

Thilawa Special Economic Zone (Zone B) Development

Environmental Monitoring Report Phase-1,2 and 3 (Operation Phase)

Myanmar Japan Thilawa Development Limited.

September 2022

CONTENTS

- 1. Executive Summary
- 2. Summary of Monitoring Activities
- 3. Monitoring Results
- 4. Environmental Monitoring Form

Appendix

- A. Water and Waste Water Monitoring Report for February, 2022
- B. Water and Waste Water Monitoring Report for April, 2022
- C. Water and Waste Water Monitoring Report for June, 2022
- D.Air Monitoring Report for June, 2022
- E. Noise and Vibration Monitoring Report for June, 2022
- F. Traffic Volume Monitoring Report for June, 2022
- G. General Waste Disposal Record (April 2022 to August 2022)
- H.Sewage Treatment Monitoring Record (April 2022 to August 2022)

1. Executive Summary

The environmental inspection and compliance monitoring program will be implemented under the direction of Ministry of Natural Resources and Environmental Conservation (MONREC) with oversight by Thilawa SEZ Management Committee.

The monitoring record from February 2022 to August 2022 according to the Environment Monitoring Plan is submitted in conformity with the provision of Chapter 10, 10.1 Table 10.1-3 and 10.2, Table 10.2-3 Content of the EIA Report of Thilawa SEZ Development Project (Zone B).

2. Summary of Monitoring Activities

a) Progress made to date on the implementation of the EMP against the submitted implementation schedule;

We submitted EMP for TSEZ Zone-B as following table.

Report No.	Description	Phase	Submission
1	Environmental Monitoring Report	Phase-1 Operation Phase	September, 2019
2	Environmental Monitoring Report	Phase-1 & 2 Operation Phase	March, 2020
3	Environmental Monitoring Report	Phase-1 & 2 Operation Phase	September, 2020
4	Environmental Monitoring Report	Phase-1 & 2 Operation Phase	March, 2021
5	Environmental Monitoring Report	Phase-1,2 & 3 Operation Phase	September, 2021
6	Environmental Monitoring Report	Phase 1,2 & 3 Operation Phase	March, 2022
7	Environmental Monitoring Report	Phase-1,2 & 3 Operation Phase	September, 2022

Report (No.7 is submitted this day attached with Operation Phase implementation schedule. Subsequent Operation Phase reports will be submitted on Bi-annually.

b) Difficulties encountered in implementing of the EMP and recommendations for remedying those difficulties and steps proposed to prevent or avoid similar future difficulties;

None

- c) Number and type of non-compliance with the EMP and proposed remedial measures and timelines for completion of remediation;
 - Depend on the exceeding parameters and situation
- d) Accidents or incidents relating to the occupational and community health and safety, and the environment:

Please refer to the attached Environmental Monitoring Form.

e) Monitoring data on environmental parameters and conditions as committed in the EMP or otherwise required.

Please refer to the attached Environmental Monitoring Form.

3. Monitoring Result

Environmental Monitoring Plan report for operation phase implemented according to the following table, reference on Table 10.2-3, Chapter 10, EIA for Industrial Area of Zone-B.

Monitoring Plan (Operation Phase)

Category	Item	Location	Frequency	Remark
Air Quality	NO ₂ , SO ₂ , CO, PM _{2.5} , PM ₁₀	Representative point inside the projectarea	1 week each in the dry and rainy seasons	June 2022, Air Quality Monitoring Report
Water Quality	Water temperature, pH, SS, DO, BOD5, COD, color and odor, Total Nitrogen, Total Phosphorus, Sulphide, HCN, Oil, Grease, Formaldehyde, Phenols, Free chlorine, Zinc, Chromium, Arsenic, Copper, Mercury, Cadmium, Barium, Selenium, Lead, and Nickel	Outflow of retention pond to the creek (at least 3 sampling points/mixing point: discharge water, upstream water, and downstream water)	Every 2 month: Water temperature, pH, SS, DO, BOD5, COD, color and odor, Every 6 month :all parameters	February 2022, April 2022 Water and Wastewater Quality Monitoring Report (Bi-monthly report) June 2022 Water and Wastewater Quality Monitoring Report (Bi- annually report)
Waste	·Amount of Non·hazardous waste management ·Amount of hazardous waste management	Each Tenant	Twice/year (Submission of the environmental report by the tenants)	General waste disposal record
Soil Contamination	-Status of control of solid and liquid waste which causes soil contamination	Each Tenant	Twice/year (Submission of the environmental report by the tenants)	Monitoring will be started when the whole Zone-B is in Operation Stage
Noise and Vibration	- Noise and vibration level - Traffic Count	Tenants including Project Proponent	One time each in the dry and rainy seasons	Noise and Vibration Monitoring Report June 2022 Traffic Count Monitoring Report June 2022
Bottom Sediment	-Water quality monitoring (as indicator of the pollution of the bottom sediment)	Same as the water quality monitoring	-Additional analysis on the bottom sediment of creek, in case of finding continuous high concentration	Refer in Environmental Monitoring report
Hydrological Situation	-Checking the function of retention pond at heavy rain	Retention Pond	When the heavy rain	
Living and Livelihood/ Vulnerable Group/ Misdistribution of Benefit and Damage/ Children's Right	-The implementation status for CSR activities such as community support program	Around Project Site	Once/year	Refer in Environmental Monitoring report
Risks for Infections Disease such as AIDS/HIV	-Status of measure against infectious diseases	Each tenant	Twice/year (Submission of the environmental report by the tenants	-
Occupational Health and Safety	-Record of accident and infectious diseases	Work site and office	Twice/year (Submission of the environmental report by the tenants)	Refer in Environmental Monitoring form
Community Health	Record of accidents and infectious diseases related to the community	Around the project site	Twice/year	Refer in Environmental Monitoring form
and Safety	The implementation status for CSR activities such as community support program	Around project site	Once/year	Refer in Environmental Monitoring form

Category	Item	Location	Frequency	Remark
Usage of Chemicals	Record of the type and quantity of chemicals and implementation status of control measures through self-inspection	Each tenant (that uses chemicals)	Biannually	*

^{*}Remark: Each locator will report their monitoring result directly to Environmental Section, One Stop Service Center, Thilawa SEZ Management Committee.

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3 (Operation phase)

Environment Monitoring Form

Myanmar Japan Thilawa Development Limited

Environment Monitoring Form

The latest results of the below monitoring items shall be submitted to Authorities on once at Pre-Construction Phase and on quarterly basis at Construction Phase, and on bi-annually base at Operation Phase. The items, standards to be applied, measurement points, and frequency for each monitoring parameter are established based on the EIA Report for Thilawa Special Economic Zone Development Project (Industrial Area of Zone B). Should there be any changes to the original plan, such change shall be reviewed and evaluated by environmental expert.

(1) General

- 1) Phase of the Project
 - Please mark the current phase.

Pre-Construction Phase	Construction Phase	Operation Phase
------------------------	--------------------	-----------------

2) Obtainment of Environmental Permits

Name of permits	Expected issuance date	Actual issuance date	Concerned authority	Remarks (Conditions, etc.)
Approved letter for Environmental Impact Assessment (EIA) Report of Industrial Area, Thilawa Special Economic Zone (Zone-B)		29th December 2016	Thilawa SEZ Management Committee	
Notification of the comments of Ministry of Natural Resources and Environmental Conservation regarding with the Standard Change of Wastewater Quality of Industrial Zone, Internal Regulations of Thilawa SEZ Zone-A and Zone-B	5 th January 2018	10 th January 2018	Thilawa SEZ Management Committee	

3) Response/Actions to Comments and Guidance from Government Authorities and the Public

Monitoring Item	Monitoring Results during Report Period	Duration of Report Period	Frequency
Number and contents of formal comments made by the public			Upon receipt of comments/
Number and contents of responses from Government agencies			complaints

(2) Monitoring Results

1) Ambient Air Quality (June 2022)

NO₂, SO₂, CO, PM_{2.5}, PM₁₀

Location	Item	Unit	Measured Value (Mean)	Measured Value (Max)	Country's Standard*2	Target value to be applied*1	Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)	
	NO ₂	MO_2 mg/m ³ 0.053 0.106 0.2 mg/m ³ 0.1 mg/m ³ (24 Hour) -	-								
	SO ₂	mg/m³	0.019	0.028	0.02 mg/m ³ (24 Hours)	0.02 mg/m ³ (24 Hours)	-	One time / Haz-Scanner EPAS			
AQ-1 (Monastery Compound of	СО	mg/m³	0.110	1.755	-	10.26 mg/m ³ (24 Hours)	-		Scanner	Refer to air quality report	
Phalan Village)	PM2.5	mg/m³	0.015	0.030	0.025 mg/m³ (24 Hours)	0.025 mg/m ³ (24 Hours)	-				
	PM10	mg/m³	0.026	0.038	0.05 mg/m ³ (24 Hours)	0.05 mg/m ³ (24 Hours)	-				

^{*1}Remarks: Referred to the tentative target value of ambient air quality (Thilawa SEZ-B EIA Report for industrial area, Table 2.4-1), Reference to the air quality monitoring report (June 2022)

*2Remark: Referred to the National Emission Quality Guideline (NEQG) 29th December 2015

Complaints from Residents

- Are there any complaints from residents regarding air quality in this monitoring period? ☐ Yes ✓ No If yes, please describe the contents of complains and its countermeasures to fill in below the table.

Contents of Complaints from Residents	Countermeasures	

2) (a) Water Quality - February 2022

<u>Measurement Point:</u> Effluent of Wastewater (SW-2 and SW-4 are attached as reference point only and they are natural creek water which are combine all the wastewater from the Local industrial water and domestic water from existing living environment. SW-7 is the main discharging point. GW-2 is also as reference point for monitoring of existing tube well located in the Monastery Compound near Zone-B area)

- Are there any effluents to water body in this monitoring period?
☐ Yes, ✓ No

If yes, please attach "Analysis Record" and fill in the items not to comply with Refereed International Standard

Location	Item	Unit	Measure d Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Temperature	°C	21	< 3 (increase)	≤35		Instrument Analysis Method	
	pH		7.9	6-9	6.0 - 9.0	Once	Instrument Analysis Method	D - C C -
SW-2	Suspended Solids (SS)*3	mg/L	114	50	50	per	APHA 2540D (Dry at 103-105°C Method)	Refer to water
(Reference point)	Dissolved Oxygen (DO)	mg/L	5.48			2	Instrument Analysis Method	quality
point)	BOD ₅ *5	mg/L	52.60	50	30	months	APHA 5210 B (5days BOD Test)	
	COD _{Cr} ^{*7}	mg/L	144	250	125		APHA 5220 D (Close Reflux Colorimetric Method)	The same

Location	Item	Unit	Measure d Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
SW-2 (Reference point	Total Coliform*4 Oil and Grease Total Dissolved solids (TDS)*6,*3 Iron*6, Mercury*6	MPN/100ml mg/L mg/L mg/L mg/L	35000 4.3 2368 1.062 ≤ 0.002	400 10 - 3.5 0.01	400 10 2000 3.5 0.005		APHA 9221 B (Standard Total Coliform Fermentation Technique) APHA 5520 B (partition Gravimetric Method) APHA 2540C (Total Dissolved Solids Dried at 180.C) APHA 3120 B (Inductively Coupled Plasma (ICP) Method) APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
SW-4 (Reference point)	Temperature pH Suspended Solids (SS)*3 Dissolved Oxygen (DO) BOD5 CODCr Total Coliform Oil and Grease Total Dissolved solids (TDS) *6.*3 Iron*6. Mercury*6	°C - mg/L mg/L mg/L mg/L MPN/100ml mg/L mg/L mg/L mg/L	22 7.5 180 4.97 4.42 14.8 110 <3.1 6036 2.744 ≤ 0.002	< 3 (increase) 6-9 50 - 50 250 400 10 - 3.5 0.01	≤35 6.0 - 9.0 50 - 30 125 400 10 2000 3.5 0.005	Once per 2 months	Instrument Analysis Method Instrument Analysis Method APHA 2540D (Dry at 103-105°C Method) Instrument Analysis Method APHA 5210 B (5days BOD Test) APHA 5220 D (Close Reflux Colorimetric Method) APHA 9221 B (Standard Total Coliform Fermentation Technique) APHA 5520 B (partition Gravimetric Method) APHA 2540C (Total Dissolved Solids Dried at 180.C) APHA 3120 B (Inductively Coupled Plasma (ICP) Method) APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	Refer to water quality report
SW-7 (Discharge d Point)	Temperature pH Suspended Solids (SS)*8 Dissolved Oxygen (DO) BOD ₅ *9 COD _{Cr} Total Coliform Oil and Grease Total Dissolved solids	°C	22 8.6 104 5.47 38.44 61.2 49 <3.1 3488	< 3 (increase) 6-9 50 - 50 250 400 10 -	≤ 35 6.0 - 9.0 50 - 30 125 400 10 2000	Once per 2 months	Instrument Analysis Method Instrument Analysis Method APHA 2540D (Dry at 103-105°C Method) Instrument Analysis Method APHA 5210 B (5days BOD Test) APHA 5220 D (Close Reflux Colorimetric Method) APHA 9221 B (Standard Total Coliform Fermentation Technique) APHA 5520 B (partition Gravimetric Method) APHA 2540C (Total Dissolved Solids Dried at 180.C)	Refer to water quality report

Location	Item	Unit	Measure d Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
SW-7	(TDS) *6.*8							
(Discharge	Iron*6.	mg/L	1.108	3.5	3.5		APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
d Point)	Mercury*6	mg/L	≤ 0.002	0.01	0.005		APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
	Temperature	°C	27	< 3 (increase)	≤ 35		Instrument Analysis Method	
	pH	-	7.0	6-9	6.0 - 9.0		Instrument Analysis Method	
	Suspended Solids (SS)	mg/L	6	50	50		APHA 2540D (Dry at 103-105°C Method)	
	Dissolved Oxygen (DO)	mg/L	5.7	1-0	(4)		Instrument Analysis Method	
GW-2	BOD ₅	mg/L	1.49	50	30	Once	APHA 5210 B (5days BOD Test)	D.C.
(Reference	COD _{Cr}	mg/L	< 0.7	250	125	per	APHA 5220 D (Close Reflux Colorimetric Method)	Refer to water
point)	Total Coliform	MPN/100ml	<1.8	400	400	2	APHA 9221 B (Standard Total Coliform Fermentation Technique)	quality
	Oil and Grease	mg/L	<3.1	10	10	months	APHA 5520 B (partition Gravimetric Method)	report
	Total Dissolved solids	mg/L	156	1991	2000		APHA 2540C (Total Dissolved Solids Dried at 180.C)	
	(TDS) *6		2.2/2					
	Iron*6,	mg/L	2.362	3.5	3.5		APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
	Mercury*6	mg/L	≤ 0.002	0.01	0.005		APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	

^{*1}Remark: Reference to the Water and Wastewater Quality Monitoring Report (February 2022)

*4Remark: For the monitoring point of SW2 the result of total coliform exceeded than the target value due to three expected reasons; i) natural bacteria existed in discharged creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek and ii) wastewater from the local industrial zone outside of Thilawa SEZ and iii) delivered from surrounding area by tidal effect.

5Remark: For the monitoring points of SW-2 the result of BOD5 exceeded due to expected i) high levels of organic pollution in the water, ii) certain environmental stresses (100)

^{*2}Remark: Referred to the National Emission Quality Guideline (NEQG) 29th December 2015

^{*3}Remark: SS and Total Dissolved Solid results exceeded in the monitoring point of SW-2 and SW-4 than the target value due to two expected reasons i) delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to flow back by tidal fluctuation.

summer temperatures), iii) high nitrate levels which causes high plant growth and lower DO in the water body.

- *6 Remark: Recommendation from JICA Environmental expert (TSMC), to be more emphasized on Environmental and analyzing only.
- ⁷ Remark: For the monitoring point of SW-2, the results of COD exceeded due to expected reason i) high levels of organic pollution in the water which deplete the DO level, ii) presence of inorganic compounds that can oxidize and high levels of decaying plant matter, human waste, or industrial effluent from local industrial zone outside of Thilawa SEZ.
- 18 Remark: For the monitoring point of SW-7, the results of SS and TDS exceeded due to expected reason i) due to the surface water run-off from bare land in Zone B.
- ⁵⁹ Remark: For the monitoring point of SW-7, the results of BOD exceeded due to i) high levels of organic pollution in the water, ii) certain environmental stresses (hot summer temperatures), iii) high nitrate levels which causes high plant growth and lower DO in the water body. Even though the BOD₅ values exceeded the Thilawa SEZ target values, it is still under (50 mg/L) the National Environmental Quality (Emission) Guidelines (NEQG). For more effective identification of BOD₅, additional self-water quality monitoring was carried out at SW-7 on (8-March-2022) and results was 7.41mg/L. That result was complied and within standard.

2) (a) Water Quality - April 2022

Measurement Point: Effluent of Wastewater (SW-2 and SW-4 are attached as reference point only and they are natural creek water which are combine all the wastewater from the Local industrial water and domestic water from existing living environment. SW-7 is the main discharging point. GW-2 is also as reference point for monitoring of existing tube well located in the Monastery Compound near Zone-B area)

- Are there any effluents to water body in this monitoring period?
☐ Yes, ✓ No

If yes, please attach "Analysis Record" and fill in the items not to comply with Refereed International Standard

Location	Item	Unit	Measure d Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Temperature	°C	26	< 3 (increase)	≤35	Once	Instrument Analysis Method	Refer to
	pH		7.8	6-9	6.0 - 9.0	per	Instrument Analysis Method	water
SW-2	Suspended Solids (SS)*3	mg/L	114	50	50	2	APHA 2540D (Dry at 103-105°C Method)	quality
(Reference point)	Dissolved Oxygen (DO)	mg/L	4.40	7.7	-	months	Instrument Analysis Method APHA 5210 B (5days BOD Test)	report

Location	Item	Unit	Measure d Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
SW-2 (Reference point)	BOD ₅ COD _{Cr} Total Coliform* ⁴ Oil and Grease Total Dissolved solids (TDS) *5.*3 Iron* ⁵	mg/L mg/L MPN/100ml mg/L mg/L	25.94 43 35,000 <3.1 8570	50 250 400 10 -	30 125 400 10 2000		APHA 5220 D (Close Reflux Colorimetric Method) APHA 9221 B (Standard Total Coliform Fermentation Technique) APHA 5520 B (partition Gravimetric Method) APHA 2540C (Total Dissolved Solids Dried at 180.C) APHA 3120 B (Inductively Coupled Plasma (ICP) Method) APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	,
SW-4 (Reference point)	Mercury*5 Temperature pH Suspended Solids (SS)*3 Dissolved Oxygen (DO) BOD5 CODCr Total Coliform*4 Oil and Grease Total Dissolved solids (TDS) *5,*3 Iron*5 Mercury*5	mg/L C mg/L mg/L mg/L mg/L MPN/100ml mg/L mg/L mg/L mg/L	≤ 0.002 27 8.3 80 4.52 6.91 24.2 92,000 <3.1 7084 0.380 ≤ 0.002	0.01 < 3 (increase) 6-9 50 - 50 250 400 10 - 3.5 0.01	0.005 ≤ 35 6.0 - 9.0 50 - 30 125 400 10 2000 3.5 0.005	Once per 2 months	Instrument Analysis Method Instrument Analysis Method APHA 2540D (Dry at 103-105°C Method) Instrument Analysis Method APHA 5210 B (5days BOD Test) APHA 5220 D (Close Reflux Colorimetric Method) APHA 9221 B (Standard Total Coliform Fermentation Technique) APHA 5520 B (partition Gravimetric Method) APHA 2540C (Total Dissolved Solids Dried at 180.C) APHA 3120 B (Inductively Coupled Plasma (ICP) Method) APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	Refer to water quality report
SW-7 (Discharge d Point)	Temperature pH Suspended Solids (SS) Dissolved Oxygen (DO) BOD ₅ COD _{Cr} Total Coliform Oil and Grease Total Dissolved solids	mg/L mg/L mg/L mg/L mg/L MPN/100ml mg/L mg/L	There is no water during sampling	< 3 (increase) 6-9 50 - 50 250 400 10	≤35 6.0 - 9.0 50 - 30 125 400 10 2000	Once per 2 months	Instrument Analysis Method Instrument Analysis Method APHA 2540D (Dry at 103-105°C Method) Instrument Analysis Method APHA 5210 B (5days BOD Test) APHA 5220 D (Close Reflux Colorimetric Method) APHA 9221 B (Standard Total Coliform Fermentation Technique) APHA 5520 B (partition Gravimetric Method) APHA 2540C (Total Dissolved Solids Dried at 180.C)	Refer to water quality report

Location	Item	Unit	Measure d Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	(TDS)*5							
	Iron*5	mg/L		3.5	3.5		APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
	Mercury*5	mg/L		0.01	0.005		APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
	Temperature	°C	27	< 3 (increase)	≤ 35		Instrument Analysis Method	
	pH	r <u>-</u>	6.5	6-9	6.0 - 9.0		Instrument Analysis Method	
	Suspended Solids (SS)	mg/L	8	50	50		APHA 2540D (Dry at 103-105°C Method)	
	Dissolved Oxygen (DO)	mg/L	6.38	-	-		Instrument Analysis Method	
GW-2	BOD ₅	mg/L	5.12	50	30	Once	APHA 5210 B (5days BOD Test) APHA 5220 D (Close Reflux Colorimetric Method)	Refer to
(reference	COD _{Cr}	mg/L	< 0.7	250	125	per	APHA 9221 B (Standard Total Coliform Fermentation	water
point)	Total Coliform	MPN/100ml	< 1.8	400	400	2	Technique)	quality
	Oil and Grease	mg/L	<3.1	10	10	months	APHA 5520 B (partition Gravimetric Method)	report
	Total Dissolved solids	mg/L	150	-	2000		APHA 2540C (Total Dissolved Solids Dried at 180.C)	
	(TDS)*5							
	Iron*5	mg/L	0.970	3.5	3.5		APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	
	Mercury*5	mg/L	≤ 0.002	0.01	0.005		APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	

^{*1}Remark: Reference to the Water and Wastewater Quality Monitoring Report (April 2022)

^{*2}Remark: Referred to the National Emission Quality Guideline (NEQG) 29th December 2015

^{*3}Remark: SS, Total Dissolved Solids results exceeded in the monitoring point of SW-2 and SW-4 than the target value due to expected reasons i) delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to flow back by tidal fluctuation.

^{*4}Remark: For the monitoring point of SW2, SW4 the result of total coliform exceeded than the target value due to expected reasons i) natural bacteria existed in discharged creek because there are various kinds of vegetation of creature such as birds, and small animals in and along the discharged creek ii) wastewater from the local industrial zone outside of Thilawa SEZ and iii) delivered from surrounding area by tidal effect.

^{*5} Remark: Recommendation from JICA Environmental expert (TSMC), to be more emphasized on Environmental and analyzing only.

Myanmar Japan Thilawa Development Limited

2) (b) Water Quality - June 2022

<u>Measurement Point:</u> Effluent of Wastewater (SW-2 and SW-4 are attached as reference point only and they are natural creek water which are combine all the wastewater from the Local industrial water and domestic water from existing living environment. SW-7 is the main discharging point. GW-2 is also as reference point for monitoring of existing tube well located in the Monastery Compound near Zone-B area)

- Are there any effluents to water body in this monitoring period?

______ Yes, _____ No

If yes, please attach "Analysis Record" and fill in the items not to comply with Refereed International Standard

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Temperature	°C	19	< 3 (increase)	≤ 35		Instrument Analysis Method	
	pH	29-2	7.2	6-9	6~9		Instrument Analysis Method	
	Suspended Solids (SS)*3	mg/L	88	50	Max 50		APHA 2540 D Method	
	Dissolved Oxygen (DO)	mg/L	4.79	1940	1000		Instrument Analysis Method	
	BOD (5)	mg/L	4.10	50	Max 30		APHA 5210 B Method	
	COD (Cr)	mg/L	112	250	Max 125		APHA 5220D Method	
	Total Coliform*4	MPN/100 ml	160000	400	Max 400		APHA 9221B Method	
	Total Nitrogen (T-N)	mg/L	2.1	0.00	Max 80		HACH Method 10072 Method	
	Total Phosphorous (T-P)	mg/L	0.26	2	Max 2		APHA 4500-P E Method	
	Color	TCU	25.56	-	Max 150		APHA 2120C Method	
	Odor	TON	2	-	(E)	Once per	APHA 2150 B Method	Refer to water
	Oil and Grease	mg/L	<3.1	10	Max 10	6 months	APHA 5520B Method	quality report
SW-2	Mercury	mg/L	≤ 0.002	0.01	Max 0.005		APHA 3120 B Method	
Reference	Zinc	mg/L	0.094	2	Max 2		APHA 3120 B Method	
point)	Arsenic	mg/L	≤ 0.010	0.1	Max 0.1		APHA 3120 B Method	
P	Chromium	mg/L	≤ 0.005	0.5	Max 0.5		APHA 3120 B Method	
	Cadmium	mg/L	≤ 0.005	0.1	Max 0.03		APHA 3120 B Method	
	Selenium	mg/L	≤ 0.005	0.1	Max 0.02		APHA 3120 B Method	
	Lead	mg/L	≤ 0.005	0.1	Max 0.1		APHA 3120 B Method	
	Copper	mg/L	≤ 0.005	0.5	Max 0.5		APHA 3120 B Method	
	Barium	mg/L	0.032	20 5 5	Max 1		APHA 3120 B Method	MADEVELOS
	Nickel	mg/L	≤ 0.005	0.5	Max 0.2		APHA 3120 B Method	Salva COO
	Cyanide	mg/L	< 0.002	0.1	Max 0.1		HACH 8027 Method	E CO

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Total Cyanide	mg/L	0.003	1	Max 1		APHA 4500-CN-C Method	
	Free Chlorine	mg/L	< 0.1	122	Max 1		APHA 4500-CL G Method	
	Sulphide (S ₂ -)	mg/L	0.066	1 .	Max 1		HACH 8131 Method	
	Formaldehyde	mg/L	0.025		Max 1		HACH 8110 Method	
	Phenols	mg/L	0.007	0.5	Max 0.5		USEPA Method 420.1	
SW-2	Iron	mg/L	2.407	3.5	Max 3.5		APHA 3120 B Method	
Reference	Total Dissolved Solids	mg/L	248	5 -	Max 2000		APHA 2540 C Method	
point)	Total Residual Chlorine	mg/L	< 0.1	0.2	Max 0.2		APHA 4500-CL G Method	
	Chromium (Hexavalent)	mg/L	< 0.05	0.1	Max 0.1		ISO 11083:1994 Method	
	Ammonia	mg/L	1.96	10	Max 10		HACH Method 10205 Method	
	Fluoride	mg/L	0.028	20	Max 20		APHA 4110 B Method	
	Silver	mg/L	≤ 0.005	0.5	Max 0.5		APHA 3120 B Method	
	Temperature	°C	19	< 3 (increase)	≤35	1	Instrument Analysis Method	
	pH	>>==:	7.4	6-9	6~9		Instrument Analysis Method	
	Suspended Solids (SS)*3	mg/L	156	50	Max 50		APHA 2540 D Method	
	Dissolved Oxygen (DO)	mg/L	6.68	25-2			Instrument Analysis Method	
	BOD (5)	mg/L	4.45	50	Max 30		APHA 5210 B Method	
	COD (Cr)	mg/L	36.8	250	Max 125		APHA 5220D Method	
	Total Coliform*4	MPN/100 ml	>160000	400	Max 400		APHA 9221B Method	
	Total Nitrogen (T-N)	mg/L	0.6		Max 80		HACH Method 10072 Method	
	Total Phosphorous (T-P)	mg/L	0.22	2	Max 2		APHA 4500-P E Method	
						Once per		
	Color	TCU	14.1		Max 150	6 months	APHA 2120C Method	
	Odor	TON	2				APHA 2150 B Method	D.C.
SW-4	Oil and Grease	mg/L	< 3.1	10	Max 10		APHA 5520B Method	Refer to water
Reference	Mercury	mg/L	≤ 0.002	0.01	Max 0.005		APHA 3120 B Method	quality report
point)	Zinc	mg/L	0.124	2	Max 2		APHA 3120 B Method	
poniti	Arsenic	mg/L	≤ 0.010	0.1	Max 0.1		APHA 3120 B Method	
	Chromium	mg/L	0.006	0.5	Max 0.5		APHA 3120 B Method	
	Cadmium	mg/L	≤ 0.005	0.1	Max 0.03		APHA 3120 B Method	
	Selenium	mg/L	≤ 0.005	0.1	Max 0.02		APHA 3120 B Method	
	Lead	mg/L	≤ 0.005	0.1	Max 0.1		APHA 3120 B Method	THE AWA DEVE
	Copper	mg/L	0.013	0.5	Max 0.5		APHA 3120 B Method	3

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard
	Barium	mg/L	0.025		Max 1		APHA 3120 B Method	
	Nickel	mg/L	≤ 0.005	0.5	Max 0.2		APHA 3120 B Method	
	Cyanide	mg/L	< 0.002	0.1	Max 0.1		HACH 8027 Method	
	Total Cyanide	mg/L	< 0.002	1	Max 1		APHA 4500-CN-C Method	
	Free Chlorine	mg/L	< 0.1	5-2	Max 1		APHA 4500-CL G Method	
	Sulphide (S ₂ -)	mg/L	0.064	1	Max 1		HACH 8131 Method	
	Formaldehyde	mg/L	0.015	2.24	Max 1		HACH 8110 Method	
	Phenols	mg/L	0.005	0.5	Max 0.5		USEPA Method 420.1	
	Iron*5	mg/L	3.618	3.5	Max 3.5		APHA 3120 B Method	
	Total Dissolved Solids	mg/L	308	0.70	Max 2000		APHA 2540 C Method	
SW-4	Total Residual Chlorine	mg/L	< 0.1	0.2	Max 0.2		APHA 4500-CL G Method	
(Reference	Chromium (Hexavalent)	mg/L	< 0.05	0.1	Max 0.1		ISO 11083:1994 Method	
point)	Ammonia	mg/L	0.58	10	Max 10		HACH Method 10205 Method	
	Fluoride	mg/L	0.377	20	Max 20		APHA 4110 B Method	
	Silver	mg/L	≤ 0.005	0.5	Max 0.5		APHA 3120 B Method	
	Temperature	°C	19	< 3 (increase)	≤ 35		Instrument Analysis Method	
	pH		8	6-9	6~9		Instrument Analysis Method	
	Suspended Solids (SS)*7	mg/L	80	50	Max 50		APHA 2540 D Method	
	Dissolved Oxygen (DO)	mg/L	9.01	-	5000		Instrument Analysis Method	
	BOD (5)	mg/L	3.93	50	Max 30		APHA 5210 B Method	
	COD (Cr)	mg/L	15.1	250	Max 125		APHA 5220D Method	
	Total Coliform*8	MPN/100 ml	> 160000	400	Max 400		APHA 9221B Method	
07.7	Total Nitrogen (T-N)	mg/L	0.5		Max 80		HACH Method 10072 Method	56.75
SW-7 (Discharge	Total Phosphorous (T-P)	mg/L	0.05	2	Max 2	Once per 6 months	APHA 4500-P E Method	Refer to water quality report
d point)	Color	TCU	15.58	5945	Max 150		APHA 2120C Method	200
	Odor	TON	1	-	1543		APHA 2150 B Method	
	Oil and Grease	mg/L	< 3.1	10	Max 10		APHA 5520B Method	
	Mercury	mg/L	≤ 0.002	0.01	Max 0.005		APHA 3120 B Method	
	Zinc	mg/L	0.099	2	Max 2		APHA 3120 B Method	
	Arsenic	mg/L	≤ 0.010	0.1	Max 0.1		APHA 3120 B Method	MADEVEL
	Chromium	mg/L	≤ 0.005	0.5	Max 0.5		APHA 3120 B Method	THE O
	Cadmium	mg/L	≤ 0.005	0.1	Max 0.03		APHA 3120 B Method	\$ MITD

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Selenium	mg/L	≤ 0.005	0.1	Max 0.02		APHA 3120 B Method	
	Lead	mg/L	0.009	0.1	Max 0.1		APHA 3120 B Method	
	Copper	mg/L	≤ 0.005	0.5	Max 0.5		APHA 3120 B Method	
	Barium	mg/L	0.142	200	Max 1		APHA 3120 B Method	
	Nickel	mg/L	≤ 0.005	0.5	Max 0.2		APHA 3120 B Method	
	Cyanide	mg/L	< 0.002	0.1	Max 0.1		HACH 8027 Method	
	Total Cyanide	mg/L	< 0.002	1	Max 1		APHA 4500-CN-C Method	
	Free Chlorine	mg/L	< 0.1	-	Max 1		APHA 4500-CL G Method	
	Sulphide (S ₂ -)	mg/L	0.081	1	Max 1		HACH 8131 Method	
	Formaldehyde	mg/L	0.037	22 2 2	Max 1		HACH 8110 Method	
	Phenols	mg/L	< 0.002	0.5	Max 0.5		USEPA Method 420.1	
SW-7	Iron	mg/L	1.590	3.5	Max 3.5		APHA 3120 B Method	
Discharge	Total Dissolved Solids	mg/L	136	100	Max 2000		APHA 2540 C Method	
d point)	Total Residual Chlorine	mg/L	< 0.1	0.2	Max 0.2		APHA 4500-CL G Method	
· v	Chromium (Hexavalent)	mg/L	< 0.05	0.1	Max 0.1		ISO 11083:1994 Method	
	Ammonia	mg/L	0.09	10	Max 10		HACH Method 10205 Method	
	Fluoride	mg/L	0.087	20	Max 20		APHA 4110 B Method	
	Silver	mg/L	≤ 0.005	0.5	Max 0.5		APHA 3120 B Method	
	Temperature	°C	21	< 3 (increase)	≤35		Instrument Analysis Method	
	pH	2	7	6-9	6~9		Instrument Analysis Method	
9	Suspended Solids (SS)	mg/L	16	50	Max 50		APHA 2540 D Method	
	Dissolved Oxygen (DO)	mg/L	8.04	-			Instrument Analysis Method	
	BOD (5)	mg/L	4.20	50	Max 30		APHA 5210 B Method	
	COD (Cr)	mg/L	< 0.7	250	Max 125		APHA 5220D Method	
	Total Coliform	MPN/100	<1.8	400	Max 400		APHA 9221B Method	
GW-2		ml	1.0			Once per		
Reference	Total Nitrogen (T-N)	mg/L	< 0.5		Max 80	6 months	HACH Method 10072 Method	
point)	Total Phosphorous (T-P)	mg/L	0.66	2	Max 2	O Mondio	APHA 4500-P E Method	
	Color	TCU	13.66	-	Max 150		APHA 2120C Method	
	Odor	TON	1	-			APHA 2150 B Method	NMA C
	Oil and Grease	mg/L	< 3.1	10	Max 10		APHA 5520B Method	THILAWA DEL
	Mercury	mg/L	≤ 0.002	0.01	Max 0.005		APHA 3120 B Method	MJTD
	Zinc	mg/L	0.100	2	Max 2		APHA 3120 B Method	MJTD

Location	Item	Unit	Measur ed Value (Max)	Country's Standard*2	Target value to be applied*1	Frequ- ency	Method	Note (Reason of excess of the standard)
	Arsenic	mg/L	≤ 0.010	0.1	Max 0.1		APHA 3120 B Method	
	Chromium	mg/L	0.007	0.5	Max 0.5		APHA 3120 B Method	
	Cadmium	mg/L	≤ 0.005	0.1	Max 0.03		APHA 3120 B Method	
	Selenium	mg/L	≤ 0.005	0.1	Max 0.02		APHA 3120 B Method	
	Lead	mg/L	0.032	0.1	Max 0.1		APHA 3120 B Method	
GW-2	Copper	mg/L	≤ 0.005	0.5	Max 0.5		APHA 3120 B Method	
Reference	Barium	mg/L	0.018	1.41	Max 1		APHA 3120 B Method	
point)	Nickel	mg/L	< 0.005	0.5	Max 0.2	1.0	APHA 3120 B Method	
	Cyanide	mg/L	< 0.002	0.1	Max 0.1		HACH 8027 Method	
	Total Cyanide	mg/L	< 0.002	1	Max 1		APHA 4500-CN-C Method	
	Free Chlorine	mg/L	< 0.1	St = 0	Max 1		APHA 4500-CL G Method	
	Sulphide (S ₂ -)	mg/L	0.026	1	Max 1		HACH 8131 Method	
	Formaldehyde	mg/L	0.019	0.41	Max 1		HACH 8110 Method	
	Phenols	mg/L	< 0.002	0.5	Max 0.5		USEPA Method 420.1	
	Iron*6	mg/L	6.212	3.5	Max 3.5		APHA 3120 B Method	
	Total Dissolved Solids	mg/L	180	3.63	Max 2000		APHA 2540 C Method	
	Total Residual Chlorine	mg/L	< 0.1	0.2	Max 0.2		APHA 4500-CL G Method	
	Chromium (Hexavalent)	mg/L	< 0.05	0.1	Max 0.1		ISO 11083:1994 Method	
	Ammonia	mg/L	0.23	10	Max 10		HACH Method 10205 Method	
	Fluoride	mg/L	≤ 0.014	20	Max 20		APHA 4110 B Method	
	Silver	mg/L	0.210	0.5	Max 0.5		APHA 3120 B Method	

^{*1}Remark: Reference to the Water and Wastewater Quality Monitoring Report (June 2022)

^{*2}Remark: Referred to the National Emission Quality Guideline (NEQG) 29th December 2015

^{*3}Remark: SS result exceeded in the monitoring point of SW-2, SW-4 than the target value due to expected reasons i) delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to flow back by tidal fluctuation. *4Remark: For the monitoring point of SW2, SW4 the result of total coliform exceeded than the target value due to expected reasons i) natural bacteria existed in discharged creek because there are various kinds of vegetation of creature such as birds, and small animals in and along the discharged creek ii) wastewater from the local industrial zone outside of Thilawa SEZ and iii) delivered from surrounding area by tidal effect.

*5Remark: For the monitoring point of SW-4, the result of iron exceeded due to expected reason i) due to influence of natural origin (iron can reach out form the soil by run-off). Japan Standard for living environment for iron is 10 mg/L. As the comparison with the living environment standard value in Japan, iron result in SW-4 is lower than the standard value. Therefore, it can be considered that there is no significant impact on the living environment.

*6 Remark: The result of Iron at the monitoring point of reference tube well (GW-2) exceeded the target value. Comparison with previous monitoring results of reference tube well (GW-2), the iron concentration results ranged from 3.076 mg/1 (August, 2019) – 8.310 mg/1 (October, 2021) and most of the iron concentration measured results (from April, 2019 to June, 2022) exceeded the target value except the iron concentration result of August, 2019 and April, 2022. Therefore, the possible reasons may due to the influence of natural origin (iron can reach out from soil by run-off). In Yangon, soil is naturally rich in iron.

*7 Remark: For the monitoring point of SW-7, the results of SS exceeded due to expected reason i) the surface water run-off from bare land in Zone B.

*8 Remark: For the monitoring point of SW-7, the results of Total Coliform exceeded due to i) natural bacteria existed in all area of Zone B because there are various kinds of vegetation and creature such as birds, and small animals in and along the retention pond. Total coliforms do not affect human health directly, self-monitoring was carried out to identify health impact by coliform bacteria. As for the result of E-Coli SW-7 was 12. It is considered that there is no significant impact to human health.

3) Soil Contamination (only operation phase)

Situations environmental report from tenants

	2
Contents of Issues on Soil Contamination	Countermeasures

Remark: Soil contamination survey will be done after the whole Zone-B is operation stage.

4) Noise Level (June 2022)

Location	Item	Unit	Measured Value (Mean)	Measured Value (Max)	Country's Standard	Target value to be applied*	Referred International Standard	Frequency	Method	Note (Reason of excess of the standard)
----------	------	------	-----------------------------	----------------------------	-----------------------	--------------------------------------	---------------------------------------	-----------	--------	--

Myanmar Japan Thilawa Development Limited

Residential Area	Leq (day)	dB(A)	52	54		75			
NV-2	Leq (evening)	dB(A)	-	-	Refer to	60	Refer the section	0	
	Leq(night)	dB(A)	;=:	14	NEQG	55	2.4 in EIA main	One time / 3 months	
Along the road	Leq (day)	dB(A)	57	59	Article 1.3	75	report	5 mondis	
(NV-1)	Leq(night)	dB(A)	-	2-1		70			

^{*}Remarks: Referred to the tentative target value of ambient air quality (EIA Report for industrial area, Table 2.4-8), Reference to the noise and vibration monitoring report (June 2022)

Remark: Due to has Curfew and we could monitor only day time only.

Complaints from Residents

- Are there any complaints from residents regarding noise in this monitoring period?

Yes, Vo

No

Yes, No

No

Contents of Complaints from Residents	Countermeasures

5) Solid Waste

Measurement Point: Storage for Sludge* (Operation Phase)

Are there any wastes if sludge in this monitoring period?

Yes, No

If yes, please report the amount of sludge and fill in the results of solid waste management activities.

Item	Date	Generated from	Unit	Value	Solid Waste Management Activities
General Waste with Green Waste	March -2022	Landscaping and Plantation	Kg	320	Waste disposing to Than Lynn Development Committee, Yangon Division
General Waste with Green Waste	April-2022	Landscaping and Plantation	Kg	350	Waste disposing to Than Lynn Development Committee Yangon Division
General Waste with Green Waste	May-2022	Landscaping and Plantation	Kg	340	Waste disposing to Than Lynn Development Committee Yangon Division
General Waste with Green Waste	June-2022	Landscaping and Plantation	Kg	360	Waste disposing to Than Lynn Development Committee Yangon Division
General Waste with Green Waste	July-2022	Landscaping and Plantation	Kg	350	Waste disposing to Than Lynn Development Committee Yangon Division

General Waste with Green Waste	August-2022	Landscaping Plantation	and	Kg	330	Waste disposing to Than Lynn Development Committee, Yangon Division
--------------------------------	-------------	---------------------------	-----	----	-----	--

Remarks: Waste amount is not only in TSEZ-B but also combine with TSEZ-A General Waste. Generate wastes are dried waste and weight value are estimated base on trash bin specification. Green Waste are planning for using in Bio-fertilizer.

6) (a) Ground Subsidence Hydrology (GPS Location 16.67 N, 96.29E)

Duration	Water Cor	sumption	Ground	d Level	No.t.
(Week)	Quantity	Unit	Quantity	Unit	Note
March -2022		m³/ week	+6.303	m	

6) (b) Ground Subsidence Hydrology (GPS Location 16.67 N, 96.29E)

Duration	Water Cor	sumption	Ground	l Level	Nata
(Week)	Quantity	Unit	Quantity	Unit	Note
April -2022		m³/ week	+6.303	m	

6) (c) Ground Subsidence Hydrology (GPS Location 16.67 N, 96.29E)

Duration	Water Cor	sumption	Ground	d Level	Nata
(Week)	Quantity	Unit	Quantity	Unit	Note
May -2022		m³/ week	+6.302	m	

6) (d) Ground Subsidence Hydrology (GPS Location 16.67 N, 96.29E)

Duration	Water Cor	sumption	Ground	d Level	Note
(Week)	Quantity	Unit	Quantity	Unit	Note
June -2022		m³/ week	+6.302	m	

6) (e) Ground Subsidence Hydrology (GPS Location 16.67 N, 96.29E)

^{*}Remarks: Zone-B wastewater treated at Sewage Treatment of TSEZ-A and there is no generate Sewage Treatment sludge.

Myanmar Japan Thilawa Development Limited

f) Ground Subsidence Hy-	nter Consumption Intity Unit Im ³ / week peration phase) Inter Consumption Intity Unit Im ³ / week peration phase) Inter Consumption Intity Unit Im ³ / week	Ground Quantity +6.302	d Level Unit m	
Duration War (Week) Quaration August -2022 7) Offensive Odor (only of Complaints from Resident If yes, please describe to the complaints from the	drology (GPS Location ter Consumption Unit m³/ week peration phase)	on 16.67 N, 96.2 Ground Quantity +6.302	29E) d Level Unit m	nitoring period? ☐ Yes, ☑ No
Duration (Week) Qua August -2022 Offensive Odor (only of Complaints from Resid - Are there any complaint If yes, please describe to	nter Consumption Intity Unit Im ³ / week peration phase) Inter Consumption Intity Unit Im ³ / week peration phase) Inter Consumption Intity Unit Im ³ / week	Ground Quantity +6.302	d Level Unit m	nitoring period? ☐ Yes, ☑ No
(Week) Qua August -2022 Offensive Odor (only of Complaints from Resid Are there any complaint If yes, please describe to	peration phase) ents ts from residents reg	Quantity +6.302	Unit m	nitoring period? ☐ Yes, ☑ No
August -2022 Offensive Odor (only of Complaints from Reside - Are there any complaint If yes, please describe to the complaint of the complai	m³/ week peration phase) ents ts from residents reg	+6.302	m ve odor in this mon	
Offensive Odor (only of Complaints from Reside Are there any complaint If yes, please describe to the complaint of the compla	peration phase) ents ts from residents reg	arding offensi	ve odor in this mon	
1	s from Residents			Countermeasures
Situations environmental - Are there any serious iss If yes, please describe t	sues regarding offen			
Contents of Issues on So	ne contents of comp	lains and its co	ountermeasures to 11	in in below the table.

8) Infectious disease, Working Environment, Accident

Information from contractor (construction phase) or tenants (operation phase)

- Are there any incidents regarding infectious disease, Working Environment, Accident in this monitoring period?

Yes, No
If yes, please describe the contents of complains and its countermeasures to fill in below the table.

Contents of Incidents	Countermeasures
There is no accident and incident during monitoring period.	

Note: If emergency incidents are occurred, the information shall be reported to the relevant organizations and authorities immediately.

- 9) Resettlement Works for Project Affected Persons (PAPs) and Common Assets Information from TSMC
 - Please describe the progress and remarkable issues (if any) to fill in below the table.

Re	esentment Works	Progress in Narrative	Remarkable Issues
	Land Acquisition and Relocation	From March 2022 to August 2022; - 1 landowner PAH from Zone B (Phase 1) agreed and received compensation. - 1 landowner PAH from Zone B (Phase 4) agreed and received compensation. - No relocation.	
Projected Affected Persons	Income Restoration Program	1) Supporting rice and cooking oil to PAPs for Valuable People Program in Zone B (Phase 3 and 4) for every month. 14 HHs from Zone B (Phase 3) and 5 HHs from Zone B (Phase 4) are received for rice and cooking oil in every month. 2) Providing electricity charges for streetlight and trash cleaning	

		charges for Zone B PAPs from relocation site in every month 3) Social Welfare Support (200,000 Ks) to two Valuable people from Zone B Phase 3&4 who were passed away in August 2022.	
Common Assets	Relocation		

Contents of Grievance	Response/ Countermeasures	
There is no grievance from March to August 2022.		

10) CSR activities such as Community Support Program
- Are there any CSR activities implemented in this monitoring period?

-N		To T
vies,	1.0	INO

If yes, please describe the outline of CSR activities implemented to fill in below the table.

Date	Activities	Description (Location, Participant etc)
March 2022	TSEZ Covid-19 Vaccination Program	Booster Dose Vaccination (Covishield) for employees above 50 years and Complete Dose (Covishield) for unvaccinated employees in TSEZ at TPD compound.
April 2022	TSEZ Covid-19 Vaccination Program	Booster Dose Vaccination (Covishield) for employees above 40 years and Complete Dose (Covishield) for unvaccinated employees in TSEZ at TPD compound.
April 2022	Homage Paying Ceremony (Cash Assistance Program)	Provide Cash (100,000 MMK each) to Elders who are 80 years and above from Aye Mya Thida Ward and Alun Sut Village
May 2022	TSEZ Covid-19 Vaccination Program	Booster Dose Vaccination to employees in TSEZ (Covishield)
May 2022	Homage Paying Ceremony (Cash	Provide Cash (100,000 MMK each) to Elders who are 80 years and

	Assistance Program)	above from Shwe Pyi Thar Yar Ward, Shwe Pyouk Village and Thida Myaing Ward
June 2022	TSEZ Covid-19 Vaccination Program	Booster Dose Vaccination to employees in TSEZ (Covishield)
July/August/September 2022	Stationary Donation Program	BEHS Aye Mya Thida Ward, BEMS Aduttaw Village, BEPS Thilawa Kone Tan (Shwe Pyi Tar Yar village), BEPS Aye Mya Thida Ward, BEPS Alun Sut Village and St. Marry Orphanage School/ Pan Taw Ba Ka School, BEHS Myaing Tar Yar School and students from Yay Kyaung Village
July/August/September 2022	Scholarship/Student Grant Program for University Student	Mg Zaw Htet, Foundation Year, University of Medicine (1) Yangon from Shwe Pyauk Village
August 2022	Thilawa SEZ's CSR Engagement Meeting	Locators at TSEZ
March/April/May/June/July/August 2022	Electricity Utility Support Program	Support the Electricity Utility Charges of Moe Kyo Swan Monastery
March/April/May/June/July/ August 2022	Job assistance to local community	Relaying information of Job Vacancy from Okamura Trading Myanmar Company Limited, Guston Amava Company Limited, LS Gaon Cable Myanmar Company Limited, Alidac Health Care Myanmar Company Limited, Myanmar Wacoal Company Limited, TCCC Myanmar Company Limited, A&N foods Myanmar Company Limited and Indorama Ventures Packaing (Myanmar) Limited.

End of Document

Thilawa Special Economic Zone Zone B– Phase 1,2 & 3 (Operation phase)

Appendix-A

Water and Waste Water Monitoring Report February 2022

WATER QUALITY MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA IN THILAWA SEZ ZONE B (PHASE 1, 2 & 3 OPERATION STAGE)

(Bi-Monthly Monitoring)

February 2022 Myanmar Koei International Ltd.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION	
1.1 General	
CHAPTER 2: WATER QUALITY MONITORING	
2.1 Monitoring Items	
2.2 Description of Sampling Points	
2.3 Monitoring Method	
2.4 Monitoring Period	-
2.5 Monitoring Results	,
CHAPTER 3: CONCLUSION AND RECOMMENDATIONS	,
APPENDIX-1 FIELD SURVEY PHOTOS	
APPENDIX-2 LABORATORY RESULTS	
LIST OF TABLES	
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	1
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	1
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	1
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	1
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	1
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	1

CHAPTER 1: INTRODUCTION

1.1 General

Thilawa Special Economic Zone (SEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd. (MJTD) has a responsibility to carry out regular monitoring in the industrial area of Zone B in accordance with the approved Environmental Impact Assessment (EIA) report and Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area. As for the monitoring of the water quality, total four sampling points are set for water quality survey, named SW-2, SW-4, SW-7 and GW-2 have been monitored in Thilawa SEZ and its surrounding area in timely manner. Among the four locations, SW-7 is main discharged point of Zone B during the operation stage. Moreover, GW-2 is monitored as a reference of existing tube well which located in the monastery compound of Phalan village. Location of sampling points for water quality monitoring is shown in Figure 1.1-1.

Source: Google Earth

Figure 1.1-1 Location of Sampling Points of Water Quality Monitoring

CHAPTER 2: WATER QUALITY MONITORING

2.1 Monitoring Items

Sampling points and parameters for water quality monitoring are determined to cover the environmental monitoring plan of the EIA report.

Water quality sampling was carried out at four locations. Among the four locations, water flow measurement was carried out at two locations (SW-2 and SW-4) where can be measured by current meter. Monitoring items and sampling points are summarized in Table 2.1-1.

Table 2.1-1 Monitoring Items for Water Quality

No.	Parameters	SW-2	SW-4	SW-7	GW-2	Remarks
1	Water Temperature	0	0	0	0	On-site measurement
2	pH	0	0	0	0	On-site measurement
3	DO	0	0	0	0	On-site measurement
4	BOD(5)	0	0	0	0	Laboratory analysis
5	COD(Cr)	0	0	0	0	Laboratory analysis
6	Total Nitrogen (T-N)	0	0	0	0	Laboratory analysis
7	Suspended Solids	0	0	0	0	Laboratory analysis
8	Total Coliform	0	0	0	0	Laboratory analysis
9	Total Phosphorous (T-P)	1 -	2	-	-	Laboratory analysis
10	Color	0	0	0	0	Laboratory analysis
11	Odor	0	0	0	0	Laboratory analysis
12	Oil and Grease	0	0	0	0	Laboratory analysis
13	Total Dissolved solids (TDS) (Self-monitoring)	0	0	0	0	Laboratory analysis
14	Iron (Self-monitoring)	0	0	0	0	Laboratory analysis
15	Mercury (Self-monitoring)	o	0	D	0	Laboratory analysis
16	Escherichia Coli (Self-monitoring)	(*)	-	0	0	Laboratory analysis
17	Flow Rate	0	0	-	- 6	On-site measurement

Note: Total Phosphorous (T-P) cannot be analyzed at the laboratory during the monitoring period.

Source: Myanmar Koei International Ltd.

2.2 Description of Sampling Points

The outline of sampling points is mentioned in Table 2.2-1. The photos of conducting field survey at each sampling points are mentioned in Appendix-1.

Table 2.2-1 Outline of Sampling Points

No.	Station	Detailed Information
	SW-2	Coordinate- N - 16° 40′ 20.69", E - 96° 17′ 18.04"
1		Location - Upstream of Shwe Pyauk Creek
		Survey Item - Surface water sampling and water flow rate measurement
	SW-4	Coordinate- N - 16° 39' 42.84", E - 96° 16' 27.42"
2		Location - Downstream of Shwe Pyauk Creek
		Survey Item - Surface water sampling and water flow rate measurement
	SW-7	Coordinate - N - 16° 40′ 13.25″, E - 96° 17′ 5.66″
3		Location - Outlet of retention pond of Zone B construction site before connecting to Shwe Pyauk Creek
		Survey Item - Discharge water sampling
	GW-2	Coordinate - N - 16° 39' 25.30", E - 96° 17' 15.60"
4		Location - In the monastery compound of Phalan village
-		Survey Item - Ground water sampling

Source: Myanmar Koei International Ltd.

SW-2 (Reference Point)

SW-2 was collected at the upstream of Shwe Pyauk creek. This sampling point is located in the northeast of Zone B area and at the south of Dagon-Thilawa road. The surrounding areas are Zone A in the northwest and local industrial zone in the east respectively.

SW-4 (Reference Point)

SW-4 was collected at the downstream of Shwe Pyauk creek, after mixing of discharge water from local industrial zone, construction site of Zone B and Zone A, which is flowing from east to west and then entering into the Yangon River. The distance is about 2.15 km downstream of SW-2. This sampling point is located in the west of Zone B area and in the south of Dagon-Thilawa road. The surrounding areas are Zone A in the northeast, local industrial zone in the east and paddy fields in the south and west respectively.

SW-7 (Discharged Point)

SW-7 is main discharged point of Zone B during operation stage. The distance is about 434 m downstream of SW-2. This sampling point is located at outlet of retention pond of Zone B, in the north of Zone B area and in the south of Dagon-Thilawa road. The surrounding areas are Zone A in the north and local industrial zone in the east respectively.

GW-2 (Reference of Existing Tube Well)

GW-2 was collected from tube well as ground water sample. It is located in the monastery compound of Phalan village. The surrounding areas are Thilawa SEZ Zone A in the north, Phalan village in the south and fields in the west and local industrial zone in the northeast and operation of Thilawa SEZ Zone B in the east and northeast respectively.

2.3 Monitoring Method

All water samples were collected with cleaned sampling bottles and analyzed by the following standard method as shown in Table 2.3-1. All samples were kept in iced boxes keeping at 2-4 °C and were transported to the laboratory. Among the parameters; water temperature, pH and DO were measured by the on-site instrument "Horiba, U-52" and water flow rate was also conducted by using the on-site instrument "JFE Digital Current Meter".

Table 2.3-1 Analytic Method for Water Quality

No.	Parameter	Method				
1	Water Temperature	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)				
2	pH	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)				
3	Suspended Solids (SS)	APHA 2540D (Dry at 103-105°C Method)				
4	Dissolved Oxygen (DO)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)				
5	BOD(5)	APHA 5210 B (5 days BOD Test)				
6	COD(Cr)	APHA 5220D (Close Reflux Colorimetric Method)				
7	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)				
8	Total Nitrogen (T-N)	HACH Method 10072 (TNT Persulfate Digestion Method)				
9	Total Phosphorous (T-P)					
10	Color	APHA 2120C (Spectrophotometric Method)				
11	Odor	APHA 2150 B (Threshold Odor Test)				
12	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)				
13	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)				
14	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)				
15	Total Dissolved solids (TDS)	APHA 2540C (Total Dissolved Solids Dried at 180°C Method)				
16	Escherichia Coli	APHA 9221 F (Escherichia Coli Procedure Using Fluorogenic Substrate)				
17	Flow Rate	Detection of Electromagnetic Elements (Real-time measurement by AEM 213-D Digital Current Meters)				

Note: Total Phosphorous (T-P) cannot be analyzed at the laboratory during the monitoring period.

Source: Myanmar Koei International Ltd.

2.4 Monitoring Period

Water quality and water flow rate monitoring were conducted on 15 February 2022 and sampling time is shown in Table 2.4-1 to avoid tidal effect. The tide record for Yangon River, Myanmar on 15 February 2022 is shown in Table 2.4-2.

Table 2.4-1 Sampling Time of Each Station

No.	Station	Sampling Time
1	SW-2	15/02/2022 08:43
2	SW-4	15/02/2022 07:42
3	SW-7	15/02/2022 09:09
4	GW-2	15/02/2022 12:27

Source: Myanmar Koei International Ltd.

Table 2.4-2 Tide Record for Yangon River, Myanmar

Date	Time	Height	Tide Conditions	
15/02/2022	04:10	5.04	High Tide	
	11:59	0.38	Low Tide	
	16:43	4.91	High Tide	
	23:49	0.74	Low Tide	

Source: Myanmar Port Authority, Tide Table for the Yangon River and Elephant Point, 2022.

2.5 Monitoring Results

Results of water quality monitoring at discharged point, discharged creek and reference tube well are summarized in Table 2.5-1 and Table 2.5-2. Analytical results of the laboratory are described in Appendix-2. The results were compared with the target value of effluent water quality discharged to water body stipulated in the EIA report.

2.5.1 Results of Discharged Point and Discharged Creek

As the comparison with the target value, the results of suspended solid (SS), total dissolved solids (TDS), BOD₍₅₎, COD_(Cr) and total coliform exceeded the target values.

Result of Discharged point

At the main discharged point of Zone B (SW-7) before discharging to the creek, the results of suspended solids (SS), BOD₍₅₎ and total dissolved solids (TDS) exceeded the target values.

The possible reason for exceeding the value of SS and TDS maybe due to the surface water run-off from bare land in Zone B.

The possible reason for exceeded $BOD_{(5)}$ values maybe due to i) high levels of organic pollution in the water, ii) certain environmental stresses (hot summer temperatures), iii) high nitrate levels which causes high plant growth and lower DO in the water body. Even though the $BOD_{(5)}$ values exceeded the Thilawa SEZ target values, it is still under (50 mg/L) the National Environmental Quality (Emission) Guidelines (NEQG).

Result of Reference Monitoring points (Discharged Creek)

At the reference monitoring points (SW-2 and SW-4), the results of suspended solids (SS), BOD₍₅₎, COD_(Cr), total coliform and total dissolved solids (TDS) exceeded the target values.

As for the result of SS and TDS, results at the surface water monitoring points (SW-2 and SW-4) exceeded the target values due to two expected reasons; i) delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to flow back by tidal fluctuation.

As for the result of $BOD_{(5)}$, results at the surface water monitoring point (SW-2) exceeded the target value. The possible reason for exceeded $BOD_{(5)}$ values maybe due to i) high levels of organic pollution in the water, ii) certain environmental stresses (hot summer temperatures), iii) high nitrate levels which causes high plant growth and lower DO in the water body.

As for the result of $COD_{(Cr)}$ results at the surface water monitoring point (SW-2) exceeded the target value. The possible reason for exceeded $COD_{(Cr)}$ values maybe due to i) high levels of organic pollution in the water which deplete the DO level, ii) presence of inorganic compounds that can oxidize and high levels of decaying plant matter, human waste, or industrial effluent from local industrial zone outside of Thilawa SEZ.

As for the result of total coliform, results at surface water monitoring points (SW-2) exceeded the target value due to three expected reasons; i) natural bacteria existed in discharged creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek and ii) wastewater from the local industrial zone outside of Thilawa SEZ and iii) delivered from surrounding area by tidal effect.

Additional Information by MJTD

Regular water quality monitoring was carried out in accordance with EMP of EIA report. As of the regular water quality monitoring results on 15-February-2022, the BOD₍₅₎ results exceeded at (SW-7). Therefore, for more effective identification of BOD₍₅₎, additional self-water quality monitoring was carried out at the same location on 8-March-2022 by MJTD. When results of regular monitoring (15-February-2022 are compared with results of additional monitoring (8-March-2022), it can be clearly seen that the result of BOD₍₅₎ is lower in additional monitoring and comply with the target value. As for the result of BOD₍₅₎ on regular monitoring (15-February-2022), the exceed values maybe due to high levels of organic pollution in the water. However, the BOD₍₅₎ results in previous monitoring month and additional monitoring results complied with the target value at (SW-7). Therefore, this BOD₍₅₎ exceedance is an unprecedented occurrence and it might be due to the extremely hot weather.

Table 2.5-1 Results of Water Quality Monitoring at Discharged point and Discharged Creek

	Sampling Date		15.2.2022	15.2.2022	15.2.2022	8.3.2022	Target Value
No.	Parameters	Unit	Regular monitoring*1 SW-2	Regular monitoring*1 SW-4	Regular monitoring*1 SW-7	Additional Monitoring*1 SW-7	(Reference Value for Self- Monitoring)
1	Water Temperature	°C	21	22	22	-	≤ 35
2	рН	1.72	7.9	7.5	8.6	-	6~9
3	Suspended Solid (SS)	mg/L	114	180	104	-	50
4	Dissolved Oxygen (DO)	mg/L	5.48	4.97	5.47	- 4	-
5	BOD ₍₅₎	mg/L	52.60	4.42	38.44	7.41	30
6	COD _(Cr)	mg/L	144.0	14.8	61.2	-	125
7	Total Nitrogen (T-N)	mg/L	13.0	< 0.5	1.1		80
8	Total Phosphorous (T-P)	mg/L	2	2	(4)	2	2
9	Color	TCU (True Color Unit)	78.52	2.43	3.61	-	150
10	Odor	TON (Threshold Odor Number)	1.4	1	1.4	-	
11	Total Coliform	MPN/100ml	35000.0	110.0	49.0		400
12	Oil and Grease	mg/L	4.3	< 3.1	< 3.1	-	10
13	Total Dissolved solids (TDS)	mg/L	2368	6036	3488		2000
14	Iron	mg/L	1.062	2.744	1.108	-	3.5
15	Mercury	mg/L	≤ 0.002	≤ 0.002	≤ 0.002	8	0.005
16	Escherichia Coli	MPN/100ml	·*·	-	< 1.8	ā	(1000)* (CFU/100ml)
17	Flow Rate	m ³ /s	0.001	0.28	-	-	

Note: Red color means exceeded value than target value.

Total Phosphorous (T-P) cannot be analyzed at the laboratory during the monitoring period.

Note: *1 Regular water quality monitoring was carried out in accordance with EIA report. In addition to EIA report, additional self-water quality monitoring was also carried out on 8-March-2022. As of the water quality monitoring results on 15-February-2022, BOD_[5] level exceeded at SW-7. Therefore, results (15-February-2022) is compared with results (8-March-2022). It can be clearly seen that the result of BOD_[5] is lower on 8-March-2022.

*Note: Based on the water utilization at discharged creek, the quality standard for water baths in Japan, (Ministry of Environment, 1997) is set as a reference value for self-monitoring of E. coli for surface water monitoring. However, due to limitation of capacity for analytical laboratory in Myanmar, the method to analyze the "Colony Forming Unit (CFU)" is not available in Myanmar. Therefore, the results of "Most Probable Number (MPN)" are assumed similar to CFU values and compared with reference values. Once the method to analyze the CFU will be available in Myanmar, the analytical method will be changed.

Source: Myanmar Koei International Ltd.

2.5.2 Result of Reference Tube Well

Result of water quality monitoring at reference tube well monitoring point is shown in Table 2.5-2. As the comparison with the target value, all the results are under the target value.

Table 2.5-2 Results of Water Quality Monitoring at Reference Tube Well

No.	Parameters	Unit	GW-2	Target Value (Reference Value for Self-Monitoring)
1	Water Temperature	°C	27	≤ 35
2	pH	3	7.0	6~9
3	Suspended Solid (SS)	mg/L	6	50
4	Dissolved Oxygen (DO)	mg/L	5.70	(a)
5	BOD(5)	mg/L	1.49	30
6	COD(Cr)	mg/L	< 0.7	125
7	Total Nitrogen (T-N)	mg/L	< 0.5	80
8	Total Phosphorous (T-P)	mg/L	- 5	2
9	Color	TCU (True Color Unit)	47.82	150
10	Odor	TON (Threshold Odor Number)	1.4	-
11	Total Coliform	MPN/100ml	< 1.8	400
12	Oil and Grease	mg/L	< 3.1	10
13	Total Dissolved solids (TDS)	mg/L	156	2000
14	Iron	mg/L	2.362	3.5
15	Mercury	mg/L	≤ 0.002	0.005
16	Escherichia Coli	MPN/100ml	< 1.8	(100)* (CFU/100ml)
17	Flow Rate	m³/s	-	-

Note: Red color means exceeded value than target value.

Total Phosphorous (T-P) cannot be analyzed at the laboratory during the monitoring period.

*Note: Based on the water utilization at monitoring point for ground water, B1(Irrigation water) of National Technical Regulation on Surface Water Quality in Vietnam (No. QCVN 08: 2008/BTNMT) is set as a reference value of self-monitoring for ground water monitoring.

Source: Myanmar Koei International Ltd.

CHAPTER 3: CONCLUSION AND RECOMMENDATIONS

As described in Chapter 2 (Section 2.5), the results of suspended solids (SS) and total dissolved solids (TDS) at (SW-2, SW-4 and SW-7), BOD₍₅₎ at (SW-2 and SW-7), COD_(Cr) and total coliform at (SW-2), in the surface water exceeded the target values, whereas, the ground water monitoring results at the reference tube well (GW-2) are under the target values in this monitoring period for operation stage of Thilawa SEZ Zone B.

The possible reason for exceeding the value of SS and TDS at the main discharging point of Zone B (SW-7) maybe due to the surface water run-off from bare land in Zone B.

The possible reason for exceeded BOD₍₅₎ values at the main discharging point of Zone B (SW-7) maybe due to i) high levels of organic pollution in the water, ii) certain environmental stresses (hot summer temperatures), iii) high nitrate levels which causes high plant growth and lower DO in the water body. Even though the BOD₍₅₎ values exceeded the Thilawa SEZ target values, it is still under the National Environmental Quality (Emission) Guidelines (NEQG). For more effective identification of BOD₍₅₎, additional self-water quality monitoring was carried out at SW-7 on (8-March-2022) by MJTD. When results of regular monitoring (15-February-2022) is compared with results of additional monitoring (8-March-2022), it can be clearly seen that the result of BOD₍₅₎ is lower on 8-March-2022 and comply with the target value. Therefore, the exceeded BOD₍₅₎ values on the regular monitoring period is unprecedented and caused by high levels of organic pollution and hot summer temperatures. As the BOD₍₅₎ results in previous monitoring months and additional monitoring period complied with the target value at (SW-7), it can be considered that there is no significant impact on human health.

The possible reason for exceeding the value of SS and TDS at the reference monitoring points of surface water (SW-2 and SW-4) maybe due to delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and influenced by water from the downstream of monitoring points due to flow back by tidal fluctuation.

The possible reason for exceeded BOD₍₅₎ values at the reference monitoring point of surface water (SW-2) maybe due to i) high levels of organic pollution in the water, ii) certain environmental stresses (hot summer temperatures), iii) high nitrate levels which causes high plant growth and lower DO in the water body.

The possible reason for exceeded $COD_{(Cr)}$ values at the reference monitoring point of surface water (SW-2) maybe due to i) high levels of organic pollution in the water which deplete the DO level, ii) presence of inorganic compounds that can oxidize and high levels of decaying plant matter, human waste, or industrial effluent from local industrial zone outside of Thilawa SEZ.

The possible reason for exceeded total coliform values at the reference monitoring point of surface water (SW-2) may be due to i) natural bacteria existed in discharged creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek, ii) wastewater from the local industrial zone outside of Thilawa SEZ and iii) delivered from surrounding area by tidal effect.

As for future subject for main discharged points of Thilawa SEZ Zone B, the following action may be taken to maintain the target value of SS, TDS, BOD₍₅₎ and appropriate water quality monitoring:

- 1) To continue monitoring Escherichia coli (E. coli) level to identify health impact by coliform bacteria,
- 2) To monitor the possibility of the overflow water from construction sites and
- 3) To monitor the possibility of the domestic wastewater from construction sites.

End of the Document

APPENDIX-1 FIELD SURVEY PHOTOS

FOR DISCHARGED POINT OF THILAWA SEZ ZONE B

Surface water sampling and onsite measurement at SW-7

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGED POINTS AND BASELINE OF DISCHARGED CREEK

Surface water sampling and onsite measurement at SW-2

Surface water sampling and onsite measurement at SW-4

Ground water sampling and onsite measurement at GW-2

APPENDIX-2 LABORATORY RESULTS

FOR DISCHARGED POINT

DOWA

GOLDEN DOWA SCO-SYSTEM MYANMAR CD., LTD Lot No ET. Thilliawa SEZ Zone A. Yangon Region, Myanmar Phone No. Fax No. (+95) 1 2309051

Report No. : GEM-LAB-202203007

Revision No. : 1

Report Date : 1 March, 2022 Application No.: 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No, 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

: Environment Monitoring report for Zone A & B

Sample Description

Sample Name

: MKI-SW-7-0215

Sampling Date: 15 February, 2022

: W-2202075

Sampling By : Customer

Sample No. Waste Profile No.

Sample Received Date : 15 February, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	104	44
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/I	38.44	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	61.2	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100mi	49.0	1.8
5	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	<3.1	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/I	1.1	0.5
7	Color	APHA 2120C (Spectrophotometric Method)	TCU	3.61	0.00
8	Odor	APHA 2150 B (Threshold Odor Test)	TON	1.4	0
9	TDS	APHA 2540 C (Total Dissoived Solids Dried at 180'C Method)	mg/l	3488	
10	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
11	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
12	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	1.108	0.002
13	Escherichia Coli	APHA 9221 F Escherichia Coli Procedure Using Fluorogenic Substrate	MPN/100ml	<1.8	1.8

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and

Wastewater, 22nd edition

Analysed By

Ni Ni Aye Lwin Assistant Manager

Approved By :

Managing Director

Mar 1, 2022

Surface Water Sampling at SW-7 by MJTD

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar. Phone No Fax No: (+95) 1 2309051

Report No.: GEM-LAB-202203087

Revision No. : 1

Report Date: 18 March, 2022 Application No.: 0001-C001

Analysis Report

Client Name

: MJTD Co.Ltd

Address

: Coner of Thilwa Development Road and Dagon Thilawa Road, Thilawa SEZ,Thanlyin,Yangon.

Project Name

3 2

Sample Description

Sample Name

: SW-7 (Environment)

Sampling Date: 8 March, 2022

Sample No.

: W-2203052

Sampling By : Customer

Waste Profile No.

Sample Received Date: 8 March, 2022

No.	Parameter	Method	Unit	Result	rod
1	BOD (5)	HACH Method 10099 (Respirometric Method)	mg/l	7.41	0.00

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By:

18 8.22 Cherry Myint Thein

Supervisor

Approved By:

larch 18, 2022

Managing Director

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGED POINTS AND BASELINE OF DISCHARGED CREEK

DOWA

GOLDEN DOWA FCO-SYSTEM MYANMAR CO _LTD Lot No E1. Thilawa \$12 Zone A. Yangon Region, Myanmar Phone No Fax No (+95) 1 2309051

Report No. : GEM-LAB-202203004

Revision No. : 1

Report Date: 1 March, 2022 Application No.: 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No. 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

: Environment Monitoring report for Zone A & B

Sample Description

Sample Name : MKI-SW-2-0215

Sampling Date: 15 February, 2022

Sample No. : W-

: W-2202072

Sampling By : Customer

Waste Profile No.

Sample Received Date : 15 February, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	114	-
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	52.60	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	144.0	0.7
4	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	35000.0	1.8
5	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	4,3	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persuifate Digestion Method)	mg/I	13.0	0.5
7	Color	APHA 2120C (Spectrophotometric Method)	TCU	78.52	0.00
8	Odor	APHA 2150 B (Threshold Odor Test)	TON	1.4	0
9	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180'C Method)	mg/l	2368	187
10	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
11	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
12	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	1.062	0.002

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Ni Ni Aye Lwin Assistant Manager

Analysed By

LAB Mar 1, 2022 GEM

Approved By :

Hideki Yomo Managing Director

Mar 1,2022

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanma Phone No. Fax No: (+95) 1 2309051

Report No. : GEM-LAB-202203005

Revision No. : 1

Report Date: 1 March, 2022 Application No.: 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No, 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

Environment Monitoring report for Zone A & B

Sample Description

Sample Name

: MKI-SW-4-0215

Sampling Date: 15 February, 2022

Sample No. : W-2202073

Sampling By : Customer

Waste Profile No.

Sample Received Date: 15 February, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	180	-
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	4.42	0.00
3	COD (Cr) APHA 5220D (Close Reflux Colorimetric Method)		mg/I	14.8	0.7
4	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100mi	110.0	1.8
5	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	<3.1	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	<0.5	0.5
7	Color	APHA 2120C (Spectrophotometric Method)	TCU	2.43	0.00
8	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	0
9	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/l	6036	- 2
10	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
11	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
12	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	2.744	0.002

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By :

Ni Ni Aye Lwin

Assistant Manager

Approved By :

Hideki Yome Managing Director

Mar 1,2022

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar Prione No. Fax No: (+95) 1.2309051

Report No. : GEM-LAB-202203008

Revision No. : 1

Report Date : 1 March, 2022 Application No. : 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No. 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

Environment Monitoring report for Zone A & B

Sample Description

Sample Name

: MKI-GW-2-0215

Sampling Date ; 15 February, 2022

Sample No.

