to the origin or source from which the sample(s) is/are said to be extracted. This document is issued by the Company under its General Conditions of Service printed overlead or available on request and soccessible at https://document.org/lines/stm, Attention is drawn to the limitation of lisability, indomnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's color responsibility is to its Client and this document does not expressed to a transaction document as unlawful and offenders may be prosecuted to the fallest extent of the taw.

Unless otherwise stated the results shown in this test report refer only to the sample (s) tested and such sample (s) are retained for 7 days (in case of perishable items) and 20 days for all other samples. The samples from regulatory bodies are to be retained as specified. This document cannot be reproduced except in full, without prior written approval of the company

THE REPUBLIC OF THE UNION OF MYANMAR MINISTRY OF LIVESTOCK, FISHERIES AND RURAL DEVELOPMENT DEPARTMENT OF FISHERIES FISH INSPECTION AND QUALITY CONTROL DIVISION VANCON MYANMAR

YANGON, MYANMAR ANALYTICAL LABORATORY SECTION

Test Report for Microbiological Analysis

Name of Project : Water Quality Monitoring in Thilawa SEZ (June)

Name of Company: Resource and Environment Myanmar Co., Ltd.

Date of Received : 23.6.2014

Date of Analysis : 23.6.2014

Test Method : AOAC Petrifilm Method

No	Date of Analysis	Detail of Samples (Water)	Total Coliforms cfu/100ml	Fecal Coliforms cfu/100ml	E.coli cfu/100ml	Remarks
1	23.6.14	GW -1 Ground Water 9.6.14	0	0	0	
2	23.6.14	SW-2 surface Water 9.6.14	7x10²	6x10 ²	1x10²	
3	23.6.14	SW-3 surface Water 9.6.14	2.5 x10 ³	1.7x10 ³	8x10 ²	
4	23.6.14	SW-4 surface Water 9.6.14	1.9 ×10 ³	1.8x10 ³	1 x10 ²	

Reference: The International Commission on Microbiological Specification for foods (ICMSF,1986), 98/93 EC, Guidelines for drinking water quality WHO 1997 (2rd Edition).

Analyzed by:

Than Than Myint Micro Lab

Evaluated by:

Dr.Su Myo Thwe Ph.D Japan TM, Head of Micro Lab Approved by :

B.Sc (Chemistry)
Assistant Director
Analytical Laboratory Section
Department of Fisheries

Remarks: This result is responsible for the sample in the lab.

The Cofference of the Republic of the Union of Myanmar Ministry of Agriculture and Irrigation
Irrigation Department
Survey and Investigation Branch
Soil Survey Section
Soil and Water Analytical Laboratory

Soil ANALYTICAL DATA FOR WATER SAMPLE

PROJECT NAME; Water Quality Monitoring in Thilawa SEZ SAMPLE DESIGNATED AS; Water Quality SAMPLING LOCATION; Near Thanlyin & Thilawa

SAMPLING DATE; 9.6.2014 ISSUED DATE ; 20.6.2014

SAMPLING BY ; Client

Sr		An Hotelesian Control	Results (mg/l)
No	Station	BOD5	COD	Chromium(Cr)
1	GW-1	6	13.8	0.021698
2	SW-2	4	14.7	0.005955
3	sw-3	10	23.5	0.026498
4	SW-4	5	21.5	0.013545
Standard	Highest desirable level	6 mg/l	10 mg/l	
Drinking Water Standard (WHO)	Maximum permissible level	Concentration at maximum permissible pollution		0.01mg/l

Remark: Analytical mentions are ppb unit by AAS. But this unit is changed as mg/L according to the standard of WHO unit.

(May Aye Lwin)
Staff Officer (Lab)
Soil Survey Section
Survey and Investigation Branch
Irrigation Department

Thilawa Special Economic Zone CLASS A Development Project –Phase 1

Appendix

Noise and Vibration Monitoring Report

August, 2014

NOISE AND VIBRTION MONITORING

IN

THILAWA SEZ CLASS A DEVELOPMENT

(August 2014)

Resource & Environment Myanmar Ltd., B-702 Delta Plaza Building, Shwegondaing Rd., Bahan, Yangon. MYANMAR Tel: (959) 7301 3448; Fax: (951) 552901 mailto: admin@enviromyanmar.net

