Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

North-South Commuter Railway Extension Project

Prepared by the Project Management Office (PMO) of the Department of Transportation (DOTr) for the Government of the Republic of the Philippines and the Japan International Cooperation Agency (JICA)

Table of Contents

1.	Ir	ntroduction	1	
2.	R	Responses/Actions to Comments and Guidance from Government Authorities and the Public	6	
2	.1	Environmental Compliance Certificates	6	
2	.2	Consultation with Cultural Agencies and Interest Groups	.26	
2	.3	Establishment of Intra-LGU Tree Appraisal Committee	.26	
3.	N	Nitigation Measures	.26	
4.	4. Natural Environment67			
4	.1	NSCR Clark Extension	.67	
4	.2	NSCR Calamba Extension	.67	
5.	S	Social Environment	. 68	

List of Tables

Table 1: Contract Packages	1
Table 2: NSCR Clark Extension (also MCRP) ECC Conditions and Status of DOTr's Compliance.	8
Table 3: NSCR Clark Extension (MCRP) Meetings with Project Stakeholders	18
Table 4: NSCR Calamba Extension (also SCRP) ECC Conditions and Status of DOTr's Complian	ce20
Table 5: NSCR Calamba Extension (SCRP) Meetings with Project Stakeholders	25
Table 6: Air Quality (Emission Gas / Ambient Air Quality)	28
Table 7: Water Quality (Surface/Ambient Water Quality)	32
Table 8: Water Quality (Groundwater Quality)	48
Table 9: Pre-Construction Phase Estimated Waste Stream and Its Status	55
Table 10: Noise Level	56
Table 11: Vibration Level	65
Table 12: Ecosystem	67

1. Introduction

1. The North South Commuter Railway Extension (NSCR-EX) Project, comprised of the NSCR Clark Extension Project, also known as the Malolos-Clark Railway Project (MCRP) and the NSCR Calamba Extension Project, also known as the North South Railway Project–South Line Commuter (NSRP-SC) is being funded by the Japan International Cooperation Agency (JICA) for the core system and consulting services projects. The Asian Development Bank (ADB) is financing the civil works of the NSCR Clark Extension Project. This 7th quarterly monitoring report on environmental safeguards performance is prepared and submitted in accordance with JICA's Guidelines for Environmental and Social Considerations (April 2010).

2. The contractors for all the NSCR Clark Extension contract packages have been engaged during the last quarter of year 2020. During this quarter, covering the period April to June 2021, preconstruction activities and enabling works are being implemented by the Contractors of NSCR Clark Extension while procurement of contractors for NSCR Calamba Extension is ongoing. The brief descriptions of NSCR-EX contract packages are presented in Table 1: List of Contract Packages, Figure 1: NSCR Clark Extension Alignment Map; and Figure 2: NSCR Calamba Extension Alignment Map.

Contract Package and Contractors	Station Number and Section (Length)	Description	Status	
NSCR Clark Extens	ion			
CP N-01 HMDJV*	Civil 1 Station: 2 34.749 km –51.679 km (L = 16 km 921 m)	Building and civil engineering works for approximately 17 km of viaduct structures including elevated station building in Calumpit and Apalit	Pre- Construction	
CP N-02 ADJV*	Civil 2 Station: 1 51.679 – 67.449 km (L = 15 km 770 m)	Building and civil engineering works for approximately 16 km of viaduct structures including elevated station building in San Fernando	Pre- Construction	
CP N-03 ITD*	Civil 3 Station: 2 67.449 – 83.170 km (L = 12 km 240 m)	Building and civil engineering works for approximately 13 km of viaduct structures including station building in Angeles and Clark	Pre- Construction	
CP N-04 AEJV*	Underground railway and approach to CIA (L = 6 km 494 m) + Access railway to Depot Station: 1	Building and civil engineering works for approximately 7 km of railway track structure including underground station at Clark International Airport	Pre- Construction	
CP N-05 POSCO*	Depot	Civil engineering and building works for the depot covering an overall area of approximately 33 ha in Clark Freeport Zone	Pre- Construction	
NSCR Calamba Extension				
CP S-01**	Civil 1 Station: 1 1.329 km – 2.405	Building and civil engineering works for approximately 1 km of viaduct structure including station building in Blumentritt	Procurement	

Table 1: Contract Packages

Contract Package and Contractors	Station Number and Section (Length)	Description	Status
	km (L = 1 km 076 m)		
CP S-02**	Civil 2 Station: 3 2.405 km – 10.314 km (L = 7 km 909 m)	Building and civil engineering works for approximately 8 km of railway track structure including station buildings in España, Sta. Mesa, and Paco.	Procurement
CP S-03a**	Buendia Station, KM 12+139, Elevated, 2 platforms.	Building and Civil Engineering Works for approximately 7.9 kms of at Grade and Viaduct Railway Track Structure including Elevated Station at Buendia and at Grade Stations at EDSA and Senate	Procurement
CP S-03b**	FTI Station, KM 18+659.55, Elevated and Underground, one platform for NSCR At Grade and one platform for MMSP at B2 level	Civil Engineering, Tunnel and Building Works for approximately 6.1km of Railway with 4.7km of Underground Railway and 1.4km of at-Grade Railway, including FTI Station and Tunnelling Works to connect to MMSP Senate Station.	Procurement
CP S-03c**	Bicutan Station, KM 20+534, Elevated, 2 platforms Sucat Station, KM 24+843, Elevated, 2 platforms	Building and Civil Engineering Works for approximately 5.8 kms of Viaduct Railway Track Structure including Elevated Stations at Bicutan and Sucat	Procurement
CP S-04**	Civil 4 Station: 2 25.418 km – 33.957 km (L = 8 km 539 m)	Building and civil engineering works for approximately 9 km of viaduct structure including station buildings in Alabang, and Muntinlupa	Procurement
CP S-05**	Civil 5 Station: 4 33.957 km – 46.730 km (L = 12 km 773 m)	Building and civil engineering works for approximately 13 km of viaduct structure including station buildings in San Pedro, Pacita, Biñan, and Santa Rosa	Procurement
CP S-06**	Civil 6 Station: 3 46.730 km – 56.952 km (L = 10 km 222 m)	Building and civil engineering works for approximately 10 km of viaduct structure including station buildings in Cabuyao, Banlic, and Calamba	Procurement
CP S-07**	Depot	Civil engineering and building works for the depot covering an overall area of approximately 30 ha in Banlic	Procurement