: W-2202076

Sampling By : Customer

Waste Profile No. . . -

Sample Received Date: 15 February, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	6	-
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	1.49	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	<0.7	0.7
4	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	<1.8	1.8
5	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/I	<3.1	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/I	<0.5	0.5
7	Color	APHA 2120C (Spectrophotometric Method)	TCU	47.82	0.00
8	Odor	APHA 2150 B (Threshold Odor Test)	TON	1.4	0
9	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/I	156	
10	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.002	0.002
11	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.002	0.002
12	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	2.362	0.002
13	Escherichia Coli	APHA 9221 F Escherichia Coli Procedure Using Fluorogenic Substrate	MPN/100ml	<1.8	1.8

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By

Ni Ni Aye Lwin

Assistant Manager

LAB Mar 1,2022 GEM

Approved By :

Mar 1,2022

Managing Director

Thilawa Special Economic Zone Zone B– Phase 1,2 & 3 (Operation phase)

Appendix-B

Water and Waste Water Monitoring Report

April 2022

WATER QUALITY MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA IN THILAWA SEZ ZONE B (PHASE 1, 2 & 3 OPERATION STAGE)

(Bi-Monthly Monitoring)

April 2022 Myanmar Koei International Ltd.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION	1
1.1 General	
CHAPTER 2: WATER QUALITY MONITORING	2
2.1 Monitoring Items	2
2.2 Description of Sampling Points	2
2.3 Monitoring Method	4
2.4 Monitoring Period	4
2.5 Monitoring Results	5
CHAPTER 3: CONCLUSION AND RECOMMENDATIONS	
APPENDIX-1 FIELD SURVEY PHOTOS	A1-1
	A2-1
APPENDIX-2 LABORATORY RESULTS LIST OF TABLES	
<u>LIST OF TABLES</u>	2
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	2
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	2
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	2 4
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	2 4 4
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	2 4 4
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	2 4 4 5
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	2 4 4 5

CHAPTER 1: INTRODUCTION

1.1 General

Thilawa Special Economic Zone (SEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd. (MJTD) has a responsibility to carry out regular monitoring in the industrial area of Zone B in accordance with the approved Environmental Impact Assessment (EIA) report and Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area. As for the monitoring of the water quality, total four sampling points are set for water quality survey, named SW-2, SW-4, SW-7 and GW-2 have been monitored in Thilawa SEZ and its surrounding area in timely manner. Among the four locations, SW-7 is main discharged point of Zone B during the operation stage. Moreover, GW-2 is monitored as a reference of existing tube well which located in the monastery compound of Phalan village. Location of sampling points for water quality monitoring is shown in Figure 1.1-1.

Source: Google Earth

Figure 1.1-1 Location of Sampling Points of Water Quality Monitoring

CHAPTER 2: WATER QUALITY MONITORING

2.1 Monitoring Items

Sampling points and parameters for water quality monitoring are determined to cover the environmental monitoring plan of the EIA report.

Water quality sampling was carried out at four locations. Among the four locations, water flow measurement was carried out at two locations (SW-2 and SW-4) where can be measured by current meter. Monitoring items and sampling points are summarized in Table 2.1-1.

Table 2.1-1 Monitoring Items for Water Quality

No.	Parameters	SW-2	SW-4	SW-7	GW-2	Remarks
1	Water Temperature	0	0	0	0	On-site measurement
2	pH	0	0	0	0	On-site measurement
3	DO	0	0	0	0	On-site measurement
4	BOD(5)	0	0	0	0	Laboratory analysis
5	COD(Cr)	0	0	0	0	Laboratory analysis
6	Total Nitrogen (T-N)	0	0	0	0	Laboratory analysis
7	Suspended Solids	0	0	0	0	Laboratory analysis
8	Total Coliform	0	0	0	0	Laboratory analysis
9	Total Phosphorus (T-P)	0	0	0	0	Laboratory analysis
10	Color	0	0	0	0	Laboratory analysis
11	Odor	0	0	0	0	Laboratory analysis
12	Oil and Grease	0	0	0	0	Laboratory analysis
13	Total Dissolved solids (TDS) (Self-monitoring)	0	o	0	0	Laboratory analysis
14	Iron (Self-monitoring)	٥	0	0	o	Laboratory analysis
15	Mercury (Self-monitoring)	0	0	0	0	Laboratory analysis
16	Escherichia Coli (Self-monitoring)	2	ž.	o	0	Laboratory analysis
17	Flow Rate	0	0	2	-	On-site measurement

Source: Myanmar Koei International Ltd.

2.2 Description of Sampling Points

The outline of sampling points is mentioned in Table 2.2-1. The photos of conducting field survey at each sampling points are mentioned in Appendix-1.

Table 2.2-1 Outline of Sampling Points

No.	Station	Detailed Information
		Coordinate- N - 16° 40' 20.69", E - 96° 17' 18.04"
1	SW-2	Location - Upstream of Shwe Pyauk Creek
		Survey Item - Surface water sampling and water flow rate measurement
		Coordinate- N - 16° 39' 42.84", E - 96° 16' 27.42"
2		Location - Downstream of Shwe Pyauk Creek
		Survey Item - Surface water sampling and water flow rate measurement
		Coordinate - N - 16° 40' 13.25", E - 96° 17' 5.66"
3	SW-7	Location - Outlet of retention pond of Zone B construction site before connecting to Shwe Pyauk Creek
		Survey Item - Discharge water sampling
		Coordinate - N - 16° 39' 25.30", E - 96° 17' 15.60"
4	GW-2	Location - In the monastery compound of Phalan village
		Survey Item - Ground water sampling

Source: Myanmar Koei International Ltd.

SW-2 (Reference Point)

SW-2 was collected at the upstream of Shwe Pyauk creek. This sampling point is located in the northeast of Zone B area and at the south of Dagon-Thilawa road. The surrounding areas are Zone A in the northwest and local industrial zone in the east respectively.

SW-4 (Reference Point)

SW-4 was collected at the downstream of Shwe Pyauk creek, after mixing of discharge water from local industrial zone, construction site of Zone B and Zone A, which is flowing from east to west and then entering into the Yangon River. The distance is about 2.15 km downstream of SW-2. This sampling point is located in the west of Zone B area and in the south of Dagon-Thilawa road. The surrounding areas are Zone A in the northeast, local industrial zone in the east and paddy fields in the south and west respectively.

SW-7 (Discharged Point)

SW-7 is main discharged point of Zone B during operation stage. The distance is about 434 m downstream of SW-2. This sampling point is located at outlet of retention pond of Zone B, in the north of Zone B area and in the south of Dagon-Thilawa road. The surrounding areas are Zone A in the north and local industrial zone in the east respectively.

GW-2 (Reference of Existing Tube Well)

GW-2 was collected from tube well as ground water sample. It is located in the monastery compound of Phalan village. The surrounding areas are Thilawa SEZ Zone A in the north, Phalan village in the south and fields in the west and local industrial zone in the northeast and operation of Thilawa SEZ Zone B in the east and northeast respectively.

2.3 Monitoring Method

All water samples were collected with cleaned sampling bottles and analyzed by the following standard method as shown in Table 2.3-1. All samples were kept in iced boxes keeping at 2-4 °C and were transported to the laboratory. Among the parameters; water temperature, pH and DO were measured by the on-site instrument "Horiba, U-52" and water flow rate was also conducted by using the on-site instrument "JFE Digital Current Meter".

Table 2.3-1 Analytic Method for Water Quality

No.	Parameter	Method
1	Water Temperature	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
2	pН	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
3	Suspended Solids (SS)	APHA 2540D (Dry at 103-105°C Method)
4	Dissolved Oxygen (DO)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
5	BOD(5) APHA 5210 B (5 days BOD Test)	
6	COD(Cr) APHA 5220D (Close Reflux Colorimetric Method)	
7	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)
8	Total Nitrogen (T-N)	HACH Method 10072 (TNT Persulfate Digestion Method)
9	Total Phosphorous (T-P)	APHA 4500-P E (Ascorbic Acid Method)
10	Color	APHA 2120C (Spectrophotometric Method)
11	Odor	APHA 2150 B (Threshold Odor Test)
12	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)
13	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
14	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
15 Total Dissolved Solids (TDS) APHA 2540C (Total Dissolved Solids Dried at 180°C Me		APHA 2540C (Total Dissolved Solids Dried at 180°C Method)
16	Escherichia Coli APHA 9221 F (Escherichia Coli Procedure Using Fluorogenic Substra	
17	Flow Rate	Detection of Electromagnetic Elements (Real-time measurement by AEM 213-D Digital Current Meters)

Source: Myanmar Koei International Ltd.

2.4 Monitoring Period

Water quality and water flow rate monitoring were conducted on 26 April 2022 and sampling time is shown in Table 2.4-1 to avoid tidal effect. The tide record for Yangon River, Myanmar on 26 April 2022 is shown in Table 2.4-2.

Table 2.4-1 Sampling Time of Each Station

No.	Station	Sampling Time
1	SW-2	26/04/2022 08:20
2	SW-4	26/04/2022 07:36
3	SW-7	26/04/2022 08:30
4	GW-2	26/04/2022 15:18

Source: Myanmar Koei International Ltd.

Table 2.4-2 Tide Record for Yangon River, Myanmar

Date	Time	Height	Tide Conditions
	01:25	4.54	High Tide
26/04/2022	08:35	0.87	Low Tide
26/04/2022	14:16	4.81	High Tide
	21:10	1.24	Low Tide

Source: Myanmar Port Authority, Tide Table for the Yangon River and Elephant Point, 2022.

2.5 Monitoring Results

Results of water quality monitoring at discharged point, discharged creek and reference tube well are summarized in Table 2.5-1 and Table 2.5-2. Analytical results of the laboratory are described in Appendix-2. The results were compared with the target value of effluent water quality discharged to water body stipulated in the EIA report.

2.5.1 Results of Discharged Point and Discharged Creek

As the comparison with the target value, the results of suspended solid (SS), total dissolved solids (TDS) and total coliform exceeded the target values.

Result of Discharged point

Discharged monitoring point (SW-7) has no water for sampling during the monitoring period.

Result of Reference Monitoring points (Discharged Creek)

As for the result of SS and TDS, results at the surface water monitoring points (SW-2 and SW-4) exceeded the target values. The exceeded results for SS and TDS maybe due to two expected reasons; i) delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to flow back by tidal fluctuation.

As for the result of total coliform, results at surface water monitoring points (SW-2 and SW-4) exceeded the target value due to three expected reasons; i) natural bacteria existed in discharged creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek and ii) wastewater from the local industrial zone outside of Thilawa SEZ and iii) delivered from surrounding area by tidal effect.

Table 2.5-1 Results of Water Quality Monitoring at Discharged point and Discharged Creek

No.	Parameters	Unit	SW-2	SW-4	SW-7	Target Value (Reference Value for Self-Monitoring)
1	Water Temperature	*C	26	27	(e)	≤ 35
2	pH	(50)	7.8	8.3	5.00	6~9
3	Suspended Solid (SS)	mg/L	114	80	33	50
4	Dissolved Oxygen (DO)	mg/L	4.40	4.52	121	
5	BOD ₍₅₎	mg/L	25.94	6.91	(4)	30
6	$COD_{(Ci)}$	mg/L	43.0	24.2		125
7	Total Nitrogen (T-N)	mg/L	1.2	3.0	2+3	80
8	Total Phosphorus (T-P)	mg/L	< 0.05	0.05		2
9	Color	TCU (True Color Unit)	18.12	7.59	2	150
10	Odor	TON (Threshold Odor Number)	6	4	-	
11	Total Coliform	MPN/100ml	35,000.0	92,000.0	3	400
12	Oil and Grease	mg/L	< 3.1	< 3.1	-	10
13	Total Dissolved solids (TDS)	mg/L	8.570	7,084	25	2000
14	Iron	mg/L	0.494	0.380		3.5
15	Mercury	mg/L	≤ 0.002	≤ 0.002	91	0.005
16	Escherichia Coli	MPN/100ml		ie.		(1000)* (CFU/100ml)
17	Flow Rate	m³/s	0.003	0.047	-	-

Note: Red color means exceeded value than target value.

^{*}Note: Based on the water utilization at discharged creek, the quality standard for water baths in Japan, (Ministry of Environment, 1997) is set as a reference value for self-monitoring of E. coli for surface water monitoring. However, due to limitation of capacity for analytical laboratory in Myanmar, the method to analyze the "Colony Forming Unit (CFU)" is not available in Myanmar. Therefore, the results of "Most Probable Number (MPN)" are assumed similar to CFU values and compared with reference values. Once the method to analyze the CFU will be available in Myanmar, the analytical method will be changed.

Source: Myanmar Koei International Ltd.

2.5.2 Result of Reference Tube Well

Result of water quality monitoring at reference tube well monitoring point is shown in Table 2.5-2. As the comparison with the target value, all the results are under the target value.

Table 2.5-2 Results of Water Quality Monitoring at Reference Tube Well

No.	Parameters	Unit	GW-2	Target Value (Reference Value for Self-Monitoring)	
1	Water Temperature	°C	27	≤ 35	
2	pH	-	6.5	6~9	
3	Suspended Solid (SS)	mg/L	8	50	
4	Dissolved Oxygen (DO)	mg/L	6.38	-	
5	BOD ₍₅₎	mg/L	5.12	30	
6	COD _(Cr)	mg/L	< 0.7	125	
7	Total Nitrogen (T-N)	mg/L	< 0.5	80	
8	Total Phosphorous (T-P)	mg/L	0.67	2	
9	Color	TCU (True Color Unit)	15.88	150	
10	Odor	TON (Threshold Odor Number)	1	ש	
11	Total Coliform	MPN/100ml	< 1.8	400	
12	Oil and Grease	mg/L	< 3.1	10	
13	Total Dissolved solids (TDS)	mg/L	150	2000	
14	Iron	mg/L	0.970	3.5	
15	Mercury	mg/L	≤ 0.002	0.005	
16	Escherichia Coli	MPN/100ml	< 1.8	(100)* (MPN/100ml)	
17	Flow Rate	m³/s	<i>y</i> :		

^{*}Note: Based on the water utilization at monitoring point for ground water, B1(Irrigation water) of National Technical Regulation on Surface Water Quality in Vietnam (No. QCVN 08: 2008/BTNMT) is set as a reference value of self-monitoring for ground water monitoring.

Source: Myanmar Koei International Ltd.

CHAPTER 3: CONCLUSION AND RECOMMENDATIONS

As described in Chapter 2 (Section 2.5), discharged monitoring point (SW-7) has no water for sampling during the monitoring period. The results of suspended solid (SS), total dissolved solids (TDS) and total coliform at (SW-2 and SW-4) in the surface water exceeded the target value in this monitoring period for operation stage of Thilawa SEZ Zone B.

The possible reason for exceeding the value of SS and TDS at the reference monitoring points of surface water (SW-2 and SW-4) maybe due to delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and influenced by water from the downstream of monitoring points due to flow back by tidal fluctuation.

The possible reason for exceeded total coliform values at the reference monitoring point of surface water (SW-2 and SW-4) may be due to i) natural bacteria existed in discharged creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek, ii) wastewater from the local industrial zone outside of Thilawa SEZ and iii) delivered from surrounding area by tidal effect.


End of the Document

APPENDIX-1 FIELD SURVEY PHOTOS

FOR DISCHARGED POINT OF THILAWA SEZ ZONE B

There was no water at discharged point (SW-7)

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGED POINTS AND BASELINE OF DISCHARGED CREEK

Surface water sampling and onsite measurement at SW-2

Surface water sampling and onsite measurement at SW-4

Ground water sampling and onsite measurement at GW-2

APPENDIX-2 LABORATORY RESULTS

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGED POINTS AND BASELINE OF DISCHARGED CREEK

DOWA

GOLDEN DOWN ECO SYSTEM MYANMAR CO , LTD. Lot No S1. Thilawa SEZ Zone A, Yangon Region, Myanmar Phone No. Fax No. (+95) 1 2309051

Report No. : GEM-LAB-202205016

Revision Na : 1

Report Date: 9 May, 2022 Application No.: 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No, 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

: Environment Manitoring report for Zone A & B

Sample Description

Sample Name-

: MKI-SW-2-0426

Sampling Date: 26 April, 2022

Sample No. : W-2204085

Waste Profile No. : -

Sampling By : Customer

Sample Received Date : 26 April, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	114	_
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/I	25.94	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	43.0	0.7
4	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100mi	35000.0	1.8
5	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	<3.1	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	1.2	0.5
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	<0.05	0.05
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	18.12	0.00
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	6	0
10	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/t	8570	-
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
12	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.002	0.002
13	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	0.494	0.002

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Cherry Myint Thein

Supervisor

Ni Ni Aye Lwin May 9, 2022

Manager

GOLDEN DOWN ECC-SYSTEM MYANMAR CO., ETG. Lot No.E.1. Thraws SEZ Zone A, Yangon Region, Myanmar Phone No. Fax No. (195) 1.2309051.

Report No. | GEM-LAB-202205017

Revision No. | 1

Report Date : 9 May, 2022 Application No. 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No. 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

: Environment Monitoring report for Zone A & B

Sample Description

: MKI-SW-4-0426 Sample Name Sampling Date : 26 April, 2022 Sample No. : W-2204086 Sampling By : Customer Waste Profile No. Sample Received Date : 26 April, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	80	1 -
2	BOD (5)	APHA 5210 B (S Days BOD Test)	mg/l	6.91	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	24.2	0.7
4	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)	MPN/100ml	92000.0	1.8
5	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	<3.1	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	3.0	0.5
7	Total Phosphorous APHA 4500-P E (Ascorbic Acid Method)		mg/l	0.05	0.05
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	7.59	0.00
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	4	0
10	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/l	7084	
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
12	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
13	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	0.380	0.002

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By

Cherry Myint Thein

Supervisor

Approved By

Ni Ni Aye Lwin May 9, 2022

Manager

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar Phone No. Fax No. [+95] 1.2309051

Report No. : GEM-LAB-202205019

Revision No. : 1

Report Date: 9 May, 2022 Application No.: 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No, 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

: Environment Monitoring report for Zone A & B

Sample Description

: MKI-GW-2-0426 Sample Name : W-2204088 Sample No.

Sampling Date: 26 April, 2022 Sampling By : Customer

Waste Profile No.

Sample Received Date: 26 April, 2022

No.	Parameter	Method	Unit	Result	rod
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	8	-
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	5.12	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	<0.7	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	<1.8	1.8
5	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	<3.1	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	<0.5	0.5
7	Total Phosphorous	Phosphorous APHA 4500-P E (Ascorbic Acid Method)		0.67	0.05
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	15.88	0.00
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	0
10	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180'C Method)	mg/I	150	_
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
12	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
13	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.970	0.002
13	Escherichia Coli	APHA 9221 F Escherichia Coli Procedure Using Fluorogenic Substrate	MPN/100ml	<1.8	1.8

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

9-5.22 Cherry Myint Thein

Supervisor

Ni Ni Aye Lwin May 9, 2022 Manager

Thilawa Special Economic Zone Zone B- Phase 1, 2,3 (Operation phase)

Appendix-C

Water and Waste Water Monitoring Report June 2022

WATER QUALITY MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA IN THILAWA SEZ ZONE B (PHASE 1, 2 & 3 OPERATION STAGE)

(Bi-Annually Monitoring)

June 2022 Myanmar Koei International Ltd.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION	1
1.1 General	
CHAPTER 2: WATER QUALITY MONITORING	2
2.1 Monitoring Items	2
2.2 Description of Sampling Points	3
2.3 Monitoring Method	4
2.4 Monitoring Period	5
2.5 Monitoring Results	6
CHAPTER 3: CONCLUSION AND RECOMMENDATIONS	9
APPENDIX-1 FIELD SURVEY PHOTOS	A1-1
A DEFENDING A LADOR A TORNA DEGLIA TO	A2-1
APPENDIX-2 LABORATORY RESULTS	
APPENDIX-2 LABORATORY RESULTS	
LIST OF TABLES	
<u>LIST OF TABLES</u>	2
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	2
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	3
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	3 4
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	3 4 5
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	3 5 5
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	3 5 5
LIST OF TABLES Table 2.1-1 Monitoring Items for Water Quality	3 5 5

CHAPTER 1: INTRODUCTION

1.1 General

Thilawa Special Economic Zone (SEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd. (MJTD) has a responsibility to carry out regular monitoring in the industrial area of Zone B in accordance with the approved Environmental Impact Assessment (EIA) report and Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area. As for the monitoring of the water quality, total four sampling points are set for water quality survey, named SW-2, SW-4, SW-7 and GW-2 have been monitored in Thilawa SEZ and its surrounding area in timely manner. Among the four locations, SW-7 is main discharged point of Zone B during the operation stage. Moreover, GW-2 is monitored as a reference of existing tube well which located in the monastery compound of Phalan village. Location of sampling points for water quality monitoring is shown in Figure 1.1-1.

Source: Google Earth

Figure 1.1-1 Location of Sampling Points of Water Quality Monitoring

CHAPTER 2: WATER QUALITY MONITORING

2.1 Monitoring Items

Sampling points and parameters for water quality monitoring are determined to cover the environmental monitoring plan of the EIA report.

Water quality sampling was carried out at four locations. Among the four locations, water flow measurement was carried out at two locations (SW-2 and SW-4) where can be measured by current meter. Monitoring items and sampling points are summarized in Table 2.1-1.

Table 2.1-1 Monitoring Items for Water Quality

No.	Parameters	SW-2	SW-4	SW-7	GW-2	Remarks
1	Water Temperature	0	0	0	0	On-site measurement
2	pH	0	0	0	0	On-site measurement
3	DO	0	0	0	0	On-site measurement
4	BOD ₍₅₎	0	0	0	0	Laboratory analysis
5	COD(Cr)	0	0	0	0	Laboratory analysis
6	Total Nitrogen	0	0	0	0	Laboratory analysis
7	Suspended Solids	0	0	0	0	Laboratory analysis
8	Total Coliform	0	0	0	0	Laboratory analysis
9	Total Phosphorous	0	0	0	0	Laboratory analysis
10	Color	0	0	0	0	Laboratory analysis
11	Odor	0	0	0	0	Laboratory analysis
12	Zinc	0	0	0	0	Laboratory analysis
13	Arsenic	0	0	0	0	Laboratory analysis
14	Chromium	0	0	0	0	Laboratory analysis
15	Cadmium	0	0	0	0.	Laboratory analysis
16	Selenium	0	0	0	0	Laboratory analysis
17	Lead	0	0	0	0	Laboratory analysis
18	Copper	0	0	0	0	Laboratory analysis
19	Barium	0	0	0	0	Laboratory analysis
20	Nickel	0	0	0	0	Laboratory analysis
21	Cyanide	0	0	0	0	Laboratory analysis
22	Total Cyanide	0	0	0	0.	Laboratory analysis
23	Free Chlorine	0	0	0	0	Laboratory analysis
24	Sulphide	0	0	0	0	Laboratory analysis
25	Formaldehyde	0	0	0	0	Laboratory analysis
26	Phenols	0	0	0	0	Laboratory analysis
27	Total Residual Chlorine	0	0	0	0	Laboratory analysis
28	Chromium (Hexavalent)	0	0	0	0	Laboratory analysis
29	Ammonia	0	0	0	0	Laboratory analysis
30	Fluoride	0	0	0	0	Laboratory analysis
31	Silver	0	0	0	0	Laboratory analysis
32	Oil and Grease	0	0	0	0	Laboratory analysis
33	Total Dissolved Solids	0	0	0	0	Laboratory analysis
34	Iron	0	0	0	0	Laboratory analysis
35	Mercury	0	0	0	0	Laboratory analysis
36	Escherichia Coli	-	()	0	0	Laboratory analysis
37	Flow Rate	0	0	-	-	On-site measurement

Source: Myanmar Koei International Ltd.

2.2 Description of Sampling Points

The outline of sampling points is mentioned in Table 2.2-1. The photos of conducting field survey at each sampling points are mentioned in Appendix-1.

Table 2.2-1 Outline of Sampling Points

No.	Station	Detailed Information
150100000410000		Coordinate- N - 16° 40' 20.69", E - 96° 17' 18.04"
1	SW-2	Location - Upstream of Shwe Pyauk Creek
		Survey Item - Surface water sampling and water flow rate measurement
		Coordinate- N - 16° 39' 42.84", E - 96° 16' 27.42"
2	SW-4	Location - Downstream of Shwe Pyauk Creek
		Survey Item - Surface water sampling and water flow rate measurement
		Coordinate - N - 16° 40' 13.25", E - 96° 17' 5.66"
3	SW-7	Location - Outlet of retention pond of Zone B construction site before connecting to Shwe Pyauk Creek
		Survey Item - Discharge water sampling
		Coordinate - N - 16° 39' 25.30", E - 96° 17' 15.60"
4	GW-2	Location - In the monastery compound of Phalan village
		Survey Item - Ground water sampling

Source: Myanmar Koei International Ltd.

SW-2 (Reference Point)

SW-2 was collected at the upstream of Shwe Pyauk creek. This sampling point is located in the northeast of Zone B area and at the south of Dagon-Thilawa road. The surrounding areas are Zone A in the northwest and local industrial zone in the east respectively.

SW-4 (Reference Point)

SW-4 was collected at the downstream of Shwe Pyauk creek, after mixing of discharge water from local industrial zone, construction site of Zone B and Zone A, which is flowing from east to west and then entering into the Yangon River. The distance is about 2.15 km downstream of SW-2. This sampling point is located in the west of Zone B area and in the south of Dagon-Thilawa road. The surrounding areas are Zone A in the northeast, local industrial zone in the east and paddy fields in the south and west respectively.

SW-7 (Discharged Point)

SW-7 is main discharged point of Zone B during operation stage. The distance is about 434 m downstream of SW-2. This sampling point is located at outlet of retention pond of Zone B, in the north of Zone B area and in the south of Dagon-Thilawa road. The surrounding areas are Zone A in the north and local industrial zone in the east respectively.

GW-2 (Reference of Existing Tube Well)

GW-2 was collected from tube well as ground water sample. It is located in the monastery compound of Phalan village. The surrounding areas are Thilawa SEZ Zone A in the north, Phalan village in the south and fields in the west and local industrial zone in the northeast and operation of Thilawa SEZ Zone B in the east and northeast respectively.

2.3 Monitoring Method

All water samples were collected with cleaned sampling bottles and analyzed by the following standard method as shown in Table 2.3-1. All samples were kept in iced boxes keeping at 2-4°C and were transported to the laboratory. Among the parameters; water temperature, pH and DO were measured by the on-site instrument "Horiba, U-52" and water flow rate was also conducted by using the on-site instrument "JFE Digital Current Meter".

Table 2.3-1 Analytic Method for Water Quality

No.	Parameter	Method
1	Water Temperature	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
2	pH	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
3	Suspended Solids (SS)	APHA 2540 D (Dry at 103-105°C Method)
4	Dissolved Oxygen (DO)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
5	BOD ₍₅₎	APHA 5210 B (5 Days BOD Test)
6	COD _(Cr)	APHA 5220D (Close Reflux Colorimetric Method)
7	Total Coliform	APHA 9221B (Standard Total Coliform Fermentation Technique)
8	Total Nitrogen (T-N)	HACH Method 10072(TNT Persulfate Digestion Method)
9	Total Phosphorous (T-P)	APHA 4500-P E (Ascorbic Acid Method)
10	Color	APHA 2120C (Spectrophotometric Method)
11	Odor	APHA 2150 B (Threshold Odor Test)
12	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)
13	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
14	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
15	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
16	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
17	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
18	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
19	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
20	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
21	Barium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
22	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
23	Cyanide	HACH 8027 (Pyridine-Pyrazalone Method)
24	Total Cyanide	Distillation process: APHA 4500-CN-C. Total Cyanide after Distillation, Determine cyanide Concentration Process: HACH 8027 (Pyridine – Pyrazalone Method)
25	Free Chlorine	APHA 4500-CL G (DPD Colorimetric Method)
26	Sulphide	HACH 8131 (USEPA Methylene Blue Method)
27	Formaldehyde	HACH 8110 (MBTH Method)
28	Phenols	USEPA Method 420.1 (Phenolics (Spectrophotometric, Manual 4-AAP With Distillation)
29	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
30	Total Dissolved Solids	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)
31	Total Residual Chlorine	APHA 4500-CL G (DPD Colorimetric Method)
32	Chromium (Hexavalent)	ISO 11083:1994 (Determination of chromium (VI) Spectrometric method using 1,5-diphenylcarbazide)
33	Ammonia	HACH Method 10205 (Silicylate TNT Plus Method)
34	Fluoride	APHA 4110 B (Ion Chromatography with Chemical Suppression of Eluent Conductivity)
35	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
36	Escherichia Coli	APHA 9221 F (Escherichia Coli Procedure Using Fluorogenic Substrate)
37	Flow Rate	Detection of Electromagnetic Elements (Real-time measurement by AEM 213-D Digital Current Meters)

Source: Myanmar Koei International Ltd.

2.4 Monitoring Period

Water quality and water flow rate monitoring were conducted on 7 June 2022 and sampling time is shown in Table 2.4-1 to avoid tidal effect. The tide record for Yangon River, Myanmar on 7 June 2022 is shown in Table 2.4-2.

Table 2.4-1 Sampling Time of Each Station

No.	Station	Sampling Time
1	SW-2	07/06/2022 08:07
2	SW-4	07/06/2022 08:46
3	SW-7	07/06/2022 09:19
4	GW-2	07/06/2022 10:36

Source: Myanmar Koei International Ltd.

Table 2.4-2 Tide Record for Yangon River, Myanmar

Date	Time	Height	Tide Conditions
	04:06	1.26	Low Tide
07/06/2022	09:41	4.86	High Tide
07/06/2022	16:11	1.75	Low Tide
	21:43	4.86	High Tide

Source: Myanmar Port Authority, Tide Table for the Yangon River and Elephant Point, 2022.

2.5 Monitoring Results

Results of water quality monitoring at discharged point, discharged creek are summarized in Table 2.5-1. Analytical results of the laboratory are described in Appendix-2. The results were compared with the target value of effluent water quality discharged to water body stipulated in the EIA report.

2.5.1 Results of Discharged Point and Discharged Creek

As the comparison with the target value, the results of suspended solid (SS), total coliform and iron exceeded the target values.

Result of Discharged point

As for the result of SS, result at the main discharging point of Zone B (SW-7) before discharging to the creek, exceeded the target value due to the surface water run-off from bare land in Zone B.

As for the result of total coliform of surface water, result at the main discharging point of Zone B (SW-7) before discharging to the creek, exceeded the target value due to the expected reason; the potential expected reason might be natural bacteria existed in all area of Zone B because there are various kinds of vegetation and creature such as birds, and small animals in and along the retention pond.

Since the composition of the total coliform include bacteria from natural origin, and even after total coliform do not affect human health directly, self-monitoring for E. Coli analysis was carried out to identify health impact by coliform bacteria. As for the result of E. Coli of surface water at the main discharging point of Zone B (SW-7), the result was under the reference value. Therefore, although the target value of total coliform was exceeded at the main discharging point of Zone B (SW-7) but it is considered that there is no significant impact on human health.

Result of Reference Monitoring points (Discharged Creek)

As for the result of SS, results at the surface water monitoring point (SW-2) and (SW-4) exceeded the target values. The exceeded results for SS maybe due to two expected reasons; i) delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and ii) influence by water from the downstream of monitoring points due to flow back by tidal fluctuation.

As for the result of total coliform, results at surface water monitoring points (SW-2) and (SW-4) exceeded the target value due to three expected reasons; i) natural bacteria existed in discharged creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek, ii) wastewater from the local industrial zone outside of Thilawa SEZ and iii) delivered from surrounding area by tidal effect.

As for the result of iron, the result at the monitoring point of surface water monitoring point (SW-4) exceeded the target value due to the influence of natural origin (iron can reach out from the soil by runoff). Japan set effluent standards for two items as follows; i) health item and ii) living environment item. In the health item, there is no standard value for iron. On the other hand, for the living environment item, the standard value for soluble iron level is 10 mg/l. As the comparison with the living environment standard value in Japan, iron result in SW-4 is lower than the standard value. Therefore, it can be considered that there is no significant impact on the living environment.

Table 2.5-1 Results of Water Quality Monitoring at Discharged point and Discharged Creek

No.	Parameters	Unit	SW-2	SW-4	SW-7	Target Value (Reference Value for Self- Monitoring)
1	Water Temperature	°C	19	19	19	≤ 35
2	pH	a	7.2	7.4	8.0	6~9
3	Suspended Solid (SS)	mg/l	88	156	80	50
4	Dissolved Oxygen (DO)	mg/l	4.79	6.68	9.01	- 4
5	BOD(5)	mg/l	4.10	4.45	3.93	30
6	COD(Cr)	mg/l	112.0	36.8	15.1	125
7	Total Coliform	MPN/100ml	160000.0	> 160000	> 160000	400
8	Total Nitrogen (T-N)	mg/l	2.1	0.6	0.5	80
9	Total Phosphorous (T-P)	mg/l	0.26	0.22	0.05	2
10	Color	TCU (True Color Unit)	25.56	14.10	15.58	150
11	Odor	TON (Threshold Odor Number)	2	2	1	æ
12	Oil and Grease	mg/l	< 3.1	< 3.1	< 3.1	10
13	Mercury	mg/l	≤ 0.002	≤ 0.002	≤ 0.002	0.005
14	Zinc	mg/l	0.094	0.124	0.099	2
15	Arsenic	mg/l	≤ 0.010	≤ 0.010	≤ 0.010	0.1
16	Chromium	mg/l	≤ 0.005	0.006	≤ 0.005	0.5
17	Cadmium	mg/l	≤ 0.005	≤ 0.005	≤ 0.005	0.03
18	Selenium	mg/l	≤ 0.005	≤ 0.005	≤ 0.005	0.02
19	Lead	mg/l	≤ 0.005	≤ 0.005	0.009	0.1
20	Copper	mg/l	≤ 0.005	0.013	≤ 0.005	0.5
21	Barium	mg/l	0.032	0.025	0.142	1
22	Nickel	mg/l	≤ 0.005	≤ 0.005	≤ 0.005	0.2
23	Cyanide	mg/l	< 0.002	< 0.002	< 0.002	0.1
24	Total Cyanide	mg/l	0.003	< 0.002	< 0.002	1
25	Free Chlorine	mg/l	< 0.1	< 0.1	< 0.1	1
26	Sulphide	mg/l	0.066	0.064	0.081	1
27	Formaldehyde	mg/l	0.025	0.015	0.037	1
28	Phenols	mg/l	0.007	0.005	< 0.002	0,5
29	Iron	mg/l	2.407	3.618	1.590	3.5
30	Total Dissolved Solids	mg/l	248	308	136	2000
31	Total Residual Chlorine	mg/l	< 0.1	< 0.1	< 0.1	0.2
32	Chromium (Hexavalent)	mg/l	< 0.05	< 0.05	< 0.05	1.0
33	Ammonia	mg/l	1.96	0.58	0.09	10
34	Fluoride	mg/l	0.028	0.377	0.087	20
35	Silver	mg/l	≤ 0.005	≤ 0.005	≤ 0.005	0.5
36	Escherichia Coli	MPN/100ml	-	e.	12.0	(1000)* (CFU/100ml)
37	Flow Rate	m ³ /s	0.09	0.59	145	= =

Note: Red color means exceeded value than target value.

*Note: Based on the water utilization at discharged creek, the quality standard for water baths in Japan, (Ministry of Environment, 1997) is set as a reference value for self-monitoring of E. coli for surface water monitoring. However, due to limitation of capacity for analytical laboratory in Myanmar, the method to analyze the "Colony Forming Unit (CFU)" is not available in Myanmar. Therefore, the results of "Most Probable Number (MPN)" are assumed similar to CFU values and compared with reference values. Once the method to analyze the CFU will be available in Myanmar, the analytical method will be changed.

Source: Myanmar Koei International Ltd.

2.5.2 Result of Reference Tube Well

Result of water quality monitoring at reference tube well monitoring point is shown in Table 2.5-2. As the comparison with the target value, the result of iron exceeded the target value.

As for the result of the iron, the result at the monitoring point of reference tube well (GW-2) exceeded the target value. Comparison with previous monitoring results of reference tube well (GW-2), the iron concentration results ranged from 3.076 mg/l (August, 2019) – 8.310 mg/l (October, 2021) and most of the iron concentration measured results (from April, 2019 to June, 2022) exceeded the target value except the iron concentration result of August, 2019 and April, 2022. Therefore, the possible reasons may due to the influence of natural origin (iron can reach out from soil by run-off). In Yangon, soil is naturally rich in iron.

Table 2.5-2 Results of Water Quality Monitoring at Reference Tube Well

No.	Parameters	Unit	GW-2	Target Value (Reference Value for Self-Monitoring)
1	Water Temperature	°C	21	≤35
2	pH	-	7.0	6~9
3	Suspended Solid (SS)	mg/l	16	50
4	Dissolved Oxygen (DO)	mg/l	8.04	
5	BOD ₍₅₎	mg/l	4.20	30
6	COD(Cr)	mg/l	< 0.7	125
7	Total Coliform	MPN/100ml	< 1.8	400
8	Total Nitrogen (T-N)	mg/l	< 0.5	80
9	Total Phosphorous (T-P)	mg/l	0.66	2
10	Color	TCU (True Color Unit)	13.66	150
11	Odor	TON (Threshold Odor Number)	1	· ·
12	Oil and Grease	mg/l	< 3.1	10
13	Mercury	mg/l	≤ 0.002	0.005
14	Zinc	mg/l	0.100	2
15	Arsenic	mg/l	≤ 0.010	0.1
16	Chromium	mg/l	0.007	0.5
17	Cadmium	mg/l	≤ 0.005	0.03
18	Selenium	mg/l	≤ 0.005	0.02
19	Lead	mg/l	0.032	0.1
20	Copper	mg/l	≤ 0.005	0.5
21	Barium	mg/l	0.018	1
22	Nickel	mg/l	< 0.005	0.2
23	Cyanide	mg/l	< 0.002	0.1
24	Total Cyanide	mg/l	< 0.002	1
25	Free Chlorine	mg/l	< 0.1	1
26	Sulphide	mg/l	0.026	11
27	Formaldehyde	mg/l	0.019	1
28	Phenols	mg/l	< 0.002	0.5
29	Iron	mg/l	6.212	3.5
30	Total Dissolved Solids	mg/l	180	2000
31	Total Residual Chlorine	mg/l	< 0.1	0.2
32	Chromium (Hexavalent)	mg/l	< 0.05	0.1
33	Ammonia	mg/l	0.23	10
34	Fluoride	mg/l	≤ 0.014	20
35	Silver	mg/l	0.210	0.5
36	Escherichia Coli	MPN/100ml	< 1.8	(100)* (MPN/100ml)
37	Flow Rate	m ³ /s	1377	

Note: Red color means exceeded value than target value.

Source: Myanmar Koei International Ltd.

^{*}Note: Based on the water utilization at monitoring point for ground water, B1(Irrigation water) of National Technical Regulation on Surface Water Quality in Vietnam (No. QCVN 08: 2008/BTNMT) is set as a reference value of self-monitoring for ground water monitoring.

CHAPTER 3: CONCLUSION AND RECOMMENDATIONS

As described in Chapter 2 (Section 2.5), the results of Suspended Solids (SS) and total coliform at (SW-2, SW-4 and SW-7) and iron at (SW-4) in surface water and iron at (GW-2) in ground water exceeded the target value in this monitoring period for operation stage of Thilawa SEZ Zone B.

As for the result of SS, result at the main discharging point of Zone B (SW-7) before discharging to the creek, exceeded the target value due to the surface water run-off from bare land in Zone B.

As for the result of total coliform of surface water, result at the main discharging point of Zone B (SW-7) before discharging to the creek, exceeded the target value due to the expected reason; the potential expected reason might be natural bacteria existed in all area of Zone B because there are various kinds of vegetation and creature such as birds, and small animals in and along the retention pond. As for the result of E. Coli of surface water at (SW-7), the result was under the reference value. Therefore, although the target value of total coliform was exceeded at the main discharging point of Zone B (SW-7) but it is considered that there is no significant impact on human health.

As for parameters of SS, total coliform, and iron in surface water exceeded the target values at reference monitoring points (SW-2 and SW-4). The expected reasons for exceeding the target value of SS at (SW-2 and SW-4) is delivered from upstream area such as natural origin and wastewater from local industrial zone which outside of Thilawa SEZ, and influence by water from the downstream of monitoring points due to flow back by tidal fluctuation.

The expected reasons for exceeding the target value of total coliform at (SW-2 and SW-4) are by i) natural bacteria existed in discharged creek because there are various kinds of vegetation and creature such as birds and small animals in and along the discharged creek and ii) wastewater from the local industrial zone outside of Thilawa SEZ and iii) delivered from surrounding area by tidal effect.

As for the result of iron, the result at the monitoring point of surface water monitoring point (SW-4) exceeded the target value due to the influence of natural origin (iron can reach out from the soil by run-off). Japan set effluent standards for two items as follows; i) health item and ii) living environment item. In the health item, there is no standard value for iron. On the other hand, for the living environment item, the standard value for soluble iron level is 10 mg/l. As the comparison with the living environment standard value in Japan, iron results in (SW-4) is lower than the standard value. Therefore, it can be considered that there is no significant impact on the living environment.

As for the result of the iron, the result at the monitoring point of reference tube well (GW-2) exceeded the target value. Comparison with previous monitoring results of reference tube well (GW-2), the iron concentration results ranged from 3.076 mg/l (August, 2019) – 8.310 mg/l (October, 2021) and most of the iron concentration measured results (from April, 2019 to June, 2022) exceeded the target value except the iron concentration result of August, 2019 and April, 2022. Therefore, the possible reasons may due to the influence of natural origin (iron can reach out from soil by run-off). In Yangon, soil is naturally rich in iron.

As for future subject for main discharged points of Thilawa SEZ Zone B, the following action may be taken to maintain the target value of SS and total coliform and appropriate water quality monitoring:

- 1) To continue monitoring Escherichia coli (E. coli) level to identify health impact by coliform bacteria:
- 2) To monitor the possibility of the overflow water from construction sites; and
- 3) To monitor the possibility of the domestic wastewater from construction sites.

End of the Document

APPENDIX-1 FIELD SURVEY PHOTOS

FOR DISCHARGED POINT OF THILAWA SEZ ZONE B

Surface water sampling and onsite measurement at SW-7

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGED POINTS AND BASELINE OF DISCHARGED CREEK

Surface water sampling and onsite measurement at SW-2

Surface water sampling and onsite measurement at SW-4

Ground water sampling and onsite measurement at GW-2

APPENDIX-2 LABORATORY RESULTS

FOR DISCHARGED POINT

DOWA

GOLDEN DOWN ECOLSYSTEM REFARMAN CO., LTD.
LOC NO. E3. THRuna SEZ Zone A., Yangon Region, Myanmar
Phone No. Tax. No. (+95) 1.2309051

Report No. | GEM-LAB-202206033 Revision No. | 1 Report Date | 21 June, 2022 Application No. | 0001-C001

Analysis Report

Myanmar Koei International LTD (MKI)

No. 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar. Address

Environment Monitoring report for Zone A & 8 Project Name

Sample Description

Sample Name MKI-SW-7-0607 Sampling Date | 7 June, 2022 Sample No. W-2206024 Sampling By | Customer Waste Profile No. Sample Received Date | 7 June, 2022

No.	Parameter	Method	Unit	Result	rod
1	SS .	APHA 2540D (Dry at 103-105°C Method)	mg/l	60	
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/I	3.93	0.00
3	C00 (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	15.1	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	>150000	1.8
5	Dil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	<3.1	3.1
6	Total Nitrogen	HACH Method 19072 (TNT Persulfate Digestion Method)	1\gm.	0.5	0.5
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	rng/	0.05	0.05
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	15.58	0.00
9	Odor	APHA 2150 B (Threshold Odor Test)	70%	1	0
10	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	rng/l	136	-
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
12	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	1119/1	0.099	0.005
1.3	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.010	0.010
14	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/1	≤0.005	0.005
15	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	ing/l	≤0.005	0.00
16	Seienrum	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.003
17	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	:mg/1	0.009	0.003
18	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.005
19	Barrum	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	0.142	0.005
20	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.005
21	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.005
22	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	1.590	0.005
23	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method)	mg/l	<0.002	0.002
24	Total Cyanide	Discitlation Process: APHA 4500-CA-C. Total Cyanide after Distrilation, Determine Cyanide Concentration Process: HACH 8022 (Psridine -Pyrazalone Method)	mg/l	<0.002	0.002
25	Ammonia	HACH Method 10205 (Stikylate TNT Plus Method)	:mg/l	0.09	0.02
26	Hexavalent Chromium (Cr6+)	ISO 11983;1994 (Determination of chromium(VI) Spectrometric method using 1,5- dipnemylcarbazide)	mg/l	< 0.05	0.05
27	Fluoride	APHA 4110 B (Ton Chromatography with Chemical Suppression of Eliuent Conductivity)	mg/l	0.087	0.014
28	Free Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	< 0.1	0.1
29	Total Residual Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	<0.1	0.1
30	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/l	0.081	0.005
31	Formaldehyde	HACH 8110 (MBTH Method)	mg/l	0.037	0.003
32	Escherichia Coli	APHA 9221 F Escherichia Coli Procedure Using Fluorogenic Substrate	MPN/100mi	12.0	1.8
33	Phenois	USEPA Method 420.1 (Phenolics (Spectrophotometric, Manual 4AAP With Distillation))	mg/I	<0.002	0.002

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Cherry Myint Their

FOR REFERENCE MONITORING POINTS FOR COMPARISON WITH DISCHARGED POINTS AND BASELINE OF DISCHARGED CREEK

DOWA

Report No. | USEM-LAB 202206030 Revision No. | 1 Report Date | 21 June, 2022 Application No. | 0001-0001

Analysis Report

Client Name

Myanmar Koel International LTD (MKI)

Address

No. 36/A. 1st Floor, Grand Pho Sein Condominium. Pho Sein Road. Tamwe Township, Yangon, Myanmar Environment Monitoring report for Zone A & B

Project Name

Sample Description

MKI-SW-2-0607

W-2206021

Sample No. Waste Profile No. Sampling Date : 7 June, 2022

Sampling By : Customer Sample Received Date : 7 June, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 25400 (Dry at 103-105'C Method)	rng/f	88	T -
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/I	4.10	0.00
3	C00 (Cr)	APHA 52200 (Close Reflux Colorimetric Method)	mg/l	112.0	0.7
4	Total Coliform	APHA 92218 Standard Total Coliform Fermentation Technique)	MPN/100ml	160000.0	1.8
5	Oil and Grease	APHA 5520B [Partition-Gravimetric Method]	mg/l	<3.1	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mgZf	2.1	0.5
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.26	0.05
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	25.56	0.00
9	Octor	APHA 2:50 B (Threshold Odor Test)	TON	2	0
10	TOS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/l	248	
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.002	0:002
12.	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	0:094	0.005
13	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.010	2.010
1.4	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0:005
15	Cadm:um	APHA 3120 B (Inductively Coupled Pasma (TCP) Method)	ing/I	≤0.009	0.005
16	Selenium	APHA 3120 5 (Inductively Coupled Masma (ICP) Method)	mg/l	<0.005	0.005
17	Lead	APHA 3120 3 (Inductively Coupled Pasma (ICP) Method)	-mg/i	≤0.005	0.005
18	Copper	APHA 3120 B (Inductively Coupled Plasma (ISP) Method)	mg/l	<0.005	0.005
19	Barium.	APHA 3120 B (Inductively Coupled Plasma (ICP) Method	mg/i	0.032	0.005
20	Nickel	APHA 3120 B (Inductively Coupled Plasma (TCP) Method	ing/i	≤0.005	0.005
21	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.005	.0.005
22	Lean	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	2.407	0.005
23	Cyanide	HACH 8027 (Pyridine :Pyrazalone Method)	mg/l	< 0.002	0.002
24	Total Cyanice	Distriction Process: APHA 4500 CN C Total Cyanide after Distillation, Determine Cyanide Concentration Process: HACH 9027 (Pyrione -Pyrazarinie Method)	mg/I	0.003	0.002
25	Ammonia	HACH Method 10205 (5 licylate TNT Plus Method)	mg/l	1 96	0.02
26	hexavalent Chromium (Cr6+)	ISO 11083/1994 (Determination of Chromium)(VI. Spectrometric method using 1.5- Biophinicarbande)	mg/f	<0.05	0.05
27	Fluoride	APHA 4110.9 (Ion Chromatography with Chemical Suppression of Elizant Conductivity)	mg/I	0.028	0.014
75	Free Chlorine	APHA 4500 CL G (OPD Colonmetric Method)	mg/l	<0.1	0.1
29	Total Residual Chlorine	APHA 4500 CL G (DPD Colonimetric Method)	mazt	<3.1	0.1
30	Sulphide	HACH 8131 (USFPA Methylene Blue Method)	mg/l	0.066	0.005
31	Formaldehyde	HACH 8110 (MBTH Method)	mg/l	0.025	0:003
32	Phenois	USEPA Method 420.1 (Phenoics (Spectrophotometric, Manual 44AP With Distrilation))	mg/)	0.007	0.002

LOQ - Umit of Quantitation
 APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

B1-6-88

Cherry Myint Their

Meki vomane 22, 2022

DOWA

GOLDEN DOWN ECO-LYSTEM NYARMAN CO., LTD. Lot No.EL. Thillian SEZ Zone A. Yangen Report, Myanmar Phone No. Fax No. (1993); 23:09051

Report No. : GEM-LAB-202206031 Revision No. : 1 Report Date : 21 June, 2022 Application No. : 0001-C001

Analysis Report

Client Name Myanmar Koer International LTD (MKI) Address

No. 36/A. 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmari.

Environment Monitoring report for Zone A & 5 Project Name

Sample Description

Sample Name MKI-SW-4-0607 Sample No. W-2206022 Waste Profile No.

Sampling Date 7 June, 2022 Sampling By | Customer Sample Received Date : 7 June, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105°C Method)	mg/l	156	-
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/I	4.45	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	36.8	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	>160000	1.8
5	Oil and Grease	APHA 55208 (Partition-Gravimetric Method)	mg/I	<3.1	3.1
6	Total Nitrogen	FACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	0.6	0.5
2	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/i	0.22	0.05
9	Color	APHA 2120C (Spectrophotometric Method)	TCU	14.10	0.00
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	2	0
10	TDS	APHA 2540 C (Total Dissolved Solids Oried at 180°C Method)	mg/l	308	-
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
12	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.124	0.005
13	Arsenic ,	APHA 3128 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	50.010	0.010
14	Chromium	APHA 3128 8 (Inductively Coupled Plasma (ICP) Method)	mg/I	0.006	0.005
15	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	50.005	0.005
16	Selenium	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.005
17	Lead	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	50.005	0.005
18	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.013	0.005
19	Barum	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	0.025	0.005
20	Nickei	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.005	0.005
21	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.005
22	Iron	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/i	3.618	0.005
23	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method)	mg/I	< 0.002	0.002
24	Total Cyanide	Distillation Process: APMA 4500-CN; C. Tocal Cyanide after Distillation, Determine Cyanide Concentration Process: HACH 8027 (Pyridine -Pyriazaigne Method)	/ng/t	<0.002	0.002
25	Ammonia	HACH Method 10205 (Silicylate TNT Plus Method)	mg/I	0.58	0.02
26	Hexavalent Chromium (Cr6+)	ISO 11093:1994 (Determination of chromium(VT) Spectrometric method using 1,51 diphenyicarbande)	mg/f	< 0.05	0.05
27	Fluoride	APHA 4110 B (Con Chromatography with Chemical Suppression of Eluent Conductivity)	mg/i	0.377	0.014
28	Free Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	<0.1	0.1
29	Total Residual Chlorine	APHA 4500 CL G (OPD Colorimetric Method)	mg/f	<0.1	0.1
30	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/l	0.064	0.005
31	Formaldehyde	HACH 8110 (MBTH Method)	mg/l	0.015	0.003
32	Phenois	USEPA Method 420 1 (Phenolics (Spectrophotometric, Manual 4AAP With Distillation))	mg/l	0.005	0.002

: LOQ - Limit of Quantitation

APHA - American Public Hearth Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Hides Sine 21, 2022

DOWA

Report No. GEM-LAB-202206034 Revision No. 1 Report Date 21 June, 2022

Application No. + 0001-C001

Analysis Report

Client Name Myanmar Koel International LTD (MKI)

No. 36/A, 1st Floor, Grand Pho Sein Cond num, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name Environment Monitoring report for Zone A & 3

Sample Description

Sample Name MKI GW-2-0607 Sample No. W-2206025 Waste Profile No.

Sampling Date 3 June, 2022 Sampling By Customer Sample Received Date 7 June, 2022

No.	Parameter	Method	Unit	Resuit	LOQ
1	55	APHA 2S40D (Dry at 103-105'C Method)	mg/I	16	
2	500 (5)	APHA 5210 B (5 Days BOD Test)	mg/I	4.20	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/	<0.7	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100mi	<1.8	1.8
5	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	ing/	<3.1	3:
5	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	€0.5	0.5
1	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0:66	0.05
9	Color	APHA 2120C (Spectrophotometric Method)	TCU	13.66	0.00
9	Oder	APHA 2150 B (Threshold Odor Test)	TON	1	0
10	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/t	180	
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method;	mg/1	\$0.002	0.00
12	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	:ng/I	0.100	0.00
13	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.010	0.01
14	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.007	0.00
15	Cadmium	APMA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	50 005	0.00
16	Selentum	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/(50 005	0.00
17	Lead	APHA 3:20 B (Inductively Coupled Plasma (ICP) Method)	mg/I	0.032	0.003
18	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	s0 005	0.003
19	Banum	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.018	0.005
20	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	< 0.005	0.003
21	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.210	0.003
22	Iron	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method	rng/t	6.212	0.005
23	Cyanide	HACH 8027 (Pyridine -Pyrazaionie Method)	mg/l	< 0.002	0.002
24	Total Cyanide	Distribution Process APHA 4500-CN - El Total Cyanide after Distribution Determine Cyanide Concestration Process InACH 8027 (Pyridine Pyrazolone Hethod)	itig/1	<0.002	0.002
25	Ammonia	HACH Method 10205 (Silicylate TNT Plus Method)	mg/l	0.23	0.02
76	Hexavalent Chromium (C15+)	ISO 11083;1994 (Determination of Chrominim(VI) Spectrometric method using 1,5-	mg/I	<0.05	0.05
27	Fluoride	Elphenylcarbaske) APHA 4110 B (Jon Chromatography with Ehemical Suppression of Eluent Conductivity)	mg/l	50.014	0.014
28	Free Chionine	APHA 4500 CL G (DPD Colorimetric Method?)	mg/I	< 0.1	0.1
29	Total Residual Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	<0.1	0.1
90	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/T	0.026	0.005
31	Formaldehyde	MACH 8110 (MBTH Method)	mg/1	0.019	2 003
32	Escher chia Col	APHA 9221 F Eschenchia Coli Procedure Using Fluorogenic Substrate	M9N/100ml	<1.8	1.8
11	Phenois	USEPA Method A20.1 (Phenolics (Spectronocometric, Manual AAAP With Distribution))	mg/l	<0.002	0.002

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

51-6-55

redex vomo Sure 21, 2022 Managing Director

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3 (Operation phase)

Appendix-D

Air Quality Monitoring Report

June 2022

AIR QUALITY MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA THILAWA SEZ ZONE B (PHASE 1, 2 & 3 OPERATION STAGE)

(BI-ANNUALLY MONITORING)

June 2022 Myanmar Koei International Ltd.

TABLE OF CONTENTS

CHAPTER 1: OUTLINES AND SUMMARY OF MONITORING PLAN	1
1.1 General	1
1.2 Outlines of Monitoring Plan	1
CHAPTER 2: AIR QUALITY MONITORING	
2.1 Monitoring Item	2
2.2 Monitoring Location	
2.3 Monitoring Period	2
2.4 Monitoring Method	3
2.5 Monitoring Results	3
CHAPTER 3: CONCLUSION AND RECOMMENDATION	
APPENDIX-1 HOURLY AIR RESULTS	-1
APPENDIX-2 CERTIFICATE OF CALIBRATION	
LIST OF TABLES	
Table 1.2-1 Outlines of Air Quality Monitoring Plan	1
Table 2.5-1 Air Quality Monitoring Result (Daily Average)	3
LIST OF FIGURES	
Figure 2.2-1 Location of Air Quality Monitoring Point	2
Figure 2.4-1 Status of Air Quality Monitoring Point	
Figure 2.5-1 Status of Air Quality Monitoring Point and Wind Direction	

CHAPTER 1: OUTLINES AND SUMMARY OF MONITORING PLAN

1.1 General

Thilawa Special Economic Zone (TSEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd. (MJTD) has a responsibility to carry out regular environmental monitoring in the industrial area of Zone B in accordance with the approved Environmental Impact Assessment (EIA) report with Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area.

1.2 Outlines of Monitoring Plan

To assess the environmental condition under the operation of industrial area in and around Thilawa SEZ Zone B, air quality had been monitored from 1 June 2022 – 8 June 2022 as follows;

Table 1.2-1 Outlines of Air Quality Monitoring Plan

Monitoring Date	Monitoring Item	Parameters	Number of Point	Duration	Monitoring Methodology
From 1 June – 8 June, 2022	Air Quality	CO, NO ₂ , PM _{2.5} . PM ₁₀ and SO ₂	1	7 Days	On site measurement by Haz-Scanner Environmental Perimeter Air Station (EPAS)

Source: Myanmar Koei International Ltd.

CHAPTER 2: AIR QUALITY MONITORING

2.1 Monitoring Item

The parameters for air quality monitoring were CO, NO₂, PM_{2.5}, PM₁₀ and SO₂.

2.2 Monitoring Location

The air quality measurement equipment, "Haz-Scanner Environmental Perimeter Air Station (EPAS) was set up at the south of the Thilawa SEZ Zone B, N: 16°39'24.20", E: 96°17'15.80", inside the monastery compound of Phalan village, surrounded by the residential houses of Phalan village in the south and fields in west, Thilawa SEZ Zone A in north, local Thilawa Industrial Zone in northeast and operation of Thilawa SEZ Zone B in east, north, north-northwest, northwest and northeast respectively. The air quality monitoring is carried out above location where is near to the residential houses of Phalan village. Possible emission sources are dust emissions from construction activities and exhaust gas emissions from construction fuel-burning equipment and daily human activities in Phalan village. The location of air quality monitoring is shown in the Figure 2.2-1.

Figure 2.2-1 Location of Air Quality Monitoring Point

2.3 Monitoring Period

Air quality monitoring was conducted seven consecutive days from 1 June, 2022 – 8 June, 2022.

2.4 Monitoring Method

Monitoring of CO, NO₂, PM_{2.5}, PM₁₀ and SO₂ were conducted by referring to the recommendation of the United States Environmental Protection Agency (U.S. EPA). The Haz-Scanner EPAS was used to collect ambient air pollutants. The EPAS measures automatically every one minute and directly reads and records onsite for CO, NO₂, PM_{2.5}, PM₁₀ and SO₂. The status of air quality monitoring is shown in Figure 2.4-1.

Source: Myanmar Koei International Ltd.

Figure 2.4-1 Status of Air Quality Monitoring Point

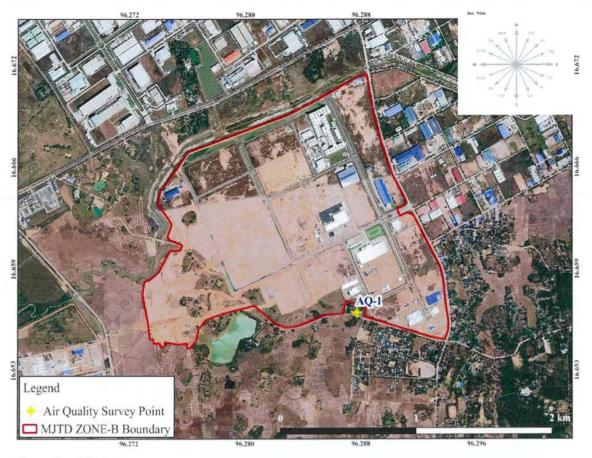
2.5 Monitoring Results

The daily average value of air quality monitoring results of CO, NO_2 , $PM_{2.5}$, PM_{10} and SO_2 are described in Table 2.5-1. Comparing with the target value of CO, NO_2 , $PM_{2.5}$, PM_{10} and SO_2 prescribed in EIA report for Thilawa SEZ development project Zone B, seven days average concentration of CO, NO_2 , $PM_{2.5}$, PM_{10} and SO_2 were lower than the target value.

Table 2.5-1 Air Quality Monitoring Result (Daily Average)

Dete	CO	NO ₂	PM2.5	PM10	SO ₂
Date	mg/m ³	mg/m³	mg/m ³	mg/m ³	mg/m ³
01~02 June, 2022	0.127	0.062	0.013	0.023	0.019
02~03 June, 2022	0.096	0.050	0.015	0.026	0.018
03~04 June, 2022	0.105	0.046	0.017	0.028	0.020
04~05 June, 2022	0.094	0.053	0.014	0.026	0.019
05~06 June, 2022	0.192	0.057	0.015	0.025	0.017
06-07 June, 2022	0.103	0.056	0.016	0.027	0.020
07~08 June, 2022	0.054	0.047	0.015	0.024	0.018
7 Days Average Value	0.110	0.053	0.015	0.026	0.019
Target Value	10.26	1.0	0.025	0.05	0.02

Note: The target value of CO, NO2 and SO2 were converted from ppm units to mg/m3. The conversion equation are as follows:


- 1. (CO, mg/m³) = (CO, ppm) * (Molecular Weight of CO (28)) / 24.45 at 25°C and 1 atm condition
- 2. $(NO_2, mg/m^3) = (NO_2, ppm) * (Molecular Weight of NO_2 (46)) / 24.45$ at 25°C and 1 atm condition 3. $(SO_2, mg/m^3) = (SO_2, ppm) * (Molecular Weight of SO_2 (64)) / 24.45$ at 25°C and 1 atm condition

Source: Myanmar Koei International Ltd.

Wind direction and wind speed were measured at AQ-1. Hourly average values of measured wind direction and wind speed data are described in Appendix-1. Status of air quality monitoring point and wind direction are described in Figure 2.5-1. Depending on the wind direction, West-Northwest (WNW), Northwest (NW), North-Northwest (NNW), North (N), North-Northeast (NNE), Northeast (NE), East-Northeast (ENE) and East (E) directions are assumed to come from the operation site of Zone B.

There were no construction activities during this monitoring period.

Source: Google Earth

Figure 2.5-1 Status of Air Quality Monitoring Point and Wind Direction

CHAPTER 3: CONCLUSION AND RECOMMENDATION

The result of air quality at AQ-1, concentration of CO, NO₂, PM_{2.5}, PM₁₀ and SO₂ during seven days monitoring did not exceed the target value, thus there are no impacts on the surrounding environments.

The periodical monitoring will be necessary to grasp the environmental conditions in operation stage of Thilawa SEZ Zone B. The mitigation measures for environmental management will be considered in collected periodical environmental data and has to be reviewed in future.

APPENDIX-1 HOURLY AIR RESULTS

Air Quality Monitoring Report for Development of Industrial Area Thilawa SEZ Zone B (Phase 1, 2 & 3 Operation Stage, FY June 2022)

				00	NO ₂	PM2.5	PM ₁₀	SO2	Wind Speed	Wind D	Wind Direction
Date		Time		mg/m³	mg/m ³	mg/m³	mg/m³	mg/m ³	s/m	Deg.	Direction
				Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly
01 June, 2022	12:00	i	12:59	0.028	0.011	0.012	0.027	0.020	1.30	8	ESE
01 June, 2022	13:00	i	13:59	0,033	0.014	0.014	0.025	0.019	1.40	121	ESE
01 June, 2022	14:00	ŧ	14:59	0.046	0.016	0.013	0.022	0.020	1.40	123	ESE
01 June, 2022	15:00	ï	15:59	0.041	0.011	0.013	0.030	0.019	1.12	123	ESE
01 June, 2022	16:00	÷	16:59	0.027	0.012	0.013	0.028	0.019	1.00	142	SE
01 June, 2022	17:00	l	17:59	0.063	0.033	0.014	0.021	0.016	7.00	121	ESE
01 June, 2022	18:00	ī	65:81	0.132	0.053	0.016	0.024	0.021	0.62	135	SE
01 June, 2022	19:00	ì	19:59	0.114	0.073	0.013	0.021	0.026	0.72	137	SE
01 June, 2022	20:00	ũ	20:59	0.143	0.081	0.013	0.022	0.022	0.48	126	SE
01 June, 2022	21:00	ï.	21:59	0.153	0.087	0.013	0.025	0.020	0.52	911	ESE
01 June, 2022	22:00	ũ	22:59	0.142	0.092	0.014	0.018	0.019	0.48	130	SE
01 June, 2022	23:00	ï	23:59	0.137	0.095	0.013	0.018	0.017	0.25	151	SSE
02 June, 2022	00:00	i	00:59	0.159	0.099	0.014	0.019	0.018	0.04	186	S
02 June, 2022	01:00	ı	01:59	0.149	0.100	0.014	0.018	0.017	0.20	143	SE
02 June, 2022	02:00	i	02:59	0.156	0.102	0.014	610.0	0.019	0.05	186	S
02 June, 2022	03:00	i	03:59	0.168	0.104	0.013	0.034	0.019	0.00	213	SSW
02 June, 2022	04:00	ï	04:59	0.178	0.105	0.013	0.037	0.019	0.00	165	SSE
02 June, 2022	05:00	i	05:59	0.322	0.106	0.012	0.038	0.018	0.00	24	NNE
02 June, 2022	00:90	ř	06:59	0.392	0.106	0.013	0.022	0.019	0.07	52	NE NE
02 June, 2022	00:20	į	07:59	0.103	0.088	0.012	0.019	0.019	0.35	135	SE
02 June, 2022	08:00	ŧ	08:59	0.120	0.043	0.012	0.017	0.018	0.65	140	SE
02 June, 2022	00:60	i	65:60	0.098	0.022	0.014	0.019	0.016	0.58	184	S
02 June, 2022	10:00	3	65:01	0.046	0.026	0.013	0.018	0.016	0.75	146	SE
02 June, 2022	11:00	2	11:59	0.104	0.009	0.013	0.018	0.016	0.82	151	SSE

0.026

0.038 0.023 0.017

0.016

0.106

0.392 0.127 0.027

Max Avg Min

		Time		CO	NO ₂	PM _{2.5}	PM ₁₀	SO ₂	Wind Speed	Wind D	irection
Date				mg/m ³ mg/m ³	mg/m³	mg/m³	mg/m³	mg/m ³	m/s	Deg.	Direction
				Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly
02 June, 2022	12:00	~	12:59	0.026	0.009	0.013	0.023	0.018	0.90	140.00	SE
02 June, 2022	13:00	~	13:59	0.023	0.009	0.013	0.030	0.018	1.00	137.50	SE
02 June, 2022	14:00	~	14:59	0.023	0.009	0.012	0.030	0.018	0.95	142.67	SE
02 June, 2022	15:00	~	15:59	0.023	0.009	0.015	0.022	0.018	0.78	130.00	SE
02 June, 2022	16:00	~	16:59	0.023	0.009	0.014	0.024	0.016	0.60	136.83	SE
02 June, 2022	17:00	~	17:59	0.034	0.009	0.014	0.025	0.018	0.72	124.17	SE
02 June, 2022	18:00	~	18:59	0.071	0.033	0.016	0.031	0.027	0.43	112.67	ESE
02 June, 2022	19:00	~	19:59	0.141	0.058	0.017	0.032	0.027	0.22	97.67	Е
02 June, 2022	20:00	~	20:59	0.078	0.070	0.012	0.021	0.018	0.18	107.50	ESE
02 June, 2022	21:00	~	21:59	0.110	0.077	0.013	0.021	0.014	0.23	122.83	ESE
02 June, 2022	22:00	~	22:59	0.131	0.083	0.013	0.021	0.013	0.28	107.17	ESE
02 June, 2022	23:00	~	23:59	0.132	0.085	0.014	0.023	0.014	0.27	114.50	ESE
03 June, 2022	00:00	~	00:59	0.136	0.088	0.020	0.028	0.013	0.20	99.40	Е
03 June, 2022	01:00	~	01:59	0.135	0.090	0.013	0.021	0.014	0.02	199.50	SSW
03 June, 2022	02:00	~	02:59	0.120	0.091	0.011	0.019	0.014	0.03	156.67	SSE
03 June, 2022	03:00	~	03:59	0.118	0.089	0.012	0.020	0.013	0.00	199.33	SSW
03 June, 2022	04:00	~	04:59	0.105	0.083	0.014	0.029	0.015	0.03	171.83	S
03 June, 2022	05:00	~	05:59	0.205	0.083	0.017	0.030	0.013	0.12	94.50	Е
03 June, 2022	06:00	~	06:59	0.229	0.087	0.016	0.029	0.014	0.02	93.67	Е
03 June, 2022	07:00	~	07:59	0.178	0.073	0.018	0.031	0.014	0.18	196.17	SSW
03 June, 2022	08:00	~	08:59	0.152	0.030	0.017	0.033	0.025	0.48	217.83	SW
03 June, 2022	09:00	~ :	09:59	0.038	0.010	0.016	0.034	0.027	0.90	227.50	SW
03 June, 2022	10:00	~	10:59	0.033	0.015	0.014	0.026	0.026	0.42	136.00	SE
03 June, 2022	11:00	~	11:59	0.031	0.010	0.016	0.028	0.024	0.78	145.67	SE

Max	0.229	0.091	0.020	0.034	0.027
Avg	0.096	0.050	0.015	0.026	0.018
Min	0.023	0.009	0.011	0.019	0.013

	The second			CO	NO ₂	PM _{2.5}	PM10	SO ₂	Wind Speed	Wind Direction	
Date		Time		mg/m ³	mg/m³	mg/m³	mg/m³	mg/m ³	m/s	Deg.	Direction
		1		Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly
03 June, 2022	12:00	~	12:59	0.027	0.009	0.012	0.025	0.026	0.83	180.17	S
03 June, 2022	13:00	~	13:59	0.023	0.009	0.014	0.024	0.028	0.85	139.67	SE
03 June, 2022	14:00	~	14:59	0.023	0.009	0.016	0.020	0.027	0.65	141.50	SE
03 June, 2022	15:00	\sim	15:59	0.023	0.009	0.014	0.026	0.023	0.67	130.50	SE
03 June, 2022	16:00	~	16:59	0.043	0.009	0.016	0.030	0.027	0.35	138.00	SE
03 June, 2022	17:00	~	17:59	0.199	0.018	0.014	0.024	0.028	0.27	97.50	Е
03 June, 2022	18:00	~	18:59	0.055	0.032	0.013	0.030	0.022	0.40	112.50	ESE
03 June, 2022	19:00	~	19:59	0.063	0.048	0.030	0.036	0.022	0.30	109.83	ESE
03 June, 2022	20:00	~	20:59	0.074	0.058	0.021	0.028	0.022	0.18	119.33	ESE
03 June, 2022	21:00	~	21:59	0.108	0.066	0.013	0.025	0.013	0.03	76.33	ENE
03 June, 2022	22:00	\sim	22:59	0.116	0.074	0.014	0.023	0.022	0.00	171.00	S
03 June, 2022	23:00	~	23:59	0.110	0.073	0.013	0.024	0.022	0.02	69.17	ENE
04 June, 2022	00:00	~	00:59	0.111	0.075	0.013	0.025	0.022	0.04	91.40	Е
04 June, 2022	01:00	~	01:59	0.123	0.074	0.013	0.023	0.014	0.00	23.33	NNE
04 June, 2022	02:00	1	02:59	0.117	0.079	0.018	0.028	0.023	0.00	49.83	NE
04 June, 2022	03:00	~	03:59	0.115	0.080	0.014	0.024	0.017	0.00	93.50	Е
04 June, 2022	04:00	~	04:59	0.160	0.084	0.016	0.030	0.016	0.00	92.83	E
04 June, 2022	05:00	\sim	05:59	0.167	0.082	0.016	0.032	0.015	0.00	99.33	Е
04 June, 2022	06:00	~	06:59	0.467	0.083	0.014	0.026	0.015	0.00	197.67	SSW
04 June, 2022	07:00	- ·	07:59	0.193	0.064	0.014	0.023	0.013	0.20	165.50	SSE
04 June, 2022	08:00	~	08:59	0.035	0.036	0.028	0.037	0.013	0.40	176.67	S
04 June, 2022	09:00	7.0	09:59	0.096	0.017	0.029	0.037	0.015	0.38	223.67	SW
04 June, 2022	10:00	~	10:59	0.036	0.010	0.026	0.034	0.016	0.57	167.33	SSE
04 June, 2022	11:00	~	11:59	0.023	0.010	0.016	0.026	0.018	0.63	114.67	ESE

Max	0.467	0.084	0.030	0.037	0.028
Avg	0.105	0.046	0.017	0.028	0.020
Min	0.023	0.009	0.012	0.020	0.013

				СО	NO ₂	PM _{2.5}	PM10	SO ₂	Wind Speed	Wind D	irection
Date		Time		mg/m³ mg/r	mg/m³	mg/m³	mg/m³	mg/m³	m/s	Deg.	Direction
	uil Control		No.	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly
04 June, 2022	12:00	~	12:59	0.024	0.012	0.012	0.017	0.019	0.40	118.17	ESE
04 June, 2022	13:00	~	13:59	0.043	0.029	0.012	0.028	0.014	0.57	112.67	ESE
04 June, 2022	14:00	~	14:59	0.050	0.029	0.012	0.036	0.013	0.52	119.00	ESE
04 June, 2022	15:00	~	15:59	0.129	0.028	0.013	0.025	0.013	0.18	227.83	SW
04 June, 2022	16:00	~	16:59	0.047	0.036	0.013	0.022	0.013	0.32	255.83	WSW
04 June, 2022	17:00	~	17:59	0.185	0.046	0.013	0.032	0.013	0.13	261.33	W
04 June, 2022	18:00	~	18:59	0.054	0.050	0.015	0.027	0.013	0.12	198.67	SSW
04 June, 2022	19:00	~	19:59	0.134	0.060	0.013	0.028	0.015	0.02	146.33	SSE
04 June, 2022	20:00	~	20:59	0.280	0.077	0.019	0.028	0.017	0.00	33.17	NNE
04 June, 2022	21:00	2	21:59	0.166	0.080	0.013	0.030	0.014	0.10	64.50	ENE
04 June, 2022	22:00	~	22:59	0.037	0.076	0.013	0.034	0.020	0.03	101.83	ESE
04 June, 2022	23:00	~	23:59	0.038	0.076	0.012	0.028	0.024	0.03	158.50	SSE
05 June, 2022	00:00	~	00:59	0.074	0.076	0.013	0.020	0.026	0.30	109.60	ESE
05 June, 2022	01:00	~	01:59	0.084	0.075	0.012	0.018	0.027	0.45	108.00	ESE
05 June, 2022	02:00	~	02:59	0.099	0.078	0.012	0.019	0.027	0.33	112.83	ESE
05 June, 2022	03:00	~	03:59	0.102	0.077	0.012	0.019	0.028	0.02	107.00	ESE
05 June, 2022	04:00	~	04:59	0.092	0.072	0.012	0.027	0.025	0.02	134.67	SE
05 June, 2022	05:00	~	05:59	0.155	0.074	0.012	0.022	0.026	0.05	204.50	SSW
05 June, 2022	06:00	~	06:59	0.166	0.072	0.016	0.020	0.026	0.02	272.50	W
05 June, 2022	07:00	~	07:59	0.144	0.059	0.019	0.027	0.017	0.22	249.33	WSW
05 June, 2022	08:00	~	08:59	0.036	0.023	0.020	0.033	0.013	0.25	207.33	SSW
05 June, 2022	09:00	~	09:59	0.041	0.020	0.018	0.034	0.013	0.08	224.67	SW
05 June, 2022	10:00	~	10:59	0.039	0.011	0.016	0.023	0.017	0.50	216.00	SW
05 June, 2022	11:00	~	11:59	0.048	0.037	0.013	0.021	0.020	0.48	170.83	S