Table of Contents

		Page
1.	Introduction	1
2.	Environmental Standard	2
2.1	Noise	2
2.2	Vibration	3
3.	Monitoring Result	4
4.	Conclusion	10
List o	f Figure	
Figure	e 1 Location map of the Thilawa Special Economic Zone.	1
Figure	2 Location of TNV-1.	5
Figure	2 Location of TNV-2.	5
Figure	e 4 Location of TNV-3.	6
Figure	e 5 Vibration result of TNV 1.	9
Figure	e 6 Vibration result of TNV 2.	10
Figure	e 7 Vibration result of TNV 3.	10
	f Table	_
	1 Target Noise Level in Construction Phase	2
	2 Noise Standard at Construction Stage in the Various Countries	2
	3 Target Ambient Noise Level in Operation Phase	3
	4 Ambient Noise Standard at Operation Stage in South-East Countries	3
	5 Survey Parameters for Noise Level	4
	6 Location of Noise and Vibration Monitoring Station	4
	7 Hourly LAeq value in noise monitoring stations.	8
Table	8 A-weighted Loudness Equivalent (LAeq) Level	8

Appendix

Appendix 1	Observed Noise level in 3 Monitoring Stations
Appendix 2	Observed vibration level in 3 monitoring stations

Noise and Vibration Monitoring Report

1. Introduction

The monitoring points are located in the Thilawa SEZ class A area. The site location is shown in Figure 1. Thilawa SEZ is located beside the Thanlyin and Kyauktan towns, about 20 km southeast side of Yangon city as shown in Figure 3.1-1. Project area with 400ha is center of Thilawa SEZ with an area of about 2,400 ha. Thilawa SEZ is surrounded by ring road and accompanied with the container ports along the Yangon River.

There are 2 ways to access to Thilawa SEZ from Yangon city, which are the route passing through Thanlyin Bridge and the route passing through Dagon Bridge.

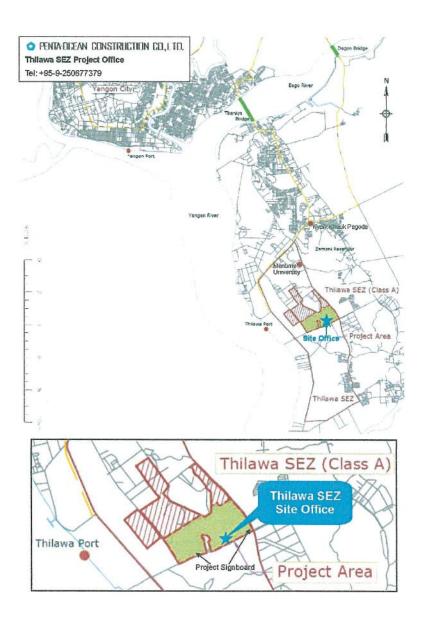


Figure 1 Location map of the Thilawa Special Economic Zone.

2. Environmental Standard

2.1 Noise

(1) Construction Phase

There is no noise standard of construction activities to receptors in Myanmar and International Organization's standards such as WHO and Environmental, Health, and Safety (EHS) Guidelines prepared by International Fiancé Cooperation (IFC) in a group member of World Bank, therefore the target noise level at construction stage is set based on the standard in the other foreign countries.

In the south-east Asia countries, only Singapore has the noise standard of construction activities to receptors categorized area to be quiet, residential area, and the other areas. On the basis of the above information, target noise level is set as following concept.

- Residential houses and monastery located less than 150m from the construction site comply with the middle range of the Singapore standard (categorized as "Residential buildings located less than 150m"), or
- Residential houses and monastery located more than 150m from the construction site, office, commercial facilities, and factories shall comply with the moderate range of standard Singapore standard (categorized as "Other buildings") or

This target noise level is shown in Table 1 and is not so much difference comparing with noise standard at construction stage in the other countries as shown in Table 2.

Table 1 Target Noise Level in Construction Phase

Category	Day time (Leg) (7am-7pm)	Evening Time (Leq) (7pm-10pm)	Night time (Leg) (10pm-7am)
Residential houses and monastery located less than 150m	75 dB	60 dB	55 dB
Residential houses and monastery located more than 150m from the construction site, office, commercial facilities, and factories	75 dB	65 dB	65 dB

Note) Evaluation point is at boundary of building

Table 2 Noise Standard at Construction Stage in the Various Countries

	Items	Day time (Leq)	Night time (Leq)
Japan	Using heavy equipments with high noise level (piling, excavating etc.)	85 dB (Maximum)	
Singapore	Hospitals, schools, institutions of higher learning, homes for the aged sick, etc.	60 dB (7am - 7pm, 12hrs)	50 dB (7pm – 7am, 12hrs)
	Residential buildings located less than 150m from the construction site where the noise is being emitted	75 dB (7am – 7pm, 12hrs)	60 dB (7pm ~ 10pm, 3hr) 55 dB (10pm ~ 7am, 9hr)
	Other Buildings	75 dB (7am – 7pm, 12hrs)	65 dB (7pm – 7am, 12hrs)
ŲK	In rural, suburban and urban areas away from main road traffic and industrial noise.	70 dB (8:00-18:00)	-
	Urban areas near main roads	72 d8 (8:00-18:00)	-
USA	Residential	80 dB (8hrs)	70 dB (8hrs)
	Commercial	85 dB (8hrs)	85 dB (8hrs)
	Urban Area with high ambient noise level (>65 dB)	Ambient Noise Level +10dB	