Contract Package and Contractors	Station Number and Section (Length)	Description	Status
NSCR Clark and Ca	lamba Extension***		
CP NS-01	-	E&M Systems and Track Works	Procurement
CP NS-02	-	Rolling Stock-Commuter Trainsets	Procurement
CP NS-03	-	Rolling Stock-Limited Express Trainsets	Procurement

*HMDJV: Joint Venture of Hyundai Engineering & Construction Co., Ltd., Megawide Construction Corporation, and Dong-ah Geological Engineering Company Ltd.; ADJV: Joint Venture of Acciona Construction Philippines and Daelim Industrial Co., Ltd.; ITD: Italian-Thai Development Public Company Limited; AEJV: Acciona Construction Philippines Inc. and EEI Corporation Joint Venture; and POSCO: POSCO Engineering and Construction Co., Ltd. **Ongoing procurement of contractor ***NS indicates System Wide Contractors covering the entire N2 and SC (NSCR Clark Extension (N2) and NSCR Calamba Extension (SC))

Source: EIS (August 2020)

Figure 1: NSCR Clark Extension Alignment Map

Source: EIS (September 2020)

- 2. Responses/Actions to Comments and Guidance from Government Authorities and the Public
- 2.1 Environmental Compliance Certificates

Environmental Compliance Certificates (ECCs) were issued by the Department of Environment and Natural Resources-Environmental Management Bureau Central Office (DENR-EMB CO) on 13 August 2018 for both the MCRP (ECC-CO-1807-0017) and SCRP (ECC-CO-1807-0018). Table 2 and Table 3: NSCR Clark Extension (MCRP) Meetings with Project Stakeholders

Date	Meeting	Participants
05 Apr 2021	D5 Apr 2021 Clarification with and issuance of Notice of Taking to project-affected Pastolan farmers	
05 Apr 2021	Supervision of dismantling of structures in Barangay Lakandula, Mabalacat, Pampanga	Brgy. Lakandula representatives, GCR
06 Apr 2021	Temporary Accommodation Activity (Calumpit)	PAPs, GCR
07 Apr 2021	Temporary Accommodation Appraisal with San Fernando Station PAPs from Brgy. Lourdes, Brgy. Dolores and Brgy. Sto Niño, City of San Fernando, Pampanga	PAPs, GCR
07–30 Apr 2021	F2F Delivery of NOT to affected LOs in Bulacan & Pampanga	PAPs, GCR
08 Apr 2021	1 st Workshop for Angeles LGU re: Angeles Station Area	Angeles LGU, DOTr, PNR, GCR
12 Apr 2021	Meeting with N04 New Claimants	United Farmers, CABCOM, AEJV, GCR
12 Apr 2021	Validation of Land ownership of Mr. Rodolfo Ramos in Bulacan	PAP, GCR
14 Apr 2021	2 nd Workshop for Calumpit LGU re Calumpit Station	Calumpit LGU, DOTr, PNR, GCR
14 Apr 2021	Technical Meeting with CENRO Guiguinto, Bulacan LGUs regarding Tree Cutting	DOTr, GCR, CENRO Guguinto, Malolos LGU, Calumpit LGU
14 Apr 2021	Temporary Accommodation Activity (Calumpit)	PAPs, GCR
14 Apr 2021	Endorsement of Pastolan Farmers to Barangay San Francisco	Pastolan Punong Barangay, GCR
15 Apr 2021	Site Inspection of potential PAPs in the Dolores River Extension	SAMANAKA, Mabalacat CAO, POSCO, GCR
15 Apr 2021	Site Inspection of PAP concerns in the Drop Zone ROW Boundary	SAMANAKA, Mabalacat CAO, POSCO, GCR
15 Apr 2021	Temporary Accommodation Appraisal with San Fernando Station PAPs from Brgy. Lourdes, Brgy. Dolores and Brgy. Sto Niño, City of San Fernando, Pampanga	PAPs, GCR
16 Apr 2021	Site Inspection and Investigation in Apalit Station and Main Line	PAPs, GCR
20 Apr 2021	2 nd Workshop for San Fernando LGU re San Fernando Station	San Fernando LGU, DOTr, PNR, GCR
20 Apr 2021	Project Information Sheet Data Collection in Calumpit	PAPs, GCR
21 Apr 2021	Meeting with SAMANAKA for Tree Cutting and Earth- Balling Activities	SAMANAKA