Max	0.280	0.080	0.020	0.036	0.028
Avg	0.094	0.053	0.014	0.026	0.019
Min	0.024	0.011	0.012	0.017	0.013

				CO	NO ₂	PM _{2.5}	PM ₁₀	SO ₂	Wind Speed	Wind D	irection
Date		Time		mg/m ³ mg/m	mg/m³	mg/m ³	mg/m³	mg/m³	m/s	Deg.	Direction
				Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly
05 June, 2022	12:00	~	12:59	0.144	0.060	0.016	0.030	0.014	0.33	110.00	ESE
05 June, 2022	13:00	\sim	13:59	0.141	0.069	0.017	0.025	0.014	0.42	108,17	ESE
05 June, 2022	14:00	~	14:59	0.074	0.058	0.018	0.025	0.013	0.27	105.67	ESE
05 June, 2022	15:00	\sim	15:59	0.089	0.028	0.017	0.027	0.013	0.43	124,17	SE
05 June, 2022	16:00	~	16:59	0.041	0.028	0.014	0.026	0.013	0.43	164,17	SSE
05 June, 2022	17:00	~	17:59	0.230	0.059	0.018	0.024	0.015	0.10	179.67	S
05 June, 2022	18:00	~	18:59	0.135	0.059	0.015	0.029	0.015	0.03	117.50	ESE
05 June, 2022	19:00	~	19:59	0.143	0.064	0.014	0.032	0.018	0.10	148.50	SSE
05 June, 2022	20:00	\sim	20:59	0.067	0.059	0.016	0.032	0.022	0.17	164.00	SSE
05 June, 2022	21:00	~	21:59	0.077	0.065	0.016	0.027	0.018	0.03	108.67	ESE
05 June, 2022	22:00	7.20	22:59	0.126	0.072	0.015	0.029	0.021	0.00	29.83	NNE
05 June, 2022	23:00	<i>i</i> .≈	23:59	0.100	0.070	0.014	0.028	0.018	0.13	152.00	SSE
06 June, 2022	00:00	~	00:59	0.078	0.069	0.015	0.024	0.020	0.06	78.60	ENE
06 June, 2022	01:00	(INC)	01:59	0.072	0.066	0.014	0.023	0.017	0.07	75.33	ENE
06 June, 2022	02:00	~	02:59	0.086	0.067	0.015	0.024	0.020	0.03	65.33	ENE
06 June, 2022	03:00	· `~	03:59	0.071	0.069	0.013	0.022	0.015	0.03	99.50	E
06 June, 2022	04:00	0.000	04:59	0.094	0.070	0.014	0.024	0.023	0.00	183.00	S
06 June, 2022	05:00	-	05:59	0.120	0.069	0.013	0.022	0.022	0.15	85.83	E
06 June, 2022	06:00	~	06:59	0.091	0.055	0.013	0.020	0.015	0.32	117.83	ESE
06 June, 2022	07:00	~	07:59	0.057	0.056	0.015	0.024	0.013	0.62	200.00	SSW
06 June, 2022	08:00	~	08:59	0.031	0.045	0.015	0.026	0.025	0.45	250.00	WSW
06 June, 2022	09:00	~	09:59	0.144	0.079	0.014	0.023	0.016	0.37	149.00	SSE
06 June, 2022	10:00		10:59	0.642	0.009	0.014	0.021	0.021	0.22	185.83	S
06 June, 2022	11:00	~	11:59	1.755	0.013	0.014	0.026	0.014	0.63	127,00	SE

Max	1.755	0.079	0.018	0.032	0.025
Avg	0.192	0.057	0.015	0.025	0.017
Min	0.031	0.009	0.013	0.020	0.013

	2012	5.75		СО	NO ₂	PM2.5	PM ₁₀	SO ₂	Wind Speed	Wind D	irection
Date		Time		mg/m ³	mg/m³	mg/m³	mg/m³	mg/m³	m/s	Deg.	Direction
				Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly
06 June, 2022	12:00	~	12:59	0.279	0.069	0.015	0.023	0.013	0.48	113.33	ESE
06 June, 2022	13:00	~	13:59	0.216	0.051	0.015	0.025	0.013	0.57	115.83	ESE
06 June, 2022	14:00	~	14:59	0.273	0.054	0.014	0.031	0.023	0.50	110.00	ESE
06 June, 2022	15:00	~	15:59	0.189	0.049	0.015	0.023	0.020	0.87	113.50	ESE
06 June, 2022	16:00	~	16:59	0.138	0.047	0.014	0.022	0.022	0.58	200.33	SSW
06 June, 2022	17:00	~	17:59	0.191	0.060	0.015	0.022	0.024	0.12	196.33	SSW
06 June, 2022	18:00	~	18:59	0.086	0.063	0.015	0.025	0.025	0.07	170.00	S
06 June, 2022	19:00	~	19:59	0.036	0.058	0.014	0.034	0.024	0.28	90.67	Е
06 June, 2022	20:00	~	20:59	0.051	0.051	0.014	0.029	0.023	0.70	144.67	SE
06 June, 2022	21:00	~	21:59	0.023	0.036	0.015	0.024	0.028	0.25	157.50	SSE
06 June, 2022	22:00	~	22:59	0.086	0.062	0.014	0.023	0.018	0.02	40.00	NE
06 June, 2022	23:00	~	23:59	0.102	0.068	0.015	0.035	0.013	0.00	37.83	NE
07 June, 2022	00:00	~	00:59	0.076	0.069	0.014	0.024	0.013	0.00	82.20	Е
07 June, 2022	01:00	~	01:59	0.051	0.068	0.015	0.025	0.013	0.08	91.50	Е
07 June, 2022	02:00	~	02:59	0.025	0.045	0.015	0.026	0.018	0.90	219.67	SW
07 June, 2022	03:00	~	03:59	0.027	0.017	0.023	0.027	0.023	0.18	108.83	ESE
07 June, 2022	04:00	~	04:59	0.087	0.062	0.018	0.022	0.020	0.23	106.67	ESE
07 June, 2022	05:00	~	05:59	0.127	0.070	0.019	0.032	0.016	0.18	102.00	ESE
07 June, 2022	06:00	~	06:59	0.102	0.075	0.019	0.033	0.013	0.10	59.50	ENE
07 June, 2022	07:00	~	07:59	0.061	0.077	0.018	0.024	0.018	0.70	103.17	ESE
07 June, 2022	08:00	~	08:59	0.040	0.069	0.014	0.022	0.024	0.30	105.67	ESE
07 June, 2022	09:00	~	09:59	0.073	0.058	0.017	0.032	0.026	0.55	142.17	SE
07 June, 2022	10:00	~	10:59	0.084	0.043	0.017	0.032	0.025	0.63	205.00	SSW
07 June, 2022	11:00	~	11:59	0.043	0.032	0.016	0.032	0.014	0.58	143.50	SE

Max	0.279	0.077	0.023	0.035	0.028
Avg	0.103	0.056	0.016	0.027	0.020
Min	0.023	0.017	0.014	0.022	0.013

				CO	NO ₂	PM2.5	PM10	SO ₂	Wind Speed	Wind D	irection
Date		Time		mg/m ³	mg/m³	mg/m³	mg/m³	mg/m³	m/s	Deg.	Direction
				Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly	Hourly
07 June, 2022	12:00	~	12:59	0.038	0.045	0.017	0.032	0.022	0.60	115.33	ESE
07 June, 2022	13:00	~	13:59	0.103	0.047	0.013	0.021	0.021	0.57	123.83	SE
07 June, 2022	14:00	~	14:59	0.077	0.042	0.015	0.024	0.021	0.48	125.17	SE
07 June, 2022	15:00	~	15:59	0.052	0.039	0.016	0.033	0.023	0.75	131.67	SE
07 June, 2022	16:00	1	16:59	0.039	0.045	0.013	0.037	0.016	0.77	226.17	SW
07 June, 2022	17:00	~	17:59	0.025	0.025	0.014	0.025	0.020	0.85	237.50	WSW
07 June, 2022	18:00	≈	18:59	0.027	0.038	0.017	0.024	0.019	0.45	246.00	WSW
07 June, 2022	19:00	~	19:59	0.025	0.030	0.015	0.020	0.017	1.08	255.50	WSW
07 June, 2022	20:00	2	20:59	0.046	0.053	0.017	0.026	0.016	1.40	247.83	WSW
07 June, 2022	21:00	~	21:59	0.045	0.063	0.016	0.021	0.015	1.27	242.00	WSW
07 June, 2022	22:00	~	22:59	0.057	0.066	0.015	0.025	0.017	0.17	261.33	W
07 June, 2022	23:00	~	23:59	0.058	0.063	0.014	0.021	0.015	0.18	215.17	SW
08 June, 2022	00:00	~	00:59	0.046	0.058	0.013	0.017	0.017	0.06	201.03	SSW
08 June, 2022	01:00	~	01:59	0.044	0.058	0.014	0.021	0.021	0.00	130.98	SE
08 June, 2022	02:00	~	02:59	0.062	0.058	0.014	0.032	0.018	0.00	98.00	E
08 June, 2022	03:00	~	03:59	0.030	0.059	0.015	0.022	0.017	0.00	98.00	Е
08 June, 2022	04:00	\sim	04:59	0.087	0.063	0.016	0.020	0.018	0.05	97.77	Е
08 June, 2022	05:00	~	05:59	0.052	0.057	0.014	0.020	0.017	0.63	137.13	SE
08 June, 2022	06:00	~	06:59	0.122	0.064	0.016	0.021	0.017	0.09	132.65	SE
08 June, 2022	07:00	~	07:59	0.109	0.068	0.013	0.024	0.018	0.00	108.25	ESE
08 June, 2022	08:00	\approx	08:59	0.033	0.047	0.012	0.027	0.015	0.31	201.95	SSW
08 June, 2022	09:00	~	09:59	0.051	0.031	0.014	0.022	0.020	0.58	220.00	SW
08 June, 2022	10:00	~	10:59	0.048	0.011	0.016	0.025	0.017	1.29	167.80	SSE
08 June, 2022	11:00	~	11:59	0.030	0.009	0.013	0.018	0.015	2.46	140.37	SE

Max	0.122	0.068	0.017	0.037	0.023
Avg	0.054	0.047	0.015	0.024	0.018
Min	0.025	0.009	0.012	0.017	0.015

APPENDIX-2 CERTIFICATE OF CALIBRATION

Certificate of Calibration Certificate Number: EDCQP200-4.11.5 Environmental Devices Corporation certifies the Haz-Scanner model EPAS is calibrated to published specifications and NIST traceable. Calibration Dust Specifications are NIST traceable using Coulter Mutisizer II e. ISO12103 -1 A2 Fine Test Dust and is designed to agree with EPA Class I and Class III FRM and FEM particulate samplers and monitors and EN 12341 and EN 14907 standards. Gas sensors are Calibrated against NIST/EPA traceable Calibration Gas using NIST primary Flow Standard: LFE774300 to ISO 17025 and EPA Instrumental Test Methods as defined by 40 CFR Part 60. Quality system standard to meet the requirements of ANSI/ASQC standard Q9000-1994 (ISO 9001), MIL-STD 45662A, and customer's specification if required. Temperature = 22°C Relative Humidity = 30% Atmospheric Pressure = 760 mmHg Measurement Uncertainty Estimated @ 95% Confidence Level (k=2) using ISO 17025 guidelines. Model Serial Number Next Calibration Due December 21,2021 EPAS-6000 SN 918189 December 2022 Calibration Span Accessory if purchased Technician Supervisor Dan Okuniewicz Environmental Devices Corporation 4 Wilder Drive Building #15 Plaistow, NH 03865 ISO-9001 Certified

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3 (Operation phase)

Appendix-E

Noise and Vibration Monitoring Report June 2022

NOISE AND VIBRATION MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA THILAWA SEZ ZONE B (PHASE 1, 2 & 3 OPERATION STAGE)

(BI-ANNUALLY MONITORING)

June 2022 Myanmar Koei International Ltd.

TABLE OF CONTENTS

CHAPTER 1: OUTLINES AND SUMMARY OF MONITORING PLAN	1
1.1 General	
1.2 Outlines of Monitoring Plan	1
CHAPTER 2: NOISE AND VIBRATION LEVEL MONITORING	2
2.1 Monitoring Item	2
2.2 Monitoring Location	2
2.3 Monitoring Method	3
2.4 Monitoring Results	4
CHAPTER 3: CONCLUSION AND RECOMMENDATION	10
LIST OF TABLES	
<u> </u>	
Table 1.2-1 Outlines of Noise and Vibration Level Monitoring	1
Table 2.1-1 Monitoring Parameters for Noise and Vibration Level	2
Table 2.4-1 Results of Noise Levels (LAeq) Monitoring at NV-1	4
Table 2.4-2 Results of Noise Levels (LAeq) Monitoring at NV-2	4
Table 2.4-3 Hourly Noise Level (LA _{eq}) Monitoring Results at NV-1	5
Table 2.4-4 Hourly Noise Level (LAeq) Monitoring Results at NV-2	5
Table 2.4-5 Results of Vibration Levels (Lv10) Monitoring at NV-1	7
Table 2.4-6 Results of Vibration Levels (Lv10) Monitoring at NV-2	7
Table 2.4-7 Results of Hourly Vibration Levels (Lv10) Monitoring at NV-1	
Table 2.4-8 Results of Hourly Vibration Levels (L _{v10}) Monitoring at NV-2	8
LIST OF FIGURES	
Figure 2.2-1 Location of Noise and Vibration Level Monitoring Points	2
Figure 2.3-1 Status of Noise and Vibration Level Monitoring at NV-1 and NV-2	3
Figure 2.4-1 Results of Noise Levels (LA _{eq}) Monitoring at NV-1	
Figure 2.4-2 Results of Noise Levels (LA _{eq}) Monitoring at NV-2	6
Figure 2.4-3 Results of Vibration Levels (L _{v10}) Monitoring at NV-1	9
Figure 2.4-4 Results of Vibration Levels (L _{v10}) Monitoring at NV-2	9

CHAPTER 1: OUTLINES AND SUMMARY OF MONITORING PLAN

1.1 General

Thilawa Special Economic Zone (TSEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd., (MJTD) has a responsibility to carry out regular environmental monitoring in the industrial area of Zone B in accordance with the approved Environmental Impact Assessment (EIA) report with Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area.

1.2 Outlines of Monitoring Plan

To assess the environmental condition under the operation of industrial area in and around Thilawa SEZ Zone B, noise and vibration levels had been monitored from 1 June 2022 – 2 June 2022 as follows;

Table 1.2-1 Outlines of Noise and Vibration Level Monitoring

Monitoring Date	Monitoring Item	Parameters	Number of Points	Duration	Monitoring Methodology
2 June 2022	Noise Level	LAeq (dB)	1 (NV-1)	8 hours	On-site measurement by "Rion NL-42 sound level meter"
I June 2022	Noise Level	$LA_{eq}(dB)$	1 (NV-2)	8 hours	On-site measurement by "Rion NL-42 sound level meter"
2 June 2022	Vibration Level	L _{v10} (dB)	1 (NV-1)	8 hours	On-site measurement by "Vibration Level Meter- VM-53A"
1 June 2022	Vibration Level	L _{vi0} (dB)	1 (NV-2)	8 hours	On-site measurement by "Vibration Level Meter- VM-53A"

CHAPTER 2: NOISE AND VIBRATION LEVEL MONITORING

2.1 Monitoring Item

The noise and vibration level monitoring items are shown in Table 2.1-1.

Table 2.1-1 Monitoring Parameters for Noise and Vibration Level

No.	Item	Parameter
1	Noise	A-weighed loudness equivalent (LAeq)
2	Vibration	Vibration level, vertical, percentile (Lv10)

Source: Myanmar Koei International Ltd.

2.2 Monitoring Location

Noise and vibration levels were measured in the northeast corner of the Thilawa SEZ Zone B, monitoring point (NV-1); N: 16°40'18.22", E: 96°17'18.18" for traffic noise concerned and in the south of the Thilawa SEZ Zone B, monitoring point (NV-2); N: 16°39'24.90", E: 96°17'16.70", inside the monastery compound of Phalan village. The location of the noise and vibration monitoring points are shown in Figure 2.2-1.

Figure 2.2-1 Location of Noise and Vibration Level Monitoring Points

NV-1

NV-1 is located in front of temporary gate of operation site of Thilawa SEZ Zone B and next to Thilawa Development road. The surrounding area are Zone A in the northwest, local industrial zone in the east respectively. Possible sources of noise and vibration is generated from construction activities and road traffic.

NV-2

NV-2 is located at the south of the Thilawa SEZ Zone B, inside the monastery compound of Phalan village, surrounded by the residential houses of Phalan village in the south and fields in west, Thilawa SEZ Zone A in north, local industrial zone in northeast respectively. Possible sources of noise and vibration is generated from construction activities from Zone B and daily human activities from nearby Phalan village.

2.3 Monitoring Method

Noise level was measured by "Rion NL-42 sound level meter" and automatically records every 10 minutes in a memory card. The vibration level meter, VM-53A (Rion Co., Ltd., Japan), was accompanied by a 3-axis accelerometer PV-83C (Rion Co., Ltd.) and it was placed on solid soil ground. Vertical vibration (Z axis), L_v , was measured every 10 minutes within the adaptable range of (10-70) dB at NV-1 and (10-70) dB at NV-2 and recorded to a memory card.

The measurement period of noise and vibration was 8 hours for each monitoring point. The status of the noise and vibration level monitoring on NV-1 and NV-2 are shown in Figure 2.3-1.

Figure 2.3-1 Status of Noise and Vibration Level Monitoring at NV-1 and NV-2

2.4 Monitoring Results

Noise Monitoring Results

Noise monitoring results are separated as daytime (6:00 AM to 10:00 PM) and evening time (10:00 PM to 6:00 AM) time frames for NV-1 and daytime (7:00 AM to 7:00 PM), evening time (7:00 PM to 10:00 PM) and night time (10:00 PM to 7:00 AM) time frames respectively for NV-2. Noise measurement was carried out on an 8-hour as working time (8:00 AM to 4:00 PM) at the designated one location instead of 24-hours due to the safety reason and risk avoidance. The monitoring results are summarized in Table 2.4-1 and Table 2.4-2. Hourly noise level (LA_{eq}) monitoring results at NV-1 and NV-2 are shown in Table 2.4-3 and Table 2.4-4. Figure 2.4-1 and Figure 2.4-2 showed the results of noise level (LA_{eq}) at NV-1 and NV-2. Comparing with the target value of noise level in operation stage prescribed in EIA report for Thilawa SEZ development project Zone B, all results were under the target values.

Table 2.4-1 Results of Noise Levels (LAeq) Monitoring at NV-1

	(Traffic Noise Level) Equivalent Noise Level (LAeq, dB)				
Date	Day Time (6:00 AM – 10:00 PM)	Night Time (10:00 PM - 6:00 AM)			
2 June, 2022	57				
Target Value	75	70			

Note: Target value is applied to the noise standard along main road stipulated in the Noise Regulation Law (Japan) (Law No. 98 of 1968, Latest Amendment by Law No.91 of 2000).

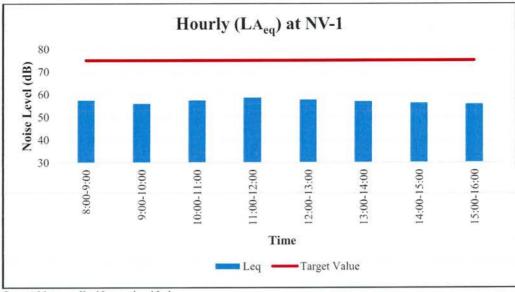
Source: Myanmar Koei International Ltd.

Table 2.4-2 Results of Noise Levels (LAeq) Monitoring at NV-2

	(A side next to sensitive area such as monastery, hospital and scho Equivalent Noise Level (LAcq, dB)						
Date	Day Time (7:00 AM – 7:00 PM)	Evening Time (7:00 PM – 10:00 PM)	Night Time (10:00 PM – 7:00 AM)				
1 June, 2022	52	-	5 11				
Target Value	60	55	50				

Note: Target value is applied to the noise level during the operation stage in the EIA Report for Thilawa SEZ Development Project (Industrial Area of Zone B).

Table 2.4-3 Hourly Noise Level (LA_{eq}) Monitoring Results at NV-1


Date	Time	(LAeq, dB)	(LA _{eq} , dB) Each Category	(LAeq, dB) Target Value	Remark
	6:00-7:00	-			
	7:00-8:00	-			
	8:00-9:00	57			
	9:00-10:00	56			
	10:00-11:00	57			
	11:00-12:00	59			
	12:00-13:00	58		75	No construction Activities
	13:00-14:00	57	57		
	14:00-15:00	56			
	15:00-16:00	56			
	16:00-17:00	17			
2 1 2022	17:00-18:00	12			
2 June, 2022	18:00-19:00	-			
	19:00-20:00	25			
	20:00-21:00	-			
	21:00-22:00	-			
	22:00-23:00	·			
	23:00-24:00				
	24:00-1:00	-			
	1:00-2:00	-		70	
	2:00-3:00	-	-	70	
	3:00-4:00				
	4:00-5:00	=			
	5:00-6:00				

Source: Myanmar Koei International Ltd.

Table 2.4-4 Hourly Noise Level (LA_{eq}) Monitoring Results at NV-2

				-	
Date	Time	(LAeq, dB)	(LA _{eq} , dB) Each Category	(LAcq, dB) Target Value	Remark
	7:00-8:00	(7)			
	8:00-9:00	50			
	9:00-10:00	50			
	10:00-11:00	52			
	11:00-12:00	51			
	12:00-13:00	53	53		
	13:00-14:00	51	52	60	No construction Activities
	14:00-15:00	52			
	15:00-16:00	54			
	16:00-17:00				
	17:00-18:00	-			
1 1 2022	18:00-19:00				
1 June, 2022	19:00-20:00	38		55	
	20:00-21:00	12	=		
	21:00-22:00	- 1			
	22:00-23:00	-			
	23:00-24:00	-			
	24:00-1:00	-			
	1:00-2:00	-			
	2:00-3:00	-	-	50	
	3:00-4:00	-		1500	
	4:00-5:00	2			
	5:00-6:00	-			
	6:00-7:00	-			

Source: Myanmar Koei International Ltd.

Figure 2.4-1 Results of Noise Levels (LAcq) Monitoring at NV-1

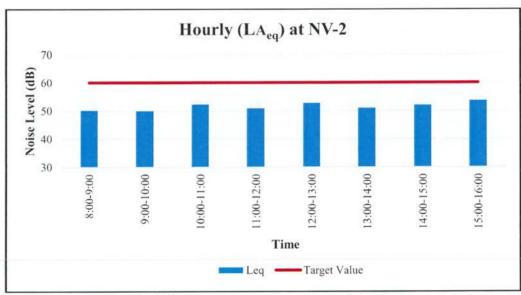


Figure 2.4-2 Results of Noise Levels (LAeq) Monitoring at NV-2

Vibration Monitoring Results

Vibration monitoring results are separated as daytime (7:00 AM to 7:00 PM), evening time (7:00 PM to 10:00 PM) and night time (10:00 PM to 7:00 AM) time frames respectively for both NV-1 and NV-2. Vibration measurement was carried out on an 8-hour as working time (8:00 AM to 4:00 PM) at the designated one location instead of 24-hours due to the safety reason and risk avoidance. The results of vibration level (L_{v10}) monitoring at NV-1 and NV-2 are shown in Table 2.4-5 and Table 2.4-6. Hourly vibration level (L_{v10}) monitoring results at NV-1 and NV-2 are shown in Table 2.4-7 and Table 2.4-8. Figure 2.4-3 and Figure 2.4-4 showed the graph of vibration level monitoring results at NV-1 and NV-2. By comparing with the target vibration level in operation stage in EIA report for Thilawa SEZ development project Zone B, all of results were under the target values.

Table 2.4-5 Results of Vibration Levels (L_{v10}) Monitoring at NV-1

Pate	(Office, commercial facilities and factories) Equivalent Vibration Level (Lv10, dB)						
Date	Day Time (7:00 AM – 7:00 PM)	Evening Time (7:00 PM – 10:00 PM)	Night Time (10:00 PM - 7:00 AM)				
2 June, 2022	37	Ε.	121				
Target Value	70	65	65				

Note: Target value is applied to the vibration level during the operation stage in the EIA Report for Thilawa SEZ Development Project (Industrial Area of Zone B).

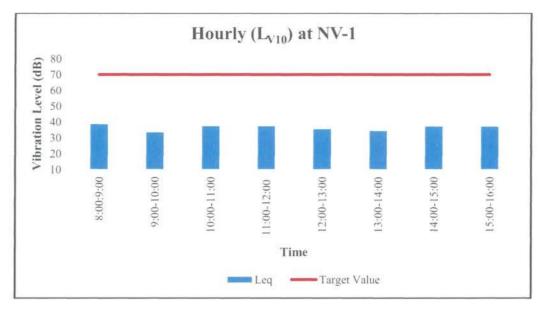
Source: Myanmar Koei International Ltd.

Table 2.4-6 Results of Vibration Levels (L_{v10}) Monitoring at NV-2

Posts		(Residential houses and monastery) Equivalent Vibration Level (Lv10, dB)						
Date	Day Time (7:00 AM - 7:00 PM)	Evening Time (7:00 PM – 10:00 PM)	Night Time (10:00 PM – 7:00 AM)					
1 June, 2022	24		-					
Target Value	65	60	60					

Note: Target value is applied to the vibration level during the operation stage in the EIA Report for Thilawa SEZ Development Project (Industrial Area of Zone B).

Table 2.4-7 Results of Hourly Vibration Levels (Lv10) Monitoring at NV-1


Date	Time	(L _{v10} , dB)	(Lv10, dB) Each Category	(Lv10, dB) Target Value	Remark
	7:00-8:00		10000		
	8:00-9:00	39			
	9:00-10:00	33		11	
	10:00-11:00	37			
	11:00-12:00	37			
	12:00-13:00	35	27	70	
	13:00-14:00	34	37	70	No construction Activities
	14:00-15:00	37			
	15:00-16:00	37			
	16:00-17:00	-			
	17:00-18:00	121			
2.1 2022	18:00-19:00				
2 June, 2022	19:00-20:00	5.50	-	65	
	20:00-21:00	-			
	21:00-22:00	724			
	22:00-23:00	(#)			
	23:00-24:00	57.0			
	24:00-1:00				
	1:00-2:00	(*)):			
	2:00-3:00	-	-	65	
	3:00-4:00	720			
	4:00-5:00	(=);			
	5:00-6:00				
	6:00-7:00	27			

Source: Myanmar Koei International Ltd.

Table 2.4-8 Results of Hourly Vibration Levels (L_{v10}) Monitoring at NV-2

Date	Time	(L _{v10} , dB)	(Lv10, dB) Each Category	(Lv10, dB) Target Value	Remark
	7:00-8:00	*			
	8:00:9:00	27			
	9:00-10:00	26			
	10:00-11:00	22			
	11:00-12:00	21			
	12:00-13:00	19	24	65	
	13:00-14:00	24	24	03	
	14:00-15:00	21			
	15:00-16:00	25			No construction Activities
	16:00-17:00	(+)			
	17:00-18:00	189			
1.1 2022	18:00-19:00	44			
1 June, 2022	19:00-20:00	-		60	
	20:00-21:00	170			
	21:00-22:00	-			
	22:00-23:00	-			
	23:00-24:00	183			
	24:00-1:00	-			
	1:00-2:00	- 25			
	2:00-3:00		-	60	
	3:00-4:00	(5)	1		
	4:00-5:00	121			
	5:00-6:00	1.00]		
	6:00-7:00	35			

Source: Myanmar Koei International Ltd.

Figure 2.4-3 Results of Vibration Levels ($L_{\nu 10}$) Monitoring at NV-1

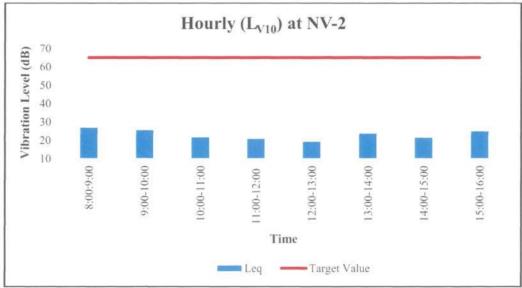


Figure 2.4-4 Results of Vibration Levels (Lv10) Monitoring at NV-2

CHAPTER 3: CONCLUSION AND RECOMMENDATION

By Comparing with the target value of noise and vibration level in operation stage prescribed in EIA report for Thilawa SEZ development project Zone B, all results were under the target values at NV-1 and NV-2. Thus, there is no negative impact on noise and vibration from operation activities of Zone B to the surrounding environment.

In conclusion of this environmental monitoring, there are no specific noise and vibration impacts to the surrounding area of industrial area of Thilawa SEZ Zone B during the monitoring period.

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3 (Operation phase)

Appendix-F

Traffic Volume Monitoring Report

June 2022

TRAFFIC VOLUME MONITORING REPORT FOR DEVELOPMENT OF INDUSTRIAL AREA THILAWA SEZ ZONE B (PHASE 1, 2 & 3 OPERATION STAGE)

(BI-ANNUALLY MONITORING)

June 2022 Myanmar Koei International Ltd.

TABLE OF CONTENTS

1.1 General	CHAPTER 1: OUTLINES AND SUMMARY OF MONITORING PLAN	
1.2 Outlines of Monitoring Plan	1.1 General	
2.1 Monitoring Item	1.2 Outlines of Monitoring Plan	
2.2 Monitoring Location	CHAPTER 2: TRAFFIC VOLUME MONITORING	!
2.2 Monitoring Location	2.1 Monitoring Item	!
2.4 Monitoring Results		
LIST OF TABLES Table 1.2-1 Outlines of Traffic Volume Monitoring	2.3 Monitoring Method	-
LIST OF TABLES Table 1.2-1 Outlines of Traffic Volume Monitoring		
Table 1.2-1 Outlines of Traffic Volume Monitoring	CHAPTER 3: CONCLUSION AND RECOMMENDATION	,
Table 2.1-1 Monitoring Parameters for Traffic Volume	<u>LIST OF TABLES</u>	
Table 2.1-1 Monitoring Parameters for Traffic Volume	Table 1.2-1 Outlines of Traffic Volume Monitoring	
Table 2.1-2 Classification of Vehicles Types	Table 2.1-1 Monitoring Parameters for Traffic Volume	1
Table 2.4-1 Summary of Traffic Volume Recorded at TV-1		
Table 2.4-3 Hourly Traffic Volume Results at TV-1 (From Dagon-Thilawa Road to Phalan Village) 5 <u>LIST OF FIGURES</u>	Table 2.4-1 Summary of Traffic Volume Recorded at TV-1	
<u>LIST OF FIGURES</u>		
	Table 2.4-3 Hourly Traffic Volume Results at TV-1 (From Dagon-Thilawa Road to Phalan Village) 5	i
Figure 2.2-1 Location of Traffic Volume Monitoring Point	LIST OF FIGURES	
	Figure 2.2-1 Location of Traffic Volume Monitoring Point	,
Figure 2.3-1 Status of Traffic Volume Monitoring at TV-1		

CHAPTER 1: OUTLINES AND SUMMARY OF MONITORING PLAN

1.1 General

Thilawa Special Economic Zone (TSEZ) is located in southern district of Yangon region and about 23 km southeast of Yangon city. As the developer of Thilawa SEZ, Myanmar Japan Thilawa Development Ltd., (MJTD) has a responsibility to carry out regular environmental monitoring in the industrial area of Zone B in accordance with the approved Environmental Impact Assessment (EIA) report with Environmental Management Plan (EMP). MJTD has implemented monitoring various environmental items with the specified time frame to know the environmental conditions in and around the area.

1.2 Outlines of Monitoring Plan

To assess the environmental condition under the operation of industrial area in and around Thilawa SEZ Zone B, Traffic volume monitoring was carried out on an 8-hours as working time (8:00 to 16:00) at the designated one location instead of 24 hours due to the safety reason and risk avoidance. Traffic volume had been monitored from 2 June 2022 as follows;

Table 1.2-1 Outlines of Traffic Volume Monitoring

Monitoring Date	Monitoring Item	Parameters	Number of Points	Duration	Monitoring Methodology
2 June 2022	Traffic Volume	-	1 (TV-1)	8 hours	Manual Count

CHAPTER 2: TRAFFIC VOLUME MONITORING

2.1 Monitoring Item

The traffic volume monitoring item are shown in Table 2.1-1. All vehicles were classified into four types as detailed in Table 2.1-2.

Table 2.1-1 Monitoring Parameters for Traffic Volume

No.	Item	Parameter
1	Traffic volume	Number of Vehicle (4 Types)

Source: Myanmar Koei International Ltd.

Table 2.1-2 Classification of Vehicles Types

No.	Classification		Description
1	Two-wheeled vehicle	6.3	Motorbike, Motorcycle taxi
2	Four-wheeled light vehicle		Pick-up car, Jeep, Taxi, Saloon car, Light truck (under 2 tons)
3	Heavy vehicle		Medium bus, Express, Big bus, Medium truck, Heavy truck such as 2 axles, 3 axles and more than 4 axles and Trailer (over 4.5 tons)
4	Others		Tractor

2.2 Monitoring Location

Traffic volume was measured at the northeast corner of the Thilawa SEZ Zone B, monitoring point (TV-1); N: 16°40'17.90", E: 96°17'18.20". The location of the traffic volume monitoring point is shown in Figure 2.2-1.

Source: Myanmar Koei International Ltd.

Figure 2.2-1 Location of Traffic Volume Monitoring Point

TV-1

TV-1 is located in front of main gate of operation site of Thilawa SEZ Zone B and next to Thilawa Development road. The surrounding area are Zone A in the northwest and local industrial zone in the east respectively.

2.3 Monitoring Method

The traffic volume monitoring was conducted for 8 hours at the same time as the traffic noise and vibration level monitoring. Traffic volume monitoring was conducted to count the number of vehicles moving in each direction. Manual count method was used and data was recorded using tally sheets. The status of the traffic volume monitoring on TV-1 is shown in Figure 2.3-1.

Source: Myanmar Koei International Ltd.

Figure 2.3-1 Status of Traffic Volume Monitoring at TV-1

2.4 Monitoring Results

The traffic volume monitoring results are summarized in Table 2.4-1. Hourly quantities of each type of vehicle were recorded. Table 2.4-1 shows that the number of 4-wheel light vehicles are distinctly and highly utilized in weekdays. The number of Heavy vehicles are four times lower than the number of 4-wheel light vehicles (Phalan village to Dagon-Thilawa road) and the number of Heavy vehicles are five times lower than the number of 4-wheel light vehicles (Dagon-Thilawa road to Phalan village) for each direction.

Table 2.4-1 Summary of Traffic Volume Recorded at TV-1

Survey Point	Direction	Date	Weekday	2-wheel Vehicles	4-wheel Light Vehicles	Heavy Vehicles	Others	Total
TV-1	Phalan village to Dagon- Thilawa road	2 1 2022	Thursday	195	632	147	26	1,000
1 V-1	Dagon-Thilawa road to Phalan village	2 June 2022	Thursday	174	710	134	33	1,051

Source: Myanmar Koei International Ltd.

The summary monitoring results of hourly traffic volume at TV-1 is shown in Table 2.4-2 and Table 2.4-3 respectively. Compare the result of each direction in morning hours as 8:00 to 9:00 and in the afternoon hours as 15:00 to 16:00, traffic volume from Dagon Thilawa road to Phalan village is higher than another direction in the morning hours. However, in the afternoon hours, traffic volume from Phalan village to Dagon Thilawa road is higher than another direction. It may be possible commuting vehicles are passing from Dagon Thilawa road to Phalan village in the morning hours and returning from Phalan village to Dagon Thilawa road in the afternoon during this monitoring period.

Table 2.4-2 Hourly Traffic Volume Results at TV-1 (From Phalan Village to Dagon-Thilawa Road)

			Classif	ication		
From	To			vehicles		Total
	Ĩ	Two-wheeled vehicle	Four-wheeled light vehicle	Heavy vehicle	Others	
7:00	8:00	-	-	-	-	-
8:00	9:00	35	87	20	5	147
9:00	10:00	28	79	15	0	122
10:00	11:00	20	62	24	3	109
11:00	12:00	16	85	21	4	126
12:00	13:00	37	91	18	3	149
13:00	14:00	18	72	12	2	104
14:00	15:00	16	80	18	3	117
15:00	16:00	25	76	19	6	126
16:00	17:00	-	-	-	-	-
17:00	18:00	-	-	-	-	-
18:00	19:00	-	-	-	-	-
19:00	20:00	-	-	-	-	
20:00	21:00		-	-	-	-
21:00	22:00	-	-	-	-	-
22:00	23:00	-	=	-	-	-
23:00	0:00	-	-	-	-	-
0:00	1:00	-		-	-	-
1:00	2:00	-	-	-	-	-
2:00	3:00	-	-	-	-	-
3:00	4:00	-	_	-	-	-
4:00	5:00	-	-	-	-	-
5:00	6:00		-	-	-	-
6:00	7:00		-	-	-	-
То	tal	195	632	147	26	1,000

Source: Myanmar Koei International Ltd

Table 2.4-3 Hourly Traffic Volume Results at TV-1 (From Dagon-Thilawa Road to Phalan Village)

			Classit	ication		
From	To		Type of	vehicles		Total
11711	14	Two-wheeled vehicle	Four-wheeled light vehicle	Heavy vehicle	Others	i viai
7:00	8:00	-	-	-	-	-
8:00	9:00	18	130	22	5	175
9:00	10:00	18	89	16	6	129
10:00	11:00	30	97	20	2	149
11:00	12:00	20	93	21	7	141
12:00	13:00	30	93	16	3	142
13:00	14:00	22	84	12	1	119
14:00	15:00	13	59	15	4	91
15:00	16:00	23	65	12	5	105
16:00	17:00	-	-	-	-	-
17:00	18:00	-	-	-	-	-
18:00	19:00	-	-	-	-	-
19:00	20:00	-	-	-	-	-
20:00	21:00	-	-	-	-	-
21:00	22:00	-	-	-	-	-
22:00	23:00	-	-		-	-
23:00	0:00	-	-	_	-	-
0:00	1:00	-	-	-	-	-
1:00	2:00	-	-	-	-	-
2:00	3:00	-	-	-	-	-
3:00	4:00	-	-	_	-	-
4:00	5:00	-	-	-	-	-
5:00	6:00	-	-	-	-	_
6:00	7:00	-	-	_	-	-
To	tal	174	710	134	33	1,051

CHAPTER 3: CONCLUSION AND RECOMMENDATION

The results of the traffic volume show that the number of 4-wheel light vehicles are distinctly and highly utilized in this monitoring period. The number of heavy vehicles are four times and five times significantly lower than the number of 4-wheel light vehicles for each direction. It seems that commuting vehicles are more utilized during this monitoring period as compared with construction related vehicles (Heavy vehicles).

The continuous monitoring will be necessary to grasp the traffic volume data in operation stage of Thilawa SEZ Zone B. Once enough traffic volume data is collected, the mitigation measures for traffic volume management will be considered in future.

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3(Operation phase)

Appendix-G

General Waste Disposal Record (March 2022 to August 2022)

	01 0	ငွေလွှဲပြောင် အကြောင်းအရာ ။ ႏိုလ္ပနဲ့နဲ့)2	uning solvice
		% ၂၀၈၀ ရောက် မေရ	eccese.	
				Respondent Kyelse
		(လွှဲပြောင်းပေးသူ)		
or/For	အမည်	Karva Walac Payo	အရည်	
e Mak	ရာတူး	Earle Same	mm:	
⊭Eng/Page Maker/Form-3	နေရာ ရက်စွဲ		နေရာ ရက်စွဲ	

Thilawa Special Economic Zone Zone B- Phase 1,2 & 3 (Operation phase)

Appendix-H

Sewage Treatment Plant Monitoring Record March 2022 to August 2022

Daily Self Monitoring of STP Inlet, Outlet and Aeration

Monthly	Date		Inlet (2	(one B)			Inle	t-1			Inte	t-2			Outs	ot - 1			Out	let - 2	11.
HORIGHY	Dave	pН	TDS	Tem	COD	рН	TDS	Tem	COD	pH	TDS	Tem	COD	рН	TDS	Tem	COD	pН	TDS	Tem	COD
Star	ndard	6-9	2000	≤35	400	6-9	2000	≤35	400	6-9	2000	≤35	400	6-9	2000	≤35	125	6-9	2000	≤35	125
	Init	7720	mg/L	.C	mg/L	-	mg/L	C	mg/L	200	mg/L	.c	mg/L		mg/L	'C	mg/L	Cett.	mg/L	7C	mg/L
Mar	01-03-22	6.94	223	25.9	480	7.05	368.9	25.7		7.08	396.4	26	346	6.72	326.3	25.5	-	6.17	392.5	25.8	-
Mar Mar	02-03-22	7.1	315.9	22.9	-	7.06	339.8	23.7		6.95	426.9	23.2	59	6.64	332.9	24	27	6.7	360.7	24.1	35
Mar	03-03-22	7.23	319.2 296.6	24.5	336 529	7.01	427.8 355.7	25.4	-	7.29	418.9 414.5	24.8	184 541	6.58	392.9	25.9	49	6.58	358.9	25.9	20
Mar	05-03-22	6.87	319	22	VL 0	6.88	563.9	22		6.82	57.6	22.1	547	6.35	399.4 389.4	23.4	24	6.56	369.4	23	36
Mar	06-03-22	7.01	389.1	23.1	1.2	7.12	525.4	23.1	-	6.8	415.4	23.1	-	6.28	463.4	23		6.83	409.7	23.1	7.5
Mar	07-03-22	7.4	371.3	25.3	17.	7.03	350.8	24.9	279	7.09	301.7	25	-	6.41	492.3	25.1	41	6.82	412.3	25.2	111
Mar	08-03-22	7.29	384.9	26.3	698	7.04	336.6	26.3		7.05	336.8	25.9	655	6.17	462.4	26.4	49	6.24	473	26.4	59
Mar	10-03-22	7.27	352.6 342.2	23.7	475	7.08	412.1 369.8	22.3	164	7.11	416.7	23.3		6.33	436.7	23.9	49	6.68	382.7	22.9	100
Mar	11-03-22	6.95	307.1	30.5	443	6.87	261.4	30.2		6.98	342.5 250.1	29 30.4	341 134	6.48	446.4 409.9	29.5 30.5	53	6.4	375.8	29.3	57
Mar	12-03-22	7	296.9	22	- 410	7.06	470.9	22.6		7.13	487.8	22.4	134	6.51	415.5	22.1	97	6.63	428.9 408.5	30.5 22.5	72
Mar	13-03-22	6.87	301	21.9	120	6.62	452.6	22.5	-	6.55	457	22.5	-	6.34	420.7	22.6		6.93	428.5	22.6	
Mar	14-03-22	7.21	339.8	29.5		6.95	384.4	29.4	146	7,14	375.6	29.2	5.7	6 35	426	28.9	74	6.71	475.6	28.8	18
Mar Mar	15-03-22	7.08	394.5	27.3	203	7.03	396.1	27.2		7.11	425.5	27	341	6.21	368.3	27.3	39	6.72	435.2	28	103
Mar	16-03-22	6.89	384	21.1	151	6.76	496.2 277.4	20.9		6.74 7.05	478.5 343.5	22.1	200	6.25	356.9	20.8		6.7	395.5	20.7	
Mar	18-03-22	6.84	274.3	23.9	230	6.98	322.1	24.5		6.95	343.7	24.8	269 85	6.06	392.9 393.8	24.8	53	6.48	389.6 375.4	24.8	- 11
Mar	19-03-22	6.56	194.1	19.4		6.63	362.6	20.1	-	6.64	350.1	19.1	- 00	5.75	350.8	20	- 53	6.02	373.1	23.9 19.5	46
Mar	20-03-22	6.96	228.1	20.2		5.97	453.4	19.9		6.99	448.6	20.3	7.47	5.93	358.4	20.3		6.44	351	20.2	-
Mar	21-03-22	5.94	218.5	24.4	1-	6.81	315.9	23.8	145	5.48	176.7	23.4	7.5	6.21	375.4	24.2	95	5.88	396.7	23.5	63
Mar	22-03-22	7.25 6.94	231.6	25.3	502	6.86	330.4	26.2		6.89	314.8	26	56	5.91	399.7	26.5	49	6.6	360.3	26.6	48
Mar	23-03-22 24-03-22	7	203.1	27.9 25.6	375	7.09 6.87	491.3 366.3	28.8	67	6.86	484.4 343.4	28.9	OFF.	6.03	404.1	28.3	47	6.24	323.5	28.1	125
Mar	25-03-22	6.9	276.6	25.4	189	69	645.7	25.3		6.89	434	26.5 24.4	255 504	6.08 5.92	391 390.5	26.4 23.9	23	6.35	411.5	26.3	31
Mar	26-03-22	6.66	292.9	21.9	100	6.76	408.1	21.9	-	6.65	407.4	21.9	304	6.29	390.5	22.9	66	6.34	406	24.3	50
Mar	27-03-22	6.91	305.2	21.9	200	6.89	381.1	21.9		7.03	419	21.9	54	5.93	402.3	21.9		6.52	407.8	22	
Mar	28-03-22	7.16	186.2	26.5	191	7.12	496.2	27.5	207	6.97	503.9	26.9	-	6.26	447.8	27.1	41	6.42	429.3	27.4	28
Mar Mar	29-03-22	6.87	273.7	21.7	158	6.78	402.7	21.4		6.81	371.3	20.6	295	6.05	431.1	21.3	20	6.19	406	21	27
Mar	30-03-22	6.88	278.6 289.9	29.5	520	6.86 7.19	426 497.8	29.1	279	6.86 7.21	403,8 469.6	28.6	207	6.22	423.9	29.3	49	6.21	426.8	29	18
Apr	01-04-22	6.96	238	30.5	206	7.01	357.2	30.1		7.02	329.8	23.1	287	6.09	423.9 430.9	23.1	40	6.58	421.5	22.6	92
Apr	02-04-22	6.93	256.5	22.4	-	6.73	449.5	22.1		6.7	426.1	22	210	6.34	374	21.8	44	6.21	382.1	29.5 6.45	80
Apr	03-04-22	7.14	276.3	21.6	:-:	7.08	348.2	215		7.06	345.2	21.5	1.0	7.68	70.16	21.8		7.67	70.93	21.6	-
Apr	04-04-22	6,93	287	23.6	1-1	6.87	530.2	22.9	308	6.88	532.5	23.6	7.0	6.35	364.3	23	51	6.51	418.6	22.9	42
Apr	05-04-22	6.73	355	29.8	1872	7.35	473.5	28.7		7.04	468.5	28.3	551	7.33	551.2	28.2	15	6.72	433.9	28.2	16
Apr Apr	06-04-22	6.98 7.15	362.1 311.4	23.1	132	7.19	441.9 285.6	21.9	355	7.13	437.1	22.8		6.55	417.7	22.6	12	6,51	424.2	22.8	19
Apr	08-04-22	6.91	300.5	24.7	254	6.93	388.6	24.5		7.18 6.95	419.9 376.8	29.5	984 374	6.34	433.2 388.5	29.8	44 61	6.63	421.7	29.8	37
Apr	09-04-22	100	114		7				-		510.0	29.0	514	6.32	424.8	21.2	- 01	6.8	442.9	25.4	34
Apr	10-04-22	-	1.57			1.0	300	50					-		-	-	30	0.04	-	21.0	58
Apr	11-04-22	-	10.4		1-1	-	-	*0		241		12	100		- 35	2	-				-
Apr	12-04-22	797		7.2	340			+1		527	22	_ 12	- 12	-		-	-	-		5-	
Apr Apr	13-04-22	2.2			-		-		-		-		-	-	- 8	- 5%	67	1.0	-	7.04	23
Apr	15-04-22	74.			-	-		4.0	-	3.90	2.5	2.00	- 1		2.5	100	-	- 4/			
Apr	16-04-22	2.4		704	740	-		-		347		- 2	-	-		-	30	-	-	-	7
Apr	17-04-22	- 27		- 12	- 2		-							-	- 61	9.5	-			-	-
Apr	18-04-22	7.2	258.8	26.3		6.51	205.1	28.3	637	6.57	216.6	27.7		6.71	362.1	27.3	25	6.31	298.6	26.3	11
Apr Apr	19-04-22 20-04-22	7,05 6,81	250.7 518.3	29.1	226	7.21	233.7	28.7	404	7.21	216.2	28.4	239	6.17	269.1	29.3	39	6.74	386.2	27.8	34
Apr	21-04-22	6.95	475.2	26.9 26.6	346	6.91 7.15	358.1 409.5	27.7	104	6.96 7.13	338 411.6	28	78	6.04	325.6 352.4	28.2	73	6.67	405.6	27.9	29
Apr	22-04-22	68	490.5	30.2	442	6.98	692.7	31.4		6.94	435.6	30.9	950	6.12 5.91	352.4	25.5	33 41	6.74	386.3	24.5 30.6	29
Apr	23-04-22	6.86	335.6	22.4	-	7.09	356.9	21.7		7.1	361.8	22.3	500	6.01	381.1	21.2	- 41	6.46	396.9	21.3	29
Apr	24-04-22	6.9	292.6	21.9	22	7.03	406	22		7.11	377.8	21.8	-	5.98	431.1	22.1	-	6.38	428.4	21.5	
Apr	25-04-22	6.41	390	26.5	-	7.1	411.2	26.9	254	7.09	421	27.4	3.5	5.78	477.3	27.1	23	6.17	471.1	27.8	36
Apr	26-04-22	6.91	338.8	27.2	148	7.05	333.8	27.6	1 1	7.05	331	27.1	206	6.26	470.1	27.5	27	6.15	435.7	26.9	30
Apr	27-04-22	7.23	375.5 506.6	26.5	999	7.23	364.3 503.8	25.3	288	7.26	367.6	24.7	020	7.06	418.9	25	33	6.22	407.5	25.6	27
Apr	29-04-22	7.5	535	28.5 24.8	233 242	7.22	438.2	28.3 23.1		7.24 7.56	457.5 390.3	28 23.4	273 274	6.3	411	27.7	48	6.45	428.6	28	30
Apr																					24

May	01-05-22	7.41	566.2	22.5	-	6.65	420	22.7	11114-31	7	420.7	22.4		6.55	425.3	22.5	-	6.65	424.1	22.5	-
May	02-05-22	7.87	354.6	23.3	-	7.06	313.9	23.6	174	7.08	359.3	23.7	-	6.59	435.4	24.7	20	6.78	425.9	24.8	32
May	03-05-22	7.14	486	21.8	137	7.28	396	21.6		7.34	430.5	21.7	196	6.57	403.9	21.8	21	6.76	422.7	21.9	26
May	04-05-22	7.45	401.7	29.9		7.25	461.1	29.9	254	7.31	464.4	29.8	-	6.56	427.4	29.7	16	6.8	437.9	29.1	42
May	06-05-22	7.33	382.9	21.5	141	7.21	423.8	21.7	100	7.23	441.8	25.9	372	6.35	406.8	23.2	41	6.91	493.8	25.3	43
May	06-05-22	7.58	417.3	31.5	150	7.21	472.5	31.5		7.61	462.1	31	249	6.52	394.2	30.7	35	6.96	429.4	31.6	34
May	07-05-22	7.8	542.9	20.1	-	7.31	435.9	20.8		7,33	426.3	20.4	2.70	7.27	463	20.8		7.02	417.2	21	-
May	08-05-22	7.34	420.3	18	-	7.04	383.5	17.6	-	7.11	444.1	18.4	- 9	7.02	418.2	18.2		6.92	393.6	18.1	
May	09-05-22	7.51	458.1	21.4		7.34	430.4	21.4	115	7.26	453.5	20.3	12	6.93	421.1	20	56	6.94	423.1	21.1	39
May	10-05-22	7.4	491.9	25.7	129	7.28	457	25.6	110	6.98	408.1	25.4	107	7.16	415.5	25.5	36	6.93	407.8	25.3	26
May	11-05-22	7.52	417.5	23.2	120	7.2	451	25.3	188	7.22	434.5	25.6	107	6.62	386.1	25.1	46	7.02	389	24	23
May	12-05-22	7.68	487.4	28.3	185	7.2	444.7	28.5	100	7.38	466.4	28.6	185	6.72	388.1	28.5	21	7.02	404	28.5	34
May	13-05-22	7.78	461.6	26.4	127	7.11	424.8	27	1 43	7.13	426.4	27.2	68	6.6			35		415.3		
May	14-05-22	7.5	478.5	20.2	121	7.16	413.6	21		7.17	480.2	21.1	- 00	6.8	385.5 386.5	26.1	30	7.16	416.8	26.7	28
May	15-05-22	7.53	394.5	20.2		7.06	280.7	20.3		7.01	279.9	20.4		6.78	397.2	20.6		7.2	407.7	20.6	-
May		7.87	351.5	28.8	-	7.01	320.6	27.8	340	7.07		27.8	-				24				- 22
May	16-05-22 17-05-22	7.76	595.3	23.3	56	7.46	474.1	22.7	340	7.57	289 500 2		99	6.77	405.8	28.5	21	7.14	432.3	27.7	23
	18-05-22	6.49	531.3	27.1		7.12	314	29.1			409.1	22.3			365.5	22.6	20	7.21		23.3	
May	19-05-22	6.82	426.4	25	332	7.12	482.5	26.4	70	7.33	449.5	29.5 26.6	115	6.91	380.2	29	20	7.25 7.21	421.9	28.9	29
May	20-05-22	7.	296	26.4	322	7.13	180.7	25.9		7.19		25.9	97	6.81	385.5 334.3	26.5 25.4	30		411.4	25.9	45 13
May		7.6	521.6	24		7.13	322.4	23.3		7.3	219.5 432.1	25.9	9/	6.79	240.9	23.6	30	7.19	375.8 290.6	25.8	
	21-05-22				-	7.14		23.5	-			23.3	-				-	7.19		23.3	
May	22-05-22	7.46	477.2	23.7			323.5		407	7.19	463.1		_	6.89	251.7	23.4			284.5	23.4	
May	23-05-22	7	620.9	25.9	400	7.22	423.2	26.3	137	7.48	496.2	27	100	6.9	280	28.1	14	7.1	320.7	28.1	10
May	24-05-22	7.57	409.4	28.5	138	7.12	385.2	29.2	-	6,99	306.3	28.7	100	6.98	301.8	28.6	22	7.22	351.7	28.5	7
May	25-05-22	7.15	487.9	22.6	-	7.09	369.5	21	78	7.07	370.1	21.9		7.15	335.1	22.2	22	7.42	373.3	23.1	12
May	26-05-22	7.59	426.3	26.8	90	7.4	493.1	26.7		7.44	492.2	25.8	72	7.05	339.1	26.6	15	7.4	395	26.7	16
May	27-05-22	7.08	689.7	27.1	495	7.24	503.1	28.6	-	7.37	539.3	29.1	42	7.03	362.6	28.7	17	7.31	438.5	29.6	14
May	28-05-22	7.56	298.4	24		7.32	478.7	24.2	-	7.32	492.1	23.9		6.85	344.8	23.5		7.29	406.6	240	-
May	29-05-22	7.62	513	23.7	-	6.92	286.3	23.5	-	7.25	417.7	23.7	-	7.04	355.8	23.7	-	7.3	419.3	23.7	-
May	30-05-22	6.8	380.7	25.8		7.04	324.3	30	59	6.97	319.4	30.7	-	6.92	368	30.3	3	7.32	422.6	30.4	18
May	31-05-22	7.58	475.9	27.7	67	6.98	420.5	27.9	-	7.04	410	27.5	117	6.98	391.6	26.9	16	7.33	446.7	27.3	25
Jun	01-06-22	7.15	477.7	26.8	- 35	7.26	417.7	28.1	107	7.38	449.3	28.2	-	6.96	370.6	28.3	27	7.34	444.8	27.2	36
Jun	02-06-22	7.3	394.7	24.9	105	6.98	484.1	24.6		7.4	430.1	24.1	195	7.44	421.4	24.5	33	6.95	388.4	25.1	32
Jun	03-06-22	7.11	450.8	29.9	382	7.04	431.9	27.3	-	6.98	383.2	26.6	43	6.95	394.9	27.6	31	7.37	410.2	26.7	24
Jun	04-06-22	6.87	431.2	23.2	-	6.94	322.3	23.2		6.87	345.4	23.1	-	6.75	384.2	23.4	-	7.31	421.2	23.2	-
Jun	05-06-22	7.26	307.5	23.2	- 2	7.05	438	23.1	-	6.97	439.4	23.3	-	7.01	376.2	23.3		7.34	407.2	23.3	-
Jun	06-06-22	6.9	401.9	23.3		7	233.8	23.3	62	7.08	238.6	23.3		6.93	350.3	23.2	35	7.35	393.1	23.3	49
Jun	07-06-22	7.24	454.3	21.9	357	7.22	372	24.9		7.29	368	24.6	35	6.95	322.4	25	33	7:31	355.4	25.3	39
Jun	08-06-22	7.06	955.3	29.3	- 2	6.81	307.4	29.2	173	6.97	337.9	29	-	6.88	317.9	28.8	30	7.24	360.9	29.2	19
Jun	09-06-22	7.16	365.4	27.8	351	6.87	245.1	28.1	70	7.15	477.3	27.7	145	6.91	307.3	27	19	7.1	379.7	27.8	41
Jun	10-06-22	7.25	270	27.8	176	7.04	348.9	30.3	50	7.01	353.7	30.5	73	6.94	328.9	29.8	29	6.95	327.6	30	62
Jun	11-06-22	7.19	278.7	22.6	- 32	6.82	205	22.7	7-20	6.92	368.8	22.8	-	6.8	249.7	22.8	1000	7.11	290.9	22.8	*
Jun	12-06-22	7.47	332.5	22.7	- 33	6.73	267.7	22.6		6.76	269.7	22.4		6.77	237.7	22.6	114	7.12	261.4	22.7	
Jun	13-06-22	7.04	288.5	25.6		6.86	212.9	27.5	103	6.87	216.6	27.5	-	6.86	242.1	27.7	12	7.18	257	27	21
Jun	14-06-22	7.45	344.9	27.6	41	7.16	316	22.5	-	7.03	245.6	22.8	177	7.08	234.7	23.1	30	7.23	273.3	22.2	15
Jun	15-06-22	7.11	383.8	26		6.82	234.1	25.4	86	6.8	235.3	25.2		6.93	244.3	25.4	27	7.21	291.4	25.3	6
Jun	16-06-22	7.33	374	28.2	107	6.97	356.1	27.9		7.04	367.9	27.8	110	6.93	309.3	28.3	11	7.22	304.1	28.6	20
Jun	17-06-22	7.07	528.3	29.5	531	6.85	267.8	29.3	-	6.84	263.3	29.6	90	6.9	312	29.8	16	7.1	325.9	29.7	44
Jun	18-06-22	7	374.8	23.5		6.76	347.3	23.5	70	6.79	314	23.5	199	6.71	310.2	23.5		7.02	355.9	23.6	
Jun	19-06-22	7.4	360.1	23.3		6.91	308.9	22.9	200	6.93	307.3	22.7		6.88	329.9	22.8	[C.E.+0]	7.07	344.5	23.2	
Jun	20-06-22	7.49	348.5	26.7	-	6.71	377.2	26.5	- 55	6.79	371.1	26.5	100	6.88	298.6	26.7	29	7.11	367.5	26.7	36
Jun	21-06-22	7.31	340.8	26.7	138	6.89	251.4	26.8		7.05	355.5	27.3	30	6.86	253.5	27	18	7.06	284	26.8	22
Jun	22-06-22	7.21	351.1	26.8		6.88	170.2	24.9	36	6.85	175.4	24.6	-	7.01	243.7	24.3	27	6.97	269.5	24.1	28
Jun	23-06-22	7.43	408	28.5	966	6.85	201	29.7	200	6.87	205.8	29.5	242	6.96	218.7	29.2	7	6.91	269.3	29.8	32
Jun	24-06-22	7.22	408.1	25	87	6.74	181.9	24.6		7.01	428.4	24.5	110	6.82	217.9	25	16	6.87	272	24.5	8
Jun	25-06-22	6.38	315.4	22.7	-	6.8	205.7	22.8		6.8	179.9	22.8	-	6.92	229	23	-	7.02	295.2	22.9	-
Jun	26-06-22	5.7	341	23.7		6.77	344.8	23.7	-	6.77	346	23.9	-	6.81	255.7	23.7		7.1	318.5	23.7	-
Jun	27-06-22	6.45	431.6	25.5	74	6.9	201.9	25.7	45	6.89	203.4	25.6	-	6.86	240	25.1	6	7.13	308.1	25.7	22
Jun	28-06-22	6.45	595.1	27.9	578	7.02	272.7	25.4		7.09	268.8	25.8	63	6.91	313.4	25.6	36	7.2	242.2	25.1	46
Jun	29-06-22	6.67	616.4	26.4	010	6.88	263.4	28.2	70	6.93	266.4	28.9	-	7.28	331.8	28.8	26	6.9	273.9	29.2	5
9040	20.00.22	5.74	573.3	26.2	819	6.88	296.3	23.8	1.4	7.08	413.7	23	159	6.72	297.4	23.1	25	6.97	344.3	23.4	11