Source: Noise Regulation Act, Japan (Law No.98, 1968, Amended No.33, 2006)

Environmental Protection and Management Act in Singapore (Chap.94A, Section 77, revised in 2008)

British Standard 5228: 1997 "Noise and vibration control on open and construction sites"

Transit Noise and Vibration Impact Assessment, U.S. Department of Transportation in USA, 1995

(2) Operation Phase

There is no ambient noise standard to receptors in Myanmar. However, most of the countries in southeast Asia have the ambient noise standard to receptors categorized land use or requirement of quiet as well as in Japan. International standard is also available in the EHS Guidelines prepared by IFC. On the basis of the above information, target noise level is set as following concept and target ambient noise level.

- According to baseline survey in the Project, ambient noise levels in the monastery in Thilawa SEZ (Class A) are 53-60 dB in the daytime (6:00-22:00) and 44-58 dB in the nighttime (22:00-6:00).
- Ambient noise standard for sensitive areas of Japan and International Organization, relatively high in comparison with the results of baseline survey especially during nighttime.
- Thus, the target ambient noise level for sensitive and residential area is set in accordance with the noise standard in Singapore which is similar to the ambient noise level of the baseline survey.

The target noise level is shown in Table 3 and the target noise level is not so much difference comparing with ambient noise standard as shown in Table 4.

Table 3 Target Ambient Noise Level in Operation Phase

	Day Time (Leq)	Evening Time (Leq)	Night Time (Leq)
Category	(7am-7pm)	(7pm-10pm)	(10pm-7am)
Sensitive area such as Monastery	60 dB	55 dB	50 dB
Residential houses	65 dB	60 dB	55 dB
Commercial and Industrial Areas	70 dB	65 dB	60 dB

Note) Evaluation point is at boundary of building

Table 4 Ambient Noise Standard at Operation Stage in South-East Countries

	Items	Day time (Leq)	Night time (Leq)		
Indonesia	Noise standard for sensitive areas such as residences, hospitals, schools, places of religious worships	55 dB			
	Noise standard for office and commercial	65 dB			
	Noise standard for commercial and service	70 dB			
Malaysia	Sensitive Areas/ Low Density Residential Areas	55 dB (7am – 10pm, 15hrs)	50 dB (10pm – 7am, 9hrs)		
	Sub Urban Residential	60 dB (7am – 10pm, 15hrs)	55 dB (10pm - 7am, 9hrs)		
	Urban Residential	65 dB (7am – 10pm, 15hrs)	60 dB (10pm 7am, 9hrs)		
	Commercial and Business	70 dB (7am - 10pm, 15hrs)	60 dB (10pm - 7am, 9hrs)		
Singapore	Sensitive Areas	60 dB (7am – 7pm, 12hrs)	55 dB (7pm - 10pm, 3hr)		
		60 db (78th = 7pth, 12th/s)	50 dB (10pm – 7am, 9hr)		
	Residential Areas	65 dB (7am – 7pm, 12hrs)	60 dB (7pm - 10pm, 3hr)		
		85 GB (78kii – 7pm, 12kiis)	55 dB (10pm – 7am, 9hr)		
[Commercial Areas	70 dB (7am – 7pm, 12hrs)	65 dB (7pm – 10pm, 3hr)		
		70 GD (7411 - 7pm, 1211)	60 dB (10pm - 7am, 9hr)		
Thailand	Noise standard	70 dB (24hrs)			
Japan	Sensitive Area (Class AA)	50 dB (6am – 10pm, 16hrs)	40 d8 (10pm – 6pm, 8hrs)		
	Residential Area (Class A and Class B)	55 dB (6am – 10pm, 16hrs)	45 dB (10pm – 6pm, 8hrs)		
	Commercial and Industrial Area (Class C)	60 dB (6am – 10pm, 16hrs)	50 dB (10pm – 6pm, 8hrs)		
IFC	Residential; institutional, educational	55 dB (7am - 10pm, 15hrs)	45 dB (10pm – 7am, 9hrs)		
	Industrial; commercial	70 dB (7am - 10pm, 15hrs)	70 dB (10pm – 7am, 9hrs)		