Mathematics							·			,												
March Marc	Jul	01-07-22	4.92	406.2	24.8	1313	6.98	250.8	25.3		6.96	222.8	25.3	559	6.48	322.3	24.9	9		359	25.8	
March Marc																						
M.														-								
## 98022																						
						795								313								
Math						1027								242								
Math																						
Math 1907-22 648 331 248 . 674 284 . 688 284 . 688																						
March Marc						-																
15 15 15 15 15 15 15 15						rtation								-								
	Jul	13-07-22	6.08	360.2	25.9	-	6.69	198.8		216				-				25				
Math	Jul	14-07-22	6.3	347.9	27	550	6.71	182.3	26.1	-	6.85	192.8	26	185	6.84							
14 17-07-122 14-99	Jul		6.41			448	6.85	234.1	25.9	-	6.89	227	25.6	292	6.99							
May 1809/32 474 397 4 288						-	6.77		24.5	-	7.12	283.3	24.4	-	6.75	250.8	24.4	-	6.85	123.3	24.4	-
						-							24.6	-		275.4	24.5		7.16	302.7	24.6	-
Jul 200722 687 3871 285						-				55								16				15
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,						-																
22-07-22 6-92 247-6 25-8 25-5 6-86 1406 24 6-99 127-6 23.8 173 6-94 179-7 170 22.8 6-99 221-6 23.7						-																
10 2407422 744 2887 239																						
Jul. 24-07-22 6.74 288.7 23.9 - 6.66 199.8 23.7 - 6.68 200.2 23.8 - 6.88 200.2 24 - 6.4 21.08 74 - 24.1 - 24.						255																25
July 25-07-22 6-57 158-3 27.5 - 6-53 373-4 28.2 61 6.58 23.5 29.2 - 6.9 216.8 27.4 19 6.74 214.9 28.1 29.2 July 25-07-22 70.4 378-3 25.3 22.4 6.8 20.0 24.0 - 6.9 37.6 25.5 15.5 6.9 23.81 24.9 18 6.55 22.1 24.8 22.1 July 27-07-22 6.81 447.4 29.3 29.4 6.8 23.3 30.5 76 71.4 25.1 30.3 - 6.74 28.5 30.5 21 6.77 24.4 30.3 30.5 July 27-07-22 6.87 37.2 31.4 31.4 31.6 180 6.85 30.5 27.5 27.5 27.5 July 27-07-22 6.87 37.2 37.5 37.2 37.5 37.5 37.5 37.5 37.5 July 27-07-22 6.87 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 July 27-07-22 6.87 37.5 37.5 37.5 37.5 37.5 37.5 July 27-07-22 6.87 37.5 37.5 37.5 37.5 37.5 37.5 37.5 July 27-07-22 6.87 37.5 37.5 37.5 37.5 37.5 37.5 37.5 July 27-07-22 6.87 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 37.5 July 39.07-22 6.97 39.7 32.2 - 6.7 39.7 32.2 - 6.7 39.7 39.7 39.2 - 6.7 39.7 39.7 39.2 - 6.7 39.7 39.7 39.7 39.7 39.2 - 6.7 39.7 39.7 39.2 - 6.7 39.7 3						-																
July 270-222 681 447.7 221 683 233 305 76 714 5011 303 674 285.5 305 21 687 224 226																						
July																						
July 28-07-22 6.088 377-4 28-4 316 6.91 3482 26.1 . 6.088 345.3 26-4 175 6.74 346.2 26.6 677 322.7 25.7 20.1 July 28-07-22 6.07 307-2 31-6 180 6.86 305.1 27.5 																						
July 290-0722 687 3872 316 180 685 305.1 2775																						
Jul 30-07-22 6-74 39-77 23.2 - 6.71 36-75 22.5 - 7.06 58-79 22.2 - 6.79 35-19 22.3 - 6.64 403.2 22.4 - 7.06 30-77 24.5 - 7.06 30-77 24.5 - 7.06 30-77 24.5 - 7.06 30-77 24.5 - 7.06 - 7.																						
July 31-07-22 6.99 341.7 22.7																						
Aug 01-08-22 7-14 465-64 77.3 - 6.8 341.1 23.3 56 674 311.4 223.3 - 6.62 397.7 24.3 11 65.7 45.9 24.3 19																						
Aug 0208-22 7.14 669						-				56				-				11				19
Aug 03-08-22 7.23 416.8 25.3 - 691 203.5 24.3 60 6.84 218.2 24.1 - 6.6 354 242 15 6.77 46.7 24.3 16 Aug 06-08-22 6.71 342.6 26.2 400 6.84 173.4 24.7 - 6.89 170.3 24.7 104 6.82 180.5 24.6 20 6.9 263.6 24.8 28 Aug 06-08-22 6.51 24.2 23 - 6.75 212.1 - 6.75 23.1 - 6.74 24.9 22.8 - 6.75 21.2 24.6 20 6.9 263.6 24.8 28 2 2.0 6.66 170.6 27.7 - 6.8 170.9 22.2 6.6 21 6.66 170.6 27.7 6.7 183.1 23.9 - 6.83 216.7 24.1 - 6.87 23.8			7.14	650.2	24.8	402								62								
Aug 04-08-22 7.04 345.4 26.6 277 6.63 151.8 28.6 - 6.64 213.8 26.3 91 6.67 203.1 26.8 24 6.81 270.7 26.6 39 Aug 05-08-22 6.71 342.6 26.2 400 6.64 173.4 24.7 - 6.88 170.3 24.7 104 6.82 210.5 20.6 28.8 24.6 20 6.9 263.6 24.6 20 6.83 221.1 . 6.83 21.5 2.0 6.83 221.5 2.0 6.66 167.1 23.7 . 6.7 183.1 23.9 . 6.68 25.7 24 . . 6.83 21.57 24 .	Aug	03-08-22	7.23	416.8	25.3	-	6.91	203.5	24.3	60	6.84	218.2	24.1		6.6	354						
Aug 06-08-22 6.3 2523 23 - 6.74 242-9 22.8 - 6.75 212.4 23 - 6.79 216.3 23.1 - 6.85 277-9 23.1 - 6.90 07-08-22 6.91 243.2 23.9 - 6.66 176.1 23.7 - 6.7 183.1 23.9 - 6.89 204.5 23.9 - 6.83 215.7 24 - 6.00 08-22 5.45 225.8 27.2 - 6.68 179.6 27.3 54. 70.8 187. 27.6 - 7.09 182 27.6 21 6.72 354.4 27.6 27. Aug 08-08-22 5.45 225.8 27.2 - 6.68 179.6 27.3 54. 70.8 187. 27.6 - 7.09 182 27.6 21 6.72 354.4 27.6 27. Aug 10-08-22 6.69 374.7 27.4 - 6.59 241.5 28.3 83. 6.99 128.5 28 - 6.78 203.7 27.4 5 6.77 248 27.7 19. Aug 10-08-22 6.69 374.7 27.4 - 6.59 241.5 28.3 83. 6.99 128.5 28 - 6.78 203.7 27.4 5 6.77 248 27.7 19. Aug 11-08-22 6.89 201.4 27.2 240 6.99 207.8 25.1 - 6.64 279.3 24.9 133. 6.66 231.1 26 17. 6.98 138.9 25.8 17. Aug 11-08-22 6.89 201.4 27.2 240 6.99 207.8 25.1 - 6.64 279.3 24.9 133. 6.69 205.5 263. 6 6.67 281.0 24.0 19. Aug 11-08-22 6.89 201.4 27.2 240 6.99 207.8 25.1 - 6.64 279.3 24.9 133. 6.69 205.5 263. 6 6.67 281.0 24.0 19. Aug 11-08-22 6.89 201.4 27.2 240 6.99 207.8 25.1 - 6.68 20.8 20.4 19. Aug 11-08-22 6.89 201.4 27.2 240 6.99 207.8 25.1 - 6.89 20.8 20.4 19. Aug 11-08-22 6.80 201.5 28.4 20.5 28.	Aug	04-08-22	7.04	345.4	26.6	277	6.63	151.8	26.6	-	6.64	213.8	26.3	91	6.67	203.1	26.8	24				
Aug 07-08-22 6-61 12-43 2.39 - 6-68 176.1 23.7 - 6.7 183.1 23.9 - 6-88 204.5 23.9 - 6-83 21.57 24 - Aug 08-08-22 6-54 22.88 21.2 - 6-68 176.1 23.7 4.7 54 7.09 182 27.6 - 7.09 182 27.6 6.8 18.7 27.4 4.0 6.8 192.1 24.5 26.2 6.68 160 23.3 83 6.9 18.6 23.5 89 6.88 192.6 23.6 16 6.73 204.3 23.2 24 Aug 11.08-22 6.39 201.4 27.2 240 6.69 207.8 25.1 . 6.64 279.3 24.9 133 6.68 231.1 26 17 6.98 138.9 25.8 17 Aug 11.08-22 6.97 218.9 24 .	Aug	05-08-22	6.71	342.6	26.2	400	6.84		24.7	-	6.89	170.3	24.7	104	6.82	180.5	24.6	20	6.9	263.6	24.8	28
Aug 0-08-92 5-46 1258 272 - 6.68 1796 273 5-4 7.08 187 276 - 7.09 182 276 21 672 354.4 276 27 Aug 0-08-92 6-68 160 27.1 24.5 262 6-68 160 27.1 24.5 262 6-68 160 27.1 24.5 262 6-68 160 27.1 24.1 - 6.67 158.6 23.5 89 6.88 192.6 23.6 16 6.7 20.3 20.3 23.6 24.2 24.1 - 6.67 158.6 23.5 89 6.88 192.6 23.6 16 6.7 20.3 20.3 23.6 24.2 24.2 24.0 27.4 27.4 - 6.59 241.5 28.3 83 6.99 128.5 28 - 6.78 20.3 7 27.4 5 6.7 24.8 27.7 19.2 24.0 6.69 207.8 25.1 - 6.64 279.3 24.9 133 6.66 231.1 26.1 7.6 9.8 138.9 25.8 17.2 24.0 1.0 20.5 1.1 26.0 1.1 26										-				-		216.3		-	6.85	277.9	23.1	-
Aug														-		204.5		-	6.83	215.7	24	
Aug 10-08-22 6.69 374.7 27.4 - 6.59 241.5 28.3 8.3 6.99 128.5 28 - 6.78 203.7 27.4 5 6.77 248 27.7 19										54												
Aug 11:08:22 6.39 201.4 27.2 240 6.69 207.8 25.1 - 6.64 279.3 24.9 133 6.66 231.1 26 17 6.98 138.9 25.8 17 Aug 12:08:22 6.64 213.1 26.7 205 6.76 151 26.6 - 6.75 161 26.5 25.3 6.69 205.5 26.3 6 6.667 261.9 26.4 18 24.1 - 6.82 25.3 6.69 205.5 26.3 6 6.667 261.9 26.4 18 24.1 - 6.82 25.3 6.69 205.5 26.3 6 6.667 261.9 26.4 18 24.1 - 6.82 25.3 6.69 205.5 26.3 6 6.667 261.9 26.4 18 24.1 - 6.82 25.3 6.69 205.5 26.3 6 6.667 261.9 26.4 18 24.1 - 6.82 25.3 6.69 205.5 26.3 6 6.667 261.9 26.4 18 24.1 - 6.82 25.3 6.69 205.5 26.3 6 6.667 261.9 261.0 24.3 - 6.64 261.0										-				89								
Aug 12-08-22 6.84 213.1 26.7 205 6.76 151 26.6 - 6.75 161 26.5 253 6.69 209.5 28.3 6 6.67 261.9 26.4 18 Aug 13-08-22 6.97 218.9 24 - 6.87 328.8 24 - 6.89 328.1 24 - 6.83 23.1 - 6.89 185.4 24 - 6.82 288 24.1 - 6.89 185.4 24 - 6.82 288 24.1 - 6.89 185.4 24 - 6.82 288 24.1 - 6.89 185.4 24 - 6.82 288 24.1 - 6.89 185.4 24 - 6.82 288 24.1 - 6.89 285.1 24.7 - 6.99 286.8 23.1 - - 6.62 188 24.1 - 6.82 288 24.1 </td <td></td>																						
Aug 13-08-22 6.97 218.9 24 - 6.87 328.8 24 - 6.88 326.8 24.1 - 6.89 185.4 24 - 6.93 236.1 24.3 - 4.9 14-08-22 7.07 286.7 24 - 6.8 182.9 24.1 - 6.82 598 24.1 - 6.94 259.1 24.2 - 6.82 288 24.1 - 6.94 15-08-22 7.01 325.1 26.4 - 6.64 185.5 24.9 390 6.76 189.2 24.7 - 6.95 240.4 24.8 57 6.9 278.9 24.5 38 24.1 - 6.94 15-08-22 7.11 511 27.1 368 6.74 317.2 27 - 6.78 315.5 27.4 37 6.89 262.6 27.4 6 6.94 289.3 27.3 4 27.1 27.7 24.5 - 6.86 30.65 23.7 75 6.66 192.9 24.2 - 6.77 319.8 23.9 16 6.79 256.8 23.3 15.1 26.4 340 6.68 189.8 27.5 - 6.73 200.6 27.5 136 6.73 207.8 27.4 23 6.55 182.6 27.6 11 27.1 27.1 27.1 27.1 27.1 27.1 27.1 2																						
Aug 14-08-22 7.07 286.7 24 - 6.8 182.9 24.1 - 6.82 598 24.1 - 6.94 259.1 24.2 - 6.82 288 24.1 - Aug 15-08-22 7.01 325.1 26.4 - 6.64 188.5 24.9 390 6.76 189.2 24.7 - 6.95 240.4 24.8 57 6.9 27.3 38 Aug 16-08-22 7.11 511 27.1 368 6.74 317.2 27 - 6.78 315.5 27.4 37 6.89 262.6 27.4 6 6.94 289.3 27.3 4 Aug 17-08-22 7.12 27.7 24.5 - 6.86 306.5 23.7 75 6.66 192.9 24.2 - 6.77 319.8 23.9 16 6.79 256.8 23.8 15 Aug 19-08-22 7.15																						
Aug 15-08-22 7.01 325.1 26.4 - 6.64 188.5 24.9 390 6.76 189.2 24.7 - 6.95 240.4 24.8 57 6.9 278.9 24.5 38 Aug 16-08-22 7.11 511 27.1 368 6.74 317.2 27 - 6.78 315.5 27.4 37 6.89 262.6 27.4 6 6.94 289.3 27.3 4 Aug 17-08-22 7.12 227.7 24.5 - 6.66 192.9 24.2 - 6.77 319.8 23.9 16 6.79 256.8 23.8 15 Aug 18-08-22 6.67 815.2 26.4 340 6.88 189.8 27.5 - 6.73 200.6 27.5 135 6.73 207.8 27.4 23 6.55 182.6 27.6 11 Aug 20-08-22 7.15 254.2 24.5 -																						
Aug 16-08-22 7.11 511 27.1 368 6.74 317.2 27 - 6.78 315.5 27.4 37 6.80 262.6 27.4 6 6.94 289.3 27.3 4 Aug 17-08-22 7.12 277.7 24.5 - 6.86 306.5 23.7 75 6.66 192.9 24.2 - 6.77 319.8 23.9 16 6.79 268.8 23.8 15 Aug 18-08-22 7.15 285.1 25.7 90 6.72 244 26.7 - 6.73 200.6 27.5 135 6.73 207.8 27.4 23 6.55 182.6 27.6 11 Aug 19-08-22 7.15 285.1 25.7 90 6.72 244 26.7 - 6.67 224.6 26.2 99 6.61 220.6 26.7 21 6.86 321.5 22.8 31.0 24.5 - 6.89 <td></td>																						
Aug 17-08-22 7.12 277.7 24.5 - 6.86 306.5 23.7 75 6.66 192.9 24.2 - 6.77 319.8 23.9 16 6.79 256.8 23.8 15 Aug 18-08-22 6.67 815.2 26.4 340 6.68 198.8 27.5 - 6.73 200.6 27.5 135 6.73 207.8 27.4 23 6.55 182.6 27.6 11 Aug 19-08-22 7.15 285.1 25.7 90 6.72 244 26.7 - 6.67 224.6 26.2 99 6.61 220.6 26.7 21 6.86 321.5 26.3 10 Aug 20-08-22 7.15 254.2 24.5 - 6.93 191.2 24.5 - 6.91 180.4 24.5 - 6.86 234.3 24.5 - 6.91 282.9 24.4 - Aug 21-08-22 7.13 279.2 25.4 - 6.68 303.7 24.9 - 6.79 247.6 24.5 - 6.8 241.8 24.5 - 6.91 282.9 24.4 - Aug 22-08-22 7.23 318.8 27.7 - 6.91 252.5 28.8 5 7.01 336.9 28.8 - 6.92 250.3 28.6 14 7.08 257.3 28.6 3 Aug 23-08-22 5.13 344.3 25.7 84.9 6.97 241.5 24.8 - 6.59 518.8 25.5 341 6.99 282.5 25.6 15 7.07 278 25.5 14 Aug 24-08-22 5.31 374.6 27.8 49.9 6.93 369.8 24.2 - 6.84 300.1 24.5 667 7.13 304.7 24.3 29 7.18 361.2 23.9 22 Aug 25-08-22 6.15 374.6 24.8 499 6.93 369.8 24.2 - 6.84 300.1 24.5 667 7.13 304.7 24.3 29 7.18 361.2 23.9 22 Aug 26-08-22 6.66 358.6 24.7 488 7.16 336.4 24.5 - 7.25 441.2 24.4 50 6.83 347.2 24.3 29 7.18 361.2 23.9 22 Aug 28-08-22 7.1 263.3 24 7.02 292.1 24.1 - 6.67 836.4 238 6.82 310.2 23.9 - 7.26 388.7 24.1 - 7.02 292.1 24.1 - 6.67 836.4 238 6.82 310.2 23.9 - 7.26 388.7 24.1 - 7.09 280.6 27.7 1 263.3 24.6 - 7.25 441.2 24.4 50 6.81 336.6 23.7 - 7.2 402.7 23.6 - 2.49 22.06.2 7.1 263.3 24.1 - 7.03 340.7 24.1 - 6.81 336.6 23.7 - 7.2 402.7 23.6 - 2.49 22.06.2 7.1 263.3 24.1 - 7.03 340.7 24.1 - 6.81 336.6 23.7 - 7.2 402.7 23.6 - 2.49 22.06.2 7.1 263.3 24.1 - 7.02 292.1 24.1 - 6.67 836.4 23.8 - 6.82 310.2 23.9 - 7.26 388.7 24.1 - 7.02 292.1 24.1 - 6.67 836.4 23.8 - 6.82 310.2 23.9 - 7.26 388.7 24.1 - 7.24 20.5 25.8 11 Aug 28-08-22 7.17 263.3 24.1 - 7.02 292.1 24.1 - 6.67 836.4 23.8 - 6.82 310.2 23.9 - 7.26 388.7 24.1 - 7.24 20.5 25.8 11 Aug 28-08-22 7.17 263.3 24.1 - 7.02 292.1 24.1 - 6.67 836.4 23.8 - 6.82 310.2 23.9 - 7.26 388.7 24.1 - 7.24 20.2 23.0 22.1 24.1 - 6.67 836.4 23.8 - 6.82 310.2 23.9 - 7.26 388.7 24.1 - 7.24 20.2 24.3 29.1 - 7.24 20.2 24.3 29.1 - 7.24 20.2 24.3 29														37								
Aug 18-08-22 667 816.2 26.4 340 6.68 189.8 27.5 - 6.73 200.6 27.5 135 6.73 207.8 27.4 23 6.55 182.6 27.6 11 Aug 19-08-22 7.15 285.1 25.7 90 6.72 244 26.7 - 6.67 224.6 26.2 99 6.61 220.6 26.7 21 6.86 321.5 26.3 10 Aug 20-08-22 7.15 254.2 24.5 - 6.93 191.2 24.5 - 6.91 180.4 24.5 - 6.86 234.3 24.5 - 6.91 282.9 24.4 - Aug 21-08-22 7.13 279.2 25.4 - 6.68 303.7 24.9 - 6.79 247.6 24.5 - 6.8 241.8 24.5 - 6.99 267.8 24.6 - Aug 22-08-22 7.13 34.3 25.7 - 6.91 252.5 28.8 5 7.01 336.9 28.8 - 6.92 250.3 28.6 14 7.08 257.3 28.6 3 Aug 22-08-22 5.13 344.3 25.7 84.9 6.97 241.5 24.8 - 6.59 518.8 25.5 341 6.99 282.5 25.6 15 7.07 27.8 25.5 14 Aug 24-08-22 6.15 374.6 24.8 499 6.97 369.8 24.2 - 6.84 300.1 24.5 - 6.71 304.7 24.3 29 7.18 361.2 23.9 22 Aug 26-08-22 6.15 374.6 24.8 499 6.93 369.8 24.2 - 6.84 300.1 24.5 667 7.13 304.7 24.3 29 7.18 361.2 23.9 22 Aug 26-08-22 6.66 358.6 24.7 498 7.16 336.4 24.5 - 7.25 441.2 24.4 50 6.83 347.2 24.3 29 7.18 361.2 23.9 22 Aug 26-08-22 6.96 358.6 24.7 498 7.16 336.4 24.5 - 7.25 441.2 24.4 50 6.81 347.6 24.3 29 7.18 361.2 23.9 22 Aug 28-08-22 7.1 263.3 24.6 - 7.02 292.1 24.1 - 6.67 836.4 23.8 - 6.82 310.2 23.9 - 7.26 388.7 24 - Aug 28-08-22 7.1 263.3 24.6 - Aug 28-08-22 7.1 263.3 32.4 - Aug 28-08-22 7.1 263.3 32.4 - Aug 28-08-22 7.1 263.3 308.2 28.8 - Aug 28-08-22 7.1 263.3 308.2 28.8 - Aug 28-08-22 7.1 2																						
Aug 19-08-22 7.15 285.1 25.7 90 6.72 244 26.7 - 6.67 224.6 26.2 99 6.61 220.6 26.7 21 6.86 321.5 26.3 10 Aug 20-08-22 7.15 254.2 24.5 - 6.93 191.2 24.5 - 6.91 180.4 - 6.79 247.6 24.5 - 6.91 282.9 24.4 - 6.99 267.8 24.6 - Aug 22-08-22 7.23 318.8 27.7 - 6.91 252.5 28.8 5 7.01 336.9 28.8 - 6.92 250.3 28.6 14 7.08 257.3 28.6 3 Aug 24-08-22 5.13 344.3 25.7 849 6.97 241.5 24.8 - 6.59 518.8 25.5 341 6.99 282.5 25.6 15 7.07 278 25.5 14																						
Aug 20-08-22 7.15 254.2 24.5 - 6.93 191.2 24.5 - 6.91 180.4 24.5 - 6.86 234.3 24.5 - 6.91 282.9 24.4 - 1.0 21-08-22 7.13 279.2 25.4 - 6.68 303.7 24.9 - 6.79 247.6 24.5 - 6.8 241.8 24.5 - 6.8 241.8 24.5 - 6.90 267.8 24.6 - 2.0 24.6 - 2.0 24.6 24.6 24.6 24.6 24.6 24.6 24.6 24.6																						
Aug 21-08-22 7.13 279.2 25.4 - 6.68 303.7 24.9 - 6.79 247.6 24.5 - 6.8 241.8 24.5 - 6.99 267.8 24.6 - Aug 22-08-22 7.23 318.8 27.7 - 6.91 252.5 28.8 5 7.01 336.9 28.8 - 6.92 250.3 28.6 14 7.08 257.3 28.6 3 3 32.08-22 5.13 344.3 25.7 849 6.97 241.5 24.8 - 6.59 518.8 25.5 341 6.99 282.5 25.6 15 7.07 27.8 25.5 14 Aug 24-08-22 5.31 374.6 277.6 - 6.79 565 28 136 6.46 67.9 27.1 - 6.71 267 27.1 14 6.93 317.5 27.5 13 34.9 25-08-22 6.15 374.6 24.8 49.9 6.93 369.8 24.2 - 6.84 300.1 24.5 667 7.13 304.7 24.3 29 7.18 361.2 23.9 22 36.08-22 6.86 358.6 24.7 49.8 7.16 336.4 24.5 - 7.25 44.12 24.4 50 6.83 347.2 24.3 13 7.09 405.1 24.5 14 Aug 27-08-22 6.96 311 23.4 - 7.46 42.3 24.1 - 7.33 340.7 24.1 - 6.81 336.6 23.7 - 7.2 402.7 23.6 - 3.49 28-08-22 7.1 263.3 24 - 7.02 292.1 24.1 - 6.67 836.4 23.8 - 6.82 310.2 23.9 - 7.26 388.7 24 - 3.49 29-08-22 7.17 263.3 24 - 7.02 292.1 24.1 - 6.67 836.4 23.8 - 6.82 310.2 23.9 - 7.26 388.7 24 - 3.49 29-08-22 7.07 388 24.6 - 6.81 283.6 26.1 52 7.29 392.7 25.9 - 6.83 303.2 26 8 8 6.76 283.5 25.8 11 Aug 30-08-22 7.17 419.9 29.4 426 6.83 269.5 27.2 - 6.84 316.5 27.7 238 6.87 317.9 27.9 10 7.24 365.6 27.3 19																						
Aug 22-08-22 7.23 318.8 27.7 - 6.91 252.5 28.8 5 7.01 336.9 28.8 - 6.92 250.3 28.6 14 7.08 257.3 28.6 3 Aug 23-08-22 5.13 344.3 25.7 849 6.97 241.5 24.8 - 6.59 518.8 25.5 341 6.99 282.5 25.6 15 7.07 278 25.5 14 Aug 24-08-22 5.31 374.6 27.6 - 6.79 27.1 - 6.71 267 27.1 14 6.93 317.5 27.5 13 Aug 25-08-22 6.15 374.6 24.8 499 6.93 369.8 24.2 - 6.84 300.1 24.5 667 7.13 304.7 24.3 29 7.18 361.2 23.9 22 Aug 27-08-22 6.96 358.6 24.7 498 7.						-								-								
Aug 23-08-22 5.13 344.3 25.7 849 6.97 241.5 24.8 - 6.59 518.8 25.5 341 6.99 282.5 25.6 15 7.07 278 25.5 14 Aug 24-08-22 5.31 374.6 277.6 - 6.79 565 28 136 6.46 679 27.1 - 6.71 267 27.1 14 6.93 317.5 27.5 13 Aug 25-08-22 6.15 374.6 24.8 499 6.93 24.2 - 6.84 300.1 24.5 667 7.13 304.7 24.3 29 7.18 361.2 23.9 22 Aug 26-08-22 6.66 358.6 24.7 498 7.16 336.4 24.5 - 7.25 441.2 24.4 50 6.83 347.2 24.3 13 7.09 405.1 24.5 14 Aug 28-08-22 7.1						 																
Aug 24-08-22 5.31 374.6 277.6 - 6.79 565 28 136 6.46 679 27.1 - 6.71 267 27.1 14 6.93 317.5 27.5 13 Aug 25-08-22 6.15 374.6 24.8 499 6.93 369.8 24.2 - 6.84 300.1 24.5 667 7.13 304.7 24.3 29 7.18 361.2 23.9 22 Aug 26-08-22 6.86 358.6 24.7 498 7.16 336.4 24.5 - 7.25 441.2 24.4 50 6.83 347.2 24.3 13 7.09 405.1 23.9 22 Aug 27-08-22 6.96 311 23.4 - 7.46 423 24.1 - 7.33 340.7 24.1 - 6.81 336.6 23.7 - 7.2 402.7 23.6 - Aug 28-08-22 7.1 263.3 24 - 7.02 292.1 24.1 - 6.67 836.4 23.8 - 6.82 310.2 23.9 - 7.26 402.7 23.6 - Aug				344.3	25.7	849	6.97							341								
Aug 25-08-22 6.15 374.6 24.8 499 6.93 369.8 24.2 - 6.84 300.1 24.5 667 7.13 304.7 24.3 29 7.18 361.2 23.9 22 Aug 26-08-22 6.86 358.6 24.7 498 7.16 336.4 24.5 - 7.25 441.2 24.4 50 6.83 347.2 24.3 13 7.09 405.1 24.5 14 Aug 27-08-22 6.96 311 23.4 - 7.46 423 24.1 - 7.33 340.7 24.1 - 6.81 336.6 23.7 - 7.2 402.7 23.6 - Aug 28-08-22 7.1 263.3 24 - 7.02 292.1 24.1 - 6.67 836.4 23.8 - 6.82 310.2 23.9 - 7.26 388.7 24 - Aug 29-08-22	Aug			374.6		-				136												
Aug 26-08-22 6.86 358.6 24.7 498 7.16 336.4 24.5 - 7.25 441.2 24.4 50 6.83 347.2 24.3 13 7.09 405.1 24.5 14 Aug 27-08-22 6.96 311 23.4 - 7.46 423 24.1 - 7.33 340,7 24.1 - 6.81 336.6 23.7 - 7.2 402.7 23.6 - Aug 28-08-22 7.1 263.3 24 - 7.02 292.1 24.1 - 6.67 836.4 23.8 - 6.82 310.2 23.9 - 7.26 388.7 24 Aug 29-08-22 7.07 368 24.6 - 6.81 283.6 26.1 52 7.29 392.7 25.9 - 6.83 308.2 26 8 6.76 283.5 25.8 11 Aug 30-08-22 7.17 419.9 29.4 426 6.83 269.5 27.2 - 6.84 316.5 27.7 238 6.87 317.9 27.9 10 7.24 365.6 27.3 19	Aug								24.2			300.1	24.5	667	7.13	304.7	24.3	29				
Aug 28-08-22 7.1 263.3 24 - 7.02 292.1 24.1 - 6.67 836.4 23.8 - 6.82 310.2 23.9 - 7.26 388.7 24 - Aug 29-08-22 7.07 368 24.6 - 6.81 283.6 26.1 52 7.29 392.7 25.9 - 6.83 308.2 26 8 6.76 293.5 25.8 11 Aug 30-08-22 7.17 419.9 29.4 426 6.83 269.5 27.2 - 6.84 316.5 27.7 238 6.87 317.9 27.9 10 7.24 366.6 27.3 19 Aug 30-08-22 7.17 419.9 29.4 426 6.83 269.5 27.2 - 6.84 316.5 27.7 238 6.87 317.9 27.9 10 7.24 366.6 27.3 19						498								50	6.83	347.2	24.3	13				
Aug 29-08-22 7.07 368 24.6 - 6.81 283.6 26.1 52 7.29 392.7 25.9 - 6.83 308.2 26 8 6.76 283.5 25.8 11 Aug 30-08-22 7.17 419.9 29.4 426 6.83 269.5 27.2 - 6.84 316.5 27.7 238 6.87 317.9 27.9 10 7.24 365.6 27.3 19						-				-				-				-	7.2		23.6	-
Aug 30-08-22 7.17 419.9 29.4 426 6.83 269.5 27.2 - 6.84 316.5 27.7 238 6.87 317.9 27.9 10 7.24 365.6 27.3 19						-								-								
						-								-								
Aug 31-08-22 7.16 362.9 26 - 7.43 333.9 22.9 112 6.94 804 22.7 - 6.68 383.6 23.3 3 7.16 410.7 23.5 9						426								238								
	Aug	31-08-22	7.16	362.9	26	<u> </u>	7.43	333.9	22.9	112	6.94	804	22.7	<u> </u>	6.68	383.6	23.3	3	7.16	410.7	23.5	9

Weekly STP Water Analysis Results

		Zone A	(Inlet) -1		Zone A	(Inlet) -2						Outlet - 1							0	outlet - 2	He I	100	
Month	Date	SS	BOD	T-P	SS	800	T-P	SS	BOD	T-N	T-P	O&G	T-Coli	E-Coli	Free Chlorine	SS	BOD	T-N	T-P	0&G	T-Coll	E-Coll	Free Chlorine
Star	ndard	Max 200	Max 200	Max8	Max 200	Max 200	Max8	Max 50	Max 30	Max 80	Max 2	Max 10	Max 400	Max 1000	Max 1	Max 50	Max 30	Max 80	Max 2	Max 10	Max 400	Max 1000	Max 1
U	Init	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	MNP/100ml	MNP/100ml	mg/L	ppm	ppm	ppm	ppm	ppm	MNP/100ml	MNP/100ml	mg/L
Mar	03-03-22	.80	126	7.22	-		-	20	8.2	12	2.5	0.1	<1	<1	0.63	40	6.8	14	4.73	0.2	<1	< 1	0.54
Mar	09-03-22		-	7.	80	243	6.22	40	7.8	27	3.35	0	<1	<1	0.26	80	9.1	13	4.08	0.2	<1	<1	0.54
Mar	17-03-22	30	75	2.65	1.00	-	-	20	10	13	3.68	0	<1	<1	0.17	10	6.1	5	5.35	0.3	<1	<1	0.22
Mar	23-03-22	- 83 1	-	14	240	177	5.11	40	8.3	12	2.45	0.4	<1	<1	0.35	10	8.2	16	3.3	0.6	<1	<1	0.22
Mar	30-03-22	80	99	4.72	1000		-	10	8.3	10	2.15	0	<1	<1	0.14	20	7,4	11	4.24	0.6	<1	<1	0.22
Apr	06-04-22	140	120	6.9	1000	20		40	7.4	20	2.35	0	1	<1	0.08	40	9.7	21	4.57	0.6	<1	<1	2.24
Apr	20-04-22	80	90	1.35	120	20 0	61	10	5.4	22	0.979	0.8	<1	<1	0.13	10	6.7	37	4.37	1	<1	<1	0.39
Apr.	27-04-22	¥3 [1.	40	219	0.384	10	7.4	21	0.404	0.2	<1	<1	1.07	10	6.5	20	0.392	0.1	<1	<1	
May	04-05-22	140	156	7.74	-	2.	2	10	9.1	22	2.74	0.4	1	<1	0.1	10	8.8	7	4,48	0.6	328	89	0.27
May	11-05-22		-		120	90	5.85	20	7.8	11	1.12	0.2	<1	<1	0.69	10	7.2	7	2.18	0.3	320		
May	18-05-22	50	111	5.17	-		-	30	7.4	23	1.43	0	<1	<1	0.02	10	6.8	26	1.73	0.3	<1	<1	0.03
May	25-05-22	- 3	-	5.4	40	168	1.3	10	8	5	0.955	0	<1	<1	0.05	10	7.5	5	1.1	0.3	213	213	0.01
June	01-06-22	60	96	1.2	Oec 1	-5		20	7.6	9	0.801	0	1	1	0.04	10	7.8	8	0.989	0.1	213	213	0.02
June	07-06-22	- 22		C = C	20	84	1.59	10	6.5	15	0.42	0	<1	<1	0.83	20	6.6	14	1.73	0	1	1	0.02
June	15-06-22	80	135	2.9	0.60	-:	-	10	9.2	3	0.422	0.4	<1	<1	0.02	20	7.6	6	0.905	0.1	<1	<1	0.03
June	22-06-22	8		196	60	117	5.5	26	7.5	9	0.337	0.3	<1	<1	0.6	28	7.3	8	1.14	0.4	<1	<1	0.07
June	28-05-22	20	105	1.14	5#4	+0	000	14	7.7	12	0.699	0	89	89	0.02	17	6.7	16	1.15	0.4	<1	<1	1.45
July	05-07-22	30	264	0.851	5 400	92	-	10	8.8	9	0.714	0.1	13	13	0.05	50	49	2	1.48	0.1	1	1	0.25
July	13-07-22	- 53		5.4	90	168	4.55	15	8.6	10	0.57	0	1	1	0.07	25	9	12	0.314	0	<1	<1	0.25
July	20-07-22	70	153	1.77	11-11	- 80	• 0	20	8.9	3	0.558	0	<1	<1	0.1	30	8.6	4	0.877	0.1	<1	<1	0.09
July	27-07-22			-	40	150	2.12	20	9.8	9	0.336	0	<1	<1	0.05	20	8.1	10	0.603	0.1	<1	<1	0.16
Aug	02-08-22	30	72	1.34	1. 120	+:	- :	10	5.4	12	0.41	0	<1	<1	0.08	10	5.8	13	1.02	0	<1	<1	0.02
Aug	10-08-22	88	-		60	246	1.29	10	7.7	13	0.778	0	1	<1	0.04	20	6.4	5	1.02	0	1	<1	1.16
Aug	17-08-22	40	96	1.7	7.55		-	60	8	5	0.85	0	1	1	0.1	20	7.5	9	0.419	0	<1	<1	0.15
Aug	24-08-22	27	-	-	220	339	1.41	10	8.3	12	0.431	0	<1	<1	0.62	10	8	12	0.529	0	<1	<1	0.15
Aug	31-08-22	20	423	1.42		-	-	20	7.6	3	0.89	0	<1	<1	0.29	10	6,8	2	0.529	0	<1	<1	0.07

Monitoring Parameters Result for STP

				4							Inlet-2	ie .																			Ou	tlet - 2											
onth	Date	Color	Odor	Mercury	Zinc	Arsenic	Chromium	Cadmium	Selenium	Lead	Copper	Barlum	Nickel	Silver	Sulphide	Total Cyanide	Hexavalent Chromlum (Cr6+)	Fluoride	Phenois	Color	Odor	Mercury	Zinc	Arsenic	Chromium	Cadmium	Selenium	Lead	Copper	Barium	Nickel	Silver	lron	Sulphide	Cyanide	Total Cyanide	Ammonia	Hexavalent Chromium(Cr 6+)	Fluoride	Total Chlorine	Free Chlorine	Formal- dehyde	Phenol
Stand	lerd	Max 150	* 17	Max 0.005	Max 2	Max 0,1	Max 0.5	Max 0.03	Max 0.02	Max 0.1	Max 0.5	Max 1	Mex 0.2	Max0.5	Max 1	Maxi	Max0.1	Max20	Max 0.5	Max 150		Max 0.005	Max 2	Max 0.1	Max 0,5	Max 0.03	Max 0.02	Max 0.1	Max 0.5	Max 1	Max 0,2	Max0.5	Max3.5	Max 1	Max 0.1	Max 1	Max10	Max0.1	Max20	Max0.2	Max 1	Max 1	Max 0.
Un	t	Co-Pt	TON	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	-	TON	ppm	ppm	ppm	ppm	ppm	ppm	ppm	pom	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
/lar	04-03-22		- 8	≤ 0,002	0.206	≤ 0.01	≤ 0.002	≤ 0.002	5.0.01	≤ 0.002	≤ 0.002	0.028	≤ 0.002	\$ 0.002	402	0:002	< 0.05	5.077	0.017		1.4	≤ 0.002	0.056	≤ 0.01	≤ 0.002	≤ 0.002	≤ 0.01	≤ 0.002	≤ 0.002	0.006	≤ 0.002	≤ 0.002		0.028		0.019	-	< 0.05	2.435			-	0.007
or	20-04-22		-	-	-	- F	~ -		-	-	-	- v:			-	-	-	-			4	≤ 0.002	0.034	≤ 0.01	≤ 0.002	≤ 0.002	5 0.01		\$ 0.002	≤0.002	≤ 0.002	≤ 0.002		0.006		0.011		< 0.05	1.663				< 0.00
ay	04-05-22		50	≤ 0.002	0.092	≤ 0.01	≤ 0.002	≤ 0.002	≤ 0.01	≤ 0.002	≤ 0.002	0.038	≤ 0.002	≤ 0.002	0.165	0.012	< 0.05	0.785	0.012			≤ 0.002	0.064	≤ 0.01	≤ 0.002			≤ 0.002	≤ 0.002	0.006	< 0.002	≤ 0.002		0.006		0.019		< 0.05	3.016				0.007
1	07-06-22		1.	≤ 0.002	0.11	≤ 0.01	≤ 0.005	≤ 0.005	≤ 0.005	≤ 0.005	\$ 0.005	0.045	≤ 0.005	≤ 0.005	0.011	0.014	< 0.05	0.883	< 0.002		1	≤ 0.002	0.098	≤ 0.01	< 0.005	≤ 0.005			< 0.005	0.441	≤ 0.005	≤ 0.005		≤ 0:005		0.011		< 0.05	1.946				< 0.002
il.	05-07-22		-	29	-	- 0	- 96	F	-	7	: 40	9)		-	F	(m)	1.4		- 5							≤ 0.005				s 0.001		0.01		0.081		0.003		< 0.05	0.506				0.015
ig l	02-08-22		1.4	≤ 0.002	≤ 0.005	\$ 0.01	0.022	≤ 0.005	0.017	0.016	5 0.005	≤ 0.001	≤ 0.005	0.014	0.086	0.002	< 0.05	1.048	< 0.002				≤ 0.005			≤ 0.005				≤ 0.001		≤ 0.005		< 0.005		0.006		< 0.05	1.509				< 0.002

Monitoring Parameters Result for STP

										Inlet -	1				SE"		A FE												Outle	t-1								Mark St.	-	HELD.	
Month	Date	Odor	Mercury	Zinc	Arsenic	Chromium	Cadmium	Selenium	Lead	Copper	Barium	Nickel	Silver	Sulphide	Total Cyanide	Hexavalent Chromium (Cr6+)	Fluoride	Phenois	Odor	Mercury	Zinc	Arsenic	Chromium	Cadmium	Selenium	Lead	Copper	Barlum	Nickel	Silver	Iron	Sulphide	Cyanide	Total Cyanide	Ammonia Ch	exavalent hromium(Cr6+)	Fluoride	Total Chlorine	Free Chlorine	Formal- dehyde	Phenol
Stan	ndard		Max 0.005	Max 2	Max 0.1	Max 0.5	Max 0.03	Max 0.02	Mex 0.1	Max 0.5	Max 1	Max 0.2	Max0.5	Max 1	Max1.	Max0.1	Max20	Max 0.5	- 30	Max 0.005	Max 2	Max 0.1	Max 0.5	Max 0.03	Max 0.02	Max 0.1	Max 0.5	Max 1	Max 0.2	Max0.5	Max3.5	Max 1	Max 0.1	Max 1	Mex10	Max0.1	Max20	Max0.2	Max 1	Max 1	Max 0.
U	Init	TON	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	TON	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
Mar	04-03-22	-	-	2.07	7.75	-				1.0		-	-	145	-	1+:			1	≤ 0.002	0.168	≤ 0.01	≤ 0.002	≤ 0.002	≤ 0.01	≤ 0.002	≤ 0.002	0.012	≤ 0.002	≤ 0.002		0.005		0.004		< 0.05	3.195				0.007
ADT	20-04-22	8	≤ 0.002	0.034	\$ 0.01	≤ 0.002	≤ 0.002	≤ 0.01	≤ 0.002	\$ 0.002	0.014	≤ 0.002	≤ 0.002	0.011	0.013	< 0.05	5.25	0.004	2	≤ 0.002	0.122	≤ 0.01	≤ 0.002	≤ 0.002	≤ 0.01	≤ 0.002	≤ 0.002	≤ 0.002	≤ 0.002	≤ 0.002		< 0.005		0.008		< 0.05	1.762				0.002
	04-05-22		-		-	-		23	-		2.5	-	-	1	_2	- A	-	-	3	≤ 0.002	0.074	≤ 0.01	≤ 0.002	≤ 0.002	≤ 0.01	≤ 0.002	≤ 0.002	0.004	≤ 0.002	≤ 0.002	3	< 0.005		0.009		< 0.05	2.919				0.002
	07-06-22			848		- 1	147	7.	12	- 2	- 55	12	141	22	-	345		-	4	≤ 0.002	0.108	≤ 0.01	≤ 0.005	≤ 0.005	≤ 0.005	≤ 0.005	≤ 0.005	0.011	≤ 0.005	≤ 0.005		< 0.005		0.006		< 0.05	2.445				< 0.002
hil	05-07-22	50	≤ 0.002	0.021	≤ 0.01	< 0.005	≤ 0.005	≤ 0.005	≤ 0.005	≤ 0.005	≤ 0.001	≤ 0.005	0.01	0.767	0.004	< 0.05	2.125	0.017	1	≤ 0.002	0.039	≤ 0.01	≤ 0.005	≤ 0.005	≤ 0.005	≤ 0.005	≤ 0.005	≤ 0.001	≤ 0.005	0.021		0.009		0.006		< 0.05	0.903				0.008
Aug	02-08-22		2 5.002			2 21000	2.51000	2 2 1000	2.01000	2.5000		2.000		4.					1.	≤ 0.002	≤ 0.005	≤ 0.01	≤ 0.005		≤ 0.005	≤ 0.005	≤ 0.005	≤ 0.001	≤ 0.005	≤ 0.005		< 0.005		0.003		< 0.05	2.15				< 0.002

Monitoring Parameters Result for STP

Month	Date	Zone B - Inlet										Zone A - Inlet -1								Zone A - Inlet -2								Outlet -1							Outlet -2						
		SS Max 200	800	TP Max 8	TN	0&6	Cyanide	Formal- dehyde	Free Chlorine		Iron	Ammonia Max80	Tip	TN	0 & G	Cyanide Max 0.1	dehyde	Free Chlorine	Color	Iron	Ammonia	TN	0 & G Max 40	Cyanide	denyde	Free Chlorine Max 1	Color 150	Iron	Ammonia Max80	Cyanide	Formal- dehyde	Total Chlorine Max 0.2	Color Max 150	L'ACTE	1	Cyanide	Formal- dehyde	Total Chlorine	Color	Iron	Ammonia
Star	ndard		Max 200		Max 80	Max 40	Max 0.1	Max 1	Max 1		Max3.5		Max8	Max 80	Max 40			Max 1	150	Max3:5	Max80	Max 80		Max 0.1				Max3.5		Max 0.1						Max-0.1	Maxid	Max 0.2	Max 150	Max3.6	Max10
U	nit	mg/l	.mg/l	mg/t	mg/l	mg/l	mg/l	mg/L	mg/l	TCU	mg/l	mg/l	mg/l	mg/l	mg/i	mg/l	mg/l	mg/l	TCU	mg/t	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	TCU	mg/l	mg/l	mg/l	mg/l	mg/l	TCU	mg/l	mg/l	mg/l	mg/i	mg/l	TCU	mg/l	mg/l
Mar	03-03-22		-	7						-	5	-		- 1		-	1.5	1 1	-3-	- 3	×	39	0.4	0.002	0.188	0.05	16.18	1.421	2.74	0.008	0.035	126	6.69	0.611	3.5	0.005	0.058	1.08	5.95	1.084	1.2
Apr	05-04-22	180		2.58	30	0.5	0.022	0.167	0.18	18.48	1.012	126		36	0.1	0.006	0.185	0	18.35	2.003	0.396				-				-	0.009	0.047	0.56	2.48	0.063	0.142	0.005	0.106	3.43	3.22	0.059	0.152
May	04-05-22		2	- 2				- 1		16:		2		- 3	-						F	53	3.2	0.016	0.206	0	28.64	0.761	0.613	0.006	0.033	0.13	11.09	0.069	0.147	0.003	0.07	0.04	9.46	0.085	0.106
Jun	07-06-22	11	×	- 1	- 1	26			30	Dio.		1		30	1 8	-	- 2	19	-	- 0		27	0	0.002	0.089	0	16.04	1.715	0.486	0.005	0.035	1.19	2:34	0.032	0.142	0.003	0.04	0.02	6.12	0.1	0.177
Jul	05-07-22						-		+	-				. 8	0	0.005	0.405	0	6.64	3.54	0.5	-		-						0.003	0.014	0.1	4.78	0.338	0.213	0.002	0.301	-0.29	9.95	2.246	0.237
Aug	02-08-22	70	234	4.76	14	0	0.006	0.362	0.06	33.15	0.193	3.26		- 2	-		-					14	.0	0.001	0.163	0.12	8.7	0.759	3.5	0.004	0.027	0.2	2.99	0.018	0.028	0.004	0.059	0.36	3.08	0.067	0.105

သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ)ရှိ စက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်ရေးအတွက် ရေအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဥ်ကာလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃)

(နှစ်လတစ်ကြိမ် စောင့်ကြည့်လေ့လာခြင်း)

၂၀၂၂ ခုနှစ်၊ ဖေဖော်ဝါရီလ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

<u>မာတိကာ</u>

အခန်း ၁ နိဒါန်း
အခန်း ၁ နိဒါန်း
အခန်း ၂ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်း
၂.၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား
၂.၂ ရေနမူနာရယူသည့်နေရာများ၏တည်နေရာနှင့်အချက်အလက်များဖော်ပြချက်၅
၂.၃ စောင့်ကြည့်လေ့လာသည့်နည်းလမ်း ၅
၂.၄ စောင့်ကြည့်လေ့လာသည့်ကာလ
၂.၅ စောင့်ကြည့်လေ့လာမှုရလဒ်များ၉
အခန်း ၃ နိဂုံးချုပ် နှင့် အကြံပြုချက်များ
နောက်ဆက်တွဲ ၁ ရေနမူနာရယူသည့် မှတ်တမ်းဓာတ်ပုံများက၁- ၁
နောက်ဆက်တွဲ ၂ ဓာတ်ခွဲခန်းရလဒ်များ
<u>ဇယားများစာရင်း</u>
ဇယား ၂.၁−၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား ၃
ဇယား ၂.၂-၁ ရေနမူနာရယူသည့်နေရာများ၅
ဇယား ၂.၃-၁ ရေအရည်အသွေးစစ်ဆေးသည့် နည်းလမ်းများ ၅
20 - 2 2 9 2 2
ဖယား ၂.၄-၁ နေရာတစခုချင်းစအတွက နမူနာရယူသည့်အချန်
ဧယား ၂.၄-၁ နေရာတစ်ခုချင်းစီအတွက် နမူနာရယူသည့်အချိန်
ဧယား ၂.၄-၁ နေရာတစခုချင်းစအတွက နမူနာရယူသည့်အချန
မယား ၂.၄-၂ မြန်မာနိုင်ငံ၊ ရန်ကုန်မြစ်၏ ဒီရေမှတ်တမ်း
œယား ၂.၄-၂ မြန်မာနိုင်ငံ၊ ရန်ကုန်မြစ်၏ ဒီရေမှတ်တမ်း
ဇယား ၂.၄-၂ မြန်မာနိုင်ငံ၊ ရန်ကုန်မြစ်၏ ဒီရေမှတ်တမ်း

အခန်း ၁ နိဒါန်း

၁.၁ ယေဘုယျ ဖော်ပြချက်

တည်နေရာများကို ပုံ၁-၁-၁ တွင် ဖော်ပြထားပါသည်။

သီလဝါအထူးစီးပွားရေးဇုန်သည် ရန်ကုန်တိုင်းဒေသကြီး၏ တောင်ပိုင်းခရိုင်တွင်တည်ရှိပြီး ရန်ကုန်မြို့၏ အရှေ့တောင်ဘက် ၂၃ ကီလိုမီတာတွင် တည်ရှိပါသည်။ သီလဝါအထူးစီးပွားရေးဇုန်၏ အကောင်အထည် ဖော်ဆောင်သူအနေဖြင့် ဇုန်အပိုင်း(ခ)အတွင်းရှိ စက်မှုမြေနေရာအတွက် ခွင့်ပြုချက်ရရှိထားသော ပတ်ဝန်းကျင်ဆိုင်ရာစီမံခန့်ခွဲမှုအစီအစဉ်အတိုင်း ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း အစီရင်ခံစာနှင့် ပုံမှန်စောင့်ကြည့်စစ်ဆေးခြင်းကို ဆောင်ရွက်ရန် မြန်မာ-ဂျပန် သီလဝါဖွံ့ဖြိုးရေးလီမိတက်တွင် တာဝန်ရှိပါသည်။ မြန်မာ-ဂျပန် သီလဝါဖွံ့ဖြိုးရေးလီမိတက်သည် ဇုန်အတွင်း နှင့် အနီးပတ်ဝန်းကျင်ရှိ သဘာဝပတ်ဝန်းကျင် အခြေအနေများကိုသိရှိစေရန် သဘာဝပတ်ဝန်းကျင်နှင့်သက်ဆိုင်သော စောင့်ကြည့်လေ့လာမှုများကို ရေးဆွဲထားပြီး ထိုအစီအစဉ်များအရ အကောင်အထည်ဖော် ဆောင်ရွက်ခဲ့ပါသည်။ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအား စစ်တမ်းကောက်ယူရာတွင် သီလဝါအထူးစီးပွားရေးဇုန်အတွင်းနှင့် အနီးပတ်ဝန်းကျင်ရှိ စုစုပေါင်းနေရာ လေးနေရာ၊ နာမည်အားဖြင့် မြေပေါ်ရေနမူနာယူသည့် နေရာ-၂ (SW-2)၊ (SW-4)၊ မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ မြေပေါ် ရေနမှုနာယူသည့် နေရာ-၄ မြေအောက်ရေနမူနာယူသည့် နေရာ-၂ (GW-2) တို့တွင် စောင့်ကြည့်လေ့လာခဲ့ပါသည်။ ထိုနေရာ လေးနေရာမှ မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW-7) သည် ဇုန်အပိုင်း(ခ) လုပ်ငန်းလည်ပတ်နေစဉ့်ကာလတွင် အဓိကစွန့်ထုတ်ရေထွက်ပေါက် ဖြစ်ပါသည်။ ထို့အပြင် မြေအောက်ရေနမူနာယူသည့် နေရာ-၂ (GW-2) အား ဘုန်းကြီးကျောင်းပရဝဏ်အတွင်းရှိ ရေတွင်းအား ဖလမ်းကျေးရွာတွင်တည်ရှိသော

စောင့်ကြည့်လေ့လာခဲ့သည်။ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအတွက် နမူနာရယူသော နေရာများ၏

ပုံ ၁.၁-၁ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအတွက်နမူနာရယူသောနေရာများ၏ တည်နေရာပြပုံ

အခန်း ၂ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်း

၂.၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား

ရေအရည်အသွေး စောင့်ကြည့်လေ့လာမှုအတွက် ရေနမူနာရယူသောနေရာများနှင့် ရေအရည်အသွေး အမျိုးအစားများ(Parameters)ကို ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်းဆိုင်ရာ အစီအရင်ခံစာပါ ပတ်ဝန်းကျင်ဆိုင်ရာစောင့်ကြည့်လေ့လာမှု အစီအစဉ်အား ခြုံငုံမိစေရန်အလို့ငှာ ဆောင်ရွက်ထားပါသည်။

ရေအရည်အသွေးနမူနာစစ်တမ်းရယူမှုအား နေရာလေးနေရာတွင် ဆောင်ရွက်ခဲ့ပါသည်။ ထိုနေရာ လေးနေရာမှ ရေစီးဆင်းမှုတိုင်းတာခြင်းကို ရေစီးနှုန်းတိုင်းကိရိယာဖြင့် တိုင်းတာနိုင်သော နေရာနှစ်နေရာ ဖြစ်သည့် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4) တို့တွင် တိုင်းတာခဲ့ပါသည်။ စောင့်ကြည့်လေ့လာသော ရေအရည်အသွေး အမျိုးအစားများ(Parameters)နှင့် ရေနမူနာရယူသောနေရာများကို ဇယား ၂.၁-၁ တွင် အကျဉ်းချုပ် ဖော်ပြထားပါသည်။

ဇယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား

စဉ်	ရေအရည်အသွေး အမျိုးအစား (Parameters)	မြေပေါ်ရေ နမူနာယူ သည့် နေရာ-၂ (SW-2)	မြေပေါ်ရေ နမူနာယူ သည့် နေရာ-၄ (SW-4)	မြေပေါ်ရေ နမူနာယူသည့် နေရာ-၇ (SW-7)	မြေအောက်ရေ နမူနာယူသည့် နေရာ-၂ (GW-2)	မှတ်ချက်
O	ရေအပူချိန် (Water Temperature)	0	0	0	0	ရေနမူနာရယူသည့်နေရာတွင် တိုက်ရိုက်တိုင်းတာခြင်း
J	ချဉ်ဖန်ကိန်း (pH)	0	0	0	0	ရေနမူနာရယူသည့်နေရာတွင် တိုက်ရိုက်တိုင်းတာခြင်း
9	ပျော်ဝင်အောက်စီဂျင် (DO)	0	0	0	0	ရေနမူနာရယူသည့်နေရာတွင် တိုက်ရိုက်တိုင်းတာခြင်း
9	ဖီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD ₍₅₎)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၅	ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD _(cr))	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
G	နိုက်ထရိုဂျင်စုစုပေါင်း (Total Nitrogen)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
9	ဆိုင်းကြွအနယ်များ (Suspended Solids)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၈	ကိုလီဖောင်း စုစုပေါင်း (Total Coliform)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
G	ဖော့စဖောရက်စုစုပေါင်း (Total Phosphorus)	-	-	-	-	ဓာတ်ခွဲစမ်းသပ်ခြင်း
20	အရောင် (Color)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၁	အနံ့ (Odor)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(ခ)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်မှုအတွက်ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအစီရင်ခံစာ (နှစ်လတစ်ကြိမ် စောင့်ကြည့်လေ့လာခြင်း၊ ဖေဖော်ဝါရီလ ၂၀၂၂ ခုနှစ်)

စဉ်	ရေအရည်အသွေး အမျိုးအစား (Parameters)	မြေပေါ် ရေ နမူနာယူ သည့် နေရာ-၂ (SW-2)	မြေပေါ် ရေ နမူနာယူ သည့် နေရာ-၄ (SW-4)	မြေပေါ် ရေ နမူနာယူသည့် နေရာ-၇ (SW-7)	မြေအောက်ရေ နမူနာယူသည့် နေရာ-၂ (GW-2)	မှတ်ချက်
၁၂	ဆီနှင့်အမဲဆီ (Oil and Grease)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
25	ပျော်ဝင်အနည်စုစုပေါင်း (Total Dissolved Solids) (ကိုယ်တိုင်စောင့်ကြည့်လေ့လာ ခြင်း)	0	0	o	o	ဓာတ်ခွဲစမ်းသပ်ခြင်း
29	သံဓာတ် (Iron) (ကိုယ်တိုင်စောင့်ကြည့်လေ့လာ ခြင်း)	0	٥	o	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၅	ပြဒါးဓာတ် (Mercury) (ကိုယ်တိုင်စောင့်ကြည့်လေ့လာ ခြင်း)	0	٥	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
ЭС	ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား (Escherichia Coli) (ကိုယ်တိုင်စောင့်ကြည့်လေ့လာ ခြင်း)	. . .	-	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၇	ရေစီးဆင်းနှုန်း	٥	0	-	- 20 2 22	ရေနမူနာရယူသည့်နေရာတွင် တိုက်ရိုက်တိုင်းတာခြင်း

မှတ်ချက်။ ဖော့စဖောရက်စုစုပေါင်း (Total Phosphorus) ကိုစောင့်ကြည့်လေ့လာသောကာလအတွင်းတွင် ဓာတ်ခွဲခန်းတွင် တိုင်းတာ၍မရနိုင်ပါ။ မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

၂.၂ ရေနမူနာရယူသည့်နေရာများ၏တည်နေရာနှင့်အချက်အလက်များဖော်ပြချက်

ဇယား ၂.၂-၁ ရေနမူနာရယူသည့်နေရာများ

စဉ်.	တည်နေရာ	အသေးစိတ်အချက်အလက်
	မြေပေါ် ရေနမူနာယူသည့်	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၄၀'၂၀.၆၉"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၇' ၁၈.၀၄"
2	နေရာ-၂	တည်နေရာ - ရွှေပျောက်ချောင်းအထက်ပိုင်း
	(SW-2)	စစ်တမ်းကောက်ယူသော အမျိုးအစား - မြေပေါ် ရေစစ်တမ်းရယူခြင်းနှင့်ရေစီးနှုန်းတိုင်းတာခြင်း
	မြေပေါ် ရေနမူနာယူသည့်	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၃၉' ၄၂.၈၄"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၆' ၂၇.၄၂"
J	နေရာ-၄	တည်နေရာ - ရွှေပျောက်ချောင်းအောက်ပိုင်း
	(SW-4)	စစ်တမ်းကောက်ယူသော အမျိုးအစား - မြေပေါ် ရေစစ်တမ်းရယူခြင်းနှင့်ရေစီးနှုန်းတိုင်းတာခြင်း
	မြေပေါ်ရေနမူနာယူသည့်	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၄၀' ၁၃.၂၅"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၇' ၅.၆၆"
5	နေရာ-ဂု	တည်နေရာ – ရွှေပျောက်ချောင်းသို့ မရောက်မီ ဇုန် အပိုင်း (ခ) ဆောက်လုပ်ရေးလုပ်ငန်းခွင်ရှိ
1	(SW-7)	ရေထိန်းကန်၏ ထွက်ပေါက်
	(61. 1,	စစ်တမ်းကောက်ယူသော အမျိုးအစား - စွန့်ထုတ်ရေစစ်တမ်းရယူခြင်း
	မြေအောက်ရေနမူနာယူသည့်	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၃၉'၂၅.၃၀"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၇' ၁၅.၆၀"
9	နေရာ-၂	တည်နေရာ - ဖလမ်းကျေးရွာရှိ ဘုန်းကြီးကျောင်းပရဝဏ်အတွင်း
	(GW-2)	စစ်တမ်းကောက်ယူသော အမျိုးအစား - မြေအောက်ရေစစ်တမ်းရယူခြင်း

မှုရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2) (ရည်ညွှန်းအမှတ်)

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)အား ရွှေပျောက်ချောင်း၏ အထက်ပိုင်းတွင် ရယူခဲ့ခြင်းဖြစ်သည်။ အဆိုပါအမှတ်သည် ဇုန်အပိုင်း(ခ)ဧရိယာ၏ အရှေ့မြောက်ဘက်နှင့် ဒဂုံ-သီလဝါလမ်း၏ တောင်ဘက်တွင် တည်ရှိပါသည်။ အနောက်မြောက်တွင် ဇုန်အပိုင်း(က) နှင့် အရှေ့ဘက်တွင် ပြည်တွင်းစက်မှုဇုန်တို့က အသီးသီး ဝန်းရံလျက် ရှိသည်။

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4) (ရည်ညွှန်းအမှတ်)

ပြည်တွင်းစက်မှုစုန်၊ စုန်အပိုင်း(က) နှင့် စုန်အပိုင်း(ခ)ရှိ ဆောက်လုပ်ရေးလုပ်ငန်းခွင်များမှ ထွက်ရှိလာသောမိုး ရေများပေါင်းစည်းရောနှောသွားသောနေရာ ရွှေပျောက်ချောင်း၏ အောက်ပိုင်းတွင် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4) တွင် ရယူခဲ့ခြင်းဖြစ်သည်။ ရွှေပျောက်ချောင်းသည် အရှေ့မှအနောက်သို့စီးဆင်းပြီး ရန်ကုန်မြစ် အတွင်းသို့ စီးဝင်သည်။ မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4) သည် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)၏ ချောင်းအောက်ပိုင်း ၂.၁၅ ကီလိုမီတာအကွာတွင် တည်ရှိပါသည်။ အဆိုပါ ရေနမူနာရယူသည့်နေရာသည် စုန်အပိုင်း(ခ) ဧရိယာ၏ အနောက်ဘက်တွင်တည်ရှိပြီး ဒဂုံ-သီလဝါလမ်း၏ တောင်ဘက်တွင်တည်ရှိပါသည်။ ပတ်ဝန်းကျင်အနီးအနားတွင် အရှေ့မြောက်ဘက်တွင် စုန်အပိုင်း (က)၊ အရှေ့ဘက်တွင် ပြည်တွင်းစက်မှုစုန်၊ တောင်ဘက်နှင့် အနောက်ဘက်တို့တွင် စပါးခင်းတို့ အသီးသီးတည်ရှိပါသည်။

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW-7) (စွန့်ထုတ်ရေထွက်ပေါက်)

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW-7) သည် ဇုန်အပိုင်း(ခ)၏ လုပ်ငန်းလည်ပတ်နေစဉ်ကာလအတွင်း အဓိကစွန့်ထုတ်ရေထွက်ပေါက် ဖြစ်ပါသည်။ ထိုနေရာသည် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2) ၏ ချောင်းအောက်ပိုင်း၊ အကွာအဝေးအားဖြင့် ၄၃၄ မီတာ အကွာတွင် တည်ရှိပါသည်။ နမူနာရယူသည့်နေရာမှာ ဇုန်အပိုင်း(ခ) ရေထိန်းကန်၏ထွက်ပေါက်၊ ဇုန်အပိုင်း(ခ) ဧရိယာ၏ မြောက်ဘက်နှင့် ဒဂုံ-သီလဝါလမ်းမကြီး၏ တောင်ဘက်တွင် တည်ရှိပါသည်။ အနီးအနားပတ်ဝန်းကျင်၌ မြောက်ဘက်တွင် ဇုန်အပိုင်း(က) နှင့် အရှေ့ဘက်တွင် ပြည်တွင်းစက်မှုဇုန်တို့ တည်ရှိပါသည်။

မြေအောက်ရေနမူနာယူသည့် နေရာ-၂ (GW-2) (မူလတည်ရှိနေသောရေတွင်းအား ရည်ညွှန်းခြင်း)

မြေအောက်ရေနမူနာယူသည့် နေရာ-၂ (GW-2) အား တူးဖော်ထားသောရေတွင်းမှ ရယူခဲ့ပါသည်။ အဆိုပါ ရေတွင်းသည် ဖလမ်းကျေးရွာရှိ ဘုန်းကြီးကျောင်းပရဝဏ်အတွင်းတွင် တည်ရှိပါသည်။ အနီးအနားပတ်ဝန်းကျင်၌ မြောက်ဘက်တွင် သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း (က)၊ တောင်ဘက်တွင် ဖလမ်းကျေးရွာ၊ အနောက်ဘက်တွင် လယ်ကွင်းများ၊ အရှေ့မြောက်ဘက်တွင် ပြည်တွင်းစက်မှုဇုန်နှင့် အရှေ့နှင့်အရှေ့မြောက်ဘက်တွင် သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း (ခ)တို့ အသီးသီးတည်ရှိနေပါသည်။

၂.၃ စောင့်ကြည့်လေ့လာသည့်နည်းလမ်း

ရေနမူနာများကို ရယူပြီး သန့်စင်ထားသောဖန်ပုလင်းညိုများဖြင့် သိမ်းဆည်းပြီး ဧယား၂.၃-၁ တွင် ဖော်ပြထားသော နည်းလမ်းများဖြင့် ဓာတ်ခွဲခန်း၌ စစ်ဆေးပါသည်။ ရေနမူနာများကို ရေခဲပုံးများဖြင့် ၂-၄ဒီဂရီ ဆဲလ်စီးရပ်တွင် သိမ်းဆည်းထားပြီး ဓာတ်ခွဲခန်းသို့ ပို့ဆောင်ပါသည်။ တိုင်းတာသည့် ရေအရည်အသွေး အမျိုးအစားများ၌ ရေအပူချိန်၊ ချဉ့်ဖန်ကိန်း နှင့် ပျော်ဝင်အောက်စီဂျင်တို့အား ရေအရည်အသွေး တိုင်းတာသောစက်ကိရိယာ (Horiba U-52)ကို အသုံးပြု၍ ရေနမူနာရယူသည့်နေရာ၌ပင် တိုက်ရိုက်တိုင်းတာခဲ့ပါသည်။ ထို့အပြင်ရေစီးဆင်းမှုနှုန်းကိုလည်း ဒီဂျစ်တယ်ရေစီးနှုန်းတိုင်းကိရိယာ (JFE Digital Current Meter)ဖြင့် ရေနမူနာရယူသည့်နေရာ၌ တိုင်းတာခဲ့ပါသည်။

ဇယား ၂.၃-၁ ရေအရည်အသွေးစစ်ဆေးသည့် နည်းလမ်းများ

ဧယား ၂.၃-၁ ရေအမြာအသွေးစစ်ဆေးသည့် နည်းလမ်းများ						
စဉ်	အမျိုးအစားများ	နည်းလမ်း				
၁	ရေအပူချိန် (Water Temperature)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)				
J	ချဥ်ဖန်ကိန်း (pH)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)				
9	ဆိုင်းကြွအနယ် (Suspended Solids (SS))	APHA 2540 D (Dry at 103-105°C Method)				
9	ပျော်ဝင်အောက်စီဂျင် (Dissolved Oxygen)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)				
၅	ဧီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင်လိုအပ်ချက်(၅-ရက်) (BOD ₍₅₎)	APHA 5210 B (5 Days BOD Test)				
G	ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD _(Cr))	APHA 5220D (Close Reflux Colorimetric Method)				
7	ကိုလီဖောင်း စုစုပေါင်း (Total Coliform)	APHA 9221B (Standard Total Coliform Fermentation Technique)				
െ	နိုက်ထရိုဂျင်စုစုပေါင်း (Total Nitrogen)	HACH Method 10072 (TNT Persulfate Digestion Method)				
ઉ	ဖော့စဖောရိတ်စုစုပေါင်း (Total Phosphorus)	-				
၁၀	အရောင် (Color)	APHA 2120C (Spectrophotometric Method)				
၁၁	အနံ့ (Odor)	APHA 2150 B (Threshold Odor Test)				
၁၂	ဆီနှင့် အမဲဆီ (Oil and Grease)	APHA 5520B (Partition-Gravimetric Method)				
၁၃	ပြဒါးဓာတ် (Mercury)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)				
၁၄	သံဓာတ် (Iron)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)				
၁၅	ပျော်ဝင်အနည်စုစုပေါင်း (Total Dissolved solids (TDS))	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)				
၁၆	ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား (Escherichia Coli)	APHA 9221 F (Escherichia Coli Procedure Using Fluorogenic Substrate)				
20	စီးဆင်းနှုန်း	Detection of Electromagnetic Elements				
၁၇	(Flow Rate)	(Real-time measurement by AEM 213-D Digital Current Meters)				

မှတ်ချက်။ ဖော့စဖောရက်စုစုပေါင်း (Total Phosphorus) ကိုစောင့်ကြည့်လေ့လာသောကာလအတွင်းတွင် ဓာတ်ခွဲခန်းတွင် တိုင်းတာ၍မရနိုင်ပါ။ မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

၂.၄ စောင့်ကြည့်လေ့လာသည့်ကာလ

ရေအရည်အသွေးနှင့် ရေစီးဆင်းမှုနှုန်းအား ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့ ၂၀၂၂ ခုနှစ်တွင် ဆောင်ရွက်ခဲ့ပြီး ဒီရေအတက်အကျကြောင့် ဖြစ်ပေါ် လာနိုင်သော သက်ရောက်မှုများကိုရောင်ရှားနိုင်ရန် အောက်ပါ ဇယား၂.၄-၁ အတိုင်း ရေနမူနာရယူခဲ့သည်။ မြန်မာနိုင်ငံ၊ ရန်ကုန်မြစ်၏ ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့ ၂၀၂၂ ခုနှစ် အတွက်ဒီရေ မှတ်တမ်းကို ဇယား ၂.၄-၂ တွင်ဖော်ပြထားပါသည်။

eယား ၂.၄-၁ နေရာတစ်ခုချင်းစီအတွက် နမူနာရယူသည့်အချိန်

စဉ်	ရေနမူနာရယူသည့်နေရာ	ရေနမူနာရယူသည့်အချိန်
0	မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)	ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့ ၂၀၂၂ ခုနှစ် (ဝ၈ နာရီ : ၄၃ မိနစ်)
J	မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4)	ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့ ၂၀၂၂ ခုနှစ် (၀၇ နာရီ : ၄၂ မိနစ်)
9	မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW-7)	ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့ ၂၀၂၂ ခုနှစ် (၁၉ နာရီ : ၁၉ မိနစ်)
9	မြေအောက်ရေနမူနာယူသည့် နေရာ-၂ (GW-2)	ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့ ၂၀၂၂ ခုနှစ် (၁၂ နာရီ : ၂၇ မိနစ်)

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

eယား ၂.၄-၂ မြန်မာနိုင်ငံ၊ ရန်ကုန်မြစ်၏ ဒီရေမှတ်တမ်း

ရက်စွဲ	အချိန်	အမြင့်	ဒီရေအခြေအနေ
	09:00	ე.09	ဒီရေအတက်
ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့	၁၁:၅၉	၀.၃၈	ဒီရေအကျ
၂၀၂၂ ခုနှစ်	oG:92	9.60	ဒီရေအတက်
	75:26	, , ,	ဒီရေအကျ

မှုရင်း။ မြန်မာဆိပ်ကမ်းအာဏာပိုင်၊ ၂၀၂၂ ခုနှစ်အတွက် ရန်ကုန်မြစ်၏ ဒီရေမှတ်တမ်း

၂.၅ စောင့်ကြည့်လေ့လာမှုရလဒ်များ

စွန့်ထုတ်ရေထွက်ပေါက်၊ စွန့်ထုတ်ရေရောက်ရှိသောချောင်းနှင့် ရည်ညွှန်းရေတွင်းရှိ ရေအရည်အသွေးစောင့်ကြည့် လေ့လာမှုရလဒ်များကို ဇယား၂.၅-၁ နှင့် ဇယား၂.၅-၂ တွင်ဖော်ပြထားသည်။ ဓာတ်ခွဲခန်းဆန်းစစ်မှု ရလဒ်များကို နောက်ဆက်တွဲ-၂ တွင် ဖော်ပြထားသည်။ ရလဒ်များကို ပတ်ဝန်းကျင်ထိခိုက်မှု ဆန်းစစ်ခြင်း အစီအရင်ခံစာတွင် ပါရှိသည့် ရေအရည်အသွေးရည်မှန်းတန်ဖိုးများနှင့် နှိုင်းယှဉ်ထားပါသည်။

၂.၅.၁ စွန့်ထုတ်ရေထွက်ပေါက်နှင့် စွန့်ထုတ်ရေရောက်ရှိသောချောင်းတွင်းရှိရလဒ်များ

ရည်မှန်းတန်ဖိုးနှင့်နှိုင်းယှဉ်ရာတွင် ဆိုင်းကြွအနည်များ၊ ပျော်ဝင်အနည်စုစုပေါင်း၊ ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင်လိုအပ်ချက် (၅-ရက်) (BOD₍₅₎)၊ ဓာတုနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင်လိုအပ်ချက် (COD_(Cr)) နှင့် ကိုလီဖောင်းစုစုပေါင်း စသည်တို့သည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေကြောင်းတွေ့ရသည်။

စွန့်ထုတ်ရေထွက်ပေါက်ရှိ ရေရလဒ်များ

ဆိုင်းကြွအနည်များနှင့် ပျော်ဝင်အနည်စုစုပေါင်းတို့ ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်ခြင်းအတွက် ဖြစ်နိုင်သော အဓိကအကြောင်းအရာများမှာ ဇုန်အပိုင်း(ခ)ရှိ မြေလွတ်များမှ မြေမျက်နှာပြင် စီးဆင်းရေများကြောင့် ဖြစ်နိုင်ပါသည်။

ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင်လိုအပ်ချက် (၅-ရက်) (BOD₍₅₎) သည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်ခြင်းအတွက် ဖြစ်နိုင်သောအဓိက အကြောင်းအရာများမှာ (၁) ရေထုထဲတွင် အော်ဂဲနစ်ညစ်ညမ်းမှု ပမာဏများနေခြင်း၊ (၂) ရာသီဥတုအပူချိန် လွန်ကဲခြင်းကြောင့် ဖြစ်ပေါ် လာသော ပတ်ဝန်းကျင်ဆိုင်ရာဖိအားများ၊ (၃) ရေထုထဲတွင် နိုက်ထရိတ်ပမာဏ လွန်ကဲခြင်းကြောင့် အပင်များကြီးထွားကာ ပျော်ဝင်အောက်စီဂျင် လျော့နည်းလာခြင်း စသည် တို့ကြောင့်ဖြစ်သည်။ ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင်လိုအပ်ချက် (၅-ရက်) (BOD₍₅₎) သည် သီလဝါအထူးစီးပွားရေးဇုန်၏ ရည်မှန်းတန်ဖိုးများထက် ကျော်လွန်နေသော်လည်း အမျိုးသားပတ်ဝန်းကျင်ဆိုင်ရာ အရည်အသွေး (ထုတ်လွှတ်မှု) လမ်းညွှန်ချက်များ တန်ဖိုး (၅၀ mg/L) အတွင်းတွင်ရှိပါသည်။

စောင့်ကြည့်လေ့လာ ရည်ညွှန်းအမှတ်များ၏ ရေရလဒ်များ (စွန့်ထုတ်ရေရောက်ရှိသောချောင်း)

စောင့်ကြည့်လေ့လာရည်ညွှန်းအမှတ်များဖြစ်သော မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေ နမူနာယူသည့် နေရာ-၄ (SW-4) တို့တွင် ဆိုင်းကြွအနည်များ၊ ဧဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD $_{(5)}$)၊ ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD $_{(Cr)}$)၊ ကိုလီဖောင်း စုစုပေါင်း နှင့် ပျော်ဝင်အနည်စုစုပေါင်းတို့သည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေကြောင်းတွေ့ ရသည်။

ဆိုင်းကြွအနည်များ နှင့် ပျော်ဝင်အနည်စုစုပေါင်းတို့သည် မြေပေါ် ရေနမူနာယူသည့်နေရာများဖြစ်သော မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4) တို့တွင်

ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်ရခြင်းမှာ (၁) သဘာဝအလျောက် ချောင်းအထက်ပိုင်းမှ စီးဆင်းလာခြင်းကြောင့် လည်းကောင်း၊ (၂) သီလဝါအထူးစီးပွားရေးဇုန် ပြင်ပရှိ ပြည်တွင်းစက်မှုဇုန်မှ စွန့်ထုတ်လိုက်သော ရေများ ကြောင့်လည်းကောင်း၊ ချောင်းအောက်ဘက်ရှိရေများသည် ဒီရေအတက်အကျကြောင့် အထက်သို့ပြန်လည် စီးဆင်းလာခြင်းကြောင့် လည်းကောင်း ဖြစ်နိုင်ပါသည်။

ဖီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင်လိုအပ်ချက်(၅-ရက်) (BOD₍₅₎)၏ ရလဒ်များသည် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)တွင် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေရခြင်းမှာ (၁) ရေထုထဲတွင် အော်ဂဲနစ်ညစ်ညမ်းမှု ပမာဏများနေခြင်း၊ (၂) ရာသီဥတုအပူချိန်လွန်ကဲခြင်းကြောင့် ဖြစ်ပေါ် လာသော ပတ်ဝန်းကျင်ဆိုင်ရာဖိအားများ၊ (၃) ရေထုထဲတွင် နိုက်ထရိတ်ပမာဏလွန်ကဲခြင်းကြောင့် အပင်များကြီးထွားကာ ပျော်ဝင်အောက်စီဂျင် လျော့နည်းလာခြင်းတို့ကြောင့် ဖြစ်သည်။

ဓာတုနည်းဖြင့် ဖြိုခွဲရန်အောက်စီဂျင် လိုအပ်ချက် (COD_(Cr)) ၏ ရလဒ်များသည် မြေပေါ် ရေနမူနာယူသည့် နေရာ- ၂ (SW-2)တွင် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေရခြင်းမှာ (၁) ရေထုထဲတွင် အော်ဂဲနစ်ညစ်ညမ်းမှု ပမာဏများကာ ပျော်ဝင်အောက်စီဂျင် လျော့နည်းလာခြင်းကြောင့် လည်းကောင်း၊ (၂) ရေထုထဲတွင် ဓာတ်တိုးနိုင်သော အင်အော်ဂဲနစ်ဒြပ်ပေါင်းများရှိနေခြင်းနှင့် ဆွေးမြေ့နေသောအပင်များ၊ လူတို့၏ စွန့်ပစ်အညစ်အကြားများ၊ သို့မဟုတ် သီလဝါအထူးစီးပွားရေးဇုန် ပြင်ပရှိ ပြည်တွင်းစက်မှုဇုန်မှ စွန့်ထုတ်လိုက်သောရေများ စသည်တို့ ပမာဏများစွာ ရှိနေခြင်းကြောင့်လည်းကောင်း ဖြစ်နိုင်ပါသည်။

ကိုလီဖောင်းစုစုပေါင်းရလဒ်များသည် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)တွင် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေရခြင်းမှာ (၁) စွန့်ထုတ်ရေရောက်ရှိရာ ချောင်းအတွင်းနှင့် အနီးတစ်ဝိုက်တွင် ရှိနေသော အပင်အမျိုးမျိုးနှင့် သက်ရှိသတ္တဝါများဖြစ်သော ငှက်များနှင့်တိရစ္ဆာန်များကြောင့် သဘာဝ ဘက်တီးရီးယားများသည် စွန့်ထုတ်ရေရောက်ရှိရာ ချောင်းအတွင်းတွင် တည်ရှိနေခြင်းကြောင့်လည်းကောင်း၊ (၂) သီလဝါအထူးစီးပွားရေးဇုန် ပြင်ပရှိ ပြည်တွင်းစက်မှုဇုန်မှ စွန့်ထုတ်လိုက်သော ရေများကြောင့်လည်းကောင်း၊ (၃) ဒီရေသက်ရောက်မှုဖြင့် ပတ်ဝန်းကျင်ဧရိယာမှ ရေများ စီးဝင်လာခြင်းကြောင့်လည်းကောင်း ဖြစ်နိုင်ပါသည်။

မြန်မာဂျပန်သီလဝါဖွံ့ဖြိုးရေးလီမိတက်မှ ထပ်တိုးအချက်အလက်

ပုံမှန်ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုကို ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်းမှ ပတ်ဝန်းကျင်စီမံခန့်ခွဲမှု အစီရင်ခံစာအတိုင်း ဆောင်ရွက်ခဲ့ပါသည်။ ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်တွင် တိုင်းတာခဲ့သော ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုရလဒ်များအရ ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD₍₅₎) ၏တန်ဖိုးသည် မြေပေါ် ရေနမူနာယူသည့်နေရာ-ဂ (SW-7)တွင် အနည်းငယ်ကျော်လွန်နေသည်ကို တွေ့ရပါသည်။ ထိုဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင်လိုအပ်ချက် (၅-ရက်) (BOD₍₅₎)၏တန်ဖိုးကို ပိုမိုတိကျစေရန် ထပ်တိုးရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုကို မြန်မာဂျပန်သီလဝါဖွံ့ဖြိုးရေးလီမိတက်မှ တူညီသော နေရာတွင် မတ်လ ၈ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်တွင် ဆောင်ရွက်ခဲ့ပါသည်။ ပုံမှန်စောင့်ကြည့်လေ့လာသောရလဒ်များ (ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်)ကို ထပ်တိုးစောင့်ကြည့်လေ့လာသောရလဒ်များ (မတ်လ ၈ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်)ကို ထပ်တိုးစောင့်ကြည့်လေ့လာသောရလဒ်များ (မတ်လ ၈ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်)ကို ထပ်တိုးစောင့်ကြည့်လေ့လာမှုရလဒ်များသည် ပို၍နည်းပြီး ရည်မှန်းတန်ဖိုးအတွင်းတွင် ရှိပါသည်။ ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်တွင် တိုင်းတာခဲ့သော ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD₍₅₎)၏ ပုံမှန်စောင့်ကြည့်လေ့လာမှု တန်ဖိုးများသည် ရည်မှန်းတန်ဖိုးများထက် ကျော်လွန်ရသောဖြစ်နိုင်သော အကြောင်းအရင်းမှာ ရေထုထဲတွင်

အော်ဂဲနစ်ညစ်ညမ်းမှု ပမာဏများနေခြင်းကြောင့်ဖြစ်သည်။ ထို့အပြင် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၇ (SW-7)တွင် ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD₍₅₎)၏ ယခင် လုပ်ဆောင်ခဲ့သော ပုံမှန်စောင့်ကြည့်လေ့လာခြင်းနှင့် ထပ်တိုးစောင့်ကြည့်လေ့လာမှု ရလဒ်များသည်လည်း ရည်မှန်းတန်ဖိုး အတွင်းတွင်ရှိပါသည်။ ထို့ကြောင့် ဤ BOD₍₅₎ ကျော်လွန်ခြင်း သည် ပထမဆုံးအကြိမ် ကျော်လွန်သောအဖြစ်အပျက်ဖြစ်ပြီး အလွန်ပူပြင်းသောရာသီဥတုကြောင့် ကျော်လွန်ခြင်းဖြစ်နိုင်ပါသည်။

ဖယား ၂.၅-၁ စွန့်ထုတ်ရေထွက်ပေါက်နှင့်စွန့်ထုတ်ရေရောက်ရှိသော ချောင်းမှရေအရည်အသွေး စောင့်ကြည့်လေ့လာမှုရလဒ်များ

	နမူနာကောက်ယူသည	့် ရက်စွဲ	၁၅.၂.၂၀၂၂	၁၅.၂.၂၀၂၂	၁၅.၂.၂၀၂၂	6.2.3033						
⊕දි	ရေအရည်အသွေး အမျိုးအစားများ (Prameters)	ယူနစ်	ပုံမှန် စောင့်ကြည့်လေ့ လာခြင်း ၁* မြေပေါ်ရေ နမူနာယူသည့် နေရာ-၂ (SW-2)	ပုံမှန် စောင့်ကြည့်လေ့လာ ခြင်း ၁* မြေပေါ် ရေ နမူနာယူသည့် နေရာ-၄ (SW-4)	ပုံမှန် စောင့်ကြည့်လေ့ လာခြင်း ၁* မြေပေါ် ရေ နမူနာယူသည့် နေရာ၇ (SW-7)	ထပ်တိုး စောင့်ကြည့်လေ့ လာခြင်း ၁* မြေပေါ် ရေ နမှုနာယူသည့် နေရာ၇ (SW-7)	ရည်မှန်းတန်ဖိုး (ကိုယ်တိုင် စောင့်ကြည့်လေ့လာ ခြင်းအတွက် ရည်ညွှန်းတန်ဖိုး)					
э	ရေအပူချိန် (Water Temperature)	*c	Jo	IJ	IJ	3	≤ २၅					
J	ချဥ်ဖန်ကိန်း(pH)	-	9.0	9.9	െ.G	2	G - G					
9	ဆိုင်းကြွအနယ် (Suspended Solids)	mg/L	၁၁၄	200 209	500 509 5.67 5.57	2	ე 0					
9	ပျော်ဝင်အောက်စီဂျင် (Dissolved Oxygen)	mg/L	ე.9ი 9.69 ე.99 -	ე.၄၈		५. ७१	ე.	9·69 9·99 -	9·69 9·9°	9.59		-
2	ဖီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD ₍₅₎)	mg/L	ეკ.6ი	9.9J	२० .५၄	၇.၄၁	90					
G	ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD _[ငဂ])	mg/L	o <u>çç.</u> 0	၁၄.၈	Go.J		్రు					
?	နိုက်ထရိုဂျင်စုစုပေါင်း (Total Nitrogen)	mg/L	0.90	<0.9	0.0	÷	6 0					
6	ဖော့စဖောရပ်စုစုပေါင်း (Total Phosphorus)	mg/L	-		-	(4)	J					
e	အရောင် (Color)	TCU (True Color Unit)	၇၈.၅၂	J.99	၃.၆၁	(4))	ე ეი					
20	အနံ့ (Odor)	TON (Threshold Odor Number)	5.9	o	2.9	Ξz.						
၁၁	ကိုလီဖောင်း စုစုပေါင်း (Total Colifrom)	MPN/100ml	२ ე०००.०	0.000	9B.0	æ/	900					

နမူနာကောက်ယူသည့် ရ		ရက်စွဲ	၁၅.၂.၂၀၂၂	၁၅.၂.၂၀၂၂	၁၅.၂.၂၀၂၂	6.2.1011	
® ၌	ရေအရည်အသွေး အမျိုးအစားများ (Prameters)	ယူနစ်	ပိုမှန် စောင့်ကြည့်လေ့ လာခြင်း ၁* မြေပေါ် ရေ နမူနာယူသည့် နေရာ-၂ (SW-2)	ပုံမှန် စောင့်ကြည့်လေ့လာ ခြင်း ၁* မြေပေါ် ရေ နမူနာယူသည့် နေရာ–၄ (SW-4)	ပုံမှန် စောင့်ကြည့်လေ့ လာခြင်း ၁* မြေပေါ်ရေ နမူနာယူသည့် နေရာ-ဂု (SW-7)	ထပ်တိုး စောင့်ကြည့်လေ့ လာခြင်း ၁* မြေပေါ် ရေ နမှုနာယူသည့် နေရာ-ဂု (SW-7)	ရည်မှန်းတန်ဖိုး (ကိုယ်တိုင် စောင့်ကြည့်လေ့လာ ခြင်းအတွက် ရည်ညွှန်းတန်ဖိုး)
၁၂	ဆီနှင့် အမဲဆီ (Oil and Grease)	mg/L	9.9	<2.0	<9.0	-	00
၁၃	ပျော်ဝင်အနည်စုစုပေါ င်း (Total Dissolved Solids)	mg/L	၂၃၆၈	ලිගදලි	၃၄၈၈	29 4	Jooo
29	သံဓာတ် (Iron)	mg/L	၁.၀၆၂	J.799	ე.ეტი	923	२ ∙೨
၁၅	ပြဒါးဓာတ် (Mercury)	mg/L	≤0.00J	≤0.00J	≤ര.രര്വ	(17)	0.009
ЭC	ဝမ်းကိုက်ရောဂါကိုဖြစ်စေ သောကိုလီဖောင်း ဘက်တီးရီးယား (Escherichia Coli)	MPN/100ml		-	<0.0	æ	(cooo)*
၁၇	စီးဆင်းနှုန်း (Flow Rate)	m³/s	0.000	0.]6		-	-

မှတ်ချက်။ အနီရောင်ဖြင့်ဖော်ပြထားသောတန်ဖိုးများသည်သတ်မှတ်ထားသည့်တန်ဖိုးများထက်ကျော်လွန်နေသည်ကိုဆိုလိုပါသည်။ ဖော့စဖောရက်စုစုပေါင်း (Total Phosphorus) ကိုစောင့်ကြည့်လေ့လာသောကာလအတွင်းတွင် ဓာတ်ခွဲခန်းတွင် တိုင်းတာ၍မရနိုင်ပါ။

၁* မှတ်ချက်။ ပုံမှန်ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုကို ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်းမှ ပတ်ဝန်းကျင်စီမံခန့်ခွဲမှု အစီရင်ခံစာအတိုင်း ဆောင်ရွက်ခဲ့ပါသည်။ ထိုအစီရင်ခံစာအပြင် ထပ်တိုးစောင့်ကြည့်လေ့လာမှုကို မတ်လ ၈ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်တွင် ဆောင်ရွက်ခဲ့ပါသည်။ ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်တွင် တိုင်းတာခဲ့သော ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုရလဒ်များအရ ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD (5)) ၏တန်ဖိုးသည် မြေပေါ် ရေနမူနာယူသည့်နေရာ- ၇ (SW-7)တွင် အနည်းငယ်ကျော်လွန်နေသည်ကို တွေ့ရပါသည်။ ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင်

လိုအပ်ချက် (၅-ရက်) (BOD₍₅₎) ၏တန်ဖိုးသည် မတ်လ ၈ ရက်နေ့၊ ၂၀၂၂ ခုနှစ် တွင်ပို၍နည်းကြောင်းတွေ့ ရှိရပါသည်။ "မှတ်ချက်။ စွန့်ထုတ်ရေများ စွန့်ထုတ်လိုက်သောချောင်း၏ အသုံးပြုမှုပေါ်မှုတည်၍ ဂျပန်နိုင်ငံ၏ ချိုးရေစံချိန်စံညွှန်း (ပတ်ဝန်းကျင်ဆိုင်ရာဝန်ကြီးဌာန၊ ၁၉၉၇)ကို ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား (E. coli) ၏ ရည်မှန်းတန်ဖိုးအဖြစ် သတ်မှတ်ထားပါသည်။ ရည်မှန်းတန်ဖိုးအဖြစ် သတ်မှတ်ထားပါသည်။ ရည်မှန်းတန်ဖိုးအဖြစ် သတ်မှတ်ထားပါသည်။ သို့သော်လည်း ယခုလက်ရှိတွင် ကျွန်ုပ်တို့ ယုံကြည်စွာရေနမူနာများ ပေးပို့သော DOWA ဓာတ်ခွဲခန်းသည် စီအက်ဖ်ယူတန်ဖိုး "Colony Forming Unit (CFU)" အား တိုင်းတာ၍မရပါ။ ထို့အပြင် ဓာတ်ခွဲခန်း ပညာရှင်များ၏ အတွေ့ကြုံအရ သောက်သုံးရေများတွင်သာ စီအက်ဖ်ယူတန်ဖိုး "Colony Forming Unit (CFU)" နည်းလမ်းများကိုသာ အသုံးပြုသည်။ ထို့ကြောင့်မြေပေါ် ရေနမူနာ နှင့် စွန့်ပစ်ရေများတွင် တိကျသည့် ရလဒ်များ ရရှိရန် အမ်ပီအန် "Most Probable Number (MPN)" ရလဒ်များကို စီအက်ဖ်ယူတန်ဖိုးနှင့် တူညီသည်ဟုယူဆပြီး ရည်မှန်းတန်ဖိုးနှင့် တူညီသည်ဟုယူဆပြီး အသုံးပြုရပါမည်။ အမ်ပီအန် "Most Probable Number (MPN)" ရလဒ်များကို စီအက်ဖ်ယူတန်ဖိုးနှင့် တူညီသည်ဟုယူဆပြီး ရည်မှန်းတန်ဖိုးနှင့် ရှိုင်းယှဉ်ပါသည်။

မှုရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

၂.၅.၂ ရည်ညွှန်းရေတွင်း၏ ရလဒ်

ရည်ညွှန်းရေတွင်းစောင့်ကြည့်လေ့လာသောနေရာ၌ ရေအရည်အသွေး စောင့်ကြည့်လေ့လာမှု ရလဒ်များကို ဇယား ၂.၅-၂ တွင် ဖော်ပြထားပါသည်။ ရည်မှန်းတန်ဖိုးနှင့် နှိုင်းယှဉ်ရာတွင် ရလဒ်များအားလုံးသည် ရည်မှန်းတန်ဖိုးအတွင်းတွင်ရှိပါသည်။

eယား ၂.၅-၂ ရည်ညွှန်းရေတွင်း၏ ရေအရည်အသွေးစောင့်ကြည့်တန်ဖိုးရလဒ်

ච රි	ရေအရည်အသွေး အမျိုးအစားများ (Prameters)	ယူနစ်	မြေအောက်ရေ နမူနာယူသည့် နေရာ-၂ (GW-2)	ရည်မှန်းတန်ဖိုး (ကိုယ်တိုင် စောင့်ကြည့်လေ့လာခြင်းအတွက် ရည်ညွှန်းတန်ဖိုး)
၁	ရေအပူချိန် (water temperature)	°C	J9	≤ २၅
J	ချဥ်ဖန်ကိန်း(pH)	-	ე.0	G - ც
9	ဆိုင်းကြွအနယ် (suspended solid)	mg/L	G	ე0
9	ပျော်ဝင်အောက်စီဂျင် (Dissolved Oxygen)	mg/L	ე.ე0	-
၅	ဖီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချုက် (၅- ရက်) (BOD ₍₅₎)	mg/L	9.56	50
G	ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD _(Cr))	mg/L	<0.9	აეე
?	နိုက်ထရိုဂျင်စုစုပေါင်း (Total Nitrogen)	mg/L	<0.၅	60
၈	ဖော့စဖောရပ်စုစုပေါင်း (Total Phosphorus)	mg/L	-	J
_	အရောင် (Color)	TCU (True Color		
G	3366/00 (00101)	Unit)	၄၇.၈၂	၁၅၀
20	အနံ့ (Odor)	TON (Threshold		
50	329 (Odoi)	Odor Number)	ე.ç	-
၁၁	ကိုလီဖောင်းစုစုပေါင်း	MPN/100ml		000
55	(Total Coliform)	MPN/100IIII	<ວ.ຄ	900
၁၂	ဆီနှင့် အမဲဆီ (Oil and Grease)	mg/L	<2.5	20
၁၃	ပျော်ဝင်အနည်စုစုပေါင်း (Total Dissolved Solids)	mg/L	ე ეც	Jooo
၁၄	သံဓာတ် (Iron)	mg/L	၂.၃၆၂	२ .၅
၁၅	ပြဒါးဓာတ် (Mercury)	mg/L	≤o.ooj	0.009
	ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော	· · · · · · · · · · · · · · · · · · ·		
၁၆	ကိုလီဖောင်းဘက်တီးရီးယား	MPN/100ml	<၁.၈	(200)**
	(Escherichia Coli)			(MPN/100ml)
၁၇	စီးဆင်းနှုန်း (Flow Rate)	m³/s	-	-

မှတ်ချက်။ အနီရောင်ဖြင့်ဖော်ပြထားသောတန်ဖိုးများသည်သတ်မှတ်ထားသည့်တန်ဖိုးများထက်ကျော်လွန်နေသည်ကိုဆိုလိုပါသည်။

ဖော့စဖောရက်စုစုပေါင်း (Total Phosphorus) ကိုစောင့်ကြည့်လေ့လာသောကာလအတွင်းတွင် ဓာတ်ခွဲခန်းတွင် တိုင်းတာ၍မရနိုင်ပါ။ *မှတ်ချက်။ မြေအောက်ရေစောင့်ကြည့်လေ့လာသောနေရာတွင် ရေအသုံးပြုမှုပေါ် မူတည်၍ ဗီယက်နမ်နိုင်ငံရှိ မြေအောက်ရေအရည်အသွေးဆိုင်ရာ အမျိုးသားနည်းပညာစည်းမျင်းဥပဒေ B1(ဆည်မြောင်းရေ) (No. QCVN08: 2008/BTNMT) ကိုမြေအောက်ရေကိုယ်တိုင် စောင့်ကြည့်လေ့လာခြင်းအတွက် ရည်မှန်းတန်ဖိုးအဖြစ်သတ်မှတ်ပါသည်။

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

အခန်း ၂ (အပိုင်း ၂.၅) တွင်ဖော်ပြထားသကဲ့သို့ သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(ခ)

အခန်း ၃ နိဂုံးချုပ် နှင့် အကြံပြုချက်များ

လည်ပတ်နေစဉ်ကာလ စောင့်ကြည့်လေ့လာသောအချိန်အတွင်း မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)၊ မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4) နှင့် စွန့်ထုတ်ရေထွက်ပေါက် ဖြစ်သော မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW-7) တို့တွင် ဆိုင်းကြွအနည်များ နှင့် ပျော်ဝင်အနည်စုစုပေါင်း၊ မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)နှင့် စွန့်ထုတ်ရေထွက်ပေါက် ဖြစ်သော မြေပေါ် ရေနမူနာယူသည့် နေရာ-၅ (SW-7)တွင် ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD $_{(5)}$)၊ မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)တွင် ဓာတုနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင်လိုအပ်ချက် (COD_(Cr)) နှင့် ကိုလီဖောင်းစုစုပေါင်း မြေပေါ် ရေနမူနာကောက်ယူရာတွင်ကျော်လွန်နေပါသည်။ ရည်ညွှန်းရေတွင်းရှိ စသည်တို့သည် မြေအောက်ရေနမူနာ ယူသည့်နေရာ (GW-2)တွင် ရလဒ်များအားလုံးသည် ရည်မှန်းတန်ဖိုးအတွင်းတွင်ရှိပါသည်။ ထွက်ပေါက် ဖြစ်သော မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW-7) ရှိ ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေရခြင်းမှာ ဇုန်အပိုင်း(ခ)ရှိ မြေလွတ်များမှ မြေမျက်နှာပြင် စီးဆင်းရေများ ကြောင့် ဖြစ်နိုင်ပါသည်။ အဓိကစွန့်ထုတ်ရေ ထွက်ပေါက် ဖြစ်သောမြေပေါ် ရေနမူနာ ယူသည့် နေရာ-၇ (SW-7) တွင် ရည်မှန်းတန်ဖိုးထက် ရေထုထဲတွင် အော်ဂဲနစ်ညစ်ညမ်းမှု (c) (၂) ရာသီဥတုအပူချိန်လွန်ကဲခြင်းကြောင့် ဖြစ်ပေါ် လာသော ပတ်ဝန်းကျင်ဆိုင်ရာဖိအားများ၊ (၃) ရေထုထဲတွင် နိုက်ထရိတ်ပမာဏလွန်ကဲခြင်းကြောင့် အပင်များကြီးထွားကာ ပျော်ဝင်အောက်စီဂျင် လျော့နည်းလာခြင်း ဖီဝနည်းဖြင့်ဖြိုခွဲရန် <u>အောက်စီဂျင်လိုအပ်ချက်</u> (၅-ရက်) တို့ကြောင့်ဖြစ်သည်။ သီလဝါအထူးစီးပွားရေးဇုန် ജി ရည်မုန်းတန်ဖိုးများထက် ကျော်လွန်နေသော်လည်း အမျိုးသားပတ်ဝန်းကျင်ဆိုင်ရာ အရည်အသွေး (ထုတ်လွှတ်မှု) လမ်းညွှန်ချက်များ တန်ဖိုးအတွင်းတွင်ရှိပါသည်။ ထိုမီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD $_{(5)}$)၏တန်ဖိုးကို ပိုမိုတိကျစေရန် ထပ်တိုးရေအရည်အသွေးစောင့်ကြည့် လေ့လာမှုကို မြန်မာဂျပန်သီလဝါဖွံ့ဖြိုးရေးလီမိတက်မှ တူညီသောနေရာတွင် မတ်လ ၈ ရက်နေ့၊ ၂၀၂၂ ခုနှစ် ဆောင်ရွက်ခဲ့ပါသည်။ ပုံမှန်စောင့်ကြည့်လေ့လာမှု ရလဒ်များ (ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်)ကို ထပ်တိုးစောင့်ကြည့်လေ့လာမှုရလဒ်များ (မတ်လ ၈ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်) နှင့်နှိုင်းယှဥ်ရာတွင် မတ်လ ၈ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်တွင် တိုင်းတာခဲ့သောရလဒ်များမှာ ပို၍နည်းပြီး ရည်မှန်းတန်ဖိုးအတွင်းတွင် ရှိပါသည်။ ထို့ကြောင့် ဖေဖော်ဝါရီလ ၁၅ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်တွင် <u>ဇီဝနည်းဖြင့်ဖြိုခွဲရန်</u> အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) တိုင်းတာခဲ့သော ပုံမှန်စောင့်ကြည့်လေ့လာမှုတန်ဖိုးများသည် ရည်မုန်းတန်ဖိုးများထက် ကျော်လွန်ရခြင်းမှာ အလွန်ပူပြင်းသောရာသီဥတုကြောင့် ရေထုထဲတွင် အော်ဂဲနစ်ညစ်ညမ်းမှုပမာဏများနေပြီး ပထမဆုံးအကြိမ် ကျော်လွန်ခြင်းဖြစ်ပါသည်။ ထို့အပြင် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW-7)တွင် ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD₍₅₎)၏ ယခင်လုပ်ဆောင်ခဲ့သော ပုံမှန်စောင့်ကြည့်လေ့လာခြင်းနှင့် ထပ်တိုးစောင့်ကြည့်လေ့လာမှု ရလဒ်များသည်လည်း ရည်မှန်းတန်ဖိုးအတွင်းတွင်ရှိပါသည်။ လူ၏ကျန်းမာရေးအတွက် သိသာထင်ရှားသော ထိခိုက်မှုမရှိဟု သတ်မှတ်နိုင်ပါသည်။

ဆိုင်းကြွအနည်များ နှင့် ပျော်ဝင်အနည်စုစုပေါင်းတို့သည် မြေပေါ် ရေနမူနာယူသည့် နေရာများဖြစ်သော မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4) တို့တွင် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်ရခြင်းမှာ သဘာဝအလျောက် ချောင်းအထက်ပိုင်းမှ စီးဆင်းလာခြင်းကြောင့် လည်းကောင်း၊ သီလဝါအထူးစီးပွားရေးခုန် ပြင်ပရှိ ပြည်တွင်းစက်မှုခုန်မှ စွန့်ထုတ်လိုက်သော ရေများ ကြောင့်လည်းကောင်း၊ ချောင်းအောက်ဘက်ရှိ ရေများသည် ဒီရေအတက်အကျကြောင့် အထက်သို့ ပြန်လည်စီးဆင်းလာခြင်းကြောင့် လည်းကောင်း ဖြစ်နိုင်ပါသည်။

ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD₍₅₎)၏ရလဒ်များသည် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)တွင် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေရခြင်းမှာ (၁) ရေထုထဲတွင် အော်ဂဲနစ်ညစ်ညမ်းမှု ပမာဏများနေခြင်း၊ (၂) ရာသီဥတုအပူချိန်လွန်ကဲခြင်းကြောင့် ဖြစ်ပေါ် လာသော ပတ်ဝန်းကျင်ဆိုင်ရာဖိအားများ၊ (၃) ရေထုထဲတွင် နိုက်ထရိတ်ပမာဏလွန်ကဲခြင်းကြောင့် အပင်များကြီးထွားကာ ပျော်ဝင်အောက်စီဂျင် လျော့နည်းလာခြင်းတို့ကြောင့် ဖြစ်သည်။

ဓာတုနည်းဖြင့် ဖြိုခွဲရန်အောက်စီဂျင် လိုအပ်ချက် (COD_(Cr)) ၏ ရလဒ်များသည် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)တွင် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေရခြင်းမှာ (၁) ရေထုထဲတွင် အော်ဂဲနစ်ညစ်ညမ်းမှု ပမာဏများကာ ပျော်ဝင်အောက်စီဂျင်လျော့နည်းလာခြင်းကြောင့်လည်းကောင်း၊ (၂) ရေထုထဲတွင် ဓာတ်တိုးနိုင်သော အင်အော်ဂဲနစ်ဒြပ်ပေါင်းများရှိနေခြင်းနှင့် ဆွေးမြေ့နေသောအပင်များ၊ လူတို့၏ စွန့်ပစ်အညစ်အကြေးများ၊ သို့မဟုတ် သီလဝါအထူးစီးပွားရေးဇုန်ပြင်ပရှိ ပြည်တွင်းစက်မှုဇုန်မှ စွန့်ထုတ်လိုက်သောရေများ စသည်တို့ ပမာဏများစွာရှိနေခြင်းကြောင့်လည်းကောင်း ဖြစ်နိုင်ပါသည်။

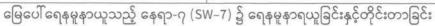
ကိုလီဖောင်းစုစုပေါင်းရလဒ်များသည် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2)တွင် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေရခြင်းမှာ (၁) စွန့်ထုတ်ရေရောက်ရှိရာ ချောင်းအတွင်းနှင့် အနီးတစ်ဝိုက်တွင် ရှိနေသော အပင်အမျိုးမျိုးနှင့် သက်ရှိသတ္တဝါများဖြစ်သော ငှက်များနှင့်တိရစ္ဆာန်များကြောင့် သဘာဝ ဘက်တီးရီးယားများသည် စွန့်ထုတ်ရေရောက်ရှိရာ ချောင်းအတွင်းတွင် တည်ရှိနေခြင်းကြောင့်လည်းကောင်း၊ (၂) သီလဝါအထူးစီးပွားရေးဇုန် ပြင်ပရှိ ပြည်တွင်းစက်မှုဇုန်မှ စွန့်ထုတ်လိုက်သော ရေများကြောင့်လည်းကောင်း၊ (၃) ဒီရေသက်ရောက်မှုဖြင့် ပတ်ဝန်းကျင်ဧရိယာမှ ရေများစီးဝင်လာခြင်းကြောင့်လည်းကောင်း၊

(၄) ချောင်းအောက်ဘက်ရှိရေများသည် ဒီရေအတက်အကျကြောင့် အထက်သို့ပြန်လည်စီးဆင်းလာခြင်းကြောင့် လည်းကောင်း ဖြစ်နိုင်ပါသည်။

အနာဂတ်တွင် သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း (ခ) ၏ အဓိကစွန့်ထုတ်ရေ ထွက်ရှိသောနေရာများမှ ထွက်ရှိလာသော ရေအရည်အသွေးများဖြစ်သည့် ဆိုင်းကြွအနယ်များ၊ ပျော်ဝင်အနည်စုစုပေါင်း နှင့် ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD₍₅₎) တို့၏ သင့်တော်သော ရည်မှန်းအဆင့်ရရှိနိုင်ရန် အောက်ပါဆောက်ရွက်ချက်များကိုလုပ်ဆောင်သင့်ပါသည်။

- ၁) ကိုလီဖောင်းဘက်တီးရီးယားများ၏ ကျန်းမာရေးအပေါ် သက်ရောက်မှုကို သိရှိနိုင်ရန် ဝမ်းကိုက်ရောဂါကို ဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား (E Coli) ကို ဆက်လက်စောင့်ကြည့်ရန်။
- ၂) ဆောက်လုပ်ရေးလုပ်ငန်းများမှရေများစီးဆင်းမှုအခြေအနေကိုစောင့်ကြည့်လေ့လာရန် နှင့်
- ၃) ဆောက်လုပ်ရေးလုပ်ငန်းများမှအထွေထွေသုံးစွန့်ထုတ်ရေများ၏အခြေအနေကိုစောင့်ကြည့်လေ့လာရန်။

ဤတွင်စာတမ်းပြီးဆုံးပါသည်။



နောက်ဆက်တွဲ ၁ ရေနမူနာရယူသည့် မှတ်တမ်းဓာတ်ပုံများ

သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း (ခ) ရှိ စွန့်ထုတ်ရေနမူနာရယူသည့်နေရာ

စွန့်ထုတ်ရေထွက်ရှိသောနေရာများနှင့် စွန့်ထုတ်ရေရောက်ရှိနိုင်သည့်ချောင်း၏ အခြေခံအချက်အလက်များကို နှိုင်းယှဉ်ရန်အတွက် ရည်ညွှန်းစောင့်ကြည့်လေ့လာသည့် နေရာများ

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW–2) ၌ ရေနမူနာရယူခြင်းနှင့်တိုင်းတာခြင်း

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW–4) ၌ ရေနမူနာရယူခြင်းနှင့်တိုင်းတာခြင်း

မြေအောက်ရေနမူနာယူသည့် နေရာ-၂ (GW-2) ရေနမူနာရယူခြင်းနှင့်တိုင်းတာခြင်း

နောက်ဆက်တွဲ ၂ ဓာတ်ခွဲခန်းရလဒ်များ

<u>စွန့်ထုတ်ရေထွက်ရှိရာနေရာ</u>

DOWA

GOLDEN DOWN ECO-SYSTEM MYANMAR CO., LTD.
Lot No F1. Thirawa SEZ Zone A, Yangon Region, Myanmar.
Phone No. Fax No. (+95) 1 2309051

Report No. ; GEM-LAB-202203007

Revision No. : 1

Report Date: 1 March, 2022 Application No.: 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No, 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

: Environment Monitoring report for Zone A & B

Sample Description

Sample Name :

: MKI-SW-7-0215

Sampling Date: 15 February, 2022

Sample No.

: W-2202075

Sampling By : Customer

Waste Profile No. : -

Sample Received Date: 15 February, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	ss	APHA 2540D (Dry at 103-105'C Method)	mg/l	104	_
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	38.44	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/I	61.2	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100mi	49.0	1.8
5	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	<3.1	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	1.1	0.5
7	Color	APHA 2120C (Spectrophotometric Method)	TCU	3.61	0.00
8	Odor	APHA 2150 B (Threshold Odor Test)	TON	1.4	0
9	TDS	APHA 2540 C (Total Dissoived Solids Dried at 180'C Method)	mg/l	3488	
10	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
11	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
12	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	1.108	0.002
13	Escherichia Coli	APHA 9221 F Escherichia Coli Procedure Using Fluorogenic Substrate	MPN/100ml	<1.8	1.8

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Ni Ni Aye Lwin

Assistant Manager

LAB Mar 1, 2022 GEM

Approved By :

Hideki romo Managing Director

Mar 1, 2022

မြန်မာဂျပန်သီလဝါဖွံ့ဖြိုးရေးလီမိတက်မှ မြေပေါ် ရေနမူနာယူသည့်နေရာ-ဂု (SW-7) တွင် ထပ်တိုးရေနမူနာကောက်ယူခြင်း

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No E1. Thilawa SEZ Zone A, Yangon Region, Myanmar. Phone No Fax No: (+95) 1 2309051

motivate our planet Doc No: GEM-LB-R004E/00 Page 1 of 1

Report No.: GEM-LAB-202203087

Revision No. : 1

Report Date: 18 March, 2022 Application No.: 0001-C001

Analysis Report

Client Name

: MJTD Co.Ltd

Address

: Coner of Thilwa Development Road and Dagon Thilawa Road, Thilawa SEZ, Thanlyin, Yangon.

Project Name

Sample Description

Sample Name

: SW-7 (Environment)

Sampling Date: 8 March, 2022

Sample No.

: W-2203052

Sampling By : Customer

Waste Profile No.

Sample Received Date: 8 March, 2022

No.	Parameter	Method	Unit	Result	rod
1	BOD (5)	HACH Method 10099 (Respirometric Method)	mg/l	7.41	0.00

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By :

18 3 22 Cherry Myint Thein

Supervisor

Approved By :

Hidek Yomo March 18, 2022

Managing Director

စွန့်ထုတ်ရေထွက်ရှိသောနေရာများနှင့် စွန့်ထုတ်ရေရောက်ရှိနိုင်သည့်ချောင်း၏ အခြေခံအချက်အလက်များကို နှိုင်းယှဉ်ရန်အတွက် ရည်ညွှန်းစောင့်ကြည့်လေ့လာသည့် နေရာများ

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No EL. Thicawa SEZ Zone A. Yangon Region, Myanmar Phone No. Fax No. (~95) 1.2309051

Report No. : GEM-LAB-202203004

Revision No. : 1

Report Date : 1 March, 2022 Application No. : 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No, 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

: Environment Monitoring report for Zone A & B

Sample Description

Sample Name

: MKI-SW-2-0215

Sampling Date: 15 February, 2022

Sample No. : W-2202072

Sampling By : Customer

Waste Profile No. :

Sample Received Date: 15 February, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	114	
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	52.60	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	144.0	0.7
4	Total Coliform APHA 92218 (Standard Total Coliform Fermentation Technique		MPN/100ml	35000.0	1.8
5	5 Oil and Grease APHA 5520B (Partition-Gravimetric Method)		mg/l	4.3	3.1
6	Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method)		mg/l	13.0	0.5
7	Color	APHA 2120C (Spectrophotometric Method)	TCU	78.52	0.00
8	Odor	APHA 2150 B (Threshold Odor Test)	TON	1.4	0
9	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180'C Method)	mg/l	2368	-
10	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
11	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
12	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	1.062	0.002

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Analysed By

Ni Ni Aye Lwin Assistant Manager LAB Mar 1, 2022 GEM

Approved By :

Hideki Yorlio Managing Director

Mar 1,2022

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(ခ)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်မှုအတွက်ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအစီရင်ခံစာ (နှစ်လတစ်ကြိမ် စောင့်ကြည့်လေ့လာခြင်း၊ ဖေဖော်ဝါရီလ ၂၀၂၂ ခုနှစ်)

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD (of No E1: Thilawa SEZ Zone A, Yangon Region, Myanmar Phone No. Fax No: [-95] 1 2309051

Report No. : GEM-LAB-202203005

Revision No. : 1

Report Date : 1 March, 2022 Application No.: 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No. 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

: Environment Monitoring report for Zone A & B Sample Description

Sample Name

: MKI-SW-4-0215 W-2202073

Sampling Date: 15 February, 2022

Sample No.

Sampling By : Customer

Waste Profile No.

Sample Received Date: 15 February, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	ss	APHA 2540D (Dry at 103-105'C Method)	mg/!	180	1
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	4.42	0.00
3	COD (Cr) APHA 5220D (Close Reflux Colorimetric Method)		mg/l	14.8	0.7
4	Total Coliform APHA 9221B (Standard Total Coliform Fermentation Technique)		MPN/100ml	110.0	1.8
5	Oil and Grease APHA 5520B (Partition-Gravimetric Method)		mg/l	<3.1	3.1
б	Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method)		mg/I	<0.5	0.5
7	Color	Color APHA 2120C (Spectrophotometric Method)		2.43	0.00
8	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	0
9	TDS	APHA 2540 C (Total Dissolved Sollds Dried at 180°C Method)	mg/l	6036	-
10	Mercury	Mercury APHA 3120 B (Inductively Coupled Plasma (ICP) Method)		≤0.002	0.002
11	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
12	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	2.744	0.002

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Ni Ni Aye Lwin

Assistant Manager

Approved By

Managing Director

Mar 1,2022

DOWA

GOLDEN DOWA ECO-SYSTEM MYANMAR CO., LTD. Lot No EL. Thilawa SEZ Zone A, Yangon Region, Myanmar Phone No. Fax No. (+95) 1 2309051

Report No. : GEM-LAB-202203008

Revision No. : 1

Report Date : 1 March, 2022 Application No.: 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No, 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

: Environment Monitoring report for Zone A & B

Sample Description

Sample Name

: MKI-GW-2-0215

Sampling Date: 15 February, 2022

Sample No.

: W-2202076

Sampling By : Customer

Waste Profile No.

Sample Received Date: 15 February, 2022

No.	Parameter	Method	Unit	Result	rod
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	6	
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	1.49	0.00
3	COD (Cr) APHA 5220D (Close Reflux Colorimetric Method)		mg/l	<0.7	0.7
4	Total Coliform APHA 9221B (Standard Total Coliform Fermentation Technique)		MPN/100ml	<1.8	1.8
5	OH and Grease APHA 5520B (Partition-Gravimetric Method)		mg/l	<3.1	3.1
6	Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method)		mg/l	<0.5	0.5
7	Calor APHA 2120C (Spectrophotometric Method)		TCU	47.82	0.00
8	Odor APHA 2150 B (Threshold Odor Test)		TON	1.4	0
9	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180'C Method)	mg/l	156	-
10	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
11	Chromium	Chromium APHA 3120 B (Inductively Coupled Plasma (ICP) Method)		≤0.002	0.002
12	Iron APHA 3120 B (Inductively Coupled Plasma (ICP) Method)		mg/l	2.362	0.002
13	Escherichia Coli	APHA 9221 F Escherichia Coli Procedure Using Fluorogenic Substrate	MPN/100ml	<1.8	1.8

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Nr Nr Aye Lwin

Assistant Manager

Approved By :

Managing Director

သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ)ရှိ စက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်ရေးအတွက် ရေအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဥ်ကာလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃)

(နှစ်လတစ်ကြိမ် စောင့်ကြည့်လေ့လာခြင်း)

၂၀၂၂ ခုနှစ်၊ ဧပြီလ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

မာတိကာ

အခန်း ၁ နိဒါန်း
၁.၁ ယေဘုယျ ဖော်ပြချက်
အခန်း ၂ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်း
၂.၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား
၂.၂ ရေနမူနာရယူသည့်နေရာများ၏တည်နေရာနှင့်အချက်အလက်များဖော်ပြချက်၅
၂.၃ စောင့်ကြည့်လေ့လာသည့်နည်းလမ်း
၂.၄ စောင့်ကြည့်လေ့လာသည့်ကာလ ၇
၂.၅ စောင့်ကြည့်လေ့လာမှုရလဒ်များ
အခန်း ၃ နိဂုံးချုပ် နှင့် အကြံပြုချက်များ၁၂
နောက်ဆက်တွဲ ၁ ရေနမူနာရယူသည့် မှတ်တမ်းဓာတ်ပုံများက၁-၁
နောက်ဆက်တွဲ ၂ ဓာတ်ခွဲခန်းရလဒ်များက၂-၁
<u> </u>
eယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား ၃
ဇယား ၂.၂-၁ ရေနမူနာရယူသည့်နေရာများ၅
ဇယား ၂.၃-၁ ရေအရည်အသွေးစစ်ဆေးသည့် နည်းလမ်းများ၆
ဇယား ၂.၄-၁ နေရာတစ်ခုချင်းစီအတွက် နမူနာရယူသည့်အချိန် ၇
œယား ၂.၄-၂ မြန်မာနိုင်ငံ၊ ရန်ကုန်မြစ်၏ ဒီရေမှတ်တမ်း ၇
eယား ၂.၅-၁ စွန့်ထုတ်ရေထွက်ပေါက်နှင့်စွန့်ထုတ်ရေရောက်ရှိသော ချောင်းမှရေအရည်အသွေး
စောင့်ကြည့်လေ့လာမှုရလဒ်များ
ဇယား ၂.၅-၂ ရည်ညွှန်းရေတွင်း၏ ရေအရည်အသွေးစောင့်ကြည့်တန်ဖိုးရလဒ်၁၀
<u>ပုံများစာရင်း</u>
ပံ ၁.၁-၁ ရေအရည်အသွေးစောင်ကြည်လေ့လာမှုအတက်ရေနမနာရယညာနေရာများ၏ တည်နေရာပြပံ ၊

အခန်း ၁ နိဒါန်း

၁.၁ ယေဘုယျ ဖော်ပြချက်

သီလဝါအထူးစီးပွားရေးဇုန်သည် ရန်ကုန်တိုင်းဒေသကြီး၏ တောင်ပိုင်းခရိုင်တွင်တည်ရှိပြီး ရန်ကုန်မြို့၏ အရှေ့တောင်ဘက် ၂၃ ကီလိုမီတာတွင် တည်ရှိပါသည်။ သီလဝါအထူးစီးပွားရေးဇုန်၏ အကောင်အထည် ဖော်ဆောင်သူအနေဖြင့် ဇုန်အပိုင်း(ခ)အတွင်းရှိ စက်မှုမြေနေရာအတွက် ခွင့်ပြုချက်ရရှိထားသော ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း အစီရင်ခံစာနှင့် ပတ်ဝန်းကျင်ဆိုင်ရာစီမံခန့်ခွဲမှုအစီအစဉ်အတိုင်း ပုံမှန်စောင့်ကြည့်စစ်ဆေးခြင်းကို ဆောင်ရွက်ရန် မြန်မာ-ဂျပန် သီလဝါဖွံ့ဖြိုးရေးလီမိတက်တွင် တာဝန်ရှိပါသည်။ မြန်မာ-ဂျပန် သီလဝါဖွံ့ဖြိုးရေးလီမိတက်သည် ဇုန်အတွင်း နှင့် အနီးပတ်ဝန်းကျင်ရှိ သဘာဝပတ်ဝန်းကျင် အခြေအနေများကိုသိရှိစေရန် သဘာဝပတ်ဝန်းကျင်နှင့်သက်ဆိုင်သော အချက်အလက် စောင့်ကြည့်လေ့လာမှုများကို ရေးဆွဲထားပြီး ထိုအစီအစဉ်များအရ အကောင်အထည်ဖော် ဆောင်ရွက်ခဲ့ပါသည်။

ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအား ရေနမူနာရယူရာတွင် သီလဝါအထူးစီးပွားရေးစုန်အတွင်းနှင့် အနီးပတ်ဝန်းကျင်ရှိ စုစုပေါင်းနေရာ လေးနေရာ၊ နာမည်အားဖြင့် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)၊ မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)၊ မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)၊ မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-7) နှင့် မြေအောက်ရေနမူနာယူသည့် နေရာ-၂ (GW-2) တို့တွင် စောင့်ကြည့်လေ့လာခဲ့ပါသည်။ ထိုနေရာ လေးနေရာမှ မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-7) သည် စုန်အပိုင်း(ခ) လုပ်ငန်းလည်ပတ်နေစဥ်ကာလတွင် အဓိကစွန့်ထုတ်ရေထွက်ပေါက် ဖြစ်ပါသည်။ ထို့အပြင် မြေအောက်ရေနမူနာယူသည့် နေရာ-၂ (GW-2) အား ဖလမ်းကျေးရွာတွင်တည်ရှိသော ဘုန်းကြီးကျောင်းပရဝဏ်အတွင်းရှိ ရေတွင်းအား ရည်ညွှန်းနိုင်ရန် စောင့်ကြည့်လေ့လာခဲ့သည်။ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအတွက် ရေနမူနာရယူသော နေရာများ၏ တည်နေရာများကို ပုံ ၁.၁-၁ တွင် ဖော်ပြထားပါသည်။

ပုံ ၁.၁-၁ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအတွက်ရေနမူနာရယူသောနေရာများ၏ တည်နေရာပြပုံ

အခန်း ၂ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်း

၂.၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား

ရေအရည်အသွေး စောင့်ကြည့်လေ့လာမှုအတွက် ရေနမူနာရယူသောနေရာများနှင့် ရေအရည်အသွေး အမျိုးအစားများ(Parameters)ကို ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်းဆိုင်ရာ အစီအရင်ခံစာပါ ပတ်ဝန်းကျင်ဆိုင်ရာစောင့်ကြည့်လေ့လာမှု အစီအစဉ်အား ခြုံငုံမိစေရန်အလို့ငှာ ဆောင်ရွက်ထားပါသည်။

ရေအရည်အသွေးနမူနာစစ်တမ်းရယူမှုအား နေရာလေးနေရာတွင် ဆောင်ရွက်ခဲ့ပါသည်။ ထိုနေရာ လေးနေရာမှ ရေစီးဆင်းမှုတိုင်းတာခြင်းကို ရေစီးနှုန်းတိုင်းကိရိယာဖြင့် တိုင်းတာနိုင်သော နေရာနှစ်နေရာ ဖြစ်သည့် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4) တို့တွင် တိုင်းတာခဲ့ပါသည်။ စောင့်ကြည့်လေ့လာသော ရေအရည်အသွေး အမျိုးအစားများ(Parameters)နှင့် ရေနမူနာရယူသောနေရာများကို ဇယား ၂.၁-၁ တွင် အကျဉ်းချုပ် ဖော်ပြထားပါသည်။

eယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား

රේ	ရေအရည်အသွေး အမျိုးအစား (Parameters)	မြေပေါ် ရေ နမူနာယူ သည့် နေရာ-၂ (SW-2)	မြေပေါ်ရေ နမူနာယူ သည့် နေရာ-၄ (SW-4)	မြေပေါ် ရေ နမူနာယူ သည့် နေရာ-၇ (SW-7)	မြေအောက်ရေ နမူနာယူသည့် နေရာ-၂ (GW-2)	မှတ်ချက်			
Э	ရေအပူချိန် (Water Temperature)	0	0	0	0	ရေနမူနာရယူသည့်နေရာတွင် တိုက်ရိုက်တိုင်းတာခြင်း			
J	ချဥ်ဖန်ကိန်း (pH)	0	0	0	0	ရေနမူနာရယူသည့်နေရာတွင် တိုက်ရိုက်တိုင်းတာခြင်း			
5	ပျော်ဝင်အောက်စီဂျင် (DO)	0	0	0	0	ရေနမူနာရယူသည့်နေရာတွင် တိုက်ရိုက်တိုင်းတာခြင်း			
9	ဇီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD ₍₅₎)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း			
၅	ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD _(cr))	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း			
G	နိုက်ထရိုဂျင်စုစုပေါင်း (Total Nitrogen)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း			
7	ဆိုင်းကြွအနယ်များ (Suspended Solids)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း			
6	ကိုလီဖောင်း စုစုပေါင်း (Total Coliform)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း			
e	ဖော့စဖောရက်စုစုပေါင်း (Total Phosphorus)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း			
20	အရောင် (Color)	0	0	0	0	ဓာတ်ခွဲ့စမ်းသပ်ခြင်း			
၁၁	အနံ့ (Odor)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း			

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(ခ)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်မှုအတွက်ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအစီရင်ခံစာ (နှစ်လတစ်ကြိမ် စောင့်ကြည့်လေ့လာခြင်း၊ ဧပြီလ ၂၀၂၂ ခုနှစ်)

⊕ §	ရေအရည်အသွေး အမျိုးအစား (Parameters)	မြေပေါ် ရေ နမူနာယူ သည့် နေရာ-၂ (SW-2)	မြေပေါ် ရေ နမူနာယူ သည့် နေရာ-၄ (SW-4)	မြေပေါ် ရေ နမူနာယူ သည့် နေရာ-၇ (SW-7)	မြေအောက်ရေ နမူနာယူသည့် နေရာ-၂ (GW-2)	မှတ်ချက်
၁၂	ဆီနှင့်အမဲဆီ (Oil and Grease)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၃	ပျော်ဝင်အနည်စုစုပေါင်း (Total Dissolved Solids) (ကိုယ်တိုင်စောင့်ကြည့်လေ့လာ ခြင်း)	0	0	o	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
29	သံဓာတ် (Iron) (ကိုယ်တိုင်စောင့်ကြည့်လေ့လာ ခြင်း)	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၅	ပြဒါးဓာတ် (Mercury) (ကိုယ်တိုင်စောင့်ကြည့်လေ့လာ ခြင်း)	0	o	0	o	ဓာတ်ခွဲစမ်းသပ်ခြင်း
ာ၆	ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား (Escherichia Coli) (ကိုယ်တိုင်စောင့်ကြည့်လေ့လာ ခြင်း)	_	-	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၇	ရေစီးဆင်းနှုန်း	0	0	14:	(- -	ရေနမူနာရယူသည့်နေရာတွင် တိုက်ရိုက်တိုင်းတာခြင်း

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လိမိတက်

၂.၂ ရေနမူနာရယူသည့်နေရာများ၏တည်နေရာနှင့်အချက်အလက်များဖော်ပြချက်

ရေနမူနာယူသည့်နေရာများကို ဧယား ၂.၂-၁ တွင် ဖော်ပြထားပါသည်။ ရေနမူနာရယူသည့်နေရာ တစ်ခုစီတွင် စစ်တမ်းရယူခဲ့သည့်မှတ်တမ်းပုံများကို နောက်ဆက်တွဲ-၁ တွင်ဖော်ပြထားသည်။

ဇယား ၂.၂-၁ ရေနမူနာရယူသည့်နေရာများ

စဉ်.	တည်နေရာ	အသေးစိတ်အချက်အလက်
	မြေပေါ် ရေနမူနာယူသည့်	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၄၀' ၂၀.၆၉"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၇' ၁၈.၀၄"
)	နေရာ-၂	တည်နေရာ - ရွှေပျောက်ချောင်းအထက်ပိုင်း
	(SW-2)	ရေနမူနာရယူသော အမျိုးအစား - မြေပေါ် ရေရယူခြင်းနှင့်ရေစီးနှုန်းတိုင်းတာခြင်း
	မြေပေါ် ရေနမူနာယူသည့်	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၃၉' ၄၂.၈၄"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၆' ၂၇.၄၂"
J	နေရာ-၄	တည်နေရာ - ရွှေပျောက်ချောင်းအောက်ပိုင်း
	(SW-4)	ရေနမူနာရယူသော အမျိုးအစား - မြေပေါ် ရေရယူခြင်းနှင့်ရေစီးနှုန်းတိုင်းတာခြင်း
	Percentage of the Color	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၄၀' ၁၃.၂၅"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၇' ၅.၆၆"
	မြေပေါ် ရေနမူနာယူသည့်	တည်နေရာ – ရွှေပျောက်ချောင်းသို့ မရောက်မီ ဇုန် အပိုင်း (ခ) ဆောက်လုပ်ရေးလုပ်ငန်းခွင်ရှိ
5	နေရာ၇ (SW-7)	ရေထိန်းကန်၏ ထွက်ပေါက်
	(500-1)	ရေနမူနာရယူသော အမျိုးအစား - စွန့်ထုတ်ရေရယူခြင်း
	မြေအောက်ရေနမူနာယူသည့်	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၃၉' ၂၅.၃၀"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၇' ၁၅.၆၀"
9	နေရာ-၂	တည်နေရာ - ဖလမ်းကျေးရွာရှိ ဘုန်းကြီးကျောင်းပရဝဏ်အတွင်း
	(GW-2)	ရေနမူနာရယူသော အမျိုးအစား - မြေအောက်ရေရယူခြင်း

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2) (ရည်ညွှန်းအမှတ်)

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)အား ရွှေပျောက်ချောင်း၏ အထက်ပိုင်းတွင် ရယူခဲ့ခြင်းဖြစ်သည်။ အဆိုပါအမှတ်သည် ဇုန်အပိုင်း(ခ)ဧရိယာ၏ အရှေ့မြောက်ဘက်နှင့် ဒဂုံ-သီလဝါလမ်း၏ တောင်ဘက်တွင် တည်ရှိပါသည်။ အနောက်မြောက်တွင် ဇုန်အပိုင်း(က) နှင့် အရှေ့ဘက်တွင် ပြည်တွင်းစက်မှုဇုန်တို့က အသီးသီး ဝန်းရံလျက် ရှိသည်။

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4) (ရည်ညွှန်းအမှတ်)

ပြည်တွင်းစက်မှုဇုန်၊ ဇုန်အပိုင်း(က) နှင့် ဇုန်အပိုင်း(ခ)ရှိ ဆောက်လုပ်ရေးလုပ်ငန်းခွင်များမှ ထွက်ရှိလာသောမိုး ရေများပေါင်းစည်းရောနှောသွားသောနေရာ ရွှေပျောက်ချောင်း၏ အောက်ပိုင်းတွင် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4) တွင် ရယူခဲ့ခြင်းဖြစ်သည်။ ရွှေပျောက်ချောင်းသည် အရှေ့မှအနောက်သို့စီးဆင်းပြီး ရန်ကုန်မြစ် အတွင်းသို့ စီးဝင်သည်။ မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4) သည် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)၏ ချောင်းအောက်ပိုင်း ၂.၁၅ ကီလိုမီတာအကွာတွင် တည်ရှိပါသည်။ အဆိုပါ ရေနမူနာရယူသည့်နေရာသည် ဇုန်အပိုင်း(ခ) ဧရိယာ၏ အနောက်ဘက်တွင်တည်ရှိပြီး ဒဂုံ-သီလဝါလမ်း၏ တောင်ဘက်တွင်တည်ရှိပါသည်။ ပတ်ဝန်းကျင်အနီးအနားတွင် အရှေ့မြောက်ဘက်တွင် ဇုန်အပိုင်း (က)၊ အရှေ့ဘက်တွင် ပြည်တွင်းစက်မှုဇုန်၊ တောင်ဘက်နှင့် အနောက်ဘက်တို့တွင် စပါးခင်းတို့ အသီးသီးတည်ရှိပါသည်။

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW-7) (စွန့်ထုတ်ရေထွက်ပေါက်)

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW-7) သည် ဇုန်အပိုင်း(ခ)၏ လုပ်ငန်းလည်ပတ်နေစဉ်ကာလအတွင်း အဓိကစွန့်ထုတ်ရေထွက်ပေါက် ဖြစ်ပါသည်။ ထိုနေရာသည် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2) ၏ ချောင်းအောက်ပိုင်း၊ အကွာအဝေးအားဖြင့် ၄၃၄ မီတာ အကွာတွင် တည်ရှိပါသည်။ နမူနာရယူသည့်နေရာမှာ ဇုန်အပိုင်း(ခ) ရေထိန်းကန်၏ထွက်ပေါက်၊ ဇုန်အပိုင်း(ခ) ဧရိယာ၏ မြောက်ဘက်နှင့် ဒဂုံ-သီလဝါလမ်းမကြီး၏ တောင်ဘက်တွင် တည်ရှိပါသည်။ အနီးအနားပတ်ဝန်းကျင်၌ မြောက်ဘက်တွင် ဇုန်အပိုင်း(က) နှင့် အရှေ့ဘက်တွင် ပြည်တွင်းစက်မှုဇုန်တို့ တည်ရှိပါသည်။

မြေအောက်ရေနမူနာယူသည့် နေရာ-၂ (GW-2) (မူလတည်ရှိနေသောရေတွင်းအား ရည်ညွှန်းခြင်း)

မြေအောက်ရေနမူနာယူသည့် နေရာ-၂ (GW-2) အား တူးဖော်ထားသောရေတွင်းမှ ရယူခဲ့ပါသည်။ အဆိုပါ ရေတွင်းသည် ဖလမ်းကျေးရွာရှိ ဘုန်းကြီးကျောင်းပရဝဏ်အတွင်းတွင် တည်ရှိပါသည်။ အနီးအနားပတ်ဝန်းကျင်၌ မြောက်ဘက်တွင် သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း (က)၊ တောင်ဘက်တွင် ဖလမ်းကျေးရွာ၊ အနောက်ဘက်တွင် လယ်ကွင်းများ၊ အရှေ့မြောက်ဘက်တွင် ပြည်တွင်းစက်မှုဇုန်နှင့် အရှေ့နှင့်အရှေ့မြောက်ဘက်တွင် သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း (ခ)တို့ အသီးသီးတည်ရှိနေပါသည်။

၂.၃ စောင့်ကြည့်လေ့လာသည့်နည်းလမ်း

ဖယား ၂.၃-၁ ရေအရည်အသွေးစစ်ဆေးသည့် နည်းလမ်းများ

စဉ်	အမျိုးအစားများ	နည်းလမ်း		
О	ရေအပူချိန် (Water Temperature)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)		
J	ချဉ်ဖန်ကိန်း (pH)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)		
9	ဆိုင်းကြွအနယ် (Suspended Solids (SS))	APHA 2540 D (Dry at 103-105°C Method)		
9	ပျော်ဝင်အောက်စီဂျင် (Dissolved Oxygen)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)		
9	ဖီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင်လိုအပ်ချက်(၅-ရက်) (BOD ₍₅₎)	APHA 5210 B (5 Days BOD Test)		
G	ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD _(Cr))	APHA 5220D (Close Reflux Colorimetric Method)		
9	ကိုလီဖောင်း စုစုပေါင်း (Total Coliform)	APHA 9221B (Standard Total Coliform Fermentation Technique)		
၈	နိုက်ထရိုဂျင်စုစုပေါင်း (Total Nitrogen)	HACH Method 10072 (TNT Persulfate Digestion Method)		
e	ဖော့စဖောရိတ်စုစုပေါင်း (Total Phosphorus)	APHA 4500-P E (Ascorbic Acid Method)		
00	အရောင် (Color)	APHA 2120C (Spectrophotometric Method)		

•გ	အမျိုးအစားများ	နည်းလမ်း					
၁၁	အနံ့ (Odor)	APHA 2150 B (Threshold Odor Test)					
၁၂	ဆီနှင့် အမဲဆီ (Oil and Grease)	APHA 5520B (Partition-Gravimetric Method)					
၁၃	ပြဒါးဓာတ် (Mercury)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)					
၁၄	သံဓာတ် (Iron)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)					
၁၅	ပျော်ဝင်အနည်စုစုပေါင်း (Total Dissolved Solids (TDS))	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)					
၁၆	ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား (Escherichia Coli)	APHA 9221 F (Escherichia Coli Procedure Using Fluorogenic Substrate)					
	စီးဆင်းနှုန်း	Detection of Electromagnetic Elements					
၁၇	(Flow Rate)	(Real-time measurement by AEM 213-D Digital Current Meters)					

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

၂.၄ **စောင့်ကြည့်**လေ့လာသည့်ကာလ

ရေအရည်အသွေးနှင့် ရေစီးဆင်းမှုနှုန်းအား ဧပြီလ ၂၆ ရက်နေ့ ၂၀၂၂ ခုနှစ်တွင် ဆောင်ရွက်ခဲ့ပြီး ဒီရေအတက်အကျကြောင့် ဖြစ်ပေါ် လာနိုင်သော သက်ရောက်မှုများကိုရှောင်ရှားနိုင်ရန် အောက်ပါ ဧယား ၂.၄-၁ အတိုင်း ရေနမူနာရယူခဲ့သည်။ မြန်မာနိုင်ငံ၊ ရန်ကုန်မြစ်၏ ဧပြီလ ၂၆ ရက်နေ့ ၂၀၂၂ ခုနှစ် အတွက်ဒီရေ မှတ်တမ်းကို ဧယား ၂.၄-၂ တွင်ဖော်ပြထားပါသည်။

ဖယား ၂.၄-၁ နေရာတစ်ခုချင်းစီအတွက် နမူနာရယူသည့်အချိန်

စဉ်	ရေနမူနာရယူသည့်နေရာ	ရေနမူနာရယူသည့်အချိန်
Э	မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2)	ဧပြီလ ၂၆ ရက်နေ့ ၂၀၂၂ ခုနှစ် (ဂ၈ နာရီ : ၂၀ မိနစ်)
J	မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4)	ဧပြီလ ၂၆ ရက်နေ့ ၂၀၂၂ ခုနှစ် (၀၇ နာရီ : ၃၆ မိနစ်)
5	မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW-7)	ဧပြီလ ၂၆ ရက်နေ့ ၂၀၂၂ ခုနှစ် (ဝ၈ နာရီ : ၃၀ မိနစ်)
9	မြေအောက်ရေနမူနာယူသည့် နေရာ-၂ (GW-2)	ဧပြီလ ၂၆ ရက်နေ့ ၂၀၂၂ ခုနှစ် (၁၅ နာရီ : ၁၈ မိနစ်)

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

ဖယား ၂.၄-၂ မြန်မာနိုင်ငံ၊ ရန်ကုန်မြစ်၏ ဒီရေမှတ်တမ်း

ရတ်စွဲ	အချိန်	အမြင့်	ဒီရေအခြေအနေ
	၀၁:၂၅	9.99	ဒီရေအတက်
ပြေီလ ၂၆ ရက်နေ့	ပစ:၃၅	၀.၈၇	ဒီရေအကျ
၂၀၂၂ ခုနှစ်	၁၄:၁၆	၄.၈၁	ဒီရေအတက်
	၂၁:၁၀	2.J9	ဒီရေအကျ

မူရင်း။ မြန်မာဆိပ်ကမ်းအာဏာပိုင်၊ ၂၀၂၂ ခုနှစ်အတွက် ရန်ကုန်မြစ်၏ ဒီရေမှတ်တမ်း

၂.၅ စောင့်ကြည့်လေ့လာမှုရလဒ်များ

စွန့်ထုတ်ရေထွက်ပေါက်၊ စွန့်ထုတ်ရေရောက်ရှိသောချောင်းနှင့် ရည်ညွှန်းရေတွင်းရှိ ရေအရည်အသွေးစောင့်ကြည့် လေ့လာမှုရလဒ်များကို ဇယား ၂.၅-၁ နှင့် ဇယား ၂.၅-၂ တွင်ဖော်ပြထားသည်။ ဓာတ်ခွဲခန်းဆန်းစစ်မှု ရလဒ်များကို နောက်ဆက်တွဲ-၂ တွင် ဖော်ပြထားသည်။ ရလဒ်များကို ပတ်ဝန်းကျင်ထိခိုက်မှု ဆန်းစစ်ခြင်း အစီအရင်ခံစာတွင် ပါရှိသည့် ရေအရည်အသွေးရည်မှန်းတန်ဖိုးများနှင့် နှိုင်းယှဉ်ထားပါသည်။

၂.၅.၁ စွန့်ထုတ်ရေထွက်ပေါက်နှင့် စွန့်ထုတ်ရေရောက်ရှိသောချောင်းတွင်းရှိရလဒ်များ

ရည်မှန်းတန်ဖိုးနှင့်နှိုင်းယှဉ်ရာတွင် ဆိုင်းကြွအနည်များ၊ ပျော်ဝင်အနည်စုစုပေါင်း နှင့် ကိုလီဖောင်းစုစုပေါင်း စသည်တို့သည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေကြောင်းတွေ့ရသည်။

စွန့်ထုတ်ရေထွက်ပေါက်ရှိ ရေရလဒ်များ

စွန့်ထုတ်ရေထွက်ပေါက် ဖြစ်သော မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW-7) တွင် စောင့်ကြည့်လေ့လာသော အချိန်အတွင်း ရေနမူနာများ ရယူရန် ရေမရှိပါ။

စောင့်ကြည့်လေ့လာ ရည်ညွှန်းအမှတ်များ၏ ရေရလဒ်များ (စွန့်ထုတ်ရေရောက်ရှိသောချောင်း)

ဆိုင်းကြွအနည်များနှင့် ပျော်ဝင်အနည်စုစုပေါင်း တို့၏ ရလဒ်များအရ (မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4)) တို့ရှိ ရလဒ်များသည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေသည်။ ဖြစ်နိုင်သောအဓိကအကြောင်းအရာများမှာ (၁) သဘာဝအလျောက် ချောင်းအထက်ပိုင်းမှ စီးဆင်းလာခြင်းနှင့် သီလဝါအထူးစီးပွားရေးဇုန် ပြင်ပရှိ ပြည်တွင်းစက်မှုဇုန်မှ စွန့်ထုတ်လိုက်သော ရေများကြောင့်လည်းကောင်း၊ (၂) ချောင်းအောက်ဘက်ရှိ ရေများသည် ဒီရေအတက်အကျကြောင့် အထက်သို့ ပြန်လည်စီးဆင်းလာခြင်းကြောင့် လည်းကောင်း ဖြစ်နိုင်ပါသည်။

ကိုလီဖောင်းစုစုပေါင်းရလဒ်အနေဖြင့် (မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4)) တို့ရှိ ရလဒ်များသည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေခြင်းမှာ (၁) စွန့်ထုတ်ရေရောက်ရှိရာ ချောင်းအတွင်းနှင့် အနီးတစ်ဝိုက်တွင် ရှိနေသော အပင်အမျိုးမျိုးနှင့် သက်ရှိသတ္တဝါများဖြစ်သော ငှက်များနှင့်တိရစ္ဆာန်များကြောင့် သဘာဝ ဘက်တီးရီးယားများသည် စွန့်ထုတ်ရေရောက်ရှိရာချောင်းအတွင်းတွင် တည်ရှိနေခြင်းကြောင့် လည်းကောင်း၊ (၂) သီလဝါအထူးစီးပွားရေးစုန် ပြင်ပရှိ ပြည်တွင်းစက်မှုစုန်မှ စွန့်ထုတ်ရေများကြောင့် လည်းကောင်း နှင့် (၃) အနီးပတ်ဝန်းကျင်မှ ဒီရေသက်ရောက်မှုကြောင့် လည်းကောင်း ဖြစ်နိုင်ပါသည်။

«ယား ၂.၅-၁ စွန့်ထုတ်ရေထွက်ပေါက်နှင့်စွန့်ထုတ်ရေရောက်ရှိသော ချောင်းမှရေအရည်အသွေး စောင့်ကြည့်လေ့လာမှုရလဒ်များ

စဉ်	ရေအရည်အသွေး အမျိုးအစားများ (Parameters)	ယူနစ်	မြေပေါ်ရေ နမူနာယူသည့် နေရာ-၂ (SW-2)	မြေပေါ် ရေ နမူနာယူသည့် နေရာ-၄ (SW-4)	မြေပေါ် ရေ နမူနာယူသည့် နေရာ-၇ (SW-7)	ရည်မှန်းတန်ဖိုး (ကိုယ်တိုင် စောင့်ကြည့်လေ့လာ ခြင်းအတွက် ရည်ညွှန်းတန်ဖိုး)
Э	ရေအပူချိန် (Water Temperature)	°C	JG	J9	-	≤ २၅
J	ချဥ်ဖန်ကိန်း(pH)	a	7.0	6.2	-	6 - 6
9	ဆိုင်းကြွအနယ် (Suspended Solids)	mg/L	209	റെ		ეი
9	ပျော်ဝင်အောက်စီဂျင် (Dissolved Oxygen)	mg/L	9.90	9:9J	-	40
J	ဇီဝနည်းဖြင့်ဖြုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD(₅))	mg/L	J9·62	ලි.ලට	2	50
G	ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD _(Cr))	mg/L	92.0	J9·J	8	ാവ
9	နိုက်ထရိုဂျင်စုစုပေါင်း (Total Nitrogen)	mg/L	5.၂	9.0	(3)	ବଠ
6	ဖော့စဖောရက်စုစုပေါင်း (Total Phosphorus)	mg/L	< 0.09	0.09	(+)	J
6	အရောင် (Color)	TCU (True Color Unit)	26.23	?∙୭ଓ	re:	აჟი
00	အနှံ့ (Odor)	TON (Threshold Odor Number)	G	9	. 	æ
၁၁	ကိုလီဖောင်း စုစုပေါင်း (Total Coliform)	MPN/100ml	<u> გეიიი.ი</u>	6 1000.0	-	900
၁၂	ဆီနှင့် အမဲဆီ (Oil and Grease)	mg/L	< 2.5	< 2.0		00
၁၃	ပျော်ဝင်အနည်စုစုပေါင်း (Total Dissolved Solids)	mg/L	၈၅၇၀	9009	. 4 2	Jooo
29	သံဓာတ် (Iron)	mg/L	0.989	0.260	12/.	२ .၅
၁၅	ပြဒါးဓာတ် (Mercury)	mg/L	≤ 0.00 j	≤ 0.00]	3/	0.009
эG	ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား (Escherichia Coli)	MPN/100ml	5.		-	(2000)* (CFU/200ml)
၁၇	စီးဆင်းနှုန်း (Flow Rate)	m³/s	900.0	0.099	-	2
0	02 202 9 2	2 2 2 02	0 00 0		2 2 2 2	

မှတ်ချက်။ အနီရောင်ဖြင့်ဖော်ပြထားသောတန်ဖိုးများသည်သတ်မှတ်ထားသည့်တန်ဖိုးများထက်ကျော်လွန်နေသည်ကိုဆိုလိုပါသည်။ "မှတ်ချက်။ စွန့်ထုတ်ရေများစွန့်ထုတ်လိုက်သောချောင်း၏ အသုံးပြုမှုပေါ် မူတည်၍ ဂျပန်နိုင်ငံ၏ ချိုးရေစံချိန်စံညွှန်း (ပတ်ဝန်းကျင်ဆိုင်ရာဝန်ကြီးဌာန၊ ၁၉၉၇)ကို ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား(E.coli)၏ ရည်မှန်းတန်ဖိုးအဖြစ်သတ်မှတ်ထားပါသည်။ သို့သော်လည်း မြန်မာနိုင်ငံရှိ ဓာတ်ခွဲခန်းများ၏ လုပ်ဆောင်နိုင်မှု ကန့်သတ်ချက်များကြောင့် စီအက်ဖ်ယူတန်ဖိုး "Colony Forming Unit (CFU)" အား တိုင်းတာ၍မရပါ။ ထို့ကြောင့် အမ်ဝီအန် "Most Propable» AWADA Number (MPN)" ရလဒ်များကို စီအက်ဖ်ယူတန်ဖိုးနှင့် တူညီသည်ဟုယူဆပြီး ရည်မှန်းတန်ဖိုးနှင့် နိူင်းယှဉ်ပါသည်။ မြန်မာနိုင်ငံတွင် စီအက်ဖ်ယူတန်ဖိုးကို သုံးသပ်နိုင်သည်နှင့် တစ်ပြိုင်နက် သုံးသပ်သည့်နည်းလမ်းများ ပြောင်းလဲမည်ဖြစ်သည်။ မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

၂.၅.၂ ရည်ညွှန်းရေတွင်း၏ ရလဒ်

ရည်ညွှန်းရေတွင်းစောင့်ကြည့်လေ့လာသောနေရာ၌ ရေအရည်အသွေး စောင့်ကြည့်လေ့လာမှု ရလဒ်များကို ဇယား ၂.၅-၂ တွင် ဖော်ပြထားပါသည်။ ရည်မှန်းတန်ဖိုးနှင့် နှိုင်းယှဉ်ရာတွင် ရလဒ်များအားလုံးသည် ရည်မှန်းတန်ဖိုးအတွင်းတွင်ရှိပါသည်။

œယား ၂.၅-၂ ရည်ညွှန်းရေတွင်း၏ ရေအရည်အသွေးစောင့်ကြည့်တန်ဖိုးရလဒ်

စဉ်	ရေအရည်အသွေး အမျိုးအစားများ (Prameters)	ယူနစ်	မြေအောက်ရေ နမူနာယူသည့် နေရာ-၂ (GW-2)	ရည်မှန်းတန်ဖိုး (ကိုယ်တိုင် စောင့်ကြည့်လေ့လာ ခြင်းအတွက် ရည်ညွှန်းတန်ဖိုး)
Э	ရေအပူချိန် (water temperature)	*c	73	≤ 29
J	ချဥ်ဖန်ကိန်း(pH)		<u> </u>	G - G
9	ဆိုင်းကြွအနယ် (suspended solid)	mg/L	6	ეი
9	ပျော်ဝင်အောက်စီဂျင် (Dissolved Oxygen)	mg/L	6.20	(2)
J	ဖီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD ₍₅₎)	mg/L	၅.ວງ	२०
G	ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD _(Cr))	mg/L	< 0.9	၁၂၅
?	နိုက်ထရိုဂျင်စုစုပေါင်း (Total Nitrogen)	mg/L	< 0.9	60
6	ဖော့စဖောရက်စုစုပေါင်း (Total Phosphorus)	mg/L	0.69	J
9	အရောင် (Color)	TCU (True Color Unit)	၁၅.၈၈	ე ე0
00	အနံ့ (Odor)	TON (Threshold Odor Number)	э	-
၁၁	ကိုလီဖောင်းစုစုပေါင်း (Total Coliform)	MPN/ 100ml	< 5.6	900
၁၂	ဆီနှင့် အမဲဆီ (Oil and Grease)	mg/L	< 2.0	20
၁၃	ပျော်ဝင်အနည်စုစုပေါင်း (Total Dissolved Solids)	mg/L	ე ე0	Jooo
29	သံဓာတ် (Iron)	mg/L	၀.၉၇၀	၃٠၅
၁၅	ပြဒါးဓာတ် (Mercury)	mg/L	≤ 0.00∫	0.009
၁၆	ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား	MPN/100ml	< ɔ.o	()000)** (lm001/N9M)

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(ခ)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်မှုအတွက်ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအစီရင်ခံစာ (နှစ်လတစ်ကြိမ် စောင့်ကြည့်လေ့လာခြင်း၊ ဧပြီလ ၂၀၂၂ ခုနှစ်)

စဉ်	ရေအရည်အသွေး အမျိုးအစားများ (Prameters)	ထူနစ်	မြေအောက်ရေ နမူနာယူသည့် နေရာ-၂ (GW-2)	ရည်မှန်းတန်ဖိုး (ကိုယ်တိုင် စောင့်ကြည့်လေ့လာ ခြင်းအတွက် ရည်ညွှန်းတန်ဖိုး)
	(Escherichia Coli)			
၁၇	စီးဆင်းနှုန်း (Flow Rate)	m³/s	-	-

*မှတ်ချက်။ မြေအောက်ရေစောင့်ကြည့်လေ့လာသောနေရာတွင် ရေအသုံးပြုမှုပေါ် မူတည်၍ ဗီယက်နမ်နိုင်ငံရှိ မြေအောက်ရေအရည်အသွေးဆိုင်ရာ အမျိုးသားနည်းပညာစည်းမျဥ်းဥပဒေ B1(ဆည်မြောင်းရေ) (No. QCVN08: 2008/BTNMT) ကိုမြေအောက်ရေကိုယ်တိုင် စောင့်ကြည့်လေ့လာခြင်းအတွက် ရည်မှန်းတန်ဖိုးအဖြစ်သတ်မှတ်ပါသည်။ မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

အခန်း ၃ နိဂုံးချုပ် နှင့် အကြံပြုချက်များ

အခန်း ၂ (အပိုင်း ၂.၅) တွင်ဖော်ပြထားသကဲ့သို့ သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(ခ)လုပ်ငန်း လည်ပတ်နေစဉ်ကာလ စောင့်ကြည့်လေ့လာသောအချိန်အတွင်း စွန့်ထုတ်ရေထွက်ပေါက် ဖြစ်သော မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW-7) တွင် ရေနမူနာများ ရယူရန် ရေမရှိပါ။ မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4) တို့တွင် ဆိုင်းကြွအနည်များ၊ ပျော်ဝင်အနည်စုစုပေါင်း နှင့် ကိုလီဖောင်းစုစုပေါင်း စသည်တို့သည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေပါသည်။

ဆိုင်းကြွအနည်များ နှင့် ပျော်ဝင်အနည်စုစုပေါင်းတို့သည် မြေပေါ် ရေနမူနာယူသည့်နေရာများဖြစ်သော မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4) တို့တွင် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်ရခြင်းမှာ သဘာဝအလျောက် ချောင်းအထက်ပိုင်းမှ စီးဆင်းလာခြင်းကြောင့် လည်းကောင်း၊ သီလဝါအထူးစီးပွားရေးဇုန် ပြင်ပရှိ ပြည်တွင်းစက်မှုဇုန်မှ စွန့်ထုတ်လိုက်သော ရေများ ကြောင့်လည်းကောင်း၊ ချောင်းအောက်ဘက်ရှိ ရေများသည် ဒီရေအတက်အကျကြောင့် အထက်သို့ ပြန်လည်စီးဆင်းလာခြင်းကြောင့် လည်းကောင်း ဖြစ်နိုင်ပါသည်။

ကိုလီဖောင်းစုစုပေါင်းရလဒ်များသည် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4) တို့တွင် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေရခြင်းမှာ (၁) စွန့်ထုတ်ရေရောက်ရှိရာ ချောင်းအတွင်းနှင့် အနီးတစ်ဝိုက်တွင် ရှိနေသော အပင်အမျိုးမျိုးနှင့် သက်ရှိသတ္တဝါများဖြစ်သော ငှက်များနှင့်တိရစ္ဆာန်များကြောင့် သဘာဝ ဘက်တီးရီးယားများသည် စွန့်ထုတ်ရေရောက်ရှိရာ ချောင်းအတွင်းတွင် တည်ရှိနေခြင်းကြောင့်လည်းကောင်း၊ (၂) သီလဝါအထူးစီးပွားရေးစုန် ပြင်ပရို ပြည်တွင်းစက်မှုစုန်မှ စွန့်ထုတ်လိုက်သော ရေများကြောင့်လည်းကောင်း (၃) ဒီရေသက်ရောက်မှုဖြင့် ပတ်ဝန်းကျင်ဧရိယာမှလည်းကောင်း ဖြစ်နိုင်ပါသည်။

ဤတွင်စာတမ်းပြီးဆုံးပါသည်။

နောက်ဆက်တွဲ ၁ ရေနမူနာရယူသည့် မှတ်တမ်းဓာတ်ပုံများ

သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း (ခ) ရှိ စွန့်ထုတ်ရေနမူနာရယူသည့်နေရာ

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၇ (SW–7) ၌ ရေမရှိပါ။

စွန့်ထုတ်ရေထွက်ရှိသောနေရာများနှင့် စွန့်ထုတ်ရေရောက်ရှိနိုင်သည့်ချောင်း၏ အခြေခံအချက်အလက်များကို နှိုင်းယှဉ်ရန်အတွက် ရည်ညွှန်းစောင့်ကြည့်လေ့လာသည့် နေရာများ

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW–2) ၌ ရေနမူနာရယူခြင်းနှင့်တိုင်းတာခြင်း

မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW–4) ၌ ရေနမူနာရယူခြင်းနှင့်တိုင်းတာခြင်း

မြေအောက်ရေနမူနာယူသည့် နေရာ-၂ (GW-2) ရေနမူနာရယူခြင်းနှင့်တိုင်းတာခြင်း

နောက်ဆက်တွဲ ၂ ဓာတ်ခွဲခန်းရလဒ်များ

စွန့်ထုတ်ရေထွက်ရှိသောနေရာများနှင့် စွန့်ထုတ်ရေရောက်ရှိနိုင်သည့်ချောင်း၏ အခြေခံအချက်အလက်များကို နှိုင်းယှဉ်ရန်အတွက် ရည်ညွှန်းစောင့်ကြည့်လေ့လာသည့် နေရာများ

DOWA

Report No. : GEM-LAB-202205016

Report Date : 9 May, 2022 Application No. ; 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

No. 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

: Environment Monitoring report for Zone A & B

Sample Description

Sample Name MKI-SW-2-0426

Sampling Date : 26 April, 2022

Sample No.

W-2204085

Sampling By : Customer

Waste Profile No.

Sample Received Date : 26 April, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/l	114	
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	25.94	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/I	43.0	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	35000.0	1.8
5	Oil and Grease	APHA S520B (Partition-Gravimetric Method)	mg/t	<3.1	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	1.2	0.5
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	<0.05	0.05
8	Calor	APHA 2120C (Spectrophotometric Method)	TCU	18.12	0.00
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	5	0
10	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/l	8570	
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/i	≤0.002	0.002
12	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	/ng/l	≤0.002	0.002
13	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.494	0.002

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Ni Ni Aye Lwin May 9, 2022

DOWA

Report No. ; GEM-LAB-202205017

Revision No. : 1

Report Date : 9 May, 2022 Application No. : 0001-C001

Analysis Report

Client Name

: Myanmar Koei International LTD (MKI)

Address

: No, 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

Environment Monitoring report for Zone A & B

Sample Description

: MKI-SW-4-0426

Sampling Date: 26 April, 2022 Sampling By : Customer

Sample No.

: W-2204086

Waste Profile No.

Sample Received Date : 26 April, 2022

No.	Parameter	Method	Unit	Result	roð
1	ss	APHA 2540D (Dry at 103-105'C Method)	mg/l	80	
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/i	6.91	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	24.2	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	92000.0	1.8
5	Oil and Grease	APHA 5520B (Partition-Gravimetric Method)	mg/l	<3.1	3.1
6	Total Nitrogen	HACH Method 19072 (TNT Persulfate Digestion Method)	mg/l	3.0	0.5
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.05	0.05
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	7.59	0.00
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	4	0
10	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180'C Method)	mg/l	7084	
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.002
12	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.002	0.002
13	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.380	0.002

Remark

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Supervisor

NI NI Aye Lwin May 9, 2022

DOWA

Report No. : GEM-LAB-202205019

Revision No. | 1

Report Date: 9 May, 2022 Application No. 0001-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

No, 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

Environment Monitoring report for Zone A & B

Sample Description

Sample Name

MKI-GW-2-0426

Sampling Date : 26 April, 2022

Sample No.

W-2204088

Sampling By : Customer

Waste Profile No. : -

Sample Received Date : 26 April, 2022

No.	Parameter	Method	Unit	Result	LOQ	
1	ss	APHA 2540D (Dry at 103-105'C Method)	mg/l	8		
2	BOO (5)	APHA 5210 B (5 Days BOD Test)	mg/l	5.12	0.00	
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	<0.7	0.7	
4	Total Coliform APHA 92218 (Standard Total Coliform Fermentation Technique) M		MPN/100ml	<1.8	1.8	
5	Oil and Grease APHA 5520B (Partition-Gravimetric Method)		mg/l	< 3.1	3.1	
6	Total Nitrogen HACH Method 10072 (TNT Persulfate Digestion Method)		mg/l	<0.5	0.5	
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.67	0.05	
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	15.88	0.00	
9	Odor	APHA 2150 B (Threshold Odar Test)	TON	1	0	
10	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180'C Method)	mg/l	150	- 2	
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.00	
12	Chromium	Chromium APHA 3120 B (Inductively Coupled Plasma (ICP) Method)		≤0.002	0.002	
13	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)		0.970	0.002	
13	Escherichia Coli	APHA 9221 F Escherichia Coli Procedure Using Fluorogenic Substrate	MPN/100ml	<1.8	1.8	

Remark

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Cherry Myint Thein Supervisor

Ni Ni Aye Lwin May 9, 2022

သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(က)ရှိ စက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်ရေးအတွက် ရေအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဉ်ကာလ)

(တစ်နှစ် နှစ်ကြိမ် စောင့်ကြည့်လေ့လာခြင်း)

၂၀၂၂ ခုနှစ်၊ ဇွန်လ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

<u>မာတိကာ</u>

အခန်း ၁ နိဒါန်း
၁.၁ ယေဘုယျဖော်ပြချက်
အခန်း ၂ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်း
၂.၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား
၂.၂ ရေနမူနာယူသည့်နေရာများ၏တည်နေရာနှင့်အချက်အလက်များဖော်ပြချက်၆
၂.၃ စောင့်ကြည့်လေ့လာသည့် နည်းလမ်း
၂.၄ စောင့်ကြည့်လေ့လာသည့်ကာလ၁၀
၂.၅ စောင့်ကြည့်လေ့လာမှုရလဒ်များ
အခန်း ၃ နိဂုံးချုပ် နှင့် အကြံပြုချက်များ၁၇
နောက်ဆက်တွဲ ၁ ရေနမူနာရယူသည့် မှတ်တမ်းဓာတ်ပုံများက၁-၁
နောက်ဆက်တွဲ ၂ ဓာတ်ခွဲခန်းရလဒ်များက၂-၁
<u>ဇယားများစာရင်း</u>
<u>ဧယားများစာရင်း</u> ဧယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား
<u>ဧယားများစာရင်း</u> ဧယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား ဧယား ၂.၂-၁ ရေနမူနာရယူသည့်နေရာများ၆
<u>ဧယားများစာရင်း</u> ဧယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား
<u>ဖေဟားများစာရင်း</u> ဖယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား
<u>ဖေဟားများစာရင်း</u> ဖယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား
<u>ဧယားများစာရင်း</u> ဧယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား
ဖယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား
ဖယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား
ဖယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား

<u>ပုံများစာရင်း</u>

ပုံ ၁.၁-၁ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအတွက် ရေနမူနာရယူသောနေရာများ၏ တည်နေရာပြပုံ ..၂

အခန်း ၁ နိဒါန်း

၁.၁ ယေဘုယျဖော်ပြချက်

သီလဝါအထူးစီးပွားရေးဇုန်သည် ရန်ကုန်တိုင်းဒေသကြီး၏ တောင်ပိုင်းခရိုင်တွင်တည်ရှိပြီး အရှေ့တောင်ဘက် ၂၃ ကီလိုမီတာတွင် တည်ရှိပါသည်။ သီလဝါအထူးစီးပွားရေးဇုန်၏ အကောင်အထည် ဖော်ဆောင်သူအနေဖြင့် ဇုန်အပိုင်း(က)အတွင်းရှိ စက်မှုမြေနေရာအတွက် ခွင့်ပြုချက်ရရှိထားသော ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း အစီရင်ခံစာနှင့် ပတ်ဝန်းကျင်ဆိုင်ရာစီမံခန့်ခွဲမှုအစီအစဉ်အတိုင်း ပုံမှန်စောင့်ကြည့်စစ်ဆေးခြင်းကို ဆောင်ရွက်ရန် မြန်မာ-ဂျပန် သီလဝါဖွံ့ဖြိုးရေးလီမိတက်တွင် တာဝန်ရှိပါသည်။ သိရှိစေရန် သဘာဝပတ်ဝန်းကျင်နှင့်သက်ဆိုင်သော အခြေအနေများကို စောင့်ကြည့်လေ့လာမှုများကို ရေးဆွဲထားပြီး ထိုအစီအစဉ်များအရ အကောင်အထည်ဖော် ဆောင်ရွက်ခဲ့ပါသည်။ ရေအရည်အသွေး စောင့်ကြည့်လေ့လာမှုအား ရေနမူနာရယူရာတွင် သီလဝါအထူးစီးပွားရေးဇုန်အတွင်းနှင့် အနီးပတ်ဝန်းကျင်ရှိ စုစုပေါင်းနေရာ ခြောက်နေရာ၊ နာမည်အားဖြင့် (မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1)၊ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2)၊ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ မြေပေါ် ရေနမှုနာယူသည့်နေရာ-၅ (SW-5)၊ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၆ နှင့် မြေအောက်ရေနမူနာယူသည့်နေရာ-၁ (GW-1)) တို့တွင် စောင့်ကြည့်လေ့လာခဲ့ပါသည်။ ထိုနေရာ ခြောက်နေရာမှ မြေပေါ်ရေနမူနာယူသည့်နေရာ-၁ (SW-1) နှင့် မြေပေါ်ရေနမူနာယူသည့်နေရာ-၅ (SW-5) မှာ သီလဝါ အထူးစီးပွားရေးဇုန်၏ အဓိကစွန့်ထုတ်ရေ ထွက်ပေါက်များဖြစ်ကြပြီး မြေပေါ် ရေနမူနာယူသည့်နေရာ-၆ (SW-6) မှာ ဗဟိုစွန့်ထုတ်ရေသန့်စင်စက်ရုံ၏ နောက်ဆုံးစွန့်ထုတ်ရေ ထွက်ရှိရာနေရာဖြစ်ပြီး သီလဝါအထူးစီးပွားရေးဇုန် ပတ်ဝန်းကျင် ထိခိုက်မှုဆန်းစစ်ခြင်းအစီအရင်ခံစာ တွင်ပါဝင်သော စောင့်ကြည့်လေ့လာမှု အစီအစဉ်အရ စောင့်ကြည့်ရမည့်စက်ရုံ ဖြစ်ပါသည်။ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4) မှာ စွန့်ထုတ်ရေ ထွက်ရှိသောနေရာများနှင့် စွန့်ထုတ်ရေ ရောက်ရှိသည့်ချောင်း၏ အခြေခံအချက်အလက်တို့အား နှိုင်းယှဉ်နိုင်ရန် ကိုးကားစောင့်ကြည့်လေ့လာမှုအဖြစ် နမူနာရယူခဲ့သည်။ ထို့အပြင် မြေအောက်ရေနမူနာယူသည့်နေရာ-၁ (GW-1)အား ဘုန်းကြီးကျောင်း ပရဝဏ်အတွင်းရှိ ရေတွင်းအား ရည်ညွှန်းနိုင်ရန် စောင့်ကြည့်လေ့လာခဲ့သည်။ ရေအရည်အသွေးစောင့်ကြည့် လေ့လာမှုအတွက်နမူနာရယူသော နေရာများ၏ တည်နေရာများကို ပုံ ၁.၁-၁ တွင်ဖော်ပြထားပါသည်။

ပုံ ၁.၁-၁ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအတွက် ရေနမူနာရယူသောနေရာများ၏ တည်နေရာပြပုံ

အခန်း ၂ ရေအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်း

၂.၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား

ရေအရည်အသွေး စောင့်ကြည့်လေ့လာမှုအတွက် ရေနမူနာရယူသောနေရာများနှင့် ရေအရည်အသွေး တိုင်းတာသည့် အမျိုးအစားများ(parameters)ကို ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်းဆိုင်ရာ အစီအရင်ခံစာပါ ပတ်ဝန်းကျင်ဆိုင်ရာ စောင့်ကြည့်လေ့လာမှု အစီအစဉ်အား ခြုံငုံမိစေရန်အလို့ငှာ ဆောင်ရွက်ထားပါသည်။

ရေအရည်အသွေးနမူနာစစ်တမ်းကောက်ယူမှုအား နေရာခြောက်နေရာတွင် ဆောင်ရွက်ခဲ့ပါသည်။ ထိုနေရာ ခြောက်နေရာမှ ရေစီးဆင်းမှုတိုင်းတာခြင်းကို ရေစီးနှုန်းတိုင်းကိရိယာဖြင့် တိုင်းတာနိုင်သော နေရာငါးနေရာ (မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1)၊ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2)၊ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-5) နှင့် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၆ (SW-6)) တို့တွင် တိုင်းတာခဲ့ပါသည်။ စောင့်ကြည့်လေ့လာသော ရေအရည်အသွေး တိုင်းတာသည့် အမျိုးအစားများ (parameters)နှင့် ရေနမူနာရယူသော နေရာများကို ဇယား ၂.၁-၁ တွင် အကျဉ်းချုပ် ဖော်ပြထားပါသည်။

ဇယား ၂.၁-၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား

•දි	ရေအရည်အသွေး တိုင်းတာသည့် အမျိုးအစား (parameters)	မြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၁ (SW-1)	ခြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၂ (SW-2)	မြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၄ (SW-4)	မြေပေါ် ရေ နမူနာ ဟူသည့် နေရာ-၅ (SW-5)	မြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၆ (SW-6)	မြေအောက် ရေ နမူနာ ယူသည့် နေရာ-၁ (GW-1)	မှတ်ချက်
э	ရေအပူချိန် (Water Temperature)	0	o	ō	0	ő	0	ရေနမူနာကောက်ယူသည့် နေရာတွင်တိုက်ရိုက်တိုင်း တာခြင်း
J	ချဥ်ဖန်ကိန်း (pH)	0	o	o	0	0	0	ရေနမူနာကောက်ယူသည့် နေရာတွင် တိုက်ရိုက်တိုင်းတာခြင်း
9	ပျော်ဝင်အောက်စီဂျင် (DO)	o	0	o	o	0	0	ရေနမူနာကောက်ယူသည့် နေရာတွင် တိုက်ရိုက်တိုင်းတာခြင်း
9	ဖီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD ₍₅₎)	o	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
9	ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD _(Cr))	0.	0	.0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
G	နိုက်ထရိုဂျင်စုစုပေါင်း (Total Nitrogen)	0	0	o	0	O	0	ဓာတ်ခွဲစမ်းသပ်ခြင် <u>း</u>
?	ဆိုင်းကြွအနယ်များ (Suspended Solids)	0	0	0	o	0	o	ဓာတ်ခွဲစမ်းသပ် <u>ခြ</u> င်း

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(က)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်မှုအတွက်ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအစီရင်ခံစာ (တစ်နှစ် နှစ်ကြိမ်၊ စောင့်ကြည့်လေ့လာခြင်း ဇွန်လ ၂၀၂၂ ခုနှစ်)

စဉ်	ရေအရည်အသွေး တိုင်းတာသည့် အမျိုးအစား (parameters)	မြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၁ (SW-1)	မြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၂ (SW-2)	မြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၄ (SW-4)	မြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၅ (SW-5)	မြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၆ (SW-6)	မြေအောက် ရေ နမူနာ ယူသည့် နေရာ-၁ (GW-1)	မှတ်ချက်
၈	ကိုလီဖောင်း စုစုပေါင်း (Total Coliform)	0	o	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
e	ဖော့စဖောရက်စုစုပေါင်း (Total Phosphorus)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
00	အရောင်(Color)	0	0	0	0	0	o	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၁	အနံ့ (Odor)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၂	သွပ် (Zinc)	0	0	0	o	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၃	အာဆီနစ် (Arsenic)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
29	ခရိုမီယမ် (Chromium)	0	0	0	0	0	o	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၅	ကက်ဒမီယမ် (Cadmium)	0	0	0	0	0	ō	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၆	ဆယ်လီနီယမ် (Selenium)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၇	ခဲ (Lead)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၈	ကြေးနီ (Copper)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၁၉	ဗေရီယမ် (Barium)	0	0	0	. 0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
Jo	နစ်ကယ် (Nickel)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
၂၁	ဆိုင်ယာနိုဒ် (Cyanide)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
JJ	ဆိုင်ယာနိုဒ်စုစုပေါင်း (Total Cyanide)	0	0	0	o	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
75	ဖရီးကလိုရင်း (Free Chlorine)	0	0	o	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
J9	ဆာလဖိုဒ် (Sulphide)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
JO	ဖော်မယ်ဒီဟိုက် (Formaldehyde)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
JG	ဖීနော (Phenols)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
J?	ကြွင်းကျန်သောကလို ရင်းစုစုပေါင်း (Total Residual Chlorine)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
്വര	ခရီမီယမ် (Chromium Hexavalent)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
Je	အမိုးနီးယား (Ammonia)	0	0	0	0	o	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
90	ဖလူအိုရိုက် (Fluoride)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(က)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်မှုအတွက်ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအစီရင်ခံစာ (တစ်နှစ် နှစ်ကြိမ်၊ စောင့်ကြည့်လေ့လာခြင်း ဇွန်လ ၂၀၂၂ ခုနှစ်)

<u>စဉ်</u>	ရေအရည်အသွေး တိုင်းတာသည့် အမျိုးအစား (parameters)	မြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၁ (SW-1)	မြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၂ (SW-2)	ခြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၄ (SW-4)	မြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၅ (SW-5)	မြေပေါ် ရေ နမူနာ ယူသည့် နေရာ-၆ (SW-6)	မြေအောက် ရေ နမူနာ ယူသည့် နေရာ-၁ (GW-1)	မှတ်ချတ်
90	eg (Silver)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
5]	ဆီနှင့်အမဲဆီ (Oil and Grease)	0	0	0	0	0	0	ဓာတ်ခွဲစမ်းသပ်ခြင် <u>း</u>
22	ပျော်ဝင်အနည်စုစုပေါင်း (Total Dissolved Solids)	0	Ō	O	0	o	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
29	သံဓာတ် (Iron)	0	0	0	0	o	0	ဓာတ်ခွဲစမ်းသပ်ခြင် <u>း</u>
20	ပြဒါးဓာတ် (Mercury)	0	ō	o	0	ō	0	ဓာတ်ခွဲစမ်းသပ်ခြင်း
ŞG	ဝမ်းကိုက်ရောဂါကိုဖြစ် စေသော ကိုလီဖောင်းဘက်တီးရီး ယား (Escherichia Coli) (ကိုယ်တိုင်စောင့်ကြည့် လေ့လာခြင်း)	0	-	~	0	-	o	ဓာတ်ခွဲစမ်းသပ်ခြင်း
२१	ရေစီးဆင်းနှုန်း	ijō.	o	0	0	0	8	ရေနမူနာကောက်ယူသည့် နေရာတွင် တိုက်ရိုက်တိုင်းတာခြင်း

၂.၂ ရေနမူနာယူသည့်နေရာများ၏တည်နေရာနှင့်အချက်အလက်များဖော်ပြချက်

ဖယား ၂.၂-၁ ရေနမူနာရယူသည့်နေရာများ

စဉ်	တည်နေရာ	အသေးစိတ်အချက်အလက်
	မြေပေါ် ရေ နမူနာယူသည့်	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆°၄၀'၁၃.၅"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆°၁၆' ၃၉.၈"
0	နေရာ-၁	တည်နေရာ - ရေထိန်းကန်ထွက်ပေါက်
	(SW-1)	ရေနမူနာရယူသောအမျိုးအစား – မြေပေါ် ရေရယူခြင်းနှင့်ရေစီးနှုန်းတိုင်းတာခြင်း
	မြေပေါ် ရေ နမူနာယူသည့်	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၄၀' ၂၀.၆၉"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၇' ၁၈.၀၄"
J	နေရာ-၂	တည်နေရာ - ရွှေပျောက်ချောင်းအထက်ပိုင်း
	(SW-2)	ရေနမူနာရယူသောအမျိုးအစား – မြေပေါ် ရေရယူခြင်းနှင့်ရေစီးနှုန်းတိုင်းတာခြင်း
	မြေပေါ် ရေ နမူနာယူသည့်	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၃၉' ၄၂.၈၄"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၆' ၂၇.၄၂"
5	နေရာ၁-၄ (SW-4)	တည်နေရာ - ရွှေပျောက်ချောင်းအောက်ပိုင်း
		ရေနမူနာရယူသော အမျိုးအစား – မြေပေါ် ရေရယူခြင်းနှင့်ရေစီးနှုန်းတိုင်းတာခြင်း
	မြေပေါ် ရေ နမူနာယူသည့်	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၄၀' ၁၀.ဂု"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၆' ၂၂.၆"
9	နေရ၁-၅	တည်နေရာ - ရေထိန်းမြောင်းထွက်ပေါက်
	(SW-5)	ရေနမူနာရယူသော အမျိုးအစား – မြေပေါ် ရေရယူခြင်းနှင့်ရေစီးနှုန်းတိုင်းတာခြင်း
	မြေပေါ် ရေ နမူနာယူသည့်	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၄၀' ၂၇.၁၃"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၆' ၃၀.၆၈"
9	နေရာ-၆	တည်နေရာ - ဗဟိုစွန့်ထုတ်ရေသန့်စင်စက်ရုံမှ ရေထိန်းကန်သို့ ထွက်သည့် ထွက်ပေါက်
	(SW-6)	ရေနမူနာရယူသော အမျိုးအစား – မြေပေါ် ရေရယူခြင်းနှင့်ရေစီးနှုန်းတိုင်းတာခြင်း
	မြေအောက်ရေ	ကိုဩဒိနိတ် - မြောက်လတ္တီတွဒ် - ၁၆° ၄၀' ၁၆.၉၆"၊ အရှေ့လောင်ဂျီတွဒ် - ၉၆° ၁၆' ၃၄.၀၁"
G	နမူနာယူသည့် နေရာ-၁	တည်နေရာ - မိုးကြိုးစွမ်းကျောင်းတိုက်ပရဝဏ်အတွင်း
	(GW-1)	ရေနမူနာရယူသော အမျိုးအစား – မြေအောက်ရေရယူခြင်း

မှုရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1)

မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1) အား မိုးကြိုးစွမ်းကျောင်းတိုက်၏ အရှေ့အရပ်တွင်တည်ရှိသော ရေထိန်းကန်၏ ရေထွက်ပေါက်မှ ရယူခြင်း ဖြစ်ပါသည်။ ၄င်းသည် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၆ (SW-6)၏ မြစ်အောက်ပိုင်း ၅၃၀ မီတာ အကွာတွင် တည်ရှိပါသည်။ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1) ရေထိန်းကန်၏ ရေထွက်ပေါက်မှရေများသည် ရေနုတ်မြောင်းမှတဆင့် မြောက်မှ တောင်သို့ စီးဆင်းပြီး ရွှေပျောက်ချောင်းအတွင်း စီးဝင်ပါသည်။ အထက်ပါ စောင့်ကြည့်လေ့လာသည့်နေရာ၏ ရေထုအရည်အသွေးသည် မြစ်အောက်ပိုင်းမှ ဒီရေအတက်အကျ၏ လွှမ်းမိုးမှုများရှိနေပါသည်။ ထို့အပြင်ကျောင်းတိုက်အတွင်းမှ စွန့်ထုတ်ရေ တစ်စိတ်တစ်ပိုင်းသည်လည်း သီလဝါအထူးစီပွားရေးစုန်၏ ရေမြောင်းအတွင်းသို့ ရောက်ရှိပြီး ရေထိန်းကန်အတွင်းသို့ စီးဝင်မှုရှိကြောင်း ယူဆရပါသည်။

မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2) (ရေအရည်အသွေး ရည်ညွှန်းအမှတ်)

မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2)အား ရွှေပျောက်ချောင်း၏ အထက်ပိုင်းတွင် ရယူခဲ့ခြင်းဖြစ်သည်။ အဆိုပါ အမှတ်သည် ဇုန်အပိုင်း(က)ဧရိယာ၏ အရှေ့တောင်ဘက်၊ ဒဂုံ-သီလဝါလမ်း၏ တောင်ဘက်တွင် တည်ရှိပါသည်။ အနောက်တောင်တွင် ဇုန်အပိုင်း(ခ) နှင့် အရှေ့ဘက်တွင် ပြည်တွင်းစက်မှုဇုန်တို့က အသီးသီးဝန်းရံလျက်ရှိသည်။

မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4) (ရေအရည်အသွေး ရည်ညွှန်းအမှတ်)

ပြည်တွင်းစက်မှုစုန်၊ စုန်အပိုင်း(က) နှင့် စုန်အပိုင်း(ခ)ရှိ ဆောက်လုပ်ရေးလုပ်ငန်းခွင်များမှ စွန့်ထုတ်လိုက်သောရေများ ပေါင်းစည်းရောနှောသွားသောနေရာ၊ ရွှေပျောက်ချောင်း၏ အောက်ပိုင်းတွင် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4) တွင်ရယူခဲ့ခြင်းဖြစ်သည်။ ရွှေပျောက်ချောင်းသည် အရှေ့မှ အနောက်သို့ စီးဆင်းပြီး ရန်ကုန်မြစ်အတွင်းသို့ စီးဝင်သည်။ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4) သည် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2)၏ ချောင်းအောက်ပိုင်း ၂.၁၅ ကီလိုမီတာအကွာတွင် တည်ရှိပါသည်။ အဆိုပါ ရေနမူနာကောက်ယူသည့်နေရာသည် စုန်အပိုင်း(က) ဧရိယာ၏ အနောက်တောင်ဘက်တွင်တည်ရှိပြီး ဒဂုံ-သီလဝါလမ်း၏ တောင်ဘက်တွင်တည်ရှိပါသည်။ ပတ်ဝန်းကျင်အနီးအနားတွင် စုန်အပိုင်း(ခ) နှင့် အရှေ့ဘက်တွင် ပြည်တွင်းစက်မှုစုန်တို့ အသီးသီးတည်ရှိပါသည်။

မြေပေါ် ရေနမူနာယူသည့်နေရာ-၅ (SW-5)

မြေပေါ် ရေနမူနာယူသည့်နေရာ-၅ (SW-5) အား သီလဝါအထူးစီးပွားရေးဇုန်၏ ပင်မဂိတ်ပေါက်အနီးရှိ ရေထိန်းတူးမြောင်းမှ ရယူခဲ့သည်။ အဆိုပါ တူးမြောင်းအတွင်း စုဆောင်းထားသော ရေအများစုမှာ မိုးရေ နှင့် အနီးအနားတွင် အပင်များရေလောင်းခြင်းမှ ထွက်၍လာသော ရေများ ဖြစ်ပါသည်။ အဆိုပါတူးမြောင်းသည်လည်း ရွှေပျောက်ချောင်းဖြင့် ဆက်သွယ်ထားပါသည်။ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၅ (SW-5) ၏ရေအရည်အသွေးသည် ချောင်းအောက်ဘက်မှ ဒီရေအတက်အကျ၏ လွှမ်းမိုးမှုများစွာ ရှိနိုင်ပါသည်။

မြေပေါ် ရေနမူနာယူသည့်နေရာ-၆ (SW-6)

မြေပေါ် ရေနမူနာယူသည့်နေရာ-၆ (SW-6) အား မိုးကြိုးစွမ်းကျောင်းတိုက် နှင့် ရေထိန်းကန် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁(SW-1)၏ မြောက်ဘက်ရှိ ပင်မစွန့်ထုတ်ရေသန့်စင်စက်ရုံ၏ ထွက်ပေါက်မှ ရယူခြင်းဖြစ်ပါသည်။ ထိုသန့်စင်ပြီးသောစွန့်ထုတ်ရေအား ရေထိန်းကန်အတွင်းသို့ စီးဝင်စေသည်။ ၄င်းရေထွက်ပေါက်သည် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1)၏ အထက်ဘက် ၅၃၀ မီတာခန့် အကွာအဝေးတွင်ရှိပါသည်။

မြေအောက်ရေနမူနာယူသည့်နေရာ-၁(GW-1) (မူလတည်ရှိနေသောရေတွင်းအားရည်ညွှန်းခြင်း)

မြေအောက်ရေနမူနာယူသည့်နေရာ-၁ (GW-1)အား တူးဖော်ထားသော ရေတွင်းမှ ရယူခဲ့ပါသည်။ အဆိုပါ ရေနမူနာရယူသည့် နေရာသည် မိုးကြိုးစွမ်းကျောင်းတိုက် ပရဝဏ်အတွင်းတွင် တည်ရှိပါသည်။ အနောက်ဘက်တွင် ဇုန်အပိုင်း (က)၊ အရှေ့ဘက်တွင် ရေထိန်းကန် နှင့် တောင်ဘက်တွင် ဒဂုံ-သီလဝါလမ်း တို့အသီးသီးရှိပါသည်။

၂.၃ စောင့်ကြည့်လေ့လာသည့်နည်းလမ်း

ဇယား ၂.၃-၁ ရေအရည်အသွေးစစ်ဆေးသည့် နည်းလမ်းများ

စဉ်	အမျိုးအစားများ	နည်းလမ်း
О	ရေအပူချိန် (Water Temperature)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
J	ချဥ်ဖန်ကိန်း (pH)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
9	ဆိုင်းကြွအနယ် (Suspended Solids)	APHA 2540 D (Dry at 103-105°C Method)
9	ပျော်ဝင်အောက်စီဂျင် (Dissolved Oxygen)	Instrument Analysis Method (Horiba, U-52, Multi Water Quality Checker)
១	ဖီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD ₍₅₎)	APHA 5210 B (5 Days BOD Test)
G	ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD _(Cr))	APHA 5220D (Close Reflux Colorimetric Method)
7	ကိုလီဖောင်း စုစုပေါင်း (Total Coliform)	APHA 9221B (Standard Total Coliform Fermentation Technique)
െ	နိုက်ထရိုဂျင်စုစုပေါင်း (Total Nitrogen)	HACH Method 10072 (TNT Persulfate Digestion Method)
G	ဖော့စဖောရက်စုစုပေါင်း (Total Phosphorus)	APHA 4500-P E (Ascorbic Acid Method)
20	အရောင် (Color)	APHA 2120C (Spectrophotometric Method)
၁၁	အနံ့ (Odor)	APHA 2150 B (Threshold Odor Test)
၁၂	ဆီနှင့် အမဲဆီ (Oil and Grease)	APHA 5520B (Partition-Gravimetric Method)
၁၃	ပြဒါးဓာတ် (Mercury)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
29	သွ ် (Zinc)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
၁၅	အာဆီနစ် (Arsenic)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
၁၆	ခရိုမီယမ် (Chromium)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
၁၇	ကက်ဒဓီယမ် (Cadmium)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)
ວຄ	ဆယ်လီနီယမ် (Selenium)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(က)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်မှုအတွက်ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအစီရင်ခံစာ (တစ်နှစ် နှစ်ကြိမ်၊ စောင့်ကြည့်လေ့လာခြင်း ဇွန်လ ၂၀၂၂ ခုနှစ်)

စဉ်	အမျိုးအစားများ	နည်းလမ်း			
၁၉	à (Lead)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)			
Jo	ကြေးနီ (Copper)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)			
၂၁	ဗေရီယမ် (Barium)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)			
JJ	နစ်ကယ် (Nickel)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)			
15	ဆိုင်ယာနိုဒ် (Cyanide)	HACH 8027 (Pyridine-Pyrazalone Method)			
J9	ဆိုင်ယာနိုဒ်စုစုပေါင်း (Total Cyanide)	Distillation process: APHA 4500-CN-C. Total Cyanide after Distillation, Determine cyanide Concentration Process: HACH 8027 (Pyridine – Pyrazalone Method)			
JO	ဖရီးကလိုရင်း (Free Chlorine)	APHA 4500-CL G (DPD Colorimetric Method)			
JG	ဆာလဖိုဒ် (Sulphide)	HACH 8131 (USEPA Methylene Blue Method)			
J٩	ဖော်မယ်ဒီဟိုက် (Formaldehyde)	HACH 8110 (MBTH Method)			
၂၈	ဖိနော (Phenols)	USEPA Method 420.1 (Phenolics (Spectrophotometric, Manual 4 AAP With Distillation))			
Je	သံဓာတ် (Iron)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)			
90	ပျော်ဝင်အနည်စုစုပေါင်း (Total Dissolved Solids)	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)			
၃၁	ကြွင်းကျန်သောကလိုရင်းစုစုပေါင်း (Total Residual Chlorine)	APHA 4500-CL G (DPD Colorimetric Method)			
51	ခရိုမီယမ် (Chromium Hexavalent)	ISO 11083:1994 (Determination of chromium (VI) Spectrometric method using 1,5-diphenylcarbazide)			
99	အမိုးနီးယား (Ammonia)	HACH Method 10205 (Silicylate TNT Plus Method)			
99	ဖလူအိုရိုက် (Fluoride)	APHA 4110 B (Ion Chromatography with Chemical Suppression of Eluent Conductivity)			
29	eg (Silver)	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)			
PG	ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ဘက်တီးရီးယား (Escherichia Coli)	APHA 9221 F (Escherichia Coli Procedure Using Fluorogenic Substrate)			
२१	စီးဆင်းနှုန်း (Flow Rate)	Detection of Electromagnetic Elements (Real-time measurement by AEM 213-D Digital Current Meters)			

၂.၄ စောင့်ကြည့်လေ့လာသည့်ကာလ

ရေအရည်အသွေးနှင့် ရေစီးဆင်းမှုနှုန်းအား ဇွန်လ ၇ ရက်နေ့ ၂၀၂၂ ခုနှစ်တွင် ဆောင်ရွက်ခဲ့ပြီး ဒီရေအတက်အကျကြောင့် ဖြစ်ပေါ် လာနိုင်သော သက်ရောက်မှုများကိုရှောင်ရှားနိုင်ရန် အောက်ပါ ဇယား ၂.၄-၁ အတိုင်း ရေနမူနာရယူခဲ့သည်။ မြန်မာနိုင်ငံ၊ ရန်ကုန်မြစ်၏ ဇွန်လ ၇ ရက်နေ့ ၂၀၂၂ ခုနှစ် အတွက်ဒီရေ မှတ်တမ်းကို ဇယား ၂.၄-၂ တွင်ဖော်ပြထားပါသည်။

ဖယား ၂.၄-၁ နေရာတစ်ခုချင်းစီအတွက် နမူနာရယူသည့်အချိန်

စဉ်	နမူနာရယူသည့်နေရာ	နမူနာရယူသည့်အချိန်
0	မြေပေါ် ရေ နမူနာရယူသည့်နေရာ-၁ (SW-1)	ဇွန်လ ၇ ရက်နေ့ ၂၀၂၂ ခုနှစ် (၁၁ နာရီ : ၄၁ မိနစ်)
J	မြေပေါ် ရေ နမူနာရယူသည့် နေရာ-၂ (SW-2)	<u> </u> ဇွန်လ ၇ ရက်နေ့ ၂၀၂၂ ခုနှစ် (၀၈ နာရီ : ၀၇ မိနစ်)
9	မြေပေါ် ရေ နမူနာရယူသည့် နေရာ-၄ (SW-4)	ဇွန်လ ၇ ရက်နေ့ ၂၀၂၂ ခုနှစ် (၀၈ နာရီ : ၄၆ မိနစ်)
9	မြေပေါ် ရေ နမူနာရယူသည့် နေရာ-၅ (SW-5)	ဇွန်လ ၇ ရက်နေ့ ၂၀၂၂ ခုနှစ် (၁၁ နာရီ : ၂၀ မိနစ်)
2	မြေပေါ် ရေ နမူနာရယူသည့် နေရာ-၆ (SW-6)	ဇွန်လ ၇ ရက်နေ့ ၂၀၂၂ ခုနှစ် (၀၉ နာရီ : ၅၇ မိနစ်)
G	မြေအောက်ရေ နမူနာရယူသည့် နေရာ-၁ (GW-1)	ဇွန်လ ၇ ရက်နေ့ ၂၀၂၂ ခုနှစ် (၁၂ နာရီ : ၁၁ မိနစ်)

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

œယား ၂.၄-၂ မြန်မာနိုင်ငံ၊ ရန်ကုန်မြစ်၏ ဒီရေမှတ်တမ်း

ရက်စွဲ	အချိန်	အမြင့်	ဒီရေအခြေအနေ
	09:08	၁.၂၆	ဒီရေအကျ
ဇွန်လ ၇ ရက်နေ့	06:20	9.66	ဒီရေအတက်
၂၀၂၂ ခုနှစ်	၁၆:၁၁	၁.၇၅	ဒီရေအကျ
	Jp:92	9.66	ဒီရေအတက်

မူရင်း။ မြန်မာဆိပ်ကမ်းအာဏာပိုင်၊ ၂၀၂၂ ခုနှစ်အတွက် ရန်ကုန်မြစ်၏ ဒီရေမှတ်တမ်း

၂.၅ စောင့်ကြည့်လေ့လာမှုရလဒ်များ

ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုရလဒ်များကို ဧယား ၂.၅-၁ နှင့် ဧယား ၂.၅-၂ တို့တွင် ဖော်ပြထားပါသည်။ ဓာတ်ခွဲခန်းဆန်းစစ်မှု ရလဒ်များကို နောက်ဆက်တွဲ-၂ တွင်ဖော်ပြထားသည်။ ရလဒ်များကို ပတ်ဝန်းကျင်ထိခိုက်မှု ဆန်းစစ်ခြင်း အစီအရင်ခံစာတွင်ပါရှိသည့် ရေအရည်အသွေးရည်မှန်းတန်ဖိုးများနှင့် နှိုင်းယှဉ်ထားပါသည်။

၂.၅.၁ သီလဝါအထူးစီးပွားရေးဇုန်ရှိ စက်မှုဇုန်၏ စွန့်ထုတ်ရေသန့်စင်စက်ရုံထွက်ပေါက်နှင့် ချောင်းအတွင်းသို့ မစွန့်ထုတ်ခင်နေရာရှိ ရေအရည်အသွေးရလဒ်များ

ရည်မှန်းတန်ဖိုးများဖြင့်နှိုင်းယှဉ်ရာတွင် ဆိုင်းကြွအနယ်များ၊ ကိုလီဖောင်းစုစုပေါင်းနှင့် ကြွင်းကျန်သောကလိုရင်း စုစုပေါင်း တို့မှာ ရည်မှန်း တန်ဖိုးများထက် ကျော်လွန်နေကြောင်းတွေ့ရှိရပါသည်။

ဆိုင်းကြွအနယ် ရလဒ်အနေဖြင့် ဗဟိုစွန့်ထုတ်ရေ သန့်စင်စက်ရုံ၏ ထွက်ပေါက် မြေပေါ် ရေ နမူနာ ယူသည့်နေရာ-၆ (SW-6) မှရလဒ်သည် ရည်မှန်းထားသော တန်ဖိုးအတွင်းရှိကြောင်း တွေ့ရှိရသည်။ ထို့ကြောင့် စက်ရုံတစ်ရုံချင်းစီမှ ထွက်ရှိလာသော စွန့်ထုတ်ရေများအား ပင်မစွန့်ထုတ်ရေ သန့်စင်စက်ရုံမှ ကောင်းမွန်စွာ သန့်စင်ထားသည်ဟု ဆိုလိုနိုင်ပါသည်။ အခြားတစ်ဖက်တွင်လည်း စောင့်ကြည့် လေ့လာနေသော ရေထိန်းကန် မြေပေါ် ရေ နမူနာယူသည့်နေရာ-၁ (SW-1) မှ ရလဒ်များသည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေသည့် အကြောင်းအရင်းမှာ စုန်အပိုင်း(က)ရှိ မြေလွတ်များမှ မြေမျက်နှာပြင် စီးဆင်းရေများကြောင့် ဖြစ်နိုင်ပါသည်။

ကိုလီဖောင်း စုစုပေါင်း ရလဒ်အနေဖြင့် ဗဟိုစွန့်ထုတ်ရေ သန့်စင်စက်ရုံ၏ ထွက်ပေါက် မြေပေါ် ရေ နမူနာယူသည့်နေရာ-၆ (SW-6) မှရလဒ်သည် ရည်မှန်းထားသော တန်ဖိုးအတွင်းရှိကြောင်း တွေ့ရှိရသည်။ ထို့ကြောင့် စက်ရုံတစ်ရုံချင်းစီမှ စွန့်ထုတ်ရေများအား ပင်မစွန့်ထုတ်ရေ သန့်စင်စက်ရုံမှ ကောင်းမွန်စွာ သန့်စင်ထားသည်ဟု ဆိုလိုနိုင်ပါသည်။ အခြားတစ်ဖက်တွင် စောင့်ကြည့်လေ့လာသော နေရာများဖြစ်သည့် ရေထိန်းကန် မြေပေါ် ရေ နမူနာယူသည့်နေရာ-၁ (SW-1) နှင့် ရေထိန်းတူးမြောင်း မြေပေါ် ရေ နမူနာယူသည့် နေရာ-၅ (SW-5)တွင် ရလဒ်များမှာ ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေကြောင်း တွေ့ရှိရပါသည်။ ဖြစ်နိုင်ချေ အလားအလာရှိသည့် အကြောင်းရင်းများမှာ ရေထိန်းကန်နှင့် ရေထိန်းတူးမြောင်း၏ အတွင်းနှင့် အပြင်တလျှောက်တွင် အပင်များနှင့်ငှက်များ၊ တိရစ္ဆာန်ငယ်များ ကျင်လည်ကျက်စားခြင်းကြောင့် စုန်အပိုင်း(က)၏ ဧရိယာတွင် သဘာဝအလျှောက် ဘက်တီးရီးယားများ ရှိနေသောကြောင့် ဖြစ်နိုင်ပါသည်။

ကိုလီဖောင်း စုစုပေါင်း၏ ဖြစ်တည်မှုတွင် သဘာဝအလျှောက် ဘက်တီးရီးယားများ ပါဝင်ပြီး စုစုပေါင်း ကိုလီဖောင်းသည် လူတို့၏ကျန်းမာရေးကို တိုက်ရိုက်ထိခိုက်မှု မရှိသော်ငြားလည်း ကိုလီဖောင်း ဘက်တီးရီးယား အမျိုးအစားထဲမှ ကျန်းမာရေးအပေါ် သက်ရောက်မှု ရှိ/မရှိသိစေရန် ဝမ်းကိုက်ရောဂါကို ဖြစ်စေသော ကိုလီဖောင်း ဘက်တီးရီးယား အမျိုးအစားတစ်မျိုး (E Coli) အားသုံးသပ်ခြင်းအတွက် ကိုယ်တိုင် စောင့်ကြည့် လေ့လာမှုကို ပြုလုပ်ခဲ့ပါသည်။ ဤဝမ်းကိုက်ရောဂါကို ဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား(E Coli) ရလဒ်အရ တန်ဖိုးများအားလုံးသည် ရည်မှန်းတန်ဖိုးများအောက် နည်းပါးကြောင်းတွေ့ရှိရပါသည်။ ထို့ကြောင့် ရေထိန်းကန် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1) နှင့် ရေထိန်းတူးမြောင်း မြေပေါ် ရေနမူနာယူသည့်နေရာ-၅ (SW-5)ရှိ စောင့်ကြည့်လေ့လာသော နေရာများတွင် ကိုလီဖောင်းစုစုပေါင်းသည် ရည်မှန်းတန်ဖိုးထက်များနေသော်လည်း လူ၏ကျန်းမာရေးကို သိသာထင်ရှားစွာ သက်ရောက်မှုမရှိနိုင်ကြောင်း သတ်မှတ်နိုင်ပါသည်။

ကြွင်းကျန်သောကလိုရင်းစုစုပေါင်း ရလဒ်အနေဖြင့် ဗဟိုစွန့်ထုတ်ရေ သန့်စင်စက်ရုံ၏ ထွက်ပေါက် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၆ (SW-6) မှရလဒ် ၀.၃ မီလီဂရမ်/လီတာသည် ရည်မှန်းထားသော တန်ဖိုးထက် အနည်းငယ် ကျော်လွန်နေကြောင်းတွေ့ရသည်။ ရည်မှန်းထားသော တန်ဖိုးထက် ကျော်လွန်နေခြင်းမှာ စက်ရုံမှမစွန့်ထုတ်ခင် စွန့်ထုတ်ရေများတွင် ကြွင်းကျန်သောကလိုရင်းစုစုပေါင်း ကျန်ရှိနေခြင်းကြောင့် ဖြစ်နိုင်သည်။ သို့သော်လည်း စုန်အပိုင်း(က)၏ နောက်ဆုံး စွန့်ထုတ်ရာနေရာတခုဖြစ်သော မြေပေါ် ရေနမူနာယူသည့် နေရာ-၁ (SW-1)၏ ကြွင်းကျန်သောကလိုရင်းစုစုပေါင်းသည် ရည်မှန်းတန်ဖိုး (၀.၂ မီလီဂရမ်/လီတာ) အောက် နည်းပါးနေကြောင်း တွေ့ရှိရပါသည်။ ထို့ကြောင့် ရရှိထားသော ရလဒ်များသည် လူ၏ကျန်းမာရေးနှင့် သက်ရှိပတ်ဝန်းကျင်တွင် သိသာထင်ရှားသောထိခိုက်မှုမရှိနိုင်ကြောင်း သတ်မှတ်နိုင်ပါသည်။

ဖယား ၂.၅-၁ ရေထွက်ပေါက်နှင့်ရေထိန်းဂိတ်အားလုံး၏ ရေထုအရည်အသွေး စောင့်ကြည့်လေ့လာမှု ရလဒ်များ

စဉ်	ရေအရည်အသွေး တိုင်းတာသည့် အမျိုးအစား (parameters)	ယူနစ်	မြေပေါ် ရေနမူ နာယူသည့် နေရာ-၁ (SW-1)	မြေပေါ် ရေနမူ နာယူသည့် နေရာ-၅ (SW-5)	မြေပေါ် ရေနမူ နာယူသည့် နေရာ-၆ (SW-6)	ရည်မှန်းတန်ဖိုး (ကိုယ်တိုင်စောင့်ကြည့်လေ့ လာခြင်း အတွက် ရည်ညွှန်းတန်ဖိုး)
0	ရေအပူချိန် (Water Temperature)	*C	Jo	Jo	IJ	≤ २၅
J	ချဥ်ဖန်ကိန်း (pH)		୍ନ-ଡ	१ .၅	9.0	G - G
9	ဆိုင်းကြွအနယ် (suspended solid)	mg/l	၁၇၀	99	9	90
9	ပျော်ဝင်အောက်စီဂျင် (Dissolved Oxygen)	mg/l	၇.၆၁	6.67	7.71	-
၅	ဖီဝနည်းဖြင့်ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (၅-ရက်) (BOD ₍₅₎)	mg/l	၅.၀၁	ე.ცე	ე.၁၁	50
G	ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD _{(C1}))	mg/l	၁၁.၅	J9-@	ე.၁	ວງ၅
?	ကိုလီဖောင်းစုစုပေါင်း (Total Coliform)	MPN/ 100ml	99000.0	29000.0	< 0.0	900
၈	နိုက်ထရိဂျင်စုစုပေါင်း (Total Nitrogen)	mg/l	J.0	၁.၈	ე. J	60
G	ဖော့စဖောရက်စုစုပေါင်း (Total Phosphorus)	mg/l	0.20	< 0.09	၁.၁၂	J
00	အရောင် (Color)	TCU (True Color Unit)	6.ჟი	00.cc	J.69	აეი
၁၁	အနံ့ (Odor)	TON (Threshold Odor Number)	J	Э	9	-
၁၂	ဆီနှင့် အမဲဆီ (Oil and Grease)	mg/l	< 2.5	< 2.0	< 2.0	00
၁၃	ပြဒါးဓာတ် (Mercury)	mg/l	≤ 0.00∫	≤ 0.00∫	≤ 0.00 J	0.00၅

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(က)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်မှုအတွက်ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအစီရင်ခံစာ (တစ်နှစ် နှစ်ကြိမ်၊ စောင့်ကြည့်လေ့လာခြင်း ဇွန်လ ၂၀၂၂ ခုနှစ်)

ං දි	ရေအရည်အသွေး တိုင်းတာသည့် အမျိုးအစား (parameters)	ယူနစ်	မြေပေါ် ရေနမူ နာယူသည့် နေရာ-၁ (SW-1)	မြေပေါ် ရေနမူ နာယူသည် နေရာ-၅ (SW-5)	မြေပေါ် ရေနှမူ နာယူသည့် နေရာ-၆ (SW-6)	ရည်မှန်းတန်ဖိုး (ကိုယ်တိုင်စောင့်ကြည့်လေ့ လာခြင်း အတွက် ရည်ညွှန်းတန်ဖိုး)
99	သွပ် (Zinc)	mg/l	0.0၉၇	၀.၀၉၈	0.000	J
၁၅	အာဆီနစ် (Arsenic)	mg/l	≤ 0.000	≤ 0.000	≤ 0.000	0.0
၁၆	ခရိုမီယမ် (Chromium)	mg/l	90.00	< 0.009	≤ 0.00၅	0.9
၁၇	ကက်ဒမီယမ် (Cadmium)	mg/l	≤ 0.00၅	≤ 0.009	≤ 0.00၅	9.02
ວຄ	ဆယ်လီနီယမ် (Selenium)	mg/l	≤ റ.ററഉ	≤ 0.009	≤ 0.00ე	0.0၂
၁၉	à (Lead)	mg/l	≤ 0.009	≤ 0.009	≤ 0.00၅	0.0
Jo	ണ്ടെം (Copper)	mg/l	≤ 0.009	≤ 0.009	≤ 0.009	0.9
Jo	ဗေရီယမ် (Barium)	mg/l	0.028	၀.၀၅၁	0.299	o o
JJ	နစ်ကယ် (Nickel)	mg/l	≤ 0.009	≤ 0.009	≤ 0.00၅	0.J
18	ဆိုင်ယာနိုဒ် (Cyanide)	mg/l	< 0.00 J	< 0.00 J	< 0.00 J	0.0
J9	ဆိုင်ယာနိုဒ်စုစုပေါင်း (Total Cyanide)	mg/l	0.00၂	< 0.00 J	< 0.00 J	Э
JO	ဖရီးကလိုရင်း (Free Chlorine)	mg/l	< 0.0	< 0.0	0.0	0
JG	ဆာလဖိုဒ် (Sulphide)	mg/l	0.၁၅၉	0.009	< 0.009	٥
J9	ဖော်မယ်ဒီဟိုက် (Formaldehyde)	mg/l	0,020	0.0]]	0.000	٥
၂၈	ဖိနော (Phenols)	mg/l	< 0.00 j	< 0.00 J	< 0.00 j	0.9
Je	သံဓာတ် (Iron)	mg/l	၁.၈၈၁	0.7]]	0.J9J	₹.၅
90	ပျော်ဝင်အနည်စုစုပေါင်း (Total Dissolved Solids)	mg/l	JJ9	Joo	990	J000
90	ကြွင်းကျန်သောကလိုရင်းစုစု ပေါင်း (Total Residual Chlorine)	mg/l	< 0.0 >	< 0.0 >	9.0	o.j
51	ခရိုမီယမ် (Chromium Hexavalent)	mg/l	< 0.09	< 0.09	< 0.09	0.0
99	အမိုးနီးယား (Ammonia)	mg/l	0.29	0.J2	0.01	00
29	ဖလူအိုရိုက် (Fluoride)	mg/l	0.529	0.000	J.089	Jo
20	eg (Silver)	mg/l	≤ 0.00ე	≤ 0.009	≤ 0.009	0.9
રહ	ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်း ဘက်တီးရီးယား (Escherichia Coli)	MPN/100ml (SW)	Jo.o	၁၇.0		(2000)* (CFU/200ml)
२१	စီးဆင်းနှုန်း (Flow Rate)	m³/s	0.0]	0.00	0.00	(#)

မှတ်ချက်။ အနီရောင်ဖြင့်ဖော်ပြထားသောတန်ဖိုးများသည်သတ်မှတ်ထားသည့်တန်ဖိုးများထက်ကျော်လွန်နေသည်ကိုဆိုလိုပါသည်။
"မှတ်ချက်။ စွန့်ထုတ်ရေများစွန့်ထုတ်လိုက်သောချောင်း၏ အသုံးပြုမှုပေါ်မူတည်၍ ဂျပန်နိုင်ငံ၏ ချိုးရေစံချိန်စံညွှန်း (ပတ်ဝန်းကျင်ဆိုင်ရာဝန်ကြီးဌာန၊ ၁၉၉၇)ကို ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား(E.coli)၏ ရည်မှန်းတန်ဖိုးအဖြစ်သတ်မှတ်ထားပါသည်။ သို့သော်လည်း မြန်မာနိုင်ငံရှိ ဓာတ်ခွဲခန်းများ၏ လုပ်ဆောင်နိုင်မှု ကန့်သတ်ချက်များကြောင့် စီအက်ဖ်ယူတန်ဖိုး "Colony Forming Unit (CFU)" အား တိုင်းတာ၍မရပါ။ ထို့ကြောင့် အမ်ပီအန် "Most Probable Number (MPN)" ရလဒ်များကို စီအက်ဖ်ယူတန်ဖိုးနှင့် တူညီသည်ဟုယူဆပြီး ရည်မှန်းတန်ဖိုးနှင့် နှိုင်းယှဉ်ပါသည်။ မြန်မာနိုင်ငံတွင် စီအက်ဖ်ယူတန်ဖိုးကို သုံးသဝ်နိုင်သည်နှင့် တစ်ပြိုင်နက် သုံးသပ်သည့်နည်းလမ်းများ ပြောင်းလဲမည်ဖြစ်သည်။

ဂျပန်နိုင်ငံ၏ ချိုးရေ ရေစံချိန်စံညွှန်း (ပတ်ဝန်းကျင်ဆိုင်ရာဝန်ကြီးဌာန၊ ၁၉၉၇)အရ ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား (E. coli) တန်ဖိုး ၁၀၀၀ CFU/၁၀၀ ml ထက်ကျော်လွန်နေသည်မှာ ချိုးရေအဖြစ်သုံးရန် မသင့်တော်ဟုယူဆပါသည်။

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

၂.၅.၂ စွန့်ထုတ်ရေထွက်ရှိသော နေရာများနှင့် စွန့်ထုတ်ရေ ရောက်ရှိနိုင်သည့်ချောင်း၏ အခြေခံအချက်အလက် များကို နှိုင်းယှဉ်ရန်အတွက် ရည်ညွှန်းစောင့်ကြည့်လေ့လာမှုရလဒ်များ

ရည်မှန်းတန်ဖိုးနှင့်နှိုင်းယှဉ်ရာတွင် ဆိုင်းကြွအနည်များ၊ ကိုလီဖောင်းစုစုပေါင်း နှင့် သံဓာတ် တို့မှာ ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေကြောင်းတွေ့ရသည်။

ဆိုင်းကြွအနည်များ၏ ရလဒ်များအရ (မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4)) တို့ရှိ ရလဒ်များသည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေသည်။ ဖြစ်နိုင်သောအဓိကအကြောင်းအရာများမှာ (၁) သဘာဝအလျောက် ချောင်းအထက်ပိုင်းမှ စီးဆင်းလာခြင်းနှင့် သီလဝါအထူးစီးပွားရေးဇုန် ပြင်ပရှိ ပြည်တွင်းစက်မှုဇုန်မှ စွန့်ထုတ်လိုက်သော ရေများကြောင့်လည်းကောင်း၊ (၂) ချောင်းအောက်ဘက်ရှိ ရေများသည် ဒီရေအတက်အကျကြောင့် အထက်သို့ ပြန်လည်စီးဆင်းလာခြင်းကြောင့် လည်းကောင်း ဖြစ်နိုင်ပါသည်။

ကိုလီဖောင်းစုစုပေါင်းရလဒ်အနေဖြင့် (မြေပေါ် ရေနမူနာယူသည့် နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့် နေရာ-၄ (SW-4)) တို့ရှိ ရလဒ်များသည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေခြင်းမှာ (၁) စွန့်ထုတ်ရေရောက်ရှိရာ ချောင်းအတွင်းနှင့် အနီးတစ်ဝိုက်တွင် ရှိနေသော အပင်အမျိုးမျိုးနှင့် သက်ရှိသတ္တဝါများဖြစ်သော ငှက်များနှင့်တိရစ္ဆာန်များကြောင့် သဘာဝ ဘက်တီးရီးယားများသည် စွန့်ထုတ်ရေရောက်ရှိရာ ချောင်းအတွင်းတွင် တည်ရှိနေခြင်းကြောင့်လည်းကောင်း၊ (၂) သီလဝါအထူးစီးပွားရေးစုန် ပြင်ပရှိ ပြည်တွင်းစက်မှုစုန်မှ စွန့်ထုတ်ရေများကြောင့်လည်းကောင်း၊ (၃) အနီးပတ်ဝန်းကျင်မှ ဒီရေအတက်အကျ သက်ရောက်မှုကြောင့် လည်းကောင်း ဖြစ်နိုင်ပါသည်။

သံဓာတ်ရလဒ်အနေဖြင့် (မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4)) တို့ရှိ ရလဒ်သည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေကြောင်း တွေ့ရှိရပါသည်။ ဖြစ်နိုင်သောအကြောင်းအရာများမှာ သဘာဝ သံဓာတ် အရင်းအမြစ်၏ လွှမ်းမိုးမှု ကြောင့် ဖြစ်နိုင်ပါသည် (သံဓာတ်သည်ရေစီးဆင်းမှုကြောင့် မြေဆီလွှာအတွင်းမှ ထွက်လာနိုင်ပါသည်)။ ဂျပန်နိုင်ငံ လူနေမှုပတ်ဝန်းကျင်စံနှုန်းတန်ဖိုးများတွင် (၁) ကျန်းမာရေး (၂) လူနေမှုပတ်ဝန်းကျင်ဟူ၍ အမျိုးအစားနှစ်ခု သတ်မှတ်ထားပါသည်။ ကျန်းမာရေးအမျိုးအစားတွင် သံဓာတ်အတွက် စံတန်ဖိုးသတ်မှတ်ထားခြင်းမတွေ့ရှိရပါ။ သို့သော် လူနေမှုပတ်ဝန်းကျင်အတွက်မှု ပျော်ဝင်နိုင်သောသံဓာတ် စံတန်ဖိုးအား ၁၀ မီလီဂရမ်/လီတာ ဟူ၍သတ်မှတ်ထားသည်။ ဂျပန်နိုင်ငံ၏ လူနေမှုပတ်ဝန်းကျင်အတွက် သံဓာတ်စံတန်ဖိုးနှင့် နှိုင်းယှဉ်ရာတွင် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4) ရှိ သံဓာတ်တန်ဖိုးသည် စံတန်ဖိုးအောက်နည်းပါးနေကြောင်း တွေ့ရှိရပါသည်။ ထို့ကြောင့် လူနေမှုပတ်ဝန်းကျင်တွင်

ဖယား ၂.၅-၂ စွန့်ထုတ်ရေထွက်ရှိသောနေရာများနှင့် စွန့်ထုတ်ရေရောက်ရှိနိုင်သည့်ချောင်း၏ အခြေခံအချက်အလက်များကို နှိုင်းယှဉ်ရန်အတွက် ရည်ညွှန်းစောင့်ကြည့်လေ့လာမှု ရေအရည်အသွေးရလဒ်များ

			ا ما الله	٠ ا ه	JL L LL	
ඉදි	ရေအရည်အသွေး တိုင်းတာသည့် အမျိုးအစားများ (parameters)	ယူနစ်	မြေပေါ်ရေ နမူနာယူသည့် နေရာ-၂ (SW-2)	မြေပေါ်ရေ နမူနာယူသည့် နေရာ-၄ (SW- 4)	မြေအောက်ရေန မူနာယူသည့် နေရာ-၁(GW-1)	ရည်မှန်းတန်ဖိုး (ကိုယ်တိုင်စောင့်ကြည့် လေ့လာခြင်းအတွက် ရည်ညွှန်းတန်ဖိုး)
0	ရေအပူချိန် (water temperature)	*c	၁ ၉	၁၉	JJ	≤ २၅
J	ချဥ်ဖန်ကိန်း (pH)	5	7-J	7.9	7.0	G - G
5	ဆိုင်းကြွအနယ် (suspended solid)	mg/l	กก	ე ეც	00	90
9	ပျော်ဝင်အောက်စီဂျင် (Dissolved Oxygen)	mg/l	9.70	6.60	9.69	
9	ဇီဝနည်းဖြင့်ဖြိုခွဲရန် ဆောက်စီဂျင် လိုအပ်ချုက် (၅- ရက်) (BOD ₍₅₎)	mg/l	9.00	9.99	J.ço	50
G	ဓာတုနည်းဖြင့် ဖြိုခွဲရန် အောက်စီဂျင် လိုအပ်ချက် (COD _(Cr))	mg/l	22].0	2 G.6	2.2	ు్ర
?	ကိုလီဖောင်းစုစုပေါင်း (Total Coliform)	MPN/ 100ml	၁ 60000.0	> 260000	9.9	900
6	နိုက်ထရိုဂျင်စုစုပေါင်း (Total Nitrogen)	mg/l	j.o	0.6	၁.၉	6 0
6	ဖော့စဖောရက်စုစုပေါင်း (Total Phosphorus)	mg/l	0.j@	0.JJ	0.00	J
20	အရောင် (Color)	TCU (True Color Unit)	ეე.ეઉ	oç.oo	J. 9 0	აჟი
၁၁	အနံ့ (Odor)	TON (Threshold Odor Number)	J	J	э	(2)
21	ဆီနှင့် အမဲဆီ (Oil and Grease)	mg/l	< 2.0	< 2.5	< 2.5	20
92	ပြဒါးဓာတ် (Mercury)	mg/l	≤ 0.00 j	≤ 0.00]	≤ 0.00∫	0.009
99	သွပ် (Zinc)	mg/l	0.089	0.019	0.009	J
၁၅	အာဆီနစ် (Arsenic)	mg/l	≤ 0.000	≤ 0.000	≤ 0.000	0.0
oG	ခရိုမီယမ် (Chromium)	mg/l	≤ 0.009	0.006	≤ റ.ററഉ	೦.၅
20	ကက်ဒမီယမ် (Cadmium)	mg/l	≤ 0.009	≤ 0.00၅	≤ 0.009	90.0
၁၈	ဆယ်လီနီယမ် (Selenium)	mg/l	≤ 0.009	≤ 0.009	≤ 0.00၅	0.0]
90	à (Lead)	mg/l	≤ 0.00၅	≤ 0.009	0.009	0.0
JO	ကြေးနီ (Copper)	mg/l	≤ 0.009	0.002	≤ 0.00၅	0.9
Jo	ဗေရီယမ် (Barium)	mg/l	0.021	0.0၂၅	0.090	0

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(က)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်မှုအတွက်ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအစီရင်ခံစာ (တစ်နှစ် နှစ်ကြိမ်၊ စောင့်ကြည့်လေ့လာခြင်း ဇွန်လ ၂၀၂၂ ခုနှစ်)

⊕ §	ရေအရည်အသွေး တိုင်းတာသည့် အမျိုးအစားများ (parameters)	ယူနစ်	မြေပေါ်ရေ နမူနာယူသည့် နေရာ-၂ (SW-2)	မြေပေါ် ရေ နမူနာယူသည့် နေရာ-၄ (SW- 4)	မြေအောက်ရေန မူနာယူသည့် နေရာ-၁(GW-1)	ရည်မှန်းတန်ဖိုး (ကိုယ်တိုင်စောင့်ကြည့် လေ့လာခြင်းအတွက် ရည်ညွှန်းတန်ဖိုး)
JJ	နှစ်ကယ် (Nickel)	mg/l	≤ 0.00၅	≤ റ.ററഉ	≤ 0.00၅	0.J
75	ဆိုင်ယာနိုဒ် (Cyanide)	mg/l	< 0.00 J	< 0.00 J	< 0.00 J	0.0
J9	ဆိုင်ယာနိုဒ်စုစုပေါင်း (Total Cyanide)	mg/l	0.002	< 0.00 J	< 0.00 J	э
JO	ဖရီးကလိုရင်း (Free Chlorine)	mg/l	< 0.0	< 0.0	< 0.0 >	0
JG	ဆာလဖိုဒ် (Sulphide)	mg/l	0.066	0.069	900.0	0
J٦	ဖော်မယ်ဒီဟိုက် (Formaldehyde)	mg/l	0.019	0.009	0.009	0
၂၈	ဖီနော (Phenols)	mg/l	0.000	0.00၅	< 0.00 J	0.9
Je	သံဓာတ် (Iron)	mg/l	J.909	ද.ගින	၀.၇၁၉	₹.၅
50	ပျော်ဝင်အနည်စုစုပေါင်း (Total Dissolved Solids)	mg/l	၂၄၈	200	၁၁၂၀	J000
90	ကြွင်းကျန်သောကလိုရင်းစုစု ပေါင်း (Total Residual Chlorine)	mg/l	< 0.0 >	< 0.0	< 0.0 >	0.J
۶J	ခရိုမီယမ် (Chromium Hexavalent)	mg/l	< 0.09	< 0.0၅	< 0.09	0.0
99	အမိုးနီးယား (Ammonia)	mg/l	၁.၉၆	၀.၅၈	J.52	00
29	ဖလူအိုရိုက် (Fluoride)	mg/l	၀.၀၂၈	୦.२୩୩	0.009	Jo
29	eg (Silver)	mg/l	≤ 0.009	≤ 0.00၅	≤ റ.ററഉ	0.9
	ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော	MPN/100ml* (SW)	-	7	(+)	(0,000)* (CFU/100ml)
રહ	ကိုလီဖောင်းဘက်တီးရီးယား (Escherichia Coli)	MPN/100ml** (GW)	-		< o.6	(>00)** (MPN/100ml)
27	စီးဆင်းနှုန်း (Flow Rate)	m³/s	90.0	0.98		-

မှတ်ချက်။ အနီရောင်ဖြင့်ဖော်ပြထားသောတန်ဖိုးများသည်သတ်မှတ်ထားသည့်တန်ဖိုးများထက်ကျော်လွန်နေသည်ကိုဆိုလိုပါသည်။ "မှတ်ချက်။ စွန့်ထုတ်ရေများစွန့်ထုတ်လိုက်သောချောင်း၏ အသုံးပြုမှုပေါ်မှုတည်၍ ဂျပန်နိုင်ငံ၏ ချိုးရေစံချိန်စံညွှန်း (ပတ်ဝန်းကျင်ဆိုင်ရာဝန်ကြီးဌာန၊ ၁၉၉၇)ကို ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား(E.coli)၏ ရည်မှန်းတန်ဖိုးအဖြစ်သတ်မှတ်ထားပါသည်။ သို့သော်လည်း မြန်မာနိုင်ငံရှိ ဓာတ်ခွဲခန်းများ၏ လုပ်ဆောင်နိုင်မှု ကန့်သတ်ချက်များကြောင့် စီအက်ဖ်ယူတန်ဖိုး "Colony Forming Unit (CFU)" အား တိုင်းတာ၍မရပါ။ ထို့ကြောင့် အဓ်ပီအန် "Most Probable Number (MPN)" ရလဒ်များကို စီအက်ဖ်ယူတန်ဖိုးနှင့် တူညီသည်ဟုယူဆပြီး ရည်မှန်းတန်ဖိုးနှင့် နှိုင်းယှဉ်ပါသည်။ မြန်မာနိုင်ငံတွင် စီအက်ဖ်ယူတန်ဖိုးကို သုံးသပ်နိုင်သည်နှင့် တစ်ပြိုင်နက် သုံးသပ်သည့်နည်းလမ်းများ ပြောင်းလဲမည်ဖြစ်သည်။

ဂျပန်နိုင်ငံ၏ ချိုးရေ ရေစံချိန်စံညွှန်း (ပတ်ဝန်းကျင်ဆိုင်ရာဝန်ကြီးဌာန၊ ၁၉၉၇)အရ ဝမ်းကိုက်ရောဂါကိုဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား (E. coli) တန်ဖိုး ၁၀၀၀ CFU/၁၀၀ ml ထက်ကျော်လွန်နေသည်မှာ ချိုးရေအဖြစ်သုံးရန် မသင့်တော်ဟုယူဆပါသည်။

**မှတ်ချက်။ မြေအောက်ရေစောင့်ကြည့်လေ့လာသောနေရာတွင် ရေအသုံးပြုမှုပေါ် မူတည်၍ ဗီယက်နမ်နိုင်ငံရှိ မြေအောက်ရေအရည်အသွေးဆိုင်ရာ အမျိုးသားနည်းပညာစည်းမျဉ်းဥပဒေ B1 (ဆည်မြောင်းရေ) (No. QCVN 08: 2008/BTNMT) ကို မြေအောက်ရေကိုယ်တိုင်စောင့်ကြည့်လေ့လာခြင်းအတွက် ရည်မှန်းတန်ဖိုးအဖြစ်သတ်မှတ်ပါသည်။

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

အခန်း ၃ နိဂုံးချုပ် နှင့် အကြံပြုချက်များ

အခန်း ၂ အပိုင်း ၂.၅ တွင် ဖော်ပြထားသကဲ့သို့ သီလအထူးစီပွားရေးဇုန်အပိုင်း (က) လုပ်ငန်းလည်ပတ်နေစဥ် ကာလ စောင့်ကြည့်လေ့လာသောအချိန်အတွင်း မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1)၊ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4)တို့တွင် ဆိုင်းကြွအနယ်များ၊ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1)၊ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၅ (SW-5)၊ မြေပေါ် ရေနမူနာယူသည့်နေရာ-၂ (SW-2) နှင့် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4) တို့တွင် ကိုလီဖောင်းစုစုပေါင်း၊ ဗဟိုစွန့်ထုတ်ရေ သန့်စင်စက်ရုံ၏ ထွက်ပေါက်မြေပေါ် ရေ နမူနာယူသည့်နေရာ-၆ (SW-6) တွင် ကြွင်းကျန်သောကလိုရင်းစုစုပေါင်း နှင့် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4)တွင် သံဓာတ် စသည်တို့သည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေပါသည်။

ဆိုင်းကြွအနယ်သည် ရေထိန်းကန် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1) တွင် ချောင်းအတွင်းသို့ မစွန့်ထုတ်ခင်တွင် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေသည့် အကြောင်းရင်းမှာ ဇုန်အပိုင်း(က)ရှိမြေလွတ်များမှ မြေမျက်နှာပြင်စီးဆင်းရေများကြောင့် ဖြစ်နိုင်ပါသည်။

သီလဝါအထူးစီးပွားရေးစုန် အပိုင်း(က)၏ အဓိကရေထွက်ပေါက်များဖြစ်သော ရေထိန်းကန် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1) နှင့် ရေထိန်းတူးမြောင်း မြေပေါ် ရေနမူနာယူသည့်နေရာ-၅ (SW-5) တို့တွင် စုစုပေါင်းကိုလီဖောင်း အမျိုးအစားမှာ ယခုစောင့်ကြည့် လေ့လာသည့် အချိန်တွင် ရည်မှန်းတန်ဖိုးထက်များနေကြောင်း တွေ့ရှိရပါသည်။ ထို့အပြင် ရေထိန်းကန် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1) နှင့် ရေထိန်းတူးမြောင်း မြေပေါ် ရေနမူနာယူသည့်နေရာ-၅ (SW-5) တွင် ဝမ်းကိုက်ရောဂါကို ဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား(E.Coli) အတွက် ကိုယ်တိုင်စောင့်ကြည့်လေ့လာမှုအရ ရလဒ်သည် ရည်မှန်းတန်ဖိုးအောက် လျော့နည်းနေပါသည်။ ထို့ကြောင့် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၁ (SW-1) နှင့် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၅ (SW-5) တို့တွင် ကိုလီဖောင်းစုစုပေါင်းမှာ ရည်မှန်းတန်ဖိုးထက် များနေသော်လည်း လူတို့၏ကျန်းမာရေးအပေါ် သိသာထင်ရှားစွာ သက်ရောက်မှုမရှိဟု သတ်မှတ်နိုင်ပါသည်။

ကြွင်းကျန်သောကလိုရင်းစုစုပေါင်း ရလဒ်အနေဖြင့် ဗဟိုစွန့်ထုတ်ရေ သန့်စင်စက်ရုံ၏ ထွက်ပေါက် မြေပေါ် ရေ နမူနာယူသည့်နေရာ-၆ (SW-6) မှရလဒ် ၀.၃ မီလီဂရမ်/လီတာသည် ရည်မှန်းထားသော တန်ဖိုးထက် ကျော်လွန်နေကြောင်းတွေ့ရသည်။ ရည်မှန်းထားသော တန်ဖိုးထက် ကျော်လွန်နေခြင်းမှာ စက်ရုံမှမစွန့်ထုတ်ခင် စွန့်ထုတ်ရေများတွင် ကြွင်းကျန်သောကလိုရင်းစုစုပေါင်း ကျန်ရှိနေခြင်းကြောင့် ဖြစ်နိုင်သည်။ သို့သော်လည်း စုန့်အပိုင်း(က)၏ နောက်ဆုံး စွန့်ထုတ်ရာနေရာတခုဖြစ်သော မြေပေါ် ရေနမူနာယူသည့် နေရာ-၁ (SW-1)၏ ကြွင်းကျန်သောကလိုရင်းစုစုပေါင်းသည် ရည်မှန်းတန်ဖိုး (၀.၂ မီလီဂရမ်/လီတာ) အောက် နည်းပါးနေကြောင်း တွေ့ရှိရပါသည်။ ထို့ကြောင့် ရရှိထားသော ရလဒ်များသည် လူ၏ကျန်းမာရေးနှင့် သက်ရှိပတ်ဝန်းကျင်တွင် သိသာထင်ရှားသောထိခိုက်မှုမရှိနိုင်ကြောင်း သတ်မှတ်နိုင်ပါသည်။

ဆိုင်းကြွအနယ်များ နှင့် ကိုလီဖောင်းစုစုပေါင်းရလဒ်အရ ရည်ညွှန်းရေနမူနာယူသည့် နေရာ-၂ (SW-2) နှင့် ရည်ညွှန်းရေနမူနာယူသည့် နေရာ-၂ (SW-2) နှင့် ရည်ညွှန်းရေနမူနာယူသည့် နေရာ-၄ (SW-4) တို့ရှိ ရလဒ်များသည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေပါသည်။ ဆိုင်းကြွအနယ်များသည် ရည်မှန်းတန်ဖိုးများထက် ကျော်လွန်ရခြင်းမှာ (၁) သဘာဝအလျှောက် ချောင်းအထက်ပိုင်းမှ စီးဆင်းလာခြင်းနှင့် သီလဝါအထူးစီးပွားရေးစုန် ပြင်ပရှိ ပြည်တွင်းစက်မှုစုန်မှ စုန့်ထုတ်လိုက်သော ရေများကြောင့်လည်းကောင်း၊ (၂)ချောင်းအောက်ဘက်ရှိ ရေများသည်

ဒီရေအတက်အကျကြောင့် အထက်သို့ ပြန်လည်စီးဆင်းလာခြင်းကြောင့် လည်းကောင်း ဖြစ်နိုင်ပါသည်။ ကိုလီဖောင်း စုစုပေါင်းရလဒ်များအနေဖြင့် ရည်ညွှန်းရေနမူနာယူသည့် နေရာ-၂ (SW-2) နှင့် ရည်ညွှန်းရေနမူနာယူသည့် နေရာ-၄ (SW-4)) တွင် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေရခြင်းမှာ သဘာဝအလျောက် ရှိနေသော ဘက်တီးရီးယားများ ကြောင့်ဖြစ်နိုင်ပါသည်။

သံဓာတ်ရလဒ်အနေဖြင့် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4) ၏ ရလဒ်သည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေကြောင်း တွေ့ရှိရပါသည်။ ဖြစ်နိုင်ချေရှိသောအကြောင်းအရာများမှာ မြေဆီလွှာရှိ သံဓာတ် အရင်းအမြစ်၏ လွှမ်းမိုးမှု (သံဓာတ်သည်ရေစီးဆင်းမှုကြောင့် မြေဆီလွှာအတွင်းမှ ထွက်လာနိုင်ပါသည်) ကြောင့်ဖြစ်နိုင်ပါသည်။ ဂျပန်နိုင်ငံ၏ လူနေမှုပတ်ဝန်းကျင်အတွက် သံဓာတ်စံတန်ဖိုးနှင့် နှိုင်းယှဉ်ရာတွင် မြေပေါ် ရေနမူနာယူသည့်နေရာ-၄ (SW-4) ရှိ သံဓာတ်တန်ဖိုးသည် စံတန်ဖိုးအောက်နည်းပါးနေကြောင်း တွေ့ရှိရပါသည်။ ထို့ကြောင့် လူနေမှုပတ်ဝန်းကျင်တွင် သိသာထင်ရှားသောထိခိုက်မှုမရှိကြောင်း သတ်မှတ်နိုင်ပါသည်။

အနာဂတ်တွင် သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း (က) ၏ အဓိကစွန့်ထုတ်ရေ ထွက်ရှိသောနေရာများမှ ထွက်ရှိလာသော ရေအရည်အသွေးများဖြစ်သည့် ဆိုင်းကြွအနယ်များ၊ ကြွင်းကျန်သောကလိုရင်းစုစုပေါင်း နှင့် ကိုလီဖောင်းစုစုပေါင်း တို့၏ သင့်တော်သော ရည်မှန်းအဆင့်ရရှိနိုင်ရန် အောက်ပါဆောက်ရွက်ချက်များကို လုပ်ဆောင်သင့်ပါသည်။

- ဗဟိုစွန့်ထုတ်ရေ သန့်စင်စက်ရုံကို ပုံမှန်ပြုပြင်ထိန်းသိမ်းခြင်း။

-ကိုလီဖောင်းဘက်တီးရီးယားများ၏ ကျန်းမာရေးအပေါ် သက်ရောက်မှုကို သိရှိနိုင်ရန် ဝမ်းကိုက်ရောဂါကို ဖြစ်စေသော ကိုလီဖောင်းဘက်တီးရီးယား (E Coli) ကို ဆက်လက်စောင့်ကြည့်ရန်။

- ဆောက်လုပ်ရေးလုပ်ငန်းများမှ ရေများစီးဆင်းမှုအခြေအနေကို စောင့်ကြည့်လေ့လာရန် နှင့်

- ဆောက်လုပ်ရေးလုပ်ငန်းများမှ အထွေထွေသုံးစွန့်ထုတ်ရေများ၏ အခြေအနေကိုစောင့်ကြည့်လေ့လာရန်။

ဤတွင်စာတမ်းပြီးဆုံးပါသည်။

နောက်ဆက်တွဲ ၁ ရေနမူနာရယူသည့် မှတ်တမ်းဓာတ်ပုံများ

သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း (က) ရှိ စွန့်ထုတ်ရေနမူနာရယူသည့်နေရာများ

မြေပေါ်ရေ နမူနာယူသည့်နေရာ-၁ (SW-1) ၌ ရေနမူနာရယူခြင်းနှင့်တိုင်းတာခြင်း

မြေပေါ် ရေ နမူနာယူသည့်နေရာ-၅ (SW-5) ၌ ရေနမူနာရယူခြင်းနှင့်တိုင်းတာခြင်း

မြေပေါ် ရေ နမူနာယူသည့်နေရာ-၆ (SW-6) ၌ ရေနမူနာရယူခြင်းနှင့်တိုင်းတာခြင်း

စွန့်ထုတ်ရေထွက်ရှိသောနေရာများနှင့်စွန့်ထုတ်ရေရောက်ရှိနိုင်သည့်ချောင်း၏အခြေခံအချက်အလက် များကို နှိုင်းယှဉ်ရန်အတွက် ရည်ညွှန်းစောင့်ကြည့်လေ့လာသည့် နေရာများ

မြေပေါ် ရေ နမူနာယူသည့်နေရာ-၂ (SW-2) ၌ ရေနမူနာရယူခြင်းနှင့်တိုင်းတာခြင်း

မြေပေါ် ရေ နမူနာယူသည့်နေရာ-၄ (SW-4) ၌ ရေနမူနာရယူခြင်းနှင့်တိုင်းတာခြင်း

မြေအောက်ရေ နမူနာယူသည့်နေရာ-၁ (GW-1) ၌ ရေနမူနာရယူခြင်းနှင့်တိုင်းတာခြင်း

နောက်ဆက်တွဲ ၂ ဓာတ်ခွဲခန်းရလဒ်များ

စွန့်ထုတ်ရေထွက်ရှိသည့်နေရာများနှင့်ဗဟိုစွန့်ထုတ်ရေသန့်စင်စက်ရုံအထွက်

DOWA

 Report No.
 GEM-LAB-202206027

 Revision No.
 1

 Report Date
 71 June, 2022

 Application No.
 0001-C001

Analysis Report

Chent Name Address

Myanmar Koel International LTD (MKI)

No. 36/A, 1st Floor, Grand Pho Sein Cond Environment Monitoring report for Zone A & 8

Project Name

Sample Name

Sampling Date: 7 June, 2022

Sample No

Sampling By Customer

W-2206018 Waste Profile No.

Sample Received Date 7 June, 2022

No.	Parameter	Method	Unit	Result	LOC
1	SS	APHA 25400 (Dry at 103-105°C Method)	mg/I	170	
2	800 (5)	APHA 5210 B (5 Days BOD Test)	mg/t	7.01	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colonmetric Method)	mg/I	11.5	0.7
4	Total Coliforn	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100mi	54000.0	1.8
5	Oil and Grease	APHA 55208 (Partition-Grav-metric Method)	mg/i	<31	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/i	2.0	0.5
7	Total Prosphorous	APHA 4500 P E (Ascorbic Acid Method)	mg/l	0.39	0.05
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	6 58	0.00
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	2	0
10	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/l	224	
11	Mescury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	50.002	0.00
12	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	ing/I	0.097	0.00
13	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.010	0.01
14	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	rog/i	0.013	0.00
15	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	50 005	0.00
16	Selenium	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/t	≤0.005	0.00
17	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	×0.005	0.00
18	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.005	0.00
19	Barium.	APHA 3120 B (Inductively Coupled Plasma (ICF) Method)	mg/I	0.039	0.00
20	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.00
21	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0 005	0.00
22	Iron	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/I	1.881	0.00
23	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method)	mg/l	<0.002	0.00
24	Total Cyanide	Distribation Process: APHA #550-Ch. C. Total Cyanide after Distribation, Determine Cyanide Concentration Process: HACH 8027 (Pyridine Pyriazalone Method)	mg/l	0.002	0.00
25	Ammonia	HACH Method 10205 (Silicylate TNT Plus Method)	/mg/l	0.35	0.02
26	Hexavalent Chromium (Cr6+)	ISO 11063:1994 (Determination of chromium(VI) Spectrometric method using 1.5: illiphe/micarbacide)	rrsg/l	< 0.05	0.05
27	Fluorice	APriA 4110 B (Ion Chromatography with Chemical Suppression of Bluent Conductivity)	mg/I	0.415	0.014
28	Free Chlorine	APHA 4500 CL G (DPD Color/metric Method)	mg/I	<0.1	8.1
29	Total Residual Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/)	< 0.1	0.1
30	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/I	0.159	0.00
31.	Formaldehyde	HACH 8110 (MBTH Method)	mg//	0.030	0.00
32	Escherich a Coli	APHA 9221 F Eschenchia Coli Procedure Using Fluorogenic Substrate	MPN/100ml	20.0	1.8
33	Phenois	USEPA Method 420.1 (Phendics (Spectrophotometric, Manual 4AAP With Distillation))	mg/l	40.002	0.002

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environt Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition.

Hidek Yope June 21,2022

DOWA

Report No. : GEM-LA8-202206028

Revision No. : 1 Report Date : 21 June, 2022 Application No. : 0001-C001

Analysis Report

Client Name Myanmar Koei International LTD (MKI)

No. 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar Address

Environment Monitoring report for Zone A & B Project Name

Sample Description

Sample Name Sample No. Waste Profile No. Sample Received Date : 7 June, 2022

No.	Parameter	Method	Unit	Result	roo
1	SS	APHA 2540D (Dry at 103-105 C Method)	rng/l	44	-
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	5.61	0.00
3	COD (Cr)	APHA 5220D (Close Reflux Colorimetric Method)	mg/l	24.9	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	35000.0	1.8
5	Oil and Grease	APHA SS208 (Partition-Gravimetric Method)	mg/1	<3.1	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/l	1.8	0.5
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	<0.05	0.05
в	Color	APHA 2120C (Spectrophotometric Method)	TCU	11.00	0.00
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	0
10	TOS	APHA 2S40 C (Total Dissolved Solids Dried at 180°C Method)	tng/l	200	-
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.002	0.002
12	Zinc	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	0.098	0.005
13	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	nig/1	≤0.010	0.010
14	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/i	< 0.005	0.005
15	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.005	0.005
16	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.005
17	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/1	≤0.005	0.005
18	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	\$0.005	0.005
19	Sarium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.051	0.005
20	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.005	0.005
21	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.005	0.005
22	Tron	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	0.722	0.005
23	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method)	mg/l	< 0.002	0.002
24	Total Cyanide	Discillation Process: APHA 4500-CN- E. Total Cyanide after Distillation, Determine Cyanide Concentration Process: HACH 8027 (Pyridine - Pyrazalone Method)	mg/I	< 0.002	0.002
25	Ammonia	HACH Method 10205 (Silicylate TNT Plus Method)	mg/l	0.23	0.02
26	Hexavalent Chromium (Cr6+)	ISO 11083:1994 (Determination of chromium(VI) Spectrometric method using 1,5- diphenyicarbasede)	rng/I	<0.05	0.05
27	Fluoride	APHA 4110 B (Ion Chromatography with Chemical Suppression of Eluent Conductivity)	rng/1	0.110	0.014
28	Free Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	<0.1	0.1
29	Total Residual Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/I	<0.1	0.1
30	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/I	0.117	0.005
31	Formaldehyde	HACH 8110 (MBTH Method)	mg/i	0.022	0.003
32	Escherichia Coli	APHA 9221 F Escherichia Coli Procedure Using Fluorogenic Substrate	MPN/100ml	17.0	1.8
33	Phenois	USEPA Method 420.1 (Pnenolics (Spectrophotometric, Manual 4AAP With Distillation))	mg/I	<0.002	0.002

LOQ - Limit of Quantitation
APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment
Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22/nd edition

Supervisor

Accroved By :

Hideli yorno June 22, 2022

DOWA

Report No. : GEM-LAB-202206029

Revision No : 1 Report Date : 21 June, 2022

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

No. 36/A, 1st Floor, Grand Pho Sein Condo minium, Pho Sein Road, Tamwe Township, Yangon, Myanmar,

Project Name

Environment Monitoring report for Zone A & B

Sample Description

Sample No. Waste Profile No. MKI-5W-6-0607 W-2206020

Sampling Date : 7 June 2022 Sampling By : Customer

Sample Received Date : 7 June, 2022

No.	Parameter	Method	Unit	Result	LOC
1	SS	APHA 2540D (Dry at 103-105'C Method)	mg/!	4	
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/I	2.11	0.00
3	COD (Cr)	APHA 5720D (Close Reflux Colorimetric Method)	mg/I	7.1	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	<1.8	1.6
5	Oil and Grease	APHA 55208 (Partition-Gravimetric Method)	mg/I	< 3.1	3.1
6	Total N-trogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/I	5.2	0.5
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	1.12	0.05
В	Color	APHA 2120C (Spectrophotometric Method)	TCU	2.84	0.00
9	Odor	APHA 2150 8 (Threshold Odor Test)	TON	4	0
10	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180°C Method)	mg/t	438	
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/i	≤0.002	0.00
12	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	0.101	0.00
13	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.010	0.01
3.4	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	50.005	0.00
15	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.00
15	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/t	≤0.005	0.00
17	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.00
18	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/i	50.005	0.00
19	Barium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.174	0.00
20	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.005	0.00
21	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.00
22	Iron	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	0.242	0.00
23	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method)	mg/I	<0.002	0.00
24	Total Cyanide	Distillation Process: APNA 4500 CN C. Total Cyanide after Distillation, Determine Cyanide Concentration Process: HACH 8027 (Pyridine -Pyrazalone Method)	mg/I	< 0.002	0.00
25	Ammonia	HACH Method 10205 (Silkylate TNT Plus Method)	mg/I	0.02	0.02
26	Hexavalent Chromium (Cr6+)	ISO 11063:1994 (Determination of chromium(VI) Spectrometric metric using 1,5- (optenyikarbande)	mg/I	< 0.05	0.05
27	Fluoride	APHA 4110 B (Ion Chromatography with Chemical Suppression of Eluent Conductivity)	mg/l	2.094	0.014
28	Free Chiorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	0.1	0.1
29	Total Residual Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	0.3	0.1
30	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/I	< 0.005	0.00
31	Formaldehyde	HACH 8110 (MBTH Method)	mg/I	0.011	0.00
32	Phenois	USEPA Method 420.1 (Phenolics (Spectrophotometric, Manual 4AAP with Distillation))	mg/l	<0.002	0.002

LOQ - Limit of Quantitation
APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment
Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

31-6-65 Cherry Myint Their

Hideki Tumo June 21, 2022

စွန့်ထုတ်ရေထွက်ရှိသောနေရာများနှင့် စွန့်ထုတ်ရေရောက်ရှိနိုင်သည့်ချောင်း၏ အခြေခံအချက်အလက်များကို နှိုင်းယှဉ်ရန်အတွက် ရည်ညွှန်းစောင့်ကြည့်လေ့လာသည့် နေရာများ

DOWA

Report No.: GEM-LAB-202206030 Revision No.: L Report Date: 21 June, 2022 Application No.: 0001-C001

Analysis Report

Address

: No. 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar.

Project Name

Environment Monitoring report for Zone A & B

Sample Description

Sample Name Waste Profile No.

: W-2206021

Sampling By : Customer

Sample Received Date: 7 June, 2022

No.	Parameter	Method	Unit	Result	LOQ
1	55	APHA 25400 (Dry at 103-105'C Method)	mg/l	88	-
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/l	4.10	0.00
3	COD (Cr)	APHA 5Z20D (Close Reflux Colorimetric Method)	mg/I	112.0	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	160000.0	1.8
5	Oil and Grease	APHA S520B (Partition-Gravimetric Method)	mg/i	<3.1	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfete Digestion Method)	mg/l	2,1	0.5
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/I	0.26	0.05
В	Color	APHA 2120C (Spectrophotometric Method)	TCU	25.56	0.00
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	2	0
10	TDS	APHA 2540 C (Total Dissolved Solids Dried at 180'C Method)	mg/I	248	-
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/t	≤0.002	0.003
12	Zinc	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/I	0.094	0.00
13	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.010	0.01
14	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/i	≤0.005	0.00
15	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.00
16	Selenium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/t	≤0.005	0.00
17	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤ 0.005	0.00
18	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.00
19	Barium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	0.032	0.00
20	Nickel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.00
21	Silver	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.00
22	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	2.407	0.00
23	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method)	mg/t	< 0.002	0.00
24	Total Evanide	Distillation Process: APHA 4500-CN-C. Total Cyanide after Distillation, Determine Cyanide	mg/l	0.003	0.00
25	Ammonia	Concentration Process: HACH 8027 (Pyridine -Pyriazaliane Method) HACH Method 10205 (Silicylate TNT Plus Method)	mg/l	1.96	0.02
26	Hexavalent Chromium (Cr6+)	ISO 11883:1994 (Determination of chromium(VI) Spectrometric method using 1,5-	mg/t	<0.05	0.05
27	Fluoride	diphenylcerbaside) APHA 4110 B (fon Chromatography with Chemical Suppression of Eluent Conductivity)	mg/I	0.028	0.01
28	Free Chlorine	APHA 4500 CL G (OPD Colorimetric Method)	mg/l	<0.1	0.1
29	Total Residual Chlorine	APHA 4500 CL G (OPD Colorimetric Method)	mg/l	<0.1	0.1
30	Suiphide	HACH 8131 (USEPA Methylene Blue Method)	mg/l	0.066	0.00
			-	0.025	0.00
31	Formaldehyde Phenols	HACH 6110 (MBTH Method) USEPA Method 420.1 (Phenoics (Spectrophotometric, Manual 4AAP With Distillation))	mg/l mg/l	0.007	0.00

: LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater, 22nd edition

Moeki Yomo Rine 22, 2022

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(က)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်မှုအတွက်ရေအရည်အသွေးစောင့်ကြည့်လေ့လာမှုအစီရင်ခံစာ (တစ်နှစ် နှစ်ကြိမ်၊ စောင့်ကြည့်လေ့လာခြင်း ဇွန်လ ၂၀၂၂ ခုနှစ်)

DOWA

| Report No. | GEM-LA8-202206031 | Revision No. | 1 | Report Date | 21 June, 2022 | Application No. | 0001-0001

Analysis Report

Chert Name

Myanmar Koei International LTD (MKI)

Address

No. 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yarigon, Myanmar.

Environment Monitoring report for Zone A & B

Sample Description Sample Name

MK1-SW-4-0607

Sampling Date 7 June, 2022

W-2206022

Sampling By Customer

Sample No. Waste Profile No.

Sample Received Date : 7 June, 2022

No.	Parameter	Method	Unit	Result	LOC
¥.	SS	APHA 25400 (Dry at 103-105°C Method)	mg/I	156	_
2	BOD (5)	APHA 5210 8 (5 Days BOD Test)	mg/l	4.45	0.00
3	COD (Cr)	APHA 52200 (Close Reflux Colorimetric Method)	mg/l	36.8	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	>160000	1.8
5.	Oil and Grease	APHA 55208 (Partition-Gravimetric Method)	ing/t	<3.1	3.1
6	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/I	0.6	0.5
7	Total Phosphorous	APHA 4500 P E (Ascorbic Acid Method)	mg/I	0.22	0.0
8	Color	APHA 2120C (Spectrophotometric Method)	TCU	14.10	0.0
9	Odor	APHA 2150 8 (Threshold Odor Test)	TON	2	0
10	TDS	APHA 2S40 C (Total Dissolved Solids Oried at 180°C Method)	mg/I	308	
11	Mercury	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.002	0.00
12	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	0.124	0.00
13	Arsenic	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	50.010	0.01
14	Chromium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/i	0.006	0.00
15	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.00
16	Selenium	APMA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.00
17	Lead	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/i	s 0.005	0.00
18	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	0.013	0.00
19	Barum	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	0.025	0.00
20	Nicket	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	rng/t	≤0.005	0.00
21	Silver	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/i	50.005	0.00
22	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/i	3.618	0.00
23	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method)	mg/I	< 0.002	0.00
24	Total Cyanide	Distrilation Process: APNA 4500 CN. C. Total Cyanide after Distriction, Determine Cyanide Concentration Process: HACH 8027 (Pyriding: Pyriazalone Method)	mg/I	< 0.002	0.00
25	Ammonia	MACH Method 10205 (Silicylate TNT Plus Method)	mg/I	0.58	0.02
26	Hexavalent Chromium (Cr6+)	150 11083 159a (Determination of chromium(v1) Spectrometric method using 1,5	mg/l	< 0.05	0.05
27	fluoride	diphenyklarbande) APHA 41:10 B (Ion Chromatography with Chemical Suppression of Elizent Conductivity)	mg/I	0.377	0.01
28	Free Chlorine	APHA 4500 CL G (OPD Colorimetric Method)	mg/l	<0.1	0.1
29	Total Residual Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	<0.t	0.1
30	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/l	0.064	0.00
3:	Formaldehyde	HACH 8110 (M9TH Method)	mg/I-	0.015	0.00
32	Priencis	USEPA Method 420 1 (Phengics (Spectrophotometric, Manual 4AAP With Distribution))	ma/i	0.005	0.00

LOQ - Limit of Quantitation

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

3-6-88

History June 21, 2022

DOWA

Report No. : GEM-LAB-202206032 Revision No. : 1 Report Date : 21 June, 2022 Application No. : 0001-C001

Analysis Report

Client Name

Myanmar Koei International LTD (MKI)

Address

Waste Profile No.

: No. 36/A, 1st Floor, Grand Pho Sein Condominium, Pho Sein Road, Tamwe Township, Yangon, Myanmar. Environment Monitoring report for Zone A & B

Project Name Sample Description

Sampling Date : 7 June, 2022

Sample Name w-2206023

Sampling By : Customer

Sample Received Date : 7 June, 2022

No.	Parameter	Method	Unit	Result	Log
1	SS	APHA 25400 (Dry at 103-105 C Method)	mg/i	10	-
2	BOD (5)	APHA 5210 B (5 Days BOD Test)	mg/i	2.40	0.00
3	COD (Cr)	APHA 52200 (Close Reflux Colorimetric Method)	mg/l	1.3	0.7
4	Total Coliform	APHA 92218 (Standard Total Coliform Fermentation Technique)	MPN/100ml	4.5	1.8
5	Oil and Grease	APHA SS208 (Partition-Gravimetric Method)	mg/l	<3.1	3.1
5	Total Nitrogen	HACH Method 10072 (TNT Persulfate Digestion Method)	mg/I	1.9	0.5
7	Total Phosphorous	APHA 4500-P E (Ascorbic Acid Method)	mg/l	0.10	0.05
В	Color	APHA 2120C (Spectrophotometric Method)	TCU	2.40	0.00
9	Odor	APHA 2150 B (Threshold Odor Test)	TON	1	0
10	TDS	APILA 2540 C (Total Dissolved Solids Dried at 180'C Method)	.mg/l	1120	-
11	Mercury	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.002	0.00
12	Zinc	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/i	0.097	0.00
13	Arsenic	APIFA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.010	0.010
14	Chromium	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.00
15	Cadmium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	≤0.005	0.00
16	Selenium	APHA 3320 B (Inductively Coupled Plasma (ICP) Method)	/mg/I	≤0.005	0.00
17	Lead	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/I	0.014	0.00
18	Copper	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/i	≤0.005	0.00
19	Barium	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	rng/l	0.051	0.00
20	Nusel	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/l	≤0.005	0.003
21	Silver	APHA 3120 8 (Inductively Coupled Plasma (ICP) Method)	/mg/l	≤0.005	0.00
22	Iron	APHA 3120 B (Inductively Coupled Plasma (ICP) Method)	mg/t	0.719	0.00
23	Cyanide	HACH 8027 (Pyridine -Pyrazalone Method)	mg/l	<0.002	0.00
24	Total Cyanide	Distrilation Process: APriA 4500 CN. C. Total Cyanide after Distrilation, Determine Cyanide Concentration Process: HACH 8027 (Pyridine - Pyrazatione Method)	mg/I	< 0.002	0.00
25	Ammonia	HACH Method 10205 (Silicylate TNT Plus Method)	mg/I	2.13	0.02
26	Hexavalent Chromium (Cr6+)	ISO 11083:1994 (Determination of chromium(VI) Spectrometric method using 1,5- (spherylcarbazide)	mg/l	< 0.05	0.05
27	Fluoride	APHA 4110 B (Jon Chromatography with Chemical Suppression of Eluent Conductivity)	mg/I	0.014	0.01
28	Free Chionne	APHA 4500 CL G (DPD Colorimetric Method)	rng/l	<0.1	0.1
29	Total Residual Chlorine	APHA 4500 CL G (DPD Colorimetric Method)	mg/l	<0.1	G.1
30	Sulphide	HACH 8131 (USEPA Methylene Blue Method)	mg/l	0.019	0.00
31	Formaldehyde	HACH 8110 (MBTH Method)	mg/l	0.005	0.00
32	Escherichia Coir	APHA 9221 F Eschenichia Coli Procedure Using Fluorogenic Substrate	MPN/100ml	<1.8	1.8
33	Phenois	USEPA Method 420.1 (Phenolics (Spectrophotometric, Manual 4AAP With Distillation))	mg/l	< 0.007	0.00

Analysed 8

APHA - American Public Health Association (APHA), the American Water Works Association (AWWA), and the Water Environment Federation (WEF), Standard Methods for the Examination of Water and Wastewater, 22nd edition

Cherry Myint Their

Hideki Young June 21, 2022

သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ)ရှိ စက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်ရေးအတွက် လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဉ်ကာလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃)

(တစ်နှစ် နှစ်ကြိမ်စောင့်ကြည့်လေ့လာခြင်း)

၂၀၂၂ ခုနှစ်၊ ဇွန်လ မြန်မာခိုအဲ အင်တာနေရှင်နယ် လီမိတက်

မာတိကာ

အခန်း ၁ စောင့်ကြည့်လေ့လာသောအစီအစဉ်နှင့်အကျဉ်းချုပ်
၁.၁ ယေဘုယျဖော်ပြချက်
၁.၂ စောင့်ကြည့်လေ့လာသောအစီအစဉ်ဖော်ပြချက်များ
အခန်း ၂ လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်း
၂.၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား၂
၂.၂ စောင့်ကြည့်လေ့လာသည့်တည်နေရာ၂
၂.၃ စောင့်ကြည့်လေ့လာသည့်ကာလ
၂.၄ စောင့်ကြည့်လေ့လာသည့်နည်းလမ်း
၂.၅ စောင့်ကြည့်လေ့လာမှုရလဒ်များ9
အခန်း ၃ နိဂုံးချုပ် နှင့် အကြံပြုချက်များ
နောက်ဆက်တွဲ-၁ ၁ နာရီပျမ်းမျှလေထုအရည်အသွေးတန်ဖိုးက၁-၁
နောက်ဆက်တွဲ-၂ လေထုအရည်အသွေးတိုင်းတာသည့်စက်ကို စံကိုက်ညှိထားသောလက်မှတ် က၂-၁
<u> </u>
ဇယား ၁.၂−၁ လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာသောအစီအစဉ်
œယား ၂.၅−၁ လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာမှုရလဒ် (နေ့စဉ်ပျမ်းမျှ)၅
<u>ပုံများစာရင်း</u>
ပုံ ၂.၂-၁ လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာသည့်တည်နေရာ
ပုံ ၂.၄-၁ လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအခြေအနေ9
ပုံ ၂.၅-၁ လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာသောတည်နေရာ နှင့် လေတိုက်ခတ်ရာအရပ်အခြေအနေ၆

အခန်း ၁ စောင့်ကြည့်လေ့လာသောအစီအစဉ်နှင့်အကျဉ်းချုပ်

၁.၁ ယေဘုယျဖော်ပြချက်

သီလဝါအထူးစီးပွားရေးဇုန်သည် ရန်ကုန်တိုင်းဒေသကြီး၏ တောင်ပိုင်းခရိုင်တွင်တည်ရှိပြီး ရန်ကုန်မြို့၏ အရှေ့တောင်ဘက် ၂၃ ကီလိုမီတာတွင် တည်ရှိပါသည်။ သီလဝါအထူးစီးပွားရေးဇုန်၏ အကောင်အထည် ဖော်ဆောင်သူအနေဖြင့် ဇုန်အပိုင်း(ခ)အတွင်းရှိ စက်မှုမြေနေရာအတွက် ခွင့်ပြုချက်ရရှိထားသော ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း အစီရင်ခံစာနှင့် ပတ်ဝန်းကျင်ဆိုင်ရာ စီမံခန့်ခွဲမှုအစီအစဉ်အတိုင်း ပုံမှန်စောင့်ကြည့်စစ်ဆေးခြင်းကို ဆောင်ရွက်ရန် မြန်မာ-ဂျပန် သီလဝါဖွံ့ဖြိုးရေးလီမိတက်တွင် တာဝန်ရှိပါသည်။ မြန်မာ-ဂျပန် သီလဝါဖွံ့ဖြိုးရေးလီမိတက်သည် ဇုန်အတွင်းနှင့် အနီးပတ်ဝန်းကျင်ရှိ သဘာဝပတ်ဝန်းကျင် အခြေအနေများကို သိရှိစေရန် သဘာဝပတ်ဝန်းကျင်နှင့်သက်ဆိုင်သော အချက်အလက်စောင့်ကြည့် လေ့လာမှုများကို ရေးဆွဲထားပြီး ထိုအစီအစဉ်များအရ အကောင်အထည်ဖော် ဆောင်ရွက်ခဲ့ပါသည်။

၁.၂ စောင့်ကြည့်လေ့လာသောအစီအစဉ်ဖော်ပြချက်များ

သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ) စက်မှုဇုန် လုပ်ငန်း လည်ပတ် နေခြင်းကြောင့် စက်မှုဇုန်အတွင်း နှင့် အပြင်ရှိ ပတ်ဝန်းကျင်အခြေအနေအား အကဲဖြတ်နိုင်ရန်အတွက် အောက်ပါယေားတွင် ဖော်ပြထားသည့်အတိုင်း ၂၀၂၂ခုနှစ်၊ ဇွန်လ ၁ ရက်နေ့ မှ ဇွန်လ ၈ ရက်နေ့အထိ လေထုအရည်အသွေးအား စောင့်ကြည့်လေ့လာခဲ့သည်။

ဇယား ၁.၂-၁ လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာသောအစီအစဉ်

စောင့်ကြည့်လေ့လာ သည့် ရက်စွဲ	စောင့်ကြည့်လေ့ လာမှုအမျိုးအစား	တိုင်းတာသော အမျိုးအစားများ	တိုင်းတာသောနေရာ အရေအတွက်	ကြာချိန်	စောင့်ကြည့်လေ့လာသော နည်းလမ်း
၁ရက်	လေထုအရည် အသွေး	ကာဗွန်မိုနောက်ဆိုဒ်(CO)၊ နိုက်ထရိုဂျင်ဒိုင်အောက်ဆိုဒ် (NO2)၊ အမှုန်အမွှား (PM _{2.5})၊ အမှုန်အမွှား (PM ₁₀) နှင့် ဆာလဖာဒိုင်အောက်ဆိုဒ် (SO ₂)	Э	၇ ရက်	ပတ်ဝန်းကျင်လေအရည်အသွေး တိုင်းတာသည့်စက်ကိရိယာ (Haz-Scanner EPAS) ဖြင့် မြေပြင်တွင်ကွင်းဆင်းတိုင်းတာ ခြင်း

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

အခန်း ၂ လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်း

၂.၁ စောင့်ကြည့်လေ့လာသည့်အမျိုးအစား

လေထုအရည်အသွေး စောင့်ကြည့်လေ့လာသော အမျိုးအစားများမှာ ကာဗွန်မိုနောက်ဆိုဒ် (CO)၊ နိုက်ထရိုဂျင်ဒိုင်အောက်ဆိုဒ် (NO $_2$)၊ အမှုန်အမွှား (PM $_{2.5}$)၊ အမှုန်အမွှား (PM $_{10}$) နှင့် ဆာလဖာဒိုင်အောက်ဆိုဒ် (SO $_2$) တို့ဖြစ်သည်။

၂.၂ စောင့်ကြည့်လေ့လာသည့်တည်နေရာ

ပတ်ဝန်းကျင်လေထုအရည်အသွေးတိုင်းတာသည့် စက်ကိရိယာဖြစ်သည့် "Haz-Scanner Environmental Perimeter Air Station (EPAS)" ဖြင့် သီလဝါအထူးစီးပွားရေးဇုန်၏ တောင်(S)ဘက်၊ မြောက်လတ္တီတွဒ် ၁၆°၃၉'၂၄.၂၀"၊ အရှေ့လောင်ဂျီတွဒ် ၉၆°၁၇'၁၅.၈၀"၊ ဖလမ်းကျေးရွာ၊ ဖလမ်းရွာဦး ကျောင်းဝန်းထဲတွင် တပ်ဆင်ထားပြီး တောင်(S)ဘက်တွင် ဖလမ်းကျေးရွာရှိလူနေအိမ်များ၊ အနောက်(W)ဘက်တွင် လယ်ကွင်းများ၊ ဘက်တွင် သီလဝါအထူးစီပွားရေးဇုန်အပိုင်း(က)၊ အရှေ့မြောက်(NE)ဘက်တွင် ပြည်တွင်းသီလဝါစက်မှုဇုန်နှင့် အရှေ့(E)၊ မြောက်(N)၊ မြောက်-အနောက်မြောက်(NNW)၊ အနောက်မြောက်(NW) နှင့် အရှေ့မြောက်(NE) ဘက်တို့တွင် တည်ဆောက်ဆဲ သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ)တို့ဖြင့် ဝန်းရံထားသည်။ လေထုအရည်အသွေး စောင့်ကြည့်လေ့လာမှုကို ဖလမ်းကျေးရွာရှိ လူနေအိမ်များနှင့် အထက်ပါနေရာ၌ ဆောင်ရွက်ခဲ့သည်။ အဓိကလေထုညစ်ညမ်းမှုကို အနီးဆုံးနေရာဖြစ်သော ဖြစ်နိုင်သောစွန့်ထုတ်ဓာတ်ငွေ့များ ထုတ်လွှတ်ရာ အရင်းအမြစ်များမှာ ဆောက်လုပ်ရေလုပ်ငန်းစဉ်များမှ ဖုန်များထွက်ရှိခြင်း၊ ဆောက်လုပ်ရေးလုပ်ငန်းသုံး ယာဉ်များနှင့် ဖလမ်းကျေးရွာရှိ နေထိုင်သူများ၏ နေ့စဉ်လုပ်ငန်းဆောင်တာများကြောင့် ဖြစ်နိုင်ပါသည်။ လေထုအရည်အသွေး စောင့်ကြည့် လေ့လာသောနေရာကို ပုံ ၂.၂-၁ တွင်ပြသထားပါသည်။

ပုံ ၂.၂-၁ လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာသည့်တည်နေရာ

၂.၃ စောင့်ကြည့်လေ့လာသည့်ကာလ

၂.၄ စောင့်ကြည့်လေ့လာသည့်နည်းလမ်း

ပတ်ဝန်းကျင်လေထုအရည်အသွေး စံနမူနာရယူခြင်းနှင့် ဆန်းစစ်လေ့လာခြင်းများကို အမေရိကန် ပတ်ဝန်းကျင်ဆိုင်ရာ ထိန်းသိမ်းရေးအေဂျင်စီ (U.S. EPA) ၏ အကြံပြုချက်များကို ကိုးကား၍ ကာဗွန်မိုနောက်ဆိုဒ် (CO)၊ နိုက်ထရိုဂျင်ဒိုင်အောက်ဆိုဒ် (NO $_2$)၊ အမှုန်အမွှား (PM $_{2.5}$)၊ အမှုန်အမွှား (PM $_{10}$) နှင့် ဆာလဖာဒိုင်အောက်ဆိုဒ် (SO $_2$)တို့အား စောင့်ကြည့်လေ့လာမှုများ လုပ်ဆောင်ခဲ့သည်။ ပတ်ဝန်းကျင်လေထုအရည်အသွေးကို စောင့်ကြည့်တိုင်းတာ၍ အချက်အလက်ရယူရန်အတွက် The Haz-Scanner Environmental Perimeter Air Station (EPAS)ကို အသုံးပြုခဲ့ပါသည်။ လေထုအရည်အသွေး အမျိုးအစား၏ အချက်အလက်များဖြစ်သော

(ကာဗွန်မိုနောက်ဆိုဒ် (CO)၊ နိုက်ထရိုဂျင်ဒိုင်အောက်ဆိုဒ် (NO $_2$)၊ အမှုန်အမွှား (PM $_{2.5}$)၊ အမှုန်အမွှား (PM $_{10}$) နှင့် ဆာလဖာဒိုင်အောက်ဆိုဒ် (SO $_2$)) ကို တစ်မိနစ်တိုင်း အလိုအလျောက်တိုင်းတာ၍ မှတ်တမ်းတင် သိမ်းဆည်းထားပါသည်။ လေထုအရည်အသွေး စောင့်ကြည့်လေ့လာသော အခြေအနေကို ပုံ J.၄-၁ တွင် ပြသထားပါသည်။

မှုရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

ပုံ ၂.၄-၁ လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအခြေအနေ

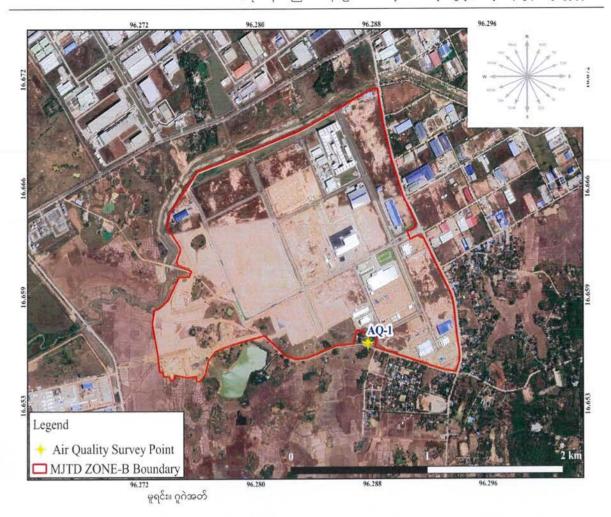
၂.၅ စောင့်ကြည့်လေ့လာမှုရလဒ်များ

ကာဗွန်မိုနောက်ဆိုဒ် (CO)၊ နိုက်ထရိုဂျင်ဒိုင်အောက်ဆိုဒ် (NO $_2$)၊ အမှုန်အမွှား (PM $_{2.5}$)၊ အမှုန်အမွှား (PM $_{10}$) နှင့် ဆာလဖာဒိုင်အောက်ဆိုဒ် (SO $_2$) တို့၏ လေထုအရည်အသွေး စောင့်ကြည့်လေ့လာမှုရလဒ်များမှ နေ့စဉ်ပျမ်းမျှ တန်ဖိုးများကို ဧယား ၂.၅-၁ တွင် ဖော်ပြထားပါသည်။ သီလဝါအထူးစီးပွားရေးဇုန် ဖွံ့ဖြိုးတိုးတက်ရေးစီမံကိန်း အပိုင်း(ခ)၏ ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း အစီအရင်ခံစာတွင်ပါရှိသည့် ကာဗွန်မိုနောက်ဆိုဒ် (CO)၊ နိုက်ထရိုဂျင်ဒိုင်အောက်ဆိုဒ် (NO $_2$)၊ အမှုန်အမွှား (PM $_{2.5}$)၊ အမှုန်အမွှား (PM $_{10}$) နှင့် ဆာလဖာဒိုင်အောက်ဆိုဒ် (SO $_2$) တို့၏ ရည်မှန်းတန်ဖိုးနှင့် နှိုင်းယှဉ်ရာ၌ ကာဗွန်မိုနောက်ဆိုဒ် (CO)၊ နိုက်ထရိုဂျင်ဒိုင်အောက်ဆိုဒ် (NO $_2$)၊ အမှုန်အမွှား (PM $_{10}$) နှင့် ဆာလဖာဒိုင်အောက်ဆိုဒ် (SO $_2$) အမှုန်အမွှား (PM $_{2.5}$)၊ အမှုန်အမွှား (PM $_{10}$) နှင့် ဆာလဖာဒိုင်အောက်ဆိုဒ် (SO $_2$) တို့၏ (၇)ရက်ပျမ်းမျှတန်ဖိုးများသည် ရည်မှန်းတန်ဖိုးထက် လျော့နည်းနေသည်ကို တွေ့ရှိရသည်။

ဖယား ၂.၅-၁ လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာမှုရလဒ် (နေ့စဉ်ပျမ်းမျှ)

နေ့စွဲ	ကာဗွန်မိုနောက် ဆိုဒ် (CO)	နိုက်ထရိုဂျင်ခိုင် အောက်ဆိုဒ် (NO₂)	အမှုန်အမွှား (PM _{2.5})	အမှုန်အမွှား (PM ₁₀)	ဆာလဖာဒိုင် အောက်ဆိုဒ် (SO ₂)
	mg/m ³	mg/m³	mg/m³	mg/m³	mg/m ³
၀၁~၀၂ ဇွန်လ၊ ၂၀၂၂	0.၁၂၇	୦.୦၆၂	၀.၀၁၃	0.0J2	၅င၀.၀
၀၂~၀၃ ဇွန်လ၊ ၂၀၂၂	0.06	၀.၀၅၀	၀.၀၁၅	0.0၂၆	၀.၀၁၈
၀၃~၀၄ ဇွန်လ၊ ၂၀၂၂	0.၁၀၅	0.098	၀.၀၁၇	၀.၀၂၈	0.00
၀၄~၀၅ ဇွန်လ၊ ၂၀၂၂	0.089	ი.იეგ	0.009	୦.୦၂၆	၅ငပ.၀
၀၅~၀၆ ဇွန်လ၊ ၂၀၂၂	0.၁၉၂	၀.၀၅၇	၀.၀၁၅	၀.၀၂၅	၀.၀၁၇
၀၆~၀၇ ဇွန်လ၊ ၂၀၂၂	၀.၁၀၃	၀.၀၅၆	၀.၀၁၆	0.0Jე	0.00
၀၇~၀၈ ဇွန်လ၊ ၂၀၂၂	0.099	0.099	၀.၀၁၅	0.019	0.00
(၇)ရက် ပျမ်းမျှတန်ဖိုး	0.000	ი.იჟ၃	၀.၀၁၅	0.0 و	റ.റാര
ရည်မှန်းတန်ဖိုး	၁၀.၂၆	0.0	၀.၀၂၅	၀.၀၅	0.0၂

မှတ်ချက်။ CO၊ NO₂ နှင့် SO₂ တို့၏ ရည်မှန်းတန်ဖိုးများကို (ppm) ယူနှစ်မှ (mg/m³) ယူနှစ်သို့ ပြောင်းလဲထားပါသည်။ ပြောင်းလဲမှုညီမျှခြင်းမှာ အောက်ပါအတိုင်း ဖြစ်ပါသည်။


- (၁) (CO, mg/m³) = (CO, ppm) * (CO မော်လီကျူး၏အလေးချိန် (၂၈)) / ၂၄.၄၅ (အပူချိန် ၂၅ ဒီဂရီစင်တီဂရိတ်နှင့် ၁ atm အခြေအနေ)
- (၂) $(NO_2, mg/m^3) = (NO_2, ppm) * (NO_2 မော်လီကျူး၏အလေးချိန် (၄၆)) / ၂၄.၄၅ (အပူချိန် ၂၅ ဒီဂရီစင်တီဂရိတ်နှင့် ၁ atm အခြေအနေ)$
- (၃) (SO_2 , mg/m^3) = (SO_2 , ppm) *(SO_2 မော်လီကျူး၏အလေးချိန် (၆၄)) / ၂၄.၄၅ (အပူချိန် ၂၅ ဒီဂရီစင်တီဂရိတ်နှင့် ၁ atm အခြေအနေ) မှုရင်း။ မြန်မာနိုအဲအင်တာနေရှင်နယ်လီမိတက်

လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာသည့် နေရာ-၁ (AQ-1)တွင် လေတိုက်ခတ်ရာအရပ်နှင့် လေတိုက်နှုန်းကို တိုင်းတာခဲ့ပါသည်။ တိုင်းတာထားသော လေတိုက်ခတ်ရာအရပ်နှင့် လေတိုက်နှုန်းတို့၏ တစ်နာရီပျမ်းမျှ တန်ဖိုးများကို နောက်ဆက်တွဲ-၁ တွင်ဖော်ပြထားပါသည်။ လေထုအရည်အသွေး စောင့်ကြည့်လေ့လာသော တည်နေရာ၏ အခြေအနေနှင့် လေတိုက်ခတ်ရာအရပ်တို့အား ပုံ ၂.၅-၁ တွင် ပြသထားပါသည်။ လေတိုက်ခတ်ရာအရပ်ပေါ် မူတည်၍ အနောက်-အနောက်မြောက် (WNW)၊ အနောက်မြောက်(NW)၊ မြောက်-အနောက်မြောက် (NNE)၊ အရှေ့မြောက်(NE)၊ အရှေ့ အရှေ့မြောက်(ENE) နှင့် အရှေ့(E) အရပ်တို့မှ တိုက်ခတ်သောလေမှာ ဇုန်အပိုင်း(ခ)၏ လုပ်ငန်းခွင်မှ တိုက်ခတ်ကြောင်းခန့်မှန်းနိုင်ပါသည်။

စောင့်ကြည့်လေ့လာသည့်ကာလအတွင်း ဆောက်လုပ်ရေးလုပ်ငန်းများဆောင်ရွက်ခြင်းမရှိပါ။

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(ခ)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်ရေးအတွက်လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဉ်ကာလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃၊ မွန်လ ၂၀၂၂ခုနှစ်)

ပုံ ၂.၅-၁ လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာသောတည်နေရာ နှင့် လေတိုက်ခတ်ရာအရပ်အခြေအနေ

မှတိချက်။ မြောက်(N) မြောက်-အရှေ့မြောက်(NNE) အရှေ့မြောက်(NE) အရှေ့-အရှေ့မြောက်(ENE) အရှေ့-အရှေ့(E) အရှေ့-အရှေ့တောင်(ESE) အရှေ့တောင်(SSE) တောင်(SSE) တောင်(SSE) တောင်-အနောက်တောင်(SSW) အနောက်တောင်(SW) အနောက်တောင်(SW) အနောက်တောင်(WSW) အနောက်(W) အနောက်-အနောက်မြောက်(WNW) အနောက်မြောက်(NNW)

အခန်း ၃ နိဂုံးချုပ် နှင့် အကြံပြုချက်များ

စောင့်ကြည့်လေ့လာသော (၇)ရက်ကာလအတွင်း ကာဗွန်မိုနောက်ဆိုဒ် (CO)၊ နိုက်ထရိုဂျင်ဒိုင်အောက်ဆိုဒ် (NO $_2$)၊ အမှုန်အမွှား (PM $_{2.5}$)၊ အမှုန်အမွှား (PM $_{10}$) နှင့် ဆာလဖာဒိုင်အောက်ဆိုဒ် (SO $_2$) တို့၏ (၇)ရက်ပျမ်းမျှ လေထုအရည်အသွေး ရလဒ်များသည် ရည်မှန်းတန်ဖိုးထက် ကျော်လွန်နေခြင်း မရှိသောကြောင့် ဘေးအနီးပတ်ဝန်းကျင်သို့ ထိခိုက်မှုမရှိပါ။

သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ)၏ လုပ်ငန်း လည်ပတ်နေစဉ်ကာလအတွင်း စက်မှုဇုန်အတွင်းရှိ ပတ်ဝန်းကျင်အခြေအနေအား သိရှိနိုင်ရန်အတွက် ပုံမှန်စောင့်ကြည့်လေ့လာခြင်းကို လုပ်ဆောင်ရန် လိုအပ်ပါသည်။ ပုံမှန်စုဆောင်းရရှိထားသော ပတ်ဝန်းကျင်ဆိုင်ရာအချက်အလက်များကို အခြေခံ၍ နောင်တွင် ပတ်ဝန်းကျင်စီမံခန့်ခွဲမှုအတွက် ဆိုးကျိုးလျော့ပါးသက်သာစေမည့် နည်းလမ်းများကို ပြန်လည် သုံးသပ်သွားမည်ဖြစ်ပါသည်။

နောက်ဆက်တွဲ-၁ ၁ နာရီပျမ်းမျှလေထုအရည်အသွေးတန်ဖိုး

သီလဝါအထူးစီးပွားရေးစုန်အပိုင်း(ခ)ရှိစက်မှုစုနဲ့ဖွံ့ဖြိုးတိုးတက်ရေးအတွက်လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဉ်ကာဂလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃၊ ဇွန်လ ၂၀၂၂ခုနှစ်)

v		ő	က ၁ဗွန်ခိုနောက် ဆိုဒ် (CO)	နိုက်ထရိဂျင်ဒိုင် အောက်ဆိုဒ်	කමූණිකළා: (PM _{2.5})	නමූණිකපුට: (PM10)	ဆာလဖာနိုင် အောက်ဆိုဒ်	လေတိုက်နှုန်း	8	လေတိုက်ခတ်ရာအရပ်
င်းရှိသေ		₩	ma/m ³	(NO ₂)	2007	200	(SO ₂)			c
			(11) S) /S	mg/m	mg/m	mg/m_	s/w	Deg.	အရပ်မျက်နှင့်
			Rie blockc	ကြေးမျှော်	သန်ဘရ်ပျမီးမျှ	ကြေးမျှပြုင်နှင့	၁န၁ရီပျမ်းမျှ	သနာရီပျမီးမျှ	၁ န၁ရီပျစ်းမျှ	ဖြင့် ပြုမှီးမျှ
၁ ရက် ဇွန်လ၊ ၂၀၂၂	00:fc	∂G:ſc ~	၀/၀/၀	0.000	fco.o	δίο.o	0.00	oè·c	occ .	အရှေ့-အရှေ့တောင်
၁ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:၀င	මරි:දිද	ბბი:0	5000	5000	Gfo:o	වco-o	05°C	cíc	အရှေ့-အရှေ့တောင်
၁ ရက် ဇွန်လ၊ ၂၀၂၂	00:5c	მ6:5c ∼	950.0	ე:0:0	dco.0	llo.o	of o.o	05.0	dic	အရေး-အရေ့တောင်
၁ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:၆င	୬6:6c ∼	c50·0	0.000	cco.o	0000	စင္ဝ-ဝ	fc.c	र्शेट	အရှေ့-အရှေ့တောင်
၁ ရက် ဇွန်လ၊ ၂၀၂၂	၁၀:၅င	විරි:90 ~	bfo·o	fco:o	င်ငဝ:ဝ	of 0.0	විදුග-0	00.0	r5c	အရေ့တောင်
၁ ရက် ဇွန်လ၊ ၂၀၂၂	00:bc	වරි:ර්ර ~	၀.၀၀	උදිග-ග	90.00	cfo.o	9000	66.0	cfc	အရှေ့-အရှေ့တောင်
၁ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	විරි:ලර ~	(၃၀.၀	උ 60-0	9000	5f o·o	cío:o	0.6	G&c	အရှေ့တောင်
၁ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:စင	୭୯:୭୯ ~	0.000	ბსი:ი	òco:0	cfo.o	90.0	0.9	bèc	အရှေ့တောင်
၁ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	୬ େ ୦୮ ~	è5c.0	0.000	òco:0	llo.o	ffo:o	05:0	၅င်	အရှေ့တောင်
၁ ရက် ဇွန်လ၊ ၂၀၂၂	oo:cſ	୬G:cſ ~	රුලු (ს ი.ი	òco:0	Gro.o	ofo:o	ſ6:o	၅ငင	အရှေ့-အရှေ့တောင်
၁ ရက် ဇွန်လ၊ ၂၀၂၂	00:ff	∂G:fſ′ ~	650.0	0.0	5000	0.000	විදුග-0	05:0	oèc	အရေ့တောင်
၁ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:င်	ુ:કાઉ	სბс.0	6ව0.0	òco:0	0.00	bcoro	Gr.º	င်ငင	တောင်-အရှေ့တောင်
၂ ရက် ဇွန်လ၊ ၂၀၂၂	00:0	∂ 6 :0 ~	96c.o	වචර-0	60.0	වco.o	0.000	50.0	900	တောင်
၂ ရက် ဇွန်လ၊ ၂၀၂၂	00:C	ව6:c ~	95c.o	000:0	60.0	0.00	bco.o	of o	₹\$c	အရှေ့တောင်
၂ ရက် ဇွန်လ၊ ၂၀၂၂	00:f):3G	ეს ი	oc.o	60.0	විදුග-0	විදුග-0	60:0	၅၀င	တောင်
၂ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:၃	∂6: ∂	၀.၁၆၈	600.0	ბი.0	5è0·0	විදුග-0	00.0	čeľ	တောင်-အနောက်တောင်
၂ ရက် ဇွန်လ၊ ၂၀၂၂	00:5	∂G:5 ~	၀.၁၇၈	၆၀င.၀	ဝငဝ.၀	სბი:0	විදුග්	00.0	မြွေင	တောင်-အရှေ့တောင်
၂ ရက် ဇွန်လ၊ ၂၀၂၂	0:6	96:G ~	0.2JJ	ეიიი	0.00	දෙග.0	0.000	00'0	Sf.	မြောက်-အရှေ့မြောက်
၂ ရက် ဇွန်လ၊ ၂၀၂၂	6:00	වි දි ාල	o-56J	900.0	ဝင္ဝ-ဝ	ffo.o	විදුග-0	00.0	ನ	အရှေ့မြောက်
၂ ရက် ဇွန်လ၊ ၂၀၂၂	οο:	∂G:\ ~	o.005	0.000	0.00	වco.o	විදුරු ර	Gè-o	G ද	အရှေ့တောင်
၂ ရက် ဇွန်လ၊ ၂၀၂၂	00:0	විරි:ග ~	ofc.o	9.092	o.oo	bco.o	0.000	69:0	ośc	အရှေ့တောင်
၂ ရက် ဇွန်လ၊ ၂၀၂၂	(၁၀:၃	୬ େ ୬	0.00	llo.o	90.00	වco.o	၅၄၀.၀	0:0	50c	တောင်
၂ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	ව6:oc ~	၅၁၀.၀	၅(၀.၀	ဇင၀.၀	0.000	၅င၀.၀	G∂:0	ენი	အရှေ့တောင်
၂၅က် ဇွန်လ၊၂၀၂၂	00:00	∂ 6:cc ~	500.0	0.000	gc0.0	00.0	၅င၀.၀	0.0	clic	တောင်-အရေ တောင်

အများဆုံး	0.දල	90c.0	် ၅၄၀.၀	<u> ලෙද</u> ් ල	၅၀.၀
તીજ઼સી	ပ် c·o	0.06	cc0.0	∂ſo·o	Oco.o
အနည်းဆုံး	δίο.o	වග0.0	co.0	0.000	၅၄၀.၀

0.000

ව ල ල

0.000

060.0

0.060

0.00G

အများဆုံး ပျစ်းမျှ 0.000

900°0

o.0 J

အနည်းဆုံး

0.056

0.00

60.0

တောင်-အနောက်တောင် တောင်-အနောက်တောင် တောင်-အနောက်တောင် တောင်-အရှေ့တောင် seq seq cosç 3000 Jeep - 3000 S കുട്ടേ കുട്ടേ കോട് အရှေ့-အရှေ့တောင် အရှေ့-အရှေ့တောင် အနောက်တောင် အနောက်တောင် အရပ်မျက်နှင မြာရီပျစ်းမျှ အရှေ့တောင် အရှေ့တောင် အရှေ့တောင် အရှေ့တောင် အရှေ့တောင် အရှေ့တောင် အရှေ့တောင် အရှေ့တောင် 3968 3969 Scoop လေတိုက်ခတ်ရာအရဝ် 3969 3069 ၁နာဂရီပျစ်းမျှ 00.950 69.5c 20.9දිර 99.fcc 06.99c 26.99c 50.000 ეგნ. ეგ 20.60 JJ9.90 06.690 60.5€c 06.000 èo·N℃ 6c.60c 06.500 oG-50 65.69 69.69 05.99 00.000 00.000 သေတိုက်<u>နှ</u>န်း မြီးမြုပ်နင် 0.69 0.60 ٥٠.٥ 6.0 of o 20.0 00.0 ç0.0 (c.0 0.0 00.0 05.0 0.60 s/w 00.0 00.0 0.0 0.31 of.0 0.0 6.6 0.60 55.0 00.0 မြီးစုပြစ္စင်နင ခွင့်င၈လငထ အောက်ဆိုဒ် mg/m3 0.0 19 0.0 18 60.0 0.0 19 5000 ¿000 6000 cc0.0 5000 5000 0000 0.000 0.000 9000 0000 0.000 2000 5000 2000 5000 5000 (502) 0.000 ကြီးမျှင်နင းငရိတ္ခရိုတ် mg/m3 0.0 J 50.0 0000 90.0 0.000 දර්ගංග 520.0 0.0 16 (PM₁₀) 0000 500 cfo.o c(0.0 0.00 0.00 9000 0.00 0.0 JG 0,00 2000 0000 0.0 0.000 (ço.o cf 0.0 မြားစိုပြစ်အေင 3994 3990t (PM_{2.5}) mg/m3 0.006 0000 ¿000 6000 5000 5000 90000 0000 (co.o èco.0 cco.0 5000 0.00 2000 0.000 5000 0000 00000 0.006 5000 2000 (0.00 6000 နိုက်ထရိုဂျင်ခိုင် မြီးမြူပြုင်နင အောက်ဆိုဒ် 0.000 mg/m3 6000 0000 6000 0.000 0.000 00000 දුවරුර 2000 0.000 00000 900.0 0.000 0.000 2000 0.000 0.000 0000 (NO₂) 0.000 0.000 900°C දර්ගංග 0.000 0.000 က၁ဗွန်မိုနောက် ဆိုဒ် (CO) မြးမျှပြုင်နင mg/m3 G2c.0 0.00 o.JJ@ 90.00 0.0 16 S.0.0 c60.0 0000 00000 92000 0.000 6000 00000 0.000 S.0.0 2000 2000 6200 c5c.0 ငင်င′၀ (3c.0 of cro Cc.o 0.000 26:9c **26:0** £6:6€ වරි:ලද වරි:විද ∂G:of ∂G:cf 96:X ∂G:00 ∂6:cc 26:30 ∂G:Gc JF96 96:7 9G:9 වරි:දුර ∂G:c 300 5:36 DG:5 90.00 £6:0 3000 00:00 00:00 00:60 00:0c 00:1 00:SL 9:00 6:00 00:1 c 00:00 00:50 00:90 00:00 00:00 00;00 oo:cf 0:00 0000 5:00 00:5 00:6 00: 00:0 ၃ ရက် ဇွန်လ၊ ၂၀၂၂ ၃ ရက် ဇွန်လ၊ ၂၀၂၂ ၂ ရက် စွန်လ၊ ၂၀၂၂ ၃ ရက် ဇွန်လ၊ ၂၀၂၂ र क्षेत्र क्षक्रिका उठ्या ၃ ရက် ဇွန်လ၊ ၂၀၂၂ ၃ ရက် စွန်လ၊ ၂၀၂၂ ၃ ရက် ဇွန်လ၊ ၂၀၂၂ ပြုဝု လန်စွဲ မှာ र् क्षेत्र क्षक्रिया प्रा ၃ ရက် စွန်လ၊ JoJJ ၃ ရက် ဇွန်လ၊ ၂၀၂၂ ၂ရက် ဇွန်လ၊ ၂၀၂၂ ၂ ရက် ဇွန်လ၊ ၂၀၂၂ ၂ရက် ဇွန်လ၊ ၂၀၂၂ ါရက် ဇွန်လ၊ JoJJ ၂ ရက် ဇွန်လ၊ ၂၀၂၂ ၂ ရက် ဇွန်လ၊ ၂၀၂၂ ဇန္နရက်

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(ခ)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်ရေးအတွက်လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဉ်ကာလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃၊ ဇွန်လ ၂၀၂၂ခုနှစ်)

OPNISMY

MJTD

WHILE O &

ბ−ငယ

ဖြင့် ပ o.o Jo ဝင္ဝဝ

სბი:0 ၀.၀၂၈

50000 950.0

სე5:0 600.0 ું છે. છ

အများဆုံး પૃષ્કિઃબ્રી

ი.00ე 0.000

of o.o

co.o

0.00g

အနည်းဆုံး

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(ခ)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်ရေးအတွက်လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဉ်ကာလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃၊ ဇွန်လ ၂၀၂၂ခုနှစ်)

			က္ကာမန်မို့မောက်	နိုက်ထရိုဂျင်ဒိုင်	388	396	ခွန့်င၈လငœ			
ဇနန္ဂရက်		% ≎ %	(00) 8	အောက်ဆိုဒိ (NO_2)	(PM _{2.5})	(PM ₁₀)	အောက်ဆိုဒ် (SO ₂)	လေတိုက်နှုန်း	8	လေတိုက်ခတ်ရာအရပ်
			mg/m³	mg/m³	mg/m ₃	mg/m³	mg/m³	s/w	Deg.	အရပ်မျက်နှင
		i	ကြေးများများ	ာနာဝရီပျစ်းမျှ	မြာရီဂါစူးမောင	မြာရီပြုသန်င မ	ကြေးမျှင်နှင	မြာရီဂါမူး မ	မြာရီပျင်းမှ	မြားမျှင်မှင
ပြုပြု (လန်စွဲ ပျာ	00:fc	∂ G:ſc ~	δίο.0	0.00%	0.00	GC0:0	9000	20.0	၁၈၀.၁၀	တောင်
၃ ရက် ဇွန်လ၊ ၂၀၂၂	00:čc	මරි:රිර ~	کاره.0	0.000	5000	5fo:o	of 0:0	60.0	ს <u>ე</u> . වර්ද	အရှေ့တောင်
၃ ရက် ဇွန်လ၊ ၂၀၂၂	00:50	∂ G:5c ~	∂ſo·o	0.00%	0.00	of o·o	bfo:o	69.0	06.050	အရေ့တောင်
၃ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:၆င	∂G:Gc ~	elo.o	900.0	5000	9000	∂ſo·o	ပ၅.၀	06.050	အရှေ့တောင်
၃ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:၅င	მ6:ეc ~		900.0	ე:00	0000	bfo:o	62.0	00.050	အရှေ့တောင်
၃ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	მG:ბი ~	වවර:0	0.000	5000	5foro	@f o·o	o.J?	06.90	3969
၃ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	∂ G:७c ~	66o.o	Co.o	èco:0	0000	ffo:o	05.0	၀၆·(cc	အရှေ့-အရှေ့တောင်
၃ ရက် ဇွန်လ၊ ၂၀၂၂	၁၀:၅င	୬ ଓ: ୬୦ ~	දිඉග.0	0.000	0000	ඉදිග-0	ffo:o	00.0	දිග-විතර	အရှေ့-အရှေ့တောင်
၃ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	∂G:of ~	560.0	၀၆၀.၀	cfo.o	ဖြင့်	llo.o	0.00	ბ∂:වcc	အရှေ့-အရှေ့တောင်
၃ ရက် ဇွန်လ၊ ၂၀၂၂	00:cf	୬G:cſ ~	0.000	0.00	èco·o	Gfo:o	òco:0	ço.0	ბგ.მე	အရှေ့-အရှေ့တောင်
၃ ရက် ဇွန်လ၊ ၂၀၂၂	00:[[~ JJ:9e	0.008	6000	5000	දැ 0.0	0.0JJ	00.00	00.000	တောင်
၃ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:၃	∂G:2ſ ~	0.000	ა.იი	èco·o	5f o·o	ffo:o	lo.0	ρς.99	အရှေ့-အရှေ့မြောက်
၄ ရက် ဇွန်လ၊ ၂၀၂၂	00:0	∂G:o ~	0.000	6000	cco.o	GC0:0	ffo:o	50.0	05·ce	3969
၄ ရက် ဇွန်လ၊ ၂၀၂၂	00:0	∂6:c ~	∂f c·o	6000	cco.o	∂ſo:o	5co.o	00'0	રેકે-કેિ	မြောက်-အရှေ့မြောက်
၄ ရက် ဇွန်လ၊ ၂၀၂၂	00:f	୍):၅၉	ο.00	მსიი	0.00	ဖြင့်	dío:o	00:00	දිග-වර	အရှေ့မြောက်
၄ ရက် ဇွန်လ၊ ၂၀၂၂	oo:è	∞ ୧:୨૯	၆၀၄.၀	0.000	5000	5f o·o	ρο.ο	00:0	65.90	3000
၄ ရက် ဇွန်လ၊ ၂၀၂၂	00:5	୭୯:୨	იეცი	500.0	ეიი.ი	0000	9000	00.00	දිල- ලි	3968
၄ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:၆	୬େ ≎	სენ:0	0.00	ეco.o	ſċo·o	6000	00.00	66.55	3968
၄ ရက် ဇွန်လ၊ ၂၀၂၂	6:00	∂ G:9 ~	სებ:0	දිගෙ.0	5000	၅(၀.၀	6000	00:00	სე.სმс	တောင်-အနောက်တော
၄ ရက် ဇွန်လ၊ ၂၀၂၂	00:0	୭୯:୧	දිවි c .o	ბეი:ი	500.0	∂ſo·o	òco:0	of o	o6:6gc	တောင်-အရှေ့တောင်
၄ ရက် စွန်လ၊ ၂၀၂၂	00:00	୬ିG:७ ∼	620.0	ඉද්ග.0	ဖြင့်	სბი:0	cco.0	05.0	ებც.ცი	တောင်
၄ ရက် ဇွန်လ၊ ၂၀၂၂	6:00	୬ଓ:୬	වල0.0	ο.00 γ	ව් 0°0	00°0	6000	0.50	ρθ.ς Ω	အနောက်တောင်
၄ ရက် စွန်လ၊ ၂၀၂၂	00:00	∂ 6:oc ~		0.000	၅(၀.၀	5è0.0	၅၄၀.၀	ბ6:0	ბბ:სეი	တောင်-အရှေ့တောင်
၄ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	∂G:cc ~	èfo:o	0.000	900.0	၅(၀.၀	0.00	රීම්	სე.5cc	အရှေ့-အရှေ့တောင်

5-cw

¿000

6000

Co.o

0.000

5000

အနည်းဆုံး તું કે.શ

9co.0

0.00

9000 0.0

of oro 5000

0.000 SG0.0

0000 5000

အများဆုံး

အနောက်-အနောက်တောင် အနောက်-အနောက်တောင် တောင်-အနောက်တောင် တောင်-အနောက်တောင် တောင်-အနောက်တောင် မြောက်-အရှေ့မြောက် တောင်-အရှေ့တောင် ആല്യോക്കു പ്രത്യ တောင်-အရှေ့တောင် အရှေ့-အရှေ့တောင် ക്കുേ-കുല്യേക്കോട് മുപ്പെ - അല്യ തോറ് അല്യ -അല്യ തോറ് കുട്ടേ കുട്ടെ കാറ് အရှေ့-အရှေ့တောင် အရှေ့-အရှေ့တောင် အရှေ့-အရှေ့တောင် အနောက်တောင် အနောက်တောင် အနောက်တောင် အရဝ်မျက်နှာ မြီးမြီးမြင့် အရှေ့တောင် အနေဘက် ဂွမ်းမေလှမာလူတလ မြာရီပျစ်းမျှ 09.900 00.000 èo·ſcc οο. υος bg·fcc \$0°000 სე.520 25.60 00.90 go.55 06.060 06:50 06-161 356-55 115.69 319.02 999.05 560.69 90.0cc 00.9cc 26.950 60.99 66.50 လေတိုက်နှန်း ကြီးမျှပြုငှနင 0.09 0.39 00.0 0.90 00'0 00.0 60.0 20.0 00.0 65.0 66.0 0.0 0.0 0.31 05.0 0.99 0.0 0.0 0000 cc.0 0.50 0.5 0.0 0.0 အောက်ဆိုဒ် ခွင့်ကေလထ ကြေးမျှင်နှင့ PLO.0 Gro.o 9600 0.0 mg/m3 0.0 6 0.0 Jy 0.0 0 ¿000 2000 6000 0.00 5000 èco.0 cc0.0 çco.0 6000 6000 Gco.o 0000 5000 of oro 5000 6000 (502) းငရိတ္ခရိုက်ထ မြာရီပျစ်အျ mg/m3 eco.o of oro 0.00 S 0.0 (PM₁₀) 0.00 6600 PL0.0 විදුග් 0.00 0.0 6000 0.056 0.0 0.00 0000 52000 0.00 0.00 0000 5200 6000 0.0 60.0 အမှန့်အမွှား မြီးမြုပိုင်နင (PM_{2.5}) mg/m3 2000 6000 2000 9co.0 0.00 9c0.0 of oro 0000 9000 (0.00 0.00 2000 2000 cco.0 cco.0 fco.o ¿co.0 (co.0 (co.o (co.0 0.00 0.00 2000 0.00 နိုက်ထရိုဂျင်ခွိဝိ မြီးစုပြုင်နင အောက်ဆိုခ် mg/m3 o.o.Je 0.00 0.006 0.060 9000 S 0.0 (NO₂) 0.0 JG 0.000 0.000 0.000 0.00 0.00 6600 0,000 0.000 6600 0.00 0.00 of oro 0.000 0.026 0.00 6000 0.00 က၁ဗွန်မိုနောက် မြီးမျှပြုင်နင æ (co) mg/m3 0.000 50000 55c.o වර්ග ග 90.00 0.090 o,≎)[€ 6500 660.0 5èc.0 0.100 99000 6000 0.000 5000 0.000 0.00 0.099 9900 9000 c50.0 0.000 5600 0.00 26:9c ∂G:5c ∂6:Gc වි ිංද ∂G:cc 20:00 විරි:ලද ∂G:∂c JJ:36 JS:36 £6:0 96:9 වරි:20 ∂G:of ∂G:cſ ∂G:c 96:2 9C:C 96:9 7:36 e:0 1:06 9G:5 309 00:00 00:00 00:60 00:00 00:00 6:00 00:00 00:90 00:00 00:0 ००:र्टा 6:00 oo:fc 00:50 00:00 00:11 0:00 00:0 00:2 00:5 00:6 0:00 0000 00: ၅ ရက် ဇွန်လ၊ ၂၀၂၂ ဂ် ရက် ဇွန်လ၊ Jojj ၄ ရက် ဇွန်လ၊ ၂၀၂၂ टी बिट्टी हुईका वि ပျှပြု ဗန်လ ၂၀၂၂ င် ရက် စွန်လ၊ JoJJ င် ရက် စွန်လ၊ ၂၀၂၂ ၄ ရက် ဇွန်လ၊ JoJJ င် ရက် ဇွန်လ၊ ၂၀၂၂ င် ရက် စွန်လ၊ ၂၀၂၂ ၅ ရက် ဇွန်လ၊ ၂၀၂၂ ၅ ရက် ဇွန်လ၊ ၂၀၂၂ ၅ ရက် ဇွန်လ၊ ၂၀၂၂ ၅ ရက် စွန်လ၊ ၂၀၂၂ ၅ ရက် ဇွန်လ၊ ၂၀၂၂ င် ရက် ဇွန်လ၊ JoJJ ၄ ရက် ဇွန်လ၊ ၂၀၂၂ ၅ ရက် ဇွန်လ၊ ၂၀၂၂ ၅ ရက် စွန်လ၊ ၂၀၂၂ ၅ ရက် ဇွန်လ၊ ၂၀၂၂ ၅ ရက် ဇွန်လ၊ ၂၀၂၂ ၅ ရက် ဇွန်လ၊ ၂၀၂၂ ၅ ရက် ဇွန်လ၊ ၂၀၂၂ င် ရက် စွန်လ၊ ၂၀၂၂ ဇန္နရက် TD REAL COLUMN

သီလဝါအထူးစီးပွားရေးစုန်အပိုင်း(ခ)ရှိစက်မှုစုနဲ့စွံ့ဖြိုးတိုးတက်ရေးအတွက်လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဉ်ကာလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃၊ ဇွန်လ ၂၀၂၂ခုနှစ်)

၆-ငယ

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(ခ)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်ရေးအတွက်လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဉ်ကာလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃၊ ဇွန်လ ၂၀၂၂ခုနှစ်)

နေရက်		8	<i>ကာ</i> ဗွန်မိုနောက် ဆိုဒ် (CO)	අතයඹුශුදෙ කොරාක්රීම (NO ₂)	කමු ද් ක ළා: (PM _{2.5})	නමුද් න දුා: (PM ₁₀)	ဆာလဖာဒူင အောက်ဆိုခ် (SO_2)	လေတိုက် နှ န်း	.	လေတိုက်ခတ်ရာအရပ်
			mg/m³	mg/m³	mg/m³	mg/m³	mg/m³	s/w	Deg.	တစ်ပွာမြလွမ်တေ
,			ာနာရီပျမ်းမျှ	၁နာရီပျမ်းမျှ	၁နာဂရီပျမ်းမျှ	ကြေး၍ဂါမှုငနင	ကြီးဗွါဂါမွှင်နှင	မြာရှကြမှုငန်င	ကြီးဗျက်ပြွင်အင	မြီးဗွါဂါဖွဲ့ငနာင
၅ ရက် ဇွန်လ၊ ၂၀၂၂	00:fc	∂G:[c ~	55c.o	ი.იმი	ეიიი	0000	500.0	දුද්-0	00.000	အရေ့-အရေ့တောင်
၅ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:င်င	වර:දුර ~	0.000	მეი:ი	ს ი.ი.ი	Gfo:o	500.0	ſ5·o	၁၀၈.၁၇	အရှေ့-အရှေ့တောင်
၅ ရက် ဇွန်လ၊ ၂၀၂၂	00:5c	∂G:5c ~	560.0	၀၆၀.၀	0.000	Gro.o	co.o	bf.o	ပ်၅:၆၀င	3969_3969_cm26
၅ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:၆င	∂G:Gc ~	වංගං	o.o.o	ბсо:0	bfo:o	èco.o	25.0	60:51°c	အရေ့တောင်
၅ ရက် ဇွန်လ၊ ၂၀၂၂	၁၀:၅င	მ6:ეc ~	0.000	of 0:0	5000	၅(၀.၀	èco:0	25.0	სс:5ეс	တောင်-အရေ့တောင်
၅ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:၀င	∂G:Vc ~	o.j	ଚିତ୍ରେତ	0.000	560.0	6000	0:00	ებც.ცი	တောင်
၅ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	විරි:00	0.020	ଚ୍ଚିତେ:୦	Gco.o	ઈ િ.	6000	èо·о	ინ. ს с с	အရေ့-အရေ့တောင်
၅ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:၀င	වියිට ~	ბ500	აეიი	500.0	ſċo·o	0.000	00.0	o6·05c	တောင်-အရှေ့တောင်
၅ ရက် ဇွန်လ၊ ၂၀၂၂	oo:of	වG:of ~	၀.၀၆၇	ଚିତ୍ରେତ	ეიიი	(ço.o	ll o.o	ρc.o	00.590	တောင်-အရှေ့တောင်
၅ ရက် ဇွန်လ၊ ၂၀၂၂	oo:cf	୬G:cf ~	0.000	၀.၀၆၅	ეიიი	bfo.o	0.000	ço.o	ပ၅.ဖဝင	အရှေ့-အရှေ့တောင်
၅ ရက် ဇွန်လ၊ ၂၀၂၂	00:ff	~ JJ:96	၅(င.၀	0.00	6000	ව (o.o	c(o.o	00.0	දිල-වර	မြောက်-အရှေ့မြောက်
၅ ရက် ဇွန်လ၊ ၂၀၂၂	00:SL	୭୯:୨୯	0.000	0.000	5000	ဖ(၀.၀	0.000	èc.o	၀၀-೧၆င	တောင်-အရှေ့တောင်
၆ ရက် ဇွန်လ၊ ၂၀၂၂	00:0	වG:o ~	၀.၀၀	აეი.ი	6000	5fo.o	0.00	90.0	၁၅. ဖပ	အရှေ့-အရှေ့မြောက်
ပြ ရက် ဇွန်လ၊ ၂၀၂၂	00:C	වරි:c ~	0.00,	0.066	5000	∂ſo·o	0.000	0.00	ბბ∙ ნ ს	အရှေ့အရှေ့မြောက်
၆ ရက် ဇွန်လ၊ ၂၀၂၂	00:1):JG	ව.00ල	ი.იცი	၆၄၀.၀	5fo.o	00.0	ද්ග:0	දුදැලි	အရှေ့-အရှေ့မြောက်
မ် ရက် ဇွန်လ၊ ၂၀၂၂	00:2	୬୧:୨	0.000	ი.იმც	òco.0	0.0JJ	၆၄၀.၀	ද්ග.0	66:30	3964
၆ ရက် ဇွန်လ၊ ၂၀၂၂	00:5	୭୯:୨୧	0.069	0.000	900.0	6.0.0	∂fo·o	00.00	၁၈၃.၀၀	တောင်
၆ ရက် ဇွန်လ၊ ၂၀၂၂	00:6	~ 5:3e	0.00	ംരിദ്ര	င်ငတ.ဝ	llo.o	ll o.o	60.0	දිග-ලිග	3969
ပြ ရက် ဇွန်လ၊ ၂၀၂၂	6:00) (3) (3)	0.060	0.009	ဇင၀.၀	of o·o	6000	رج. 0-ج	20.000	အရှေ့-အရှေ့တောင်
၆ ရက် ဇွန်လ၊ ၂၀၂၂	οο:	∂G:¿	ი.იეი	၁၀၀၀	၆၄၀.၀	5000	cco.o	0.6	00.00	တောင်-အနောက်တောင်
၆ ရက် ဇွန်လ၊ ၂၀၂၂	00:0	∂G:0 ~	ငင်ဝ.၀	650.0	6000	9f o.o	Gro.o	65.0	oo.ogl	အနောက်-အနောက်တောင်
၆ ရက် ဇွန်လ၊ ၂၀၂၂	6:00	÷ 6:96	65c.0	0.00	5000	∂ſo·o	9000	0.50	00.920	တောင်-အရှေ့တောင်
၆ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	විරි:၀င ~	(59.0	900.0	5000	c(o.o	cfo.o	0.JJ	දිග-ලිගද	တောင်
၆ ရကဲ စွန်လ၊ ၂၀၂၂	00:00	el6:cc ~	3.099	0.000	2000	<u>رة</u>	0000	č		٥

3 ၈ များဆုံး	ა.ტე	0.00ിള	0.000	0.02	GC0.0
પાર્કાસ્ત્ર	0.0g	ბ60.0	GC0.0	Glo.o	ο.οο
အနည်းဆုံး	ငင်၀.၀	වංගං	င်ငတ'ဝ	of o·o	co.o

of o.o.

\$0.00 \$0.00 \$0.00

0.00g

දිර o o

အများဆုံး ပျှမ်းမျှ အနည်းဆုံး

o. Jମe

υς. βλο.ο

O.O.JJ

နေရက်		8		ကာဗွန်မိုနောက် ဆိုဒ် (CO)	န်ကိထရိဂျင်ဒို င်အောက်ဆိုဒိ (NO ₂)	කමුදිකළා: (PM _{2.5})	(otwd)	ဆာလဖာခိုင် အောက်ဆိုခ် (SO ₂)	လေတိုက်နှန်း	Ve	လေထိုက်ခတ်ရာအရဝ်
		U		mg/m³	mg/m³	mg/m³	mg/m³	mg/m ₃	s/w	Deg.	ထန်ပွာမြလွှမ်တ
				ම්ප්රිදුම් පුරු	မြီးမျှပြင်နင	မြီးမျှပြုင်နင	ကြေးမျှပြုနှင့်	ကြီးစုပြာဖွင့်နင	ကြီးစုပြာဖွင့်နင	ကြီးဗွါဂါမွှင်နင	ကြီးမျှပြုငှနင
ပြော အနီလ၊ ၂၀၂၂	00:fc	2	∂G:∫c	o.Jy@	990.0	Gco.o	ðf0:0	ද්දරු ර	0.50	ಕಿಕೆ-ಕಿಂಂ	အရှေ့-အရှေ့တောင်
ပြုပြု လန်စွဲ လျှ	00:dc	,	∂G:∂c	၅င်္ဂ ဝ	cGo.o	Gco.o	Gfo:o	èco:0	ρ _{0.0}	දිශ-රිදුද	3eq.3eq,e000
ပြုဝု ကန်စွဲ ၄၀၆၅	00:5c	,	∂G:5c	აესა	560.0	5000	cco.o	ðf0:0	0.90	00.000	കുട്ടേ കുട്ടെ കുട
၆ ရက် စွန်လ၊ ၂၀၂၂	00:60		∂G:Gc	၁၈၀.၀	950.0	6000	දිරි 0.0	ofo.o	0.09	oG-ècc	3000 300 3000
ပြုပြု လန်စွဲ မျာ	00:90	3	∂G:9c	ග ද්ද 0	650°0	5000	llo.o	Mo.o	0.90	දුර.00[တောင်-အနောက်တောင်
၆ရက် ဇွန်လ၊ ၂၀၂၂	00:00	į.	მG:სc	၁၁၉၁	090.0	Gcoro	ffo.o	50.0	fc:o	ბ ∂ ∙9∂c	တောင်-အနောက်တောင်
၆ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	,	වG:७c	0.006	දිඉං.ං	6000	Gfo-o	GC o-o	0.00	00.000	တောင်
၆ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	1	୭୯:୭୯	9ද්0.0	0.090	5000	60.0	50.0	of.0	60.69	3969,
၆ ရက် ဇွန်လ၊ ၂၀၂၂	oo:of	ε	∂G:of	င၆၀.၀	0.090	5000	o.0	දැ 0.0	0.00	აგ-ებე	အရှေ့တောင်
၆ ရက် ဇွန်လ၊ ၂၀၂၂	oo:cf	ε	∂ G:cſ	දැරි.00	ඉද්ග-0	Gc0.0	50.0	o(0.0	Gf.0	o6-b6c	တောင်-အရှေ့တောင်
၆ ရက် စွန်လ၊ ၂၀၂၂	00:[[ε	96:M	0.006	0.06	5000	کا ^{0.0}	0.000	0.0	00.00	အရှေ့မြောက်
ပြော အန်လ၊ ၂၀၂၂	00:20	ε	JS:36	Coc.o	0.060	6000	620.0	င်ငတ.ဝ	00'0	දිග-රද	အရှေ့မြောက်
ဂ ရက် စွန်လ၊ ၂၀၂၂	00:0	i	26: 0	9000	990.0	6000	560.0	ද්දහ.0	00.00	01.10	3969
ပြု ရက် ဇွန်လ၊ ပြု	00:0	1	26: c	0.090	0.060	6000	Gro.0	òco.o	0.00	ල ල ල	3969
ပု ရက် စွန်လ၊ ၂၀၂၂	oo:ſ	a	96:f	Gro-o	650.0	6000	90.0	0.000	09.0	სე-მ-ი	အနောက်တောင်
ကြော လြန်စ လျှော ပ	00:6	ı	5:36	60.0	bco.o	òf 0.0	o.o.jq	දුල ගැන	0.00	50.000	30eg -30eg c000S
ဂ်ပြေးလန်စွင့်ပြော ပ	00:5	ા	96:5	0.000	0.06	0.000	0.0JJ	of o.o	o.J?	506.69	సాంకృ -సాంకృ లాంస్
ပု ရက် ဇွန်လ၊ ၂၀၂၂	00:6	э	9:36	bfc.o	0,000	විදුග්	0.02	0.00	0.00	oo'f oc	အရှေ့အရှေ့တောင်
ပု ရက် ဇွန်လ၊ ၂၀၂၂	6:00	T.	වරි:9	foc.o	6600	වco.o	ბბი.0	දිරග-ර	00:00	96-9°	അഭ്യേഷഭ്യ ഭ്രോസ്
ပျော် စွန်လ၊ ၂၀၂၂	00:6	æ	7:96	0.060	ბსი:0	0.000	5foro	0.000	0.90	სс-ბос	အရှေ့-အရှေ့တောင်
ဂ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	્ર	96:0	0.000	စ၅၅၀-၀	60.0	llo.o	60.0	oč·0	ამ.ციс	အရှေ့-အရှေ့တောင်
ပါ ဝါ လန်စွာ ငှပေ ပ	6:00	: t:	96:9	දිර්ග-0	0.090	60.00	0.023	960.0	GG:0	ბc:15c	အရှေ့တောင်
ဂု ရက် ဇွန်လ၊ ၂၀၂၂	00:00	ε.	∂G;oc	500.0	250.0	ο.οο	ſĉo·o	0.0 Jg	රමු.0	00.60	တောင်-အနောက်တောင်
1101 1008 8 200 0	00.00		09.00	0,000	1 00.0	9000	10.00	0.000	0.90	06.000	3969,6000

<u> </u> စက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်ရေးအတွက်လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ	(လုပ်ငန်းလည်ပတ်နေစဉ်ကာလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃၊ ဇွန်လ ၂၀၂၂ခုနှစ်)
သီလဝါအထူးစီးပွားရေးဖုန်အပိုင်း(ခ)ရှိ	

ပဲ-ငယ

\$60.0 \$60.0

სბი.0

0.000 0.000

၀.၀၆၈

ffc.o

အများဆုံး ပျှမ်းမျှ

β60.0 β60.0

0.000

G60.0

အနည်းဆုံး

သီလဝါအထူးစီးပွားရေးဇုန်အပိုင်း(ခ)ရှိစက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်ရေးအတွက်လေထုအရည်အသွေးစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဉ်ကာလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃၊ ဇွန်လ ၂၀၂၂ခုနှစ်)

ဇမီပသွ		89 	ကာဗွန်စိုနောက် ဆိုဒ် (CO)	E iii	အမှုန်အမွှား (PM _{2.5})	නමූ∲නළා: (PM₁0)	ဆာလဖာခိုင် အောက်ဆိုနိ (SO ₂)	လေတိုက် နှန်း	ð	လေတိုက်ခတ်ရာအရပ်
			mg/m³	mg/m³	mg/m³	mg/m³	mg/m³	s/ш	Deg.	အရပ်မျက်နှင
			မြာရီပျမ်းမျှ	သနာဝရီပျမ်းမှ <u>ှ</u>	နြးဇုဂြါမှု <i>ငန်ာ</i> င	ကြီးမျှင်မှင	ကြီးဗွါဂါမှုငန်ာင	ကြီးဗွုက်ဖွဲ့ငန်င	ကြီးမျှင်မှင	Hate Control of the C
၇ ရက် ဇွန်လ၊ ၂၀၂၂	oo:fc	∂6:ſc ~	0.020	650.0	ρςο.ο	Co.o	0.0JJ	၀၅.၀	එඑ·රිපර	3969,-3969,e000 S
၇ ရက် ဇွန်လ၊ ၂၀၂၂	၀၀:၀င	මරි:දුර ~	coc.o	ს500	ද්ය0.0	cí o·o	cí o·o	66.0	දිග:ර ් ද	3969,6003Ĉ
ဂ ရက် ဇွန်လ၊ ၂၀၂၂	00:50	වරි:රය ~	0.000	ſ50·0	၆၀၀၀	5fo·o	cl'o'o	0.50	0.010	3969 6000 5
ဂ ရက် ဇွန်လ၊ ၂၀၂၂	၁၀:၆၄	∂6:6c ~	í6o.o	වර්ග-0	9000	දරගංග	දැර.o	රේ.0	ρους c	အရေ့တောင်
၇ ရက် ဇွန်လ၊ ၂၀၂၂	၁၀:၅င	მ6:ეი ~	වද්ග:0	650.0	cco.o	სბი·o	0.00	0.00	ρς:9(<u>Γ</u>	အနောက်တောင်
၇ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	විරි: ර්ර	6fo-o	GC 0.0	60.00	Goo	ofo:o	60-0	J89.90	အနောက်-အနောက်တောင်
၇ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	විරි:ලර ~	60.0	<u> </u>	00.00	5600	වco.0	65.0	00.95	အနောက်-အနောက်တောင်
၇ ရက် ဇွန်လ၊ ၂၀၂၂	oo:වc	୭୯:୭୦ ~	Gro.o	0.000	6co.o	of o·o	ρςο.ο	00.0	oG-GGF	အနောက်-အနောက်တောင်
၇ ရက် ဇွန်လ၊ ၂၀၂၂	oo:of	୭ େ ୦୮ ~	0.00	ბ60-0	ο.000	9f 0.0	900.0	05·c	20.05f	အနောက်-အနောက်တောင်
၇ ရက် ဇွန်လ၊ ၂၀၂၂	oo:cf	∂6:cſ ~	0.009	ბეთ.ი	0.00	cfo.o	6000	δſ·c	oo:f5f	အနောက်-အနောက်တောင်
၇ ရက် ဇွန်လ၊ ၂၀၂၂	oo:ſſſ	⊃C:∫(~	ი.09ი	990.0	ලිදුගැර	Gfo.o	ο.οο	00:0	දුරු-දමු	အနောက်
၇ ရက် ဇွန်လ၊ ၂၀၂၂	00:င်	୭୯:୨୯ ~	၀.၀၅၈	දිඉග-0	60.0	cí o·o	6co.0	0.00	ပင-၆ငင်	အနောက်တောင်
၈ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	୬G:o ~	0.00	၀၆၀.၀	òco:0	0.000	οςο.ο	90.0	ço.col	တောင်-အနောက်တောင်
၈ ရက် ဇွန်လ၊ ၂၀၂၂	00:C	∂6:c ~	0.095	၀၆၀-၀	5000	cf o·o	cfo.o	00.0	මෙ-ගදර	အရေ့တောင်
၈ ရက် ဇွန်လ၊ ၂၀၂၂	00:1	J:36	ი.იც	၀၆၀-၀	60.0	fèo.o	0.000	00.0	၀၀.၀၅	3969
၈ ရက် ဇွန်လ၊ ၂၀၂၂	00:2	୍ ୧:୬૯	၀၀၀၀	96o.o	0.000	ffo.o	სсо:0	00.0	00.06	3969
ပြုဝု (၁၈)	00:5	ə6:5 ~	0.0၈၇	ბეი-ი	0.00	of o.o	0.000	60.0	64-44	3969
၈ ရကဲ ဇွန်လ၊ ၂၀၂၂	00:6):3G	0.09J	ი.ივი	90.00	of o·o	ბсо:0	දම.0	ბc∙სბc	အရေ့တောင်
၈ ရက် ဇွန်လ၊ ၂၀၂၂	6:00) (3)	ffc.o	აეი.ი	၅၀၀၀	cf o·o	სсо:0	වං.0	<u> ලො</u> ි උද	အရှေ့တောင်
၈ ရက် ဇွန်လ၊ ၂၀၂၂	00:6	∂G:\ 	0.000	၀၅၀.၀	ဝင္ဝ.ဝ	5f o·o	0.00	00.00	Gf.eoc	အရှေ့-အရှေ့တောင်
၈ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	∂G:o ~	0.002	ბ50:0	0.00	bfo:o	Gco.o	cċ.º	69.cof	တောင်-အနောက်တောင်
၈ ရက် ဇွန်လ၊ ၂၀၂၂	00:Ә	9G:90 ~	0.090	ငင်၀.၀	60.0	O.OJJ	00.0	06:0	oo.off	အနောက်တောင်
၈ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	∂ 6:oc ~	ဇ၁၀.၀	0.000	9000	GF0.0	οςο.ο	of.c	၁၉၇.၈၀	တောင်-အရေ့တောင်
၈ ရက် ဇွန်လ၊ ၂၀၂၂	00:00	∂G:cc ~	0000	െಂര	ဇင၀.၀	0:00	၆၄၀.၀	95·f	სბ:05c	အရှေ့တောင်

နောက်ဆက်တွဲ-၂ လေထုအရည်အသွေးတိုင်းတာသည့်စက်ကို စံကိုက်ညှိထားသောလက်မှတ်

သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ)ရှိ စက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်ရေးအတွက် ဆူညံသံ နှင့် တုန်ခါမှု စောင့်ကြည့်လေ့လာခြင်း အစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဥ်ကာလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃)

(တစ်နှစ်နှစ်ကြိမ် စောင့်ကြည့်လေ့လာခြင်း)

၂၀၂၂ ခုနှစ်၊ ဇွန်လ မြန်မာခိုအဲ အင်တာနေရှင်နယ် လီမိတက်

<u>မာတိကာ</u>

9303(7)3
အခန်း ၁ စောင့်ကြည့်လေ့လာသော အစီအစဥ်နှင့်အကျဥ်းချုပ်
၁.၁ ယေဘုယျဖော်ပြချက်
၁.၂ စောင့်ကြည့်လေ့လာသော အစီအစဉ်ဖော်ပြချက်များ
အခန်း ၂ ဆူညံသံနှင့်တုန်ခါမှု စောင့်ကြည့်လေ့လာခြင်း၂
၂.၁ စောင့်ကြည့်လေ့လာသည့် အမျိုးအစား၂
၂.၂ စောင့်ကြည့်လေ့လာသည့် တည်နေရာ၂
၂.၃ စောင့်ကြည့်လေ့လာသည့် နည်းလမ်း
၂.၄ စောင့်ကြည့်လေ့လာမှု ရလဒ်များ
အခန်း ၃ နိဂုံးချုပ်နှင့်အကြံပြုချက်များ၁၂
2
<u> </u>
<u> </u>
ဖယား ၁.၂-၁ ဆူညံသံနှင့်တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာသောအစီအစဉ်
ဖယား ၂.၁-၁ ဆူညံသံနှင့်တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာသောအမျိုးအစားများ၂
ဖယား ၂.၄-၁ နေရာ-၁ (NV-1) ၏ဆူညံသံအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ ($\mathrm{LA}_{\mathrm{eq}}$)
ဖယား ၂.၄-၂ နေရာ-၂ (NV-2) ၏ဆူညံသံအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (LA _{ေရ})၅
ဖယား ၂.၄-၃ နေရာ-၁ (NV-1) ၏နာရီအလိုက်ဆူညံသံအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (LA_{eq}) ၅
ဖယား ၂.၄-၄ နေရာ-၂ (NV-2)၏နာရီအလိုက်ဆူညံသံအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (LA _{eq}) ၆
ဖယား ၂.၄-၅ နေရာ-၁ (NV-1) ၏တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (Lv ₁₀) စ
ဖယား ၂.၄-၆ နေရာ- ၂ (NV-2) ၏တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (Lv_{10}) ၈
ဇယား ၂.၄-၇ နေရာ-၁ (NV-1) ၏နာရီအလိုက်တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (Lv_{10}) ၉
ဖယား ၂.၄-၈ နေရာ-၂ (NV-2) ၏နာရီအလိုက်တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (Lv_{10}) ၁၀
<u>ပုံများစာရင်း</u>
ပုံ ၂.၂-၁ ဆူညံသံနှင့်တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာသည့်တည်နေရာများ၂
ပုံ ၂.၃-၁ ဆူညံသံနှင့်တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုအခြေအနေ
ပုံ ၂.၄-၁ နေရာ-၁ (NV-1) ၏ဆူညံသံအဆင့်စောင့်ကြည့်လေ့လာမှုရလဒ် ှ
ပုံ ၂.၄-၂ နေရာ-၂ (NV-2) ၏ဆူညံသံအဆင့်စောင့်ကြည့်လေ့လာမှုရလဒ် 🤈
ပုံ ၂.၄-၃ နေရာ-၁ (NV-1) ၏တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်
ပုံ ၂.၄-၄ နေရာ-၂ (NV-2) ၏တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်၁၁

အခန်း ၁ စောင့်ကြည့်လေ့လာသော အစီအစဥ်နှင့်အကျဥ်းချုပ်

၁.၁ ယေဘုယျဖော်ပြချက်

သီလဝါအထူးစီးပွားရေးဇုန်သည် ရန်ကုန်တိုင်းဒေသကြီး၏ တောင်ပိုင်းခရိုင်တွင်တည်ရှိပြီး ရန်ကုန်မြို့၏ အရှေ့တောင်ဘက် ၂၃ ကီလိုမီတာတွင် တည်ရှိပါသည်။ သီလဝါအထူးစီးပွားရေးဇုန်၏ အကောင်အထည် ဖော်ဆောင်သူအနေဖြင့် ဇုန်အပိုင်း(ခ)အတွင်းရှိ စက်မှုမြေနေရာများအတွက် ခွင့်ပြုချက်ရရှိထားသော ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း အစီရင်ခံစာနှင့် ပတ်ဝန်းကျင်ဆိုင်ရာစီမံခန့်ခွဲမှုအစီအစဉ်အတိုင်း ပုံမှန်စောင့်ကြည့်စစ်ဆေးခြင်းကို ဆောင်ရွက်ရန် မြန်မာ-ဂျပန် သီလဝါဖွံ့ဖြိုးရေးလီမိတက်တွင် တာဝန်ရှိပါသည်။ မြန်မာ-ဂျပန် သီလဝါဖွံ့ဖြိုးရေးလီမိတက်သည် ဇုန်အတွင်းနှင့် အနီးပတ်ဝန်းကျင်ရှိ သဘာဝပတ်ဝန်းကျင် အခြေအနေများကို သိရှိစေရန် သဘာဝပတ်ဝန်းကျင်နှင့်သက်ဆိုင်သော အချက်အလက် စောင့်ကြည့် လေ့လာမှုများကို ရေးဆွဲပြီး ထိုအစီအစဥ်များအရ အကောင်အထည်ဖော် ဆောင်ရွက်ခဲ့ပါသည်။

၁.၂ စောင့်ကြည့်လေ့လာသော အစီအစဉ်ဖော်ပြချက်များ

သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ) စက်မှုဇုန်လုပ်ငန်းလည်ပတ်နေခြင်းကြောင့် စက်မှုဇုန်အတွင်းနှင့်အပြင်ရှိ ပတ်ဝန်းကျင်အခြေအနေအား အကဲဖြတ်နိုင်ရန်အတွက် အောက်ပါဖယားတွင် ဖော်ပြထားသည့်အတိုင်း ၂၀၂၂ ခုနှစ်၊ ဇွန်လ ၁ ရက်နေ့မှ ဇွန်လ ၂ ရက်နေ့အထိ ဆူညံသံနှင့်တုန်ခါမှုအဆင့်အား စောင့်ကြည့် လေ့လာခဲ့သည်။

eယား ၁.၂-၁ ဆူညံသံနှင့်တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာသောအစီအစဉ်

စောင့်ကြည့်လေ့လာ သည့် ရက်စွဲ	စောင့်ကြည့်လေ့လာမှု အမျိုးအစား	တိုင်းတာသော အမျိုးအစား များ	တိုင်းတာသော နေရာ အရေအတွက်	ကြာချိန်	စောင့်ကြည့်လေ့လာသော နည်းလမ်း
ဇွန်လ ၂ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်	ဆူညံမှုအဆင့်	LA _{eq} (dB)	o (NV-1)	၈ နာရီ	Rion NL-42 အသံအဆင့်တိုင်းတာသည့်ကိရိယာဖြင့် မြေပြင်တွင်ကွင်းဆင်းတိုင်းတာခြင်း
ဇွန်လ ၁ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်	ဆူညံမှုအဆင့်	LA _{eq} (dB)	o (NV-2)	၈ န၁ရီ	Rion NL-42 အသံအဆင့်တိုင်းတာသည့်ကိရိယာဖြင့် မြေပြင်တွင်ကွင်းဆင်းတိုင်းတာခြင်း
ဇွန်လ ၂ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်	တုန်ခါမှုအဆင့်	L _{v10} (dB)	o (NV-1)	၈ နာရီ	VM-53A တုန်ခါမှုအဆင့်တိုင်းတာသည့်ကိရိယာ ဖြင့် မြေပြင်တွင်ကွင်းဆင်းတိုင်းတာခြင်း
ဇွန်လ ၁ ရက်နေ့၊ ၂၀၂၂ ခုနှစ်	တုန်ခါမှုအဆင့်	L _{v10} (dB)	o (NV-2)	၈ နာရီ	VM-53A တုန်ခါမှုအဆင့်တိုင်းတာသည့်ကိရိယာ ဖြင့် မြေပြင်တွင်ကွင်းဆင်းတိုင်းတာခြင်း

မှုရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

အခန်း ၂ ဆူညံသံနှင့်တုန်ခါမှု စောင့်ကြည့်လေ့လာခြင်း

၂.၁ စောင့်ကြည့်လေ့လာသည့် အမျိုးအစား

ဖယား ၂.၁-၁ ဆူညံသံနှင့်တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာသောအမျိုးအစားများ

စဉ်	စောင့်ကြည့်လေ့လာမှု	
2	ဆူညံသံ	အသံကြိမ်နှုန်း "အေ"နှင့် ညီမျှသော ကျယ်လောင်မှု (LA _e
J	တုန်ခါမှု	တုန်ခါမှုအဆင့် (L _{V10})

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

၂.၂ စောင့်ကြည့်လေ့လာသည့် တည်နေရာ

ယာဥ်သွားလာမှုကြောင့်ဖြစ်ပေါ် လာသော ဆူညံသံနှင့်တုန်ခါမှုများကို အဓိကထားတိုင်းတာနိုင်ရန် သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ)၏ အရှေ့မြောက်ဘက်ထောင့် မြောက်လတ္တီတွဒ် ၁၆°၄၀'၁၈.၂၂"၊ အရှေ့လောင်ဂျီတွဒ် ၉၆°၁၇'၁၈.၁၈" တွင် စောင့်ကြည့်လေ့လာသည့် နေရာ-၁ (NV-1) နှင့် သီလဝါ အထူးစီးပွားရေးဇုန် အပိုင်း(ခ)၏ တောင်ဘက် ဖလမ်းကျေးရွာ၊ ဖလမ်းရွာဦးကျောင်းဝန်းအတွင်း မြောက်လတ္တီတွဒ် ၁၆°၃၉'၂၄.၉၀" ၊ အရှေ့လောင်ဂျီတွဒ် ၉၆°၁၇'၁၆.၇၀" တွင် စောင့်ကြည့်လေ့လာသည့် နေရာ-၂ (NV-2)ဟူ၍ ဆူညံသံနှင့်တုန်ခါမှုအဆင့်များကို နှစ်နေရာ တိုင်းတာခဲ့ပါသည်။ ဆူညံသံနှင့်တုန်ခါမှု စောင့်ကြည့် လေ့လာခဲ့သည့် တည်နေရာများကို ပုံ ၂.၂-၁ တွင် ပြသထားပါသည်။

မူရင်း။ ဂူဂဲလ်အက်

ပုံ ၂.၂-၁ ဆူညံသံနှင့်တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာသည့်တည်နေရာများ

ဆူညံသံနှင့်တုန်ခါမှု စောင့်ကြည့်လေ့လာသည့်နေရာ-၁ (NV-1)

စောင့်ကြည့်လေ့လာသည့် နေရာ-၁ (NV-1)သည် သီလဝါဖွံ့ဖြိုးရေးလမ်း၏ ဘေးဘက်တွင်ရှိသော သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ)ရှိ လည်ပတ်နေသောလုပ်ငန်းခွင်၏ ယာယီဂိတ်ပေါက်အရှေ့ဘက်၌ ရှိပါသည်။ စောင့်ကြည့်လေ့လာသည့် နေရာကို အနောက်မြောက်ဘက်တွင် ဇုန်အပိုင်း(က)နှင့် အရှေ့ဘက်တွင် ပြည်တွင်းစက်မှုဇုန်တို့ဖြင့် ဝန်းရံထားပါသည်။ ဤစောင့်ကြည့်လေ့လာသည့်နေရာ၏ အဓိကဆူညံသံနှင့်တုန်ခါမှု ဖြစ်နိုင်သော အရင်းအမြစ်များမှာ ဆောက်လုပ်ရေးလုပ်ငန်းကြောင့်ဖြစ်သော ဆူညံမှုနှင့်တုန်ခါမှုများနှင့် ယာဉ်သွားလာမှုများကြောင့် ဖြစ်နိုင်ပါသည်။

ဆူညံသံနှင့်တုန်ခါမှု စောင့်ကြည့်လေ့လာသည့်နေရာ-၂ (NV-2)

စောင့်ကြည့်လေ့လာသည့် နေရာ-၂ (NV-2) သည် သီလဝါအထူးစီးပွားရေးစုန် အပိုင်း(ခ)၏ တောင်ဘက် ဖလမ်းကျေးရွာ၊ ဖလမ်းရွာဦးကျောင်းဝန်းအတွင်းတွင် တည်ရှိပြီး တောင်ဘက်တွင် ဖလမ်းကျေးရွာ၏ လူနေအိမ်များ၊ အနောက်ဘက်တွင် လယ်ကွင်းများ တည်ရှိပြီး မြောက်ဘက်တွင် သီလဝါ အထူးစီးပွားရေးစုန် အပိုင်း(က)နှင့် အရှေ့မြောက်ဘက်တွင် ပြည်တွင်းစက်မှုစုန်တို့ဖြင့် ဝန်းရံထားပါသည်။ ဤစောင့်ကြည့် လေ့လာသည့်နေရာ၏ အဓိကဆူညံသံနှင့် တုန်ခါမှု ဖြစ်နိုင်သော အရင်းအမြစ်များမှာ စုန်အပိုင်း(ခ)ရှိ ဆောက်လုပ်ရေး လုပ်ငန်းများနှင့် ဖလမ်းကျေးရွာရှိ နေထိုင်သူများ၏ နေ့စဥ် လုပ်ငန်းဆောင်တာများကြောင့် ဖြစ်နိုင်ပါသည်။

၂.၃ စောင့်ကြည့်လေ့လာသည့် နည်းလမ်း

ဆူညံသံအဆင့်အား "Rion NL-42 အသံအဆင့်တိုင်းတာသည့်ကိရိယာ"ဖြင့် ၁၀မိနစ်တိုင်း အလိုအလျောက်တိုင်းတာပြီး စက်အတွင်းရှိ မန်မိုရီကဒ်အတွင်း မှတ်သားထားပါသည်။ တုန်ခါမှုအဆင့် တိုင်းတာသည့် "Rion VM-53A" ဝင်ရိုးသုံးခုပါဝင်သော တုန်ခါမှုအဆင့် သတ်မှတ်သည့် ကိရိယာအား မြေကြီးပေါ်တွင် ထားရှိပါသည်။ တုန်ခါမှု (L_{v})အား နေရာ-၁ (NV-1)နှင့် နေရာ-၂ (NV-2)တို့၌ အလိုက်အသင့် ပြောင်းလဲနိုင်သောအဆင့် (၁၀-၇၀) dB အတွင်းထားရှိပြီး ၁၀ မိနစ်တိုင်း အလိုအလျောက် တိုင်းတာပြီး စက်အတွင်းရှိ မန်မိုရီကဒ်အတွင်း မှတ်သားထားပါသည်။

စောင့်ကြည့်လေ့လာသော နေရာတစ်ခုစီတွင် ဆူညံသံနှင့်တုန်ခါမှု စောင့်ကြည့်လေ့လာမှုအား ၈ နာရီ တိုင်းတာပါသည်။ နေရာ-၁ (NV-1) နှင့် နေရာ-၂ (NV-2) ရှိ ဆူညံသံနှင့်တုန်ခါမှုအဆင့် စောင့်ကြည့် လေ့လာသောအခြေအနေကို ပုံ ၂.၃-၁ တွင် ပြသထားပါသည်။

မှုရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

ပုံ ၂.၃-၁ ဆူညံသံနှင့်တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုအခြေအနေ

၂.၄ စောင့်ကြည့်လေ့လာမှု ရလဒ်များ

<u>ဆူညံသံစောင့်ကြည့်လေ့လာမှုရလဒ်များ</u> ဆူညံသံစောင့်ကြည့်လေ့လာမှုရလဒ်များအတွက် နေရာ-၁ (NV-1) တွင် နေ့အချိန် (မနက် ၆ နာရီ မှ ည ၁၀ နာရီ) နှင့် ညအချိန် (ည ၁၀ နာရီ မှ မနက် ၆ နာရီ)ဟု အချိန်အပိုင်းအခြား ခွဲခြားသတ်မှတ်ထားပြီး နေရာ-၂ (NV-2) တွင် နေ့အချိန် (မနက် ၇ နာရီ မှ ည ၇ နာရီ)၊ ညနေခင်းအချိန် (ည ၇ နာရီ မှ ည ၁၀ နာရီ) နှင့် ညအချိန် (ည ၁၀ နာရီမှ မနက် ၇ နာရီ) ဟူ၍ အချိန်အပိုင်းအခြား ခွဲခြားသတ်မှတ်ထားပါသည်။ ဆူညံသံ တိုင်းတာမှုအား သတ်မှတ်ထားသောနေရာတွင် ၂၄ နာရီကြာ တိုင်းတာမည့်အစား ဘေးအန္တရာယ်ကင်းရှင်းစေရန် နှင့် ဘေးကင်းလုံခြုံမှုရရှိစေရန် အလုပ်ချိန်အနေဖြင့် ၈ နာရီ (မနက် ၈ နာရီ မှ ညနေ ၄ နာရီ) ကြာ တိုင်းတာခဲ့ပါသည်။ စောင့်ကြည့်လေ့လာသောရလဒ်များအား ဧယား ၂.၄-၁ နှင့် ဧယား ၂.၄-၂ တွင် အကျဉ်းချုပ် ဖော်ပြထားပါသည်။ နေရာ-၁ (NV-1)နှင့် နေရာ-၂ (NV-2)ရှိ တစ်နာရီဆူညံမှုအဆင့်(LA_{eq})၏ စောင့်ကြည့်လေ့လာမှုရလဒ်များကို မယား ၂.၄-၃ နှင့် မယား ၂.၄-၄ တွင် ဖော်ပြထားပါသည်။ ပုံ ၂.၄-၁ နှင့် ပုံ ၂.၄-၂ တွင် နေရာ-၁ (NV-1)နှင့် နေရာ-၂ (NV-2)၏ ဆူညံမှုအဆင့်(LA_{eq}) ရလဒ်များအား ပြသထားပါသည်။ သီလဝါ အထူးစီးပွားရေးဇုန် ဖွံ့ဖြိုးမှု စီမံကိန်း အပိုင်း(ခ)၏ ပတ်ဝန်းကျင် ထိခိုက်မှု ဆန်းစစ်ခြင်း အစီအရင်ခံစာတွင် ပါရှိသော လုပ်ငန်းလည်ပတ်နေစဉ် နိူင်းယှဉ်ရာတွင် ဆူညံသံအဆင့်နှင့် ရလဒ်များသည် ရည်မုန်းထားသော အဆင့်၌ ရည်မှန်းတန်ဖိုးထက်လျော့နည်းကြောင်း တွေ့ရှိရသည်။

ဇယား ၂.၄-၁ နေရာ-၁ (NV-1) ၏ဆူညံသံအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (LA_{eq})

	ယာဥ်အသွားအလာကြောင့်ဖြစ်ဖေ	ာါ်သောဆူညံသံအဆင့် (LA _{eq} , dB)
ရက်စွဲ	နေ့အချိန် (မနက် ၆ နာရီ မှ ည ၁၀ နာရီ)	ညအချိန် (ည ၁၀ နာရီ မှ မနက် ၆ နာရီ)
၂ ဇွန်လ၂၀၂၂	99	261
ရည်မှန်းတန်ဖိုး	79	၇၀

မှတ်ချက်။ ရည်မှန်းတန်ဖိုးများကို ဆူညံသံစည်းမျဉ်းဥပဒေ (ဂျပန်) တွင်ဖော်ပြထားသော အဓိကလမ်းမကြီးတစ်လျှောက်ရှိ ဆူညံသံစံနှုန်းဖြင့်

ကျင့်သုံးထားပါသည်။ (၁၉၆၈ ခုနှစ် ဥပဒေအမှတ် ၉၈၊ နောက်ဆုံးပြင်ဆင်ချက် ၂၀၀၀ ခုနှစ် ဥပဒေအမှတ် ၉၁)

NAWA မှုရှိန်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

ဖယား ၂.၄-၂ နေရာ-၂ (NV-2) ၏ဆူညံသံအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (LA_{eq})

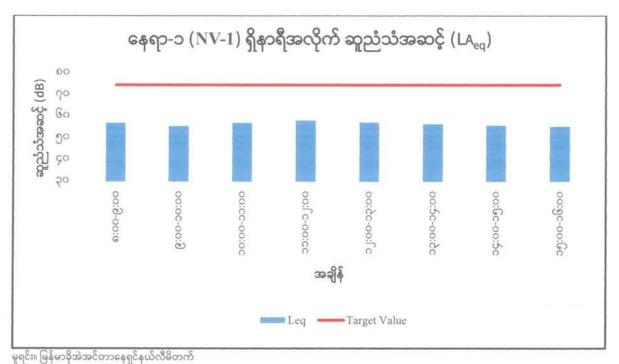
	ဆောက်လုပ်ရေးလုပ်ငန်	းခွင်မှ မီတာ ၁၅၀ အတွင်းတွင်	ရှိသော လူနေအိမ်များနှင့်
ရက်စွဲ		ဘုန်းကြီးကျောင်း (LA _{eq} , dB)	
هدراء	နေ့အချိန်	ညနေခင်းအချိန်	ညအချိန်
	(မနက် ၇ နာရီ မှ ည ၇ နာရီ)	(ည ၇ နာရီ မှ ည ၁၀ နာရီ)	(ည ၁၀ နာရီ မှ မနက် ၇ နာရီ)
၁ ဇွန်လ၂၀၂၂	ງ J	-	-
ရည်မှန်းတန်ဖိုး	Go	99	ეი

မှတ်ချက်။ ရည်မှန်းတန်ဖိုးများကို သီလဝါအထူးစီးပွားရေးဇုန် ဖွံ့ဖြိုးတိုးတက်မှုစီမံကိန်း အပိုင်း(ခ) အတွက် လုပ်ငန်းလည်ပတ်နေစဉ် အဆင့်တွင်ရှိရမည့် ဆူညံသံအဆင့် ရည်မှန်းတန်ဖိုးကို အသုံးပြုထားပါသည်။ မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

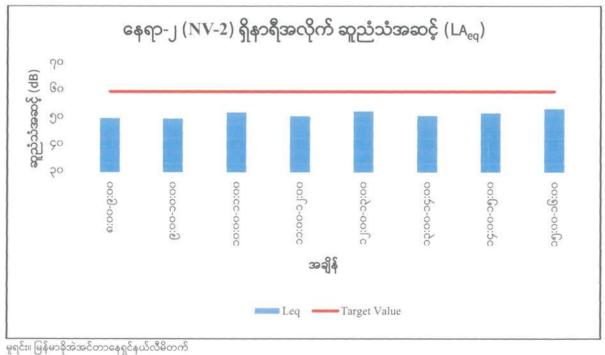
ဖယား ၂.၄-၃ နေရာ-၁ (NV-1) ၏နာရီအလိုက်ဆူညံသံအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ ($\mathsf{LA}_{\mathsf{eq}}$)

ရက်စွဲ	အချိန်	(LA _{eq} , dB)	(LA _{eq} , dB) အချိန်အပိုင်းအခြား တစ်ခုစီအတွက်	(LA _{eq} , dB) ရည်မှန်းတန်ဖိုး	မှတ်ချက်
	၆း၀၀-၇း၀၀	-			
	၇းဝဝ-၈းဝဝ	-			
	၈းဝဝ-၉းဝဝ	១ ?			
	၉းဝဝ-၁ဝးဝဝ	၅၆			
	20:00-22:00	១ ?			
	၁၁း၀၀-၁၂း၀၀	୨୯			
	၁၂း၀၀-၁၃း၀၀	၅၈			
	၁၃း၀၀-၁၄း၀၀	99	60	00	
	၁၄း၀၀-၁၅း၀၀	ენ	୭୧	୧୭	
	၁၅းဂ၀-၁၆းဂ၀	ეჱ		ļ	
	၁၆း၀၀-၁၇း၀၀	-		i	
၂ ဇွန်လ ၂၀၂၂	၁၇း၀၀-၁၈း၀၀	-			ဆောက်လုပ်ရေးလုပ်ငန်း
7 8400 7077	၁၈း၀၀-၁၉း၀၀	-			လုပ်ဆောင်နေခြင်းမရှိပါ။
	၁၉းဝဝ-၂၀းဝဝ	-			
	ി0:00-ി0:00	-			
	്വാ:00-വ്വ:00	-			
	J1:00-J2:00	-			
	J\$:00-J\$:00	-			
	J\$:00-2:00	-			
	၁း၀၀-၂း၀၀	-	_	00	
	1:00-5:00	-	-	90	
	5:00-5:00	-			
	၄း၀၀-၅း၀၀	-			
	၅း၀၀-၆း၀၀	-			

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်



ဖယား ၂.၄-၄ နေရာ-၂ (NV-2)၏နာရီအလိုက်ဆူညံသံအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (LA_{eq})


ရက်စွဲ	အချိန်	(LA _{eq} , dB)	(LA _{eq} , dB) အချိန်အပိုင်းအခြား တစ်ခုစီအတွက်	(LA _{eq} , dB) ရည်မှန်းတန်ဖိုး	မှတ်ချက်
	၇ :00-ຄ:00	(in)			
	၈းဝဝ-၉းဝဝ	90			
	6:00-20:00	్రం			
	20:00-22:00	อป			
	၁၁:00-၁၂:00	၅၁			
	၁၂း၀၀-၁၃း၀၀	25		Go	
	၁၃း၀၀-၁၄း၀၀	၅၁	อา	00	
	og:00-og:00	อา			
	აჟაიი-აცაიი	29		5	
	၁၆း၀၀-၁၇း၀၀	88.			
	၁၇း၀၀-၁၈း၀၀	240			
202 1011	၁၈း၀၀-၁၉း၀၀	1000			ဆောက်လုပ်ရေးလုပ်ငန်း
၁ ဇွန်လ၂၀၂၂	၁၉း၀၀-၂၀း၀၀	:+:			လုပ်ဆောင်နေခြင်းမရှိပါ။
	J0:00-J0:00	(54)		22	
	J3:00-JJ:00	(#)			
	77:00-75:00	100			
	15:00-15:00	12-21			
	J¢:00-2:00 -				
	D:00-J:00	-			
	1:00-5:00	(4)	-	၅၀	
	2:00-5:00	100			
	9:00-9:00	1949			
	၅:೧೧-၆:೧೧	(i=)			
	6:00-7:00	1041			

ပုံ ၂.၄-၁ နေရာ-၁ (NV-1) ၏ဆူညံသံအဆင့်စောင့်ကြည့်လေ့လာမှုရလဒ်

ပုံ ၂.၄-၂ နေရာ-၂ (NV-2) ၏ဆူညံသံအဆင့်စောင့်ကြည့်လေ့လာမှုရလဒ်

တုန်ခါမှုစောင့်ကြည့်လေ့လာမှု ရလဒ်များ တုန်ခါမှုစောင့်ကြည့်လေ့လာမှုရလဒ်များအား နေရာ-၁ (NV-1) နှင့် နေရာ-၂ (NV-2) နှစ်ခုလုံးအတွက် နေ့အချိန် (မနက် ၇ နာရီ မှ ည ၇ နာရီ)၊ ညနေခင်းအချိန် (ည ၇ နာရီ မှ ည ၁၀ နာရီ) နှင့် ညအချိန် (ည ၁၀ နာရီ မှ မနက် ၇ နာရီ)ဟူ၍ အချိန်အပိုင်းအခြား ခွဲခြားသတ်မှတ်ထားပါသည်။ တုန်ခါမှုတိုင်းတာခြင်းအား သတ်မှတ်ထားသောနေရာတွင် ၂၄ နာရီကြာ တိုင်းတာမည့်အစား ဘေးအန္တရာယ်ကင်းရှင်းစေရန် နှင့် ဘေးကင်းလုံခြုံမှုရရှိစေရန် အလုပ်ချိန်အနေဖြင့် ၈ နာရီ (မနက် ၈ နာရီ မှ ညနေ ၄ နာရီ) ကြာ တိုင်းတာခဲ့ပါသည်။ နေရာ-၁ (NV-1) နှင့် နေရာ-၂ (NV-2) ၏ တုန်ခါမှုအဆင့် (L_{V10}) စောင့်ကြည့်လေ့လာမှုရလဒ်များအား ယေား ၂.၄-၅ နှင့် ဖယား ၂.၄-၆ တွင် ဖော်ပြထားပါသည်။ နေရာ-၁ (NV-1) နှင့် နေရာ-၂ (NV-2) ရှိ တစ်နာရီတုန်ခါမှုအဆင့် (L_{V10})၏ စောင့်ကြည့်လေ့လာမှုရလဒ်များကို ဖယား ၂.၄-၇ နှင့် ဖယား ၂.၄-၈ တွင် ဖော်ပြထားပါသည်။ ပုံ ၂.၄-၃ နှင့် ပုံ ၂.၄-၄ တွင် နေရာ-၁ (NV-1) နှင့် နေရာ-၂ (NV-2) ၏ တုန်ခါမှုအဆင့်တောင့်ကြည့်လေ့လာမှု ရလဒ်များအတွက် ပြသထားပါသည်။ သီလဝါအထူးစီးပွားရေးဇုန်ဖွံ့ဖြိုးမှု စီမံကိန်း အပိုင်း(ခ)၏ ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်းအစီအရင်ခံစာတွင်ပါရှိသော လုပ်ငန်းလည်ပတ်နေစဉ် အဆင့်တွင် ရည်မှန်းထားသော တုန်ခါမှုအဆင့်နှင့် နှိုင်းယှဉ်ရာ၌ ရလဒ်များသည် ရည်မှန်းတန်ဖိုးထက် လျော့နည်းသည်ကို တွေ့ရှိရသည်။

ဖယား ၂.၄-၅ နေရာ-၁ (NV-1) ၏တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (Lv_{10})

	လူနေအိမ်များ၊ စီးပွားရေးဆိုင်ရာနေရာများနှင့် စက်မှုဇုန်များ (L _{v10} , dB)			
ရက်စွဲ	နေ့အချိန် (မနက် ၇ နာရီ မှ ည ၇ နာရီ)	ညနေခင်းအချိန် (ည ၇ နာရီ မှ ည ၁၀ နာရီ)	ညအချိန် (ည ၁၀ နာရီ မှ မနက် ၇ နာရီ	
၂ ဇွန်လ၂၀၂၂	29	*	-	
ရည်မှန်းတန်ဖိုး	90	ලිනු	ලෙ	

မှတ်ချက်။ ရည်မှန်းတန်ဖိုးများကို သီလဝါအထူးစီးပွားရေးဇုန် ဖွံ့ဖြိုးတိုးတက်မှုစီမံကိန်း အပိုင်း(ခ)အတွက် လုပ်ငန်းလည်ပတ်နေစဉ် အဆင့်တွင်ရှိရမည့် တုန်ခါမှုအဆင့် ရည်မှန်းတန်ဖိုးကို အသုံးပြုထားပါသည်။ မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီဓိတက်

ဖယား ၂.၄-၆ နေရာ- ၂ (NV-2) ၏တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (Lv_{10})

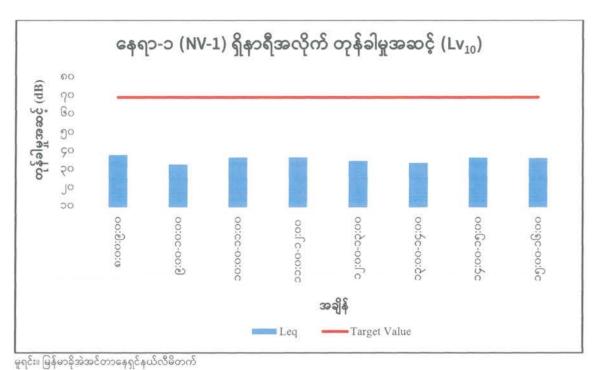
22-2	ဆောက်လုပ်ရေးလုပ်ငန်းခွင်မှ မီတာ ၁၅၀ အတွင်းတွင် ရှိသော လူနေအိမ်များနှင့် ဘုန်းကြီးကျောင်း (L _{v10} , dB)			
ရက်စွဲ	နေ့အချိန် (မနက် ၇ နာရီ မှ ည ၇ နာရီ)	ညနေခင်းအချိန် (ည ၇ နာရီ မှ ည ၁၀ နာရီ)	ညအချိန် (ည ၁၀ နာရီ မှ မနက် ၇ နာရီ)	
၁ ဇွန်လ၂၀၂၂	J9	-	-	
ရည်မှန်းတန်ဖိုး	ලිඉ	Go	Go	

မှတ်ချက်။ ရည်မှန်းတန်ဖိုးများကို သီလဝါအထူးစီးပွားရေးဇုန် ဖွံ့ဖြိုးတိုးတက်မှုစီမံကိန်း အပိုင်း(ခ)အတွက် လုပ်ငန်းလည်ပတ်နေစဉ် အဆင့်တွင်ရှိရမည့် တုန်ခါမှုအဆင့် ရည်မှန်းတန်ဖိုးကို အသုံးပြုထားပါသည်။ မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

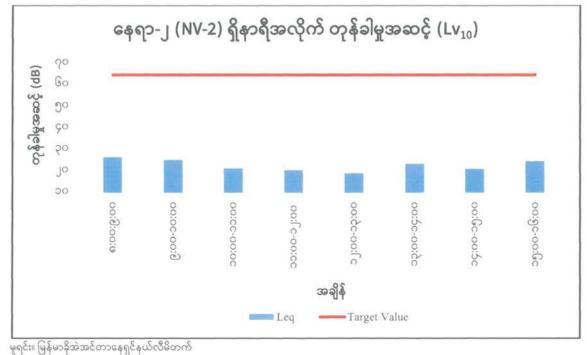
ဖယား ၂.၄-၇ နေရာ-၁ (NV-1) ၏နာရီအလိုက်တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (L \mathbf{v}_{10})

ရက်စွဲ	အချိန်	(L _{v10} , dB)	(L _{v10} , dB) အချိန်အပိုင်းအခြား	(L _{v10} , dB) ရည်မှန်းတန်ဖိုး	မှတ်ချက်
			တစ်ခုစီအတွက်		
	၇း၀၀-၈း၀၀	-	27	၇၀	
	၈းဝဝ-၉းဝဝ	୧୧			
	၉း၀၀-၁၀း၀၀	55			
၂ ဇွန်လ ၂၀၂၂	20:00-22:00	२१			
	၁၁းဂ၀-၁၂း၀၀	२१			
	၁၂း၀၀-၁၃း၀၀	२၅			
	၁၃း၀၀-၁၄း၀၀	२५			
	၁၄း၀၀-၁၅း၀၀	२१			
	၁၅းဝဝ-၁၆းဝဝ	२१			
	၁၆း၀၀-၁၇း၀၀	-			
	၁၇း၀၀-၁၈း၀၀	-			ဆောက်လုပ်ရေးလုပ်ငန်း လုပ်ဆောင်နေခြင်းမရှိပါ။
	၁၈းပဂ-၁၉းပဂ	-			
	၁၉း၀၀-၂၀း၀၀	-			
	၂၀း၀၀-၂၁း၀၀	-	-		
	၂၁း၀၀-၂၂း၀၀	-			
	11:00-15:00	-	!	၆၅	
	15:00-15:00	-			
	J\$:00-2:00	-			
	၁း၀၀-၂း၀၀	-	-		
	1:00-5:00	-			
	5:00-5:00	-			
	၄း၀၀-၅း၀၀	-			
	၅းဝဝ-၆းဝဝ	-			
	၆း၀၀-၇း၀၀	-			
					·

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်



ဖေသး ၂.၄-၈ နေရာ-၂ (NV-2) ၏နာရီအလိုက်တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်များ (Lv $_{10}$)


ရက်စွဲ	အချိန်	(L _{v10} , dB)	(L _{v10} , dB) အချိန်အပိုင်းအခြား တစ်ခုစီအတွက်	(L _{v10} , dB) ရည်မှန်းတန်ဖိုး	မှတ်ချက်	
	റുംഗം-ടെംഗ	*				
	၈းဝဝ-၉းဝဝ	J9				
	6:00-20:00	JG				
	20:00-22:00	JJ				
	၁၁:00-၁၂:00	၂၁				
	၁၂း၀၀-၁၃း၀၀	၁၉	16	Go	ဆောက်လုပ်ရေးလုပ်ငန်း	
	ə 2:00- э 5:00	J9	J9	ලිනු		
	၁၄:00-၁၅:00	၂၁				
	၁၅းဂ၀-၁၆း၀၀	Jo				
	၁၆း၀၀-၁၇း၀၀	-				
	၁၇း၀၀-၁၈း၀၀					
2 2 2 2 2 2 2	၁၈းဝဝ-၁၉းဝဝ	-				
၁ ဇွန်လ၂၀၂၂	၁၉:00-J0:00	*		Go	လုပ်ဆောင်နေခြင်းမရှိပါ။	
	J0:00-J0:00	-	-			
	J3:00-JJ:00	-				
	77:00-75:00	*				
	75:00-76:00	-				
	J\$:00-0:00	-				
	2:00-3:00	-				
	J:00-2:00	-	1+	Go		
	2:00-5:00	-				
	9:00-9:00	×				
	g:00-G:00	v				
	G:00-7:00	-				

ပုံ ၂.၄-၃ နေရာ-၁ (NV-1) ၏တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်

ပုံ ၂.၄-၄ နေရာ-၂ (NV-2) ၏တုန်ခါမှုအဆင့် စောင့်ကြည့်လေ့လာမှုရလဒ်

အခန်း ၃ နိဂုံးချုပ်နှင့်အကြံပြုချက်များ

သီလဝါ အထူးစီးပွားရေးဇုန် ဖွံ့ဖြိုးမှုစီမံကိန်း အပိုင်း(ခ)၏ ပတ်ဝန်းကျင် ထိခိုက်မှု ဆန်းစစ်ခြင်း အစီအရင်ခံစာတွင် ပါရှိသည့် လုပ်ငန်း လည်ပတ်နေစဥ့် ကာလအတွက် သတ်မှတ်ထားသော ဆူညံသံနှင့် တုန်ခါမှုအဆင့်များနှင့် နှိုင်းယှဉ်ရာ၌ နေရာ-၁ (NV-1) နှင့် နေရာ-၂ (NV-2) ၏ ရလဒ်များသည် ရည်မှန်း တန်ဖိုးထက် လျော့နည်းနေသည်ကို တွေ့ရှိရသည်။ ထို့ကြောင့် ဇုန်အပိုင်း(ခ)မှ လည်ပတ်နေသော လုပ်ငန်းများကြောင့် ဖြစ်ပေါ် လာသော ဆူညံသံနှင့် တုန်ခါမှုသည် ဘေးပတ်ဝန်းကျင်အား သက်ရောက်မှုမရှိပါ။

ဤပတ်ဝန်းကျင် စောင့်ကြည့်လေ့လာမှုအား ကောက်ချက်ချရာတွင် စောင့်ကြည့်လေ့လာသော ကာလအတွင်း သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ)အတွင်းရှိ စက်မှုမြေနေရာများမှ ဘေးပတ်ဝန်းကျင်အား သိသာထင်ရှားသော ဆူညံသံ နှင့်တုန်ခါမှုဆိုင်ရာ သက်ရောက်မှုများ မရှိကြောင်းတွေ့ရှိရပါသည်။

သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ)ရှိ စက်မှုဇုန်ဖွံ့ဖြိုးတိုးတက်ရေးအတွက် ယာဉ်သွားလာမှုနှုန်းစောင့်ကြည့်လေ့လာခြင်းအစီရင်ခံစာ (လုပ်ငန်းလည်ပတ်နေစဉ်ကာလ အပိုင်း ၁၊ အပိုင်း ၂ နှင့် အပိုင်း ၃)

(တစ်နှစ်နှစ်ကြိမ် စောင့်ကြည့်လေ့လာခြင်း)

၂၀၂၂ ခုနှစ်၊ ဇွန်လ မြန်မာခိုအဲ အင်တာနေရှင်နယ် လီမိတက်

မာတိကာ

အခန်း ၁ စောင့်ကြည့်လေ့လာသော အစီအစဉ်နှင့်အကျဉ်းချုပ်
၁.၁ ယေဘုယျ ဖော်ပြချက်
၁.၂ စောင့်ကြည့်လေ့လာသောအစီအစဉ်ဖော်ပြချက်များ၁
အခန်း ၂ ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာခြင်း၂
၂.၁ စောင့်ကြည့်လေ့လာသည့် အမျိုးအစား၂
၂.၂ စောင့်ကြည့်လေ့လာသည့် တည်နေရာ၃
၂.၃ စောင့်ကြည့်လေ့လာသည့် နည်းလမ်း9
၂.၄ စောင့်ကြည့်လေ့လာမှု ရလဒ်များ9
အခန်း ၃ နိဂုံးချုပ်နှင့်အကြံပြုချက်များ
<u> </u>
ဖယား ၁.၂-၁ ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာသောအစီအစဉ်
ဖယား ၂.၁-၁ ယာဉ်သွားလာမှုနှုန်းအတွက် စောင့်ကြည့်လေ့လာသောအမျိုးအစားများ၂
ဖယား ၂.၁-၂ ယာဉ်အမျိုးအစားခွဲခြားခြင်း
ဖယား ၂.၄-၁ နေရာ-၁ (TV-1) ၌ယာဉ်သွားလာမှုနှုန်း မှတ်တမ်းအကျဉ်းချုပ်၅
ဖယား ၂.၄-၂ နေရာ-၁ (TV-1)၌ နာရီအလိုက် ယာဉ်သွားလာမှုနှုန်းရလဒ် (ဖလမ်းကျေးရွာမှ ဒဂုံ-သီလဝါလမ်းသို့) ၆
ဖယား ၂.၄-၃ နေရာ-၁ (TV-1)၌ နာရီအလိုက် ယာဉ်သွားလာမှုနှုန်းရလဒ် (ဒဂုံ-သီလဝါလမ်းမှ ဖလမ်းကျေးရွာသို့)
?
<u>ပုံများစာရင်း</u>
ပုံ ၂.၂-၁ ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာသည့်တည်နေရာ ၃
ပုံ ၂.၃-၁ နေရာ-၁ (TV-1) ၌ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာခြင်းအခြေအနေ9

အခန်း ၁ စောင့်ကြည့်လေ့လာသော အစီအစဉ်နှင့်အကျဉ်းချုပ်

၁.၁ ယေဘုယျ ဖော်ပြချက်

သီလဝါအထူးစီးပွားရေးဇုန်သည် ရန်ကုန်တိုင်းဒေသကြီး၏ တောင်ပိုင်းခရိုင်တွင်တည်ရှိပြီး ရန်ကုန်မြို့၏ အရှေ့တောင်ဘက် ၂၃ ကီလိုမီတာတွင် တည်ရှိပါသည်။ သီလဝါအထူးစီးပွားရေးဇုန်၏ အကောင်အထည် ဖော်ဆောင်သူအနေဖြင့် ဇုန်အပိုင်း(ခ)အတွင်းရှိ စက်မှုမြေနေရာများအတွက် ခွင့်ပြုချက်ရရှိထားသော ပတ်ဝန်းကျင်ထိခိုက်မှုဆန်းစစ်ခြင်း အစီရင်ခံစာနှင့် ပတ်ဝန်းကျင်ဆိုင်ရာစီမံခန့်ခွဲမှုအစီအစဉ်အတိုင်း ပုံမှန်စောင့်ကြည့်စစ်ဆေးခြင်းကို ဆောင်ရွက်ရန် မြန်မာ-ဂျပန် သီလဝါဖွံ့ဖြိုးရေးလီမိတက်တွင် တာဝန်ရှိပါသည်။ မြန်မာ-ဂျပန် သီလဝါဖွံ့ဖြိုးရေးလီမိတက်သည် ဇုန်အတွင်းနှင့် အနီးပတ်ဝန်းကျင်ရှိ သဘာဝပတ်ဝန်းကျင် အခြေအနေများကို သိရှိစေရန် သဘာဝပတ်ဝန်းကျင်နှင့်သက်ဆိုင်သော အချက်အလက်စောင့်ကြည့် လေ့လာမှုများကို ရေးဆွဲထားပြီး ထိုအစီအစဥ်များအရ အကောင်အထည်ဖော် ဆောင်ရွက်ခဲ့ပါသည်။

၁.၂ စောင့်ကြည့်လေ့လာသောအစီအစဉ်ဖော်ပြချက်များ

သီလဝါအထူးစီးပွားရေးစုန် အပိုင်း(ခ) စက်မှုစုန်လည်ပတ်နေခြင်းကြောင့် စက်မှုစုန်အတွင်းနှင့်အပြင်ရှိ ပတ်ဝန်းကျင်အခြေအနေအား အကဲဖြတ်နိုင်ရန်အတွက် ယာဉ်သွားလာမှုနှုန်း တိုင်းတာမှုအား သတ်မှတ်ထားသောနေရာတွင် ၂၄ နာရီကြာ တိုင်းတာမည့်အစား ဘေးအန္တရာယ်ကင်းရှင်းစေရန် နှင့် ဘေးကင်းလုံခြုံမှုရရှိစေရန် အလုပ်ချိန်အနေဖြင့် ၈ နာရီ (မနက် ၈ နာရီ မှ ညနေ ၄ နာရီ) ကြာ တိုင်းတာခဲ့ပါသည်။ ယာဉ်သွားလာမှုနှုန်း တိုင်းတာမှုအား အကဲဖြတ်နိုင်ရန်အတွက် အောက်ပါဖယားတွင် ဖော်ပြထားသည့်အတိုင်း ၂၀၂၂ ခုနှစ်၊ စွန်လ ၂ ရက်နေ့တွင် ယာဉ်သွားလာမှုနှုန်းအား စောင့်ကြည့်လေ့လာခဲ့သည်။

ဇယား ၁.၂-၁ ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာသောအစီအစဉ်

စောင့်ကြည့်လေ့လာသည့်	စောင့်ကြည့်လေ့လာမှု	တိုင်းတာသော	တိုင်းတာသောနေရာ	ကြာချိန်	စောင့်ကြည့်လေ့လာသော
ရက်စွဲ	အမျိုးအစား	အမျိုးအစားများ	အရေအတွက်		နည်းလမ်း
၂ ဇွန်လ ၂၀၂၂	ယာဉ်သွားလာမှုနှုန်း	-	နေရာ-၁ (TV-1)	၈ နာရီ	လူကိုယ်တိုင် တိုက်ရိုက်စောင့်ကြည့်၍ တာလီချိုးမှတ်သားခြင်း

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

အခန်း ၂ ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာခြင်း

၂.၁ စောင့်ကြည့်လေ့လာသည့် အမျိုးအစား

ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာသော အမျိုးအစားကို ဇယား ၂.၁-၁ တွင် ဖော်ပြထားပါသည်။ ယာဉ်များကို ဇယား ၂.၁-၂ တွင် အသေးစိတ်ဖော်ပြထားသည့်အတိုင်း အမျိုးအစား ၄ မျိုး ခွဲခြားထားပါသည်။

ဖယား ၂.၁-၁ ယာဉ်သွားလာမှုနှုန်းအတွက် စောင့်ကြည့်လေ့လာသောအမျိုးအစားများ

ඉදි	စောင့်ကြည့်လေ့လာမှု	အမျိုးအစား	
၁	ယာဉ်သွားလာမှုနှုန်း	ယာဉ်အမျိုးအစား (၄ မျိုး)	

မှုရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

ဖေသား ၂.၁-၂ ယာဉ်အမျိုးအစားခွဲခြားခြင်း

ඉදි	အမျိုးအစားခွဲခြားခြင်း			ဖော်ပြချက်
0	နှစ်ဘီးတပ်ယာဥ်	6.3		ဆိုင်ကယ်၊ ဆိုင်ကယ်တက္ကစီ
J	လေးဘီးတပ်ယာဥ်ငယ်		0.0	ပစ်ကပ်ကား၊ ဂျစ်ကား၊ အငှားယာဉ်၊ ဆလွန်းကား၊ လိုက်ထရက် (၂ တန်အောက်)
5	လေးဘီးတပ်ယာ၌ကြီး	0-0		ဘတ်စ်ကားအလတ်၊ မှန်လုံကား၊ ဘတ်စ်ကားအကြီး၊ ထရပ်ကားအလတ်၊ ဝင်ရိုး ၂ခု၊ ၃ခု နှင့် ၄ခုထက်ပိုသော ထရပ်ကားအကြီး နှင့် နောက်တွဲယာဉ် (၄.၅ တန်အထက်)
9	အခြား		L	လယ်ထွန်စက်

မှုရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

၂.၂ စောင့်ကြည့်လေ့လာသည့် တည်နေရာ

ယာဉ်သွားလာမှုနှုန်းအား သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ)၏ အရှေ့မြောက်ဘက်ထောင့်၊ မြောက်လတ္တီတွဒ် ၁၆°၄၀'၁၇.၉၀" ၊ အရှေ့လောင်ဂျီတွဒ် ၉၆°၁၇'၁၈.၂၀"နေရာ၌ စောင့်ကြည့်လေ့လာခဲ့ပါသည်။ ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာသော တည်နေရာကို ပုံ ၂.၂-၁ တွင် ပြသထားပါသည်။

ပုံ ၂.၂-၁ ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာသည့်တည်နေရာ

ယာဥ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာသည့်နေရာ-၁ (TV-1)

စောင့်ကြည့်လေ့လာသည့် နေရာ-၁ (TV-1)သည် သီလဝါအထူးစီးပွားရေးဇုန် အပိုင်း(ခ)ရှိ လည်ပတ်နေသော လုပ်ငန်းခွင်၏ ပင်မဂိတ်ပေါက်အရှေ့ဘက်ခြမ်းတွင်ရှိသော၊ သီလဝါဖွံဖြိုးရေးလမ်း၏ ဘေးဘက်တွင်ရှိပါသည်။ စောင့်ကြည့်လေ့လာသည့်နေရာ၏ အနောက်မြောက်ဘက်တွင် ဇုန်အပိုင်း(က)နှင့် အရှေ့ဘက်တွင် ပြည်တွင်းစက်မှုဇုန်တို့ တည်ရှိပါသည်။

၂.၃ စောင့်ကြည့်လေ့လာသည့် နည်းလမ်း

ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာခြင်း ဆောင်ရွက်နေစဉ်တွင် ယာဉ်သွားလာမှုကြောင့် ဖြစ်ပေါ်နိုင်သော ဆူညံသံနှင့်တုန်ခါမှုတိုင်းတာခြင်းကိုပါ တစ်ပြိုင်နက်တည်း ၈နာရီကြာ ဆောင်ရွက်ခဲ့ပါသည်။ ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာမှုကို ဖလမ်းကျေးရွာမှ ဒဂုံ-သီလဝါလမ်းသို့ လာသော ယာဉ်အရေအတွက်နှင့် ဒဂုံ-သီလဝါလမ်းမှ ဖလမ်းကျေးရွာသို့ လာသောယာဉ်အရေအတွက် အသီးသီးကို ရေတွက်ခဲ့ပါသည်။ ယာဉ်အရေအတွက်ကို လူကိုယ်တိုင် တိုက်ရိုက်စောင့်ကြည့်၍ တာလီချိုးမှတ်သားခြင်းဖြင့် မှတ်သားခဲ့ပါသည်။ နေရာ-၁ (TV-1)၌ ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာခြင်း အခြေအနေကို ပုံ ၂.၃-၁ တွင် ပြသထားသည်။

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

ပုံ ၂.၃-၁ နေရာ-၁ (TV-1) ၌ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာခြင်းအခြေအနေ

၂.၄ စောင့်ကြည့်လေ့လာမှု ရလဒ်များ

ယာဉ်သွားလာမှုနှုန်း စောင့်ကြည့်လေ့လာမှုရလဒ်များအား ဇယား ၂.၄-၁ တွင် အကျဉ်းချုပ် ဖော်ပြထားသည်။ ယာဉ်တစ်မျိုးချင်းစီအတွက် တစ်နာရီအလိုက် အရေအတွက်ကို မှတ်သားထားပါသည်။ ရုံးဖွင့်ရက်များ (တနင်္လာနေ့ မှ သောကြာနေ့)၌ လေးဘီးတပ်ယာဉ်ငယ်များကို ပိုမိုအသုံးပြုမှုများကြောင်း ဇယား ၂.၄-၁ တွင် တွေ့နိုင်ပါသည်။ ဖလမ်းကျေးရွာမှ ဒဂုံ-သီလဝါ လမ်းမသို့ သွားရာလမ်းတွင် လေးဘီးတပ် ယာဉ်ကြီးများ အရေအတွက်သည် လေးဘီးတပ် ယာဉ်ငယ်များ အရေအတွက်ထက် လေးဆ ပိုမိုနည်းပါးပြီး၊ ဒဂုံ-သီလဝါလမ်းမှ ဖလမ်းကျေးရွာသို့ သွားရာလမ်းတွင် လေးဘီးတပ် ယာဉ်ငယ်များ အရေအတွက်ထက် ငါးဆ ပိုမိုနည်းပါးကြောင်း တွေ့ရသည်။

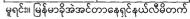
ဖယား ၂.၄-၁ နေရာ-၁ (TV-1) ၌ယာဉ်သွားလာမှုနှုန်း မှတ်တမ်းအကျဉ်းချုပ်

စစ်တမ်း ကောက်ယူ သောနေရာ	ဦးတည်ရာ	ရက်စွဲ	ရုံးဖွင့်ရက်များ (တနင်္လာနေ့ မှ သောကြာနေ့)	နှစ်ဘီးတပ် ယာဉ်	လေးဘီး တပ် ယာဉ်ငယ်	လေးဘီး တပ် ယာဉ်ကြီး	အခြား	စုစုပေါင်း
နေရာ-၁	ဖလမ်းကျေးရွာ မှ ဒဂုံ-သီလဝါလမ်း	၂ ဇွန်လ		၁၉၅	ઉરુા	299	JG	0,000
(TV-1)	ဒဂုံ-သီလဝါလမ်း မှ ဖလမ်းကျေးရွာ	Jojj	ကြာသပတေးနေ့	၁၇၄	၇၁၀	၁၃၄	99	၁,၀၅၁

မူရင်း။ မြန်မာခိုအဲအင်တာနေရှင်နယ်လီမိတက်

နေရာ-၁ (TV-1) ၌တစ်နာရီအလိုက် ယာဉ်သွားလာမှုနှုန်း၏ စောင့်ကြည့်လေ့လာမှုရလဒ်များ အကျဉ်းချုပ်ကို ဇယား ၂.၄-၂ နှင့် ဇယား ၂.၄-၃ တွင် ဖော်ပြထားသည်။ မနက်ပိုင်းယာဉ်သွားလာမှု အများဆုံးအချိန်ဖြစ်သည့် ၈း၀၀ မှ ၉း၀၀ နှင့် နေ့လည်ခင်းယာဉ်သွားလာမှု အများဆုံးအချိန်ဖြစ်သည့် ၁၅း၀၀ မှ ၁၆း၀၀ ကို နှိုင်းယှဉ်ရာ၌ မနက်ပိုင်း ယာဉ်သွားလာမှု အများဆုံးအချိန်တွင် ဒဂုံ-သီလဝါလမ်းမှ ဖလမ်းကျေးရွာသို့ သွားသည့် လမ်းကြောင်းတွင် ယာဉ်သွားလာမှုနှုန်းသည် အခြားလမ်းကြောင်းနှင့် နှိုင်းယှဉ်ပါက အရေအတွက် ပိုမိုများပါသည်။ သို့သော်လည်း နေ့လည်ခင်း ယာဉ်သွားလာမှု အများဆုံးအချိန်တွင် ဖလမ်းကျေးရွာမှ ဒဂုံ-သီလဝါလမ်းသို့ သွားသည့် လမ်းကြောင်းတွင် ယာဉ်သွားလာမှုနှုန်းသည် အခြားလမ်းကြောင်းနှင့် နှိုင်းယှဉ်ပါက အရေအတွက် ပိုမိုများပါသည်။ ထိုသို့ ယာဉ်အရေအတွက် များရခြင်းမှာ အဆိုပါ စောင့်ကြည့် လေ့လာသော ကာလအတွင်း ဒဂုံ-သီလဝါလမ်းမှ ဖလမ်းကျေးရွာသို့ သွားသည့်လမ်းကြောင်း၌ မနက်ပိုင်း ယာဉ်သွားလာမှု အများဆုံးအချိန် နှင့် ဖလမ်းကျေးရွာမှ ဒဂုံ-သီလဝါလမ်းသို့ သွားသည့်လမ်းကြောင်း၌ နေ့လည်ခင်း ယာဉ်သွားလာမှ အများဆုံးအချိန်တို့တွင် အလုပ်သွားအလုပ်ပြန်ယာဉ်များ ဖြတ်သန်းသွားလာမှုကြောင့် ဖြစ်နိုင်ပါသည်။

ဖယား ၂.၄-၂ နေရာ-၁ (TV-1)၌ နာရီအလိုက် ယာဉ်သွားလာမှုနှုန်းရလဒ် (ဖလမ်းကျေးရွာမှ ဒဂုံ-သီလဝါလမ်းသို့)


uga e						
ę	အထိ	restauration.	စုစုပေါင်း			
		နှစ်ဘီးတပ်ယာ၌	လေးဘီးတပ်ယာ၌ ငယ်	လေးဘီးတပ်ယာ၌ ကြီး	အခြား	
၇း၀၀	ಽಽ೦೦	й	(F		ä	2
6 ;00	6:00	29	റെ	Jo	2	299
6:00	00:00	၂၈	୧୯	၁၅	0	၁၂၂
20:00	2000	Jo	Gj	J9	9	၁၀၉
00:00	ാൃഃററ	ЭG	ඉෙ	Jo	9	၁၂၆
ാവംഗ	၁၃း၀၀	27	၉၁	၁၈	9	990
၁၃း၀၀	2000	၁၈	7,1	၁၂	J	209
2000	၁၅းဝဝ	၁၆	റെ	၁၈	9	၁၁၇
၁၅းဝဝ	၁၆းဝဝ	JO	7G	၁၉	G	၁၂၆
ා ගිංග	၁၇းဝဝ	-		39.	99	12/
၁၇း၀၀	၁၈းဝဝ	rī .	â	-	(2))	*
೨ ೩೦೦	၁၉းဝဝ	ž.	2	-	(42)	545
၁၉း၀၀	Josoo	2	S	-	943	
၂၀း၀၀	വാാ	2		-	(#()	-
၂၁ႏ၀၀	വുംഗാ	*			1=7	
Jico	၂၃း၀၀		-	-	1773	121
JS:00	0:00	:# :		-	152	
0:00	0:00	-	-		3	-
0:00	J:00	17.		-	20	2.5
J:00	5:00	3	19	120	- Tar	
2:00	5:00	120	-	42	545	-
9:00	၅းဝဝ	(21)			*	1-
၅းဝဝ	Gioo	(#d)	(4):	-	*	-
Gioo	7:00	(#):	140		3 1 1	:=:
000	းပါင်း	ා ල၅	ઉરૃ	259	JG	0,000

ဇယား ၂.၄−၃ နေရာ-၁ (TV-1)၌ နာရီအလိုက် ယာဉ်သွားလာမှုနှုန်းရလဒ် (ဒဂုံ-သီလဝါလမ်းမှ ဖလမ်းကျေးရွာသို့)

ඉ	&		စုစုပေါင်း			
		နှစ်ဘီးတပ်ယာ၌	လေးဘီးတပ်ယာ၌ ငယ်	မျိုးအစား လေးဘီးတပ်ယာဥ် ကြီး	အခြား	113333
၇း၀၀	၈းဝဝ	-	-	-	-	-
ຄະດດ	၉းဝဝ	၁၈	၁၃၀	JJ	ე	၁၇၅
၉းဝဝ	20:00	၁၈	രെ	၁၆	G	၁၂၉
20:00	20:00	90	ଓ୧	Jo	J	256
၁၁း၀၀	ാൃശ	Jo	ଡଚ	Jo	?	၁၄၁
വുററ	၁၃း၀၀	90	ଓ୧	၁၆	9	29.J
၁၃း၀၀	၁၄း၀၀	JJ	၈၄	၁၂	э	၁၁၉
၁၄း၀၀	၁၅းဂဂ	၁၃	୨୯	၁၅	9	၉၁
၁၅းဝဝ	၁၆းဂဂ	75	၆၅	ગ	ງ	၁၀၅
၁၆းဝဝ	၁၇း၀၀	-	-	-	-	-
၁၇း၀၀	၁၈းဂဂ	-	-	-	-	-
ວຄະດດ	၁၉းဝဝ	=	_	-	-	-
၁၉းဝဝ	၂၀း၀၀	-	-	-	-	-
၂၀း၀၀	၂၁းဝဝ	-	•	-	-	-
၂၁း၀၀	၂၂းဝဝ	-	-	-	-	-
ുംം	၂၃းဝဝ	-	-	-	-	-
JS:00	0:00	-	-	-	-	-
0:00	2:00	-	-	-	-	-
2:00	၂းဝဝ	-	-	-	-	-
၂းဝဝ	၃း၀၀	-	-	-	-	-
၃း၀၀	5:00	•	-	-	-	-
5:00	၅းဝဝ	- '	-	-	-	-
၅းဝဝ	၆းဝဝ	_	-	-	-	-
၆းဝဝ	၇း၀၀	-	-	-	-	-
စုစုေ	ပါင်း	၁၇၄	၇၁၀	299	25	၁,0၅၁

အခန်း ၃ နိဂုံးချုပ်နှင့်အကြံပြုချက်များ

စောင့်ကြည့်လေ့လာသည့်ကာလအတွင်း ယာဉ်သွားလာမှုနှုန်းရလဒ်များအရ လေးဘီးတပ်ယာဉ်ငယ်များ ပိုမိုအသုံးပြုမှုများကြောင်း တွေ့ရှိရပါသည်။ လမ်းကြောင်းအသီးသီးတွင် သွားလာနေကြသော လေးဘီးတပ်ယာဉ်ကြီး အရေအတွက်မှာ လေးဘီးတပ်ယာဉ်ငယ် အရေအတွက်ထက် လေးဆ နှင့် ငါးဆ သိသိသာသာနည်းပါးကြောင်း တွေ့ရှိရသည်။ စောင့်ကြည့်လေ့လာသည့်ကာလအတွင်း ဆောက်လုပ်ရေး လုပ်ငန်းသုံးယာဉ် (လေးဘီးတပ်ယာဉ်ကြီးများ) အရေအတွက်ထက် အလုပ်သွားအလုပ်ပြန် အသုံးပြုသော ယာဉ်အရေအတွက်သည် ပိုများကြောင်း တွေ့ရှိနိုင်ပါသည်။ သီလဝါအထူးစီးပွားရေးစုန်အပိုင်း(ခ)၏ လုပ်ငန်း လည်ပတ်နေစဉ်ကာလအတွင်း ယာဉ်သွားလာမှုနှုန်း အချက်အလက်များရရှိနိုင်ရန် ပုံမှန်စောင့်ကြည့်လေ့လာမှုများ လိုအပ်ပါသည်။ ယာဉ်သွားလာမှုနှုန်း အချက်အလက်များ လုံလောက်စွာ ရရှိပြီးနောက် အနာဂတ်တွင် ယာဉ်သွားလာမှုနှုန်း စီမံခန့်ခွဲမှုအတွက် သင့်တော်သောနည်းလမ်းများကို ထည့်သွင်းစဉ်းစားနိုင်ပါသည်။

End of Document