Source: Nose Standard in Indonesia (KEP-48/MENLH/11/1996)

Effect of Traffic Noise on Sleep: A Case Study in Serdang Raya, Selangor, Malaysia, Environment Asia, 2010 Environmental Protection and Management Act in Singapore (Chap.94A, Section 77, revised in 2008)

Notification of Environmental Board No. 15 B.E.2540(1997) under the Conservation and Enhancement of National Environmental Quality Act B.E.2535 (1992) dated March 12, B.E.2540 (1997) and Notification of Pollution Control Department; Subject: Calculation of Noise Level Dated August 11, B.E. 2540 (1997) in Thailand

2.2 Vibration

(3) Construction Phase

There is no vibration standard of construction activity to receptors in Myanmar as well as south-east Asia and International Organizations such as WHO and IFC. Thus, the target vibration level at site. There was not any other noise source around the house. The location of TNV-1 is shown in Figure 2.

Figure 2 Location of TNV-1.

TNV-2

TNV-2 was sited at Moegyoswun Monastery Compound. The location was an open area beside monk houses with about 250m from the car road. The road was paved with low traffic. Dominant sources of noise were alarm song in the compound that ring thrice a day. There was not any other noise source around the monastery compound. The location of TNV-2 is shown in Figure 3.

Figure 3 Location of TNV-2.

TNV-3

TNV-3 was sited in front of Moegyoswun Monastery. The location was an open area beside the road with about 260 m from the car road. The road was paved with low traffic. Dominant sources of noise were alarm song in the compound that ring thrice a day and vehicular traffic. The location of TNV-3 is shown in Figure 4.

Figure 4 Location of TNV-3.

Survey Period

Sampling and monitoring of surrounding sound and vibration level at TNV-1, TNV-2 and TNV-3 were conducted during 19th August to 23rd August, 2014.

Survey Period	
19th August – 20th August, 2014 (24 hours)	
21st August – 22 nd August, 2014 (24 hours)	
22 nd August – 23 rd August, 2014 (24 hours)	

Survey Method

Sampling and monitoring of surrounding sound and vibration level were conducted by using following instrument for 24 hours/1 day measurement.

Instrument	Brand	Model	Measurement unit
Sound Level Meter	Lutron	SL-0423SD	dB
Vibration Meter	Lutron	VB-8206SD	mm/s, cm/s

- a) Noise Survey
 - Frequency
 - One time (24 hours monitoring in weekday)
 - Total Sample
 - Three samples

Record Interval

- One record for 10 minute interval
- b) Vibration Survey

Frequency 5

One time (24 hours monitoring in weekday)

Total Sample

- Three samples

Record Interval

- One record for 5 seconds interval for 10 minutes during an hour

Survey Result

Noise levels (L_{Aeq}) of the monitoring points were presented in Table 7. One day L_{Aeq} was calculated by using the following array formula in the excel sheet. This formula is firstly used for hourly L_{Aeq} and then for the 24 hours L_{Aeq} .

10*LOG10(AVERGAE(10^((RANGE)/10)))

By means of the calculated results, all of the noise levels found lower than the environmental standard (1-day) in Thailand. Noise level (LAeq) in present monitoring period was presented in Table 7 and Table 8. Table of observed hourly noise level in three monitoring stations is shown in Appendix 1.

Table 7 Hourly LAeq value in noise monitoring stations.
Unit: dBA

	tostv (END 2	re INVer
Date	1 <u>9</u> - 20 August	21 22 August	22 23 August
7:00-8:00	55	38	42
8:00:9:00	54	39	33
9:00-10:00	57	40	36
10:00-11:00	53	47	61
11:00-12:00	57	47	62
12:00-13:00	52	56	60
13:00-14:00	64	54	62
14:00-15:00	61	56	54
15:00-16:00	56	62	51
16:00-17:00	66	54	52
17:00-18:00	61	37	55
18:00-19:00	57	42	58
Day Lacq	58	48	52
19:00-20:00	60	51	49
20:00-21;00	58	53	52
21:00-22:00	57	53	47
Evening Lasq	- 58.	52	49
22;00-23:00	58	52	47
23:00-24:00	56	53	45
24:00-1:00	48	53	47
1:00-2:00	51	50	46
2:00-3:00	49	39	52
3:00-4:00	48	34	50
4:00-5:00	52	44	39
5:00-6:00	41	38	31
6:00-7:00	58	52	47
Night Las	50/	. 46.	s → 45

Table 8 A-weighted Loudness Equivalent (LAeq) Level

Unit dR(A

							Unit: dB	(A)	
		TNV-1			TNV-2		TNV-3		
ايخندا	19 Au	gust -20 Aug	gust 14	20 Au	igust – 21 Aug	gust 14	22 August – 23 August 14		
Date	Day Time	Evening Time	Night Time	Day Time	Evening Time	Night Time	Day Time	Evening Time	Night Time
	58	58	50	48	52	46	52	49	45
Target Noise Level	75	65	65	75	60	55	75	60	55



Figure 6 Vibration result of TNV 2.

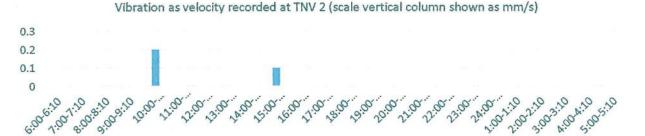


Figure 7 Vibration result of TNV 3.

4. Conclusion

The noise level monitoring results are compared with target noise level proposed in EIA report (See Table 1). Two noise receptors were designated in construction phase based on the baseline noise data.

There are:

- Residential houses and monastery located less than 150m from the construction site comply with the middle range of the Singapore standard (categorized as "Residential buildings located less than 150m"), or
- Residential houses and monastery located more than 150m from the construction site, office, commercial facilities, and factories shall comply with the moderate range of standard Singapore standard (categorized as "Other buildings")

The noise level monitoring at three sites in and near the project site are lower than the target noise level (See Table 8).

There is no standard relating to vibration during construction activities. Common practice in Myanmar has been to use guidance from internationally recognized standards. Vibration standards come in two varieties: those dealing with human comfort and those dealing with cosmetic or structural damage to buildings. In both instances, the magnitude of vibration is expressed in terms of Peak Particle Velocity (PPV) in millimetres per second (mm/s).

In the case of nominally continuous sources of vibration such as traffic, vibration is perceptible at around 0.5mm/s and may become disturbing or annoying at higher magnitudes. However, higher levels of vibration are typically tolerated for single events or events of short duration.

During the monitoring time there are no activity inside the Class A compound and only the loading and unloading raw materials by small vehicles. The main noise and vibration source are largely road traffic noise and vibration. The observed noise and vibration in all monitoring points are lower than the target level in pre — construction phase.

Appendix 1 Observed Noise level in 3 Monitoring Stations

	Date				
	19-20 August	21-22 August	22-23 August		
Time -	• 1W11	TNV-Z			
6:00-7:00	55	38	42		
7:00-8:00	54	39	33		
8:00:9:00	57	40	36		
9:00-10:00	53	47	61		
10:00-11:00	57	47	62		
11:00-12:00	52	56	60		
12:00-13:00	64	54	62		
13:00-14:00	61	56	54		
14:00-15:00	56	62	51		
15:00-16:00	66	54	52		
16:00-17:00	61	37	55		
17:00-18:00	57	42	58		
18:00-19:00	55	63	49		
19:00-20:00	60	51	49		
20:00-21:00	58	53	52		
21:00-22:00	57	53	47		
The state of	5,8	3, 49	51 - 51 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -		
22:00-23:00	58	52	47		
23:00-24:00	56	53	45		
24:00-1:00	48	53	47		
1:00-2:00	51	50	46		
2:00-3:00	49	39	52		
3:00-4:00	48	34	50		
4:00-5:00	52	44	39		
5:00-6:00	41	38	31		
Night	- 750 - 77	2 46 Table	- 145		

Appendix-2 Observed vibration level in 3 monitoring stations Vibraion as Velocity (mm/s)

· · · · · · · · · · · · · · · · · · ·	TNV 1 (19 - 20 August)	TNV 2 (20-21 August)	TNV 3 (22-23 August)
Time	mm/s	mm/s	mm/s
6:00-6:10	0	0	0
7:00-7:10	0.15	0	0
8:00:8:10	0.1	0	0
9:00-9:10	0.1	0	0
10:00-10:10	0.2	0.1	0.2
11:00-11:10	0.1	0.2	0
12:00-12:10	0	0	0
13:00-13:10	0.25	0	0
14:00-14:10	0.1	0	0
15:00-15:10	0.15	0.15	0.1
16:00-16:10	0	0	0
17:00-17:10	0	0	0
18:00-18:10	0	0	0
19:00-19:10	0	0	0
20:00-20:10	0	0	0
21:00-21:10	0	0	0
22:00-22:10	0	0	0
23:00-23:10	0	0	0
24:00-24:10	0	0	0
1:00-1:10	0	0	0
2:00-2:10	0	0	0
3:00-3:10	0	0	0
4:00-4:10	0	0	0
5:00-5:10	0.15	0	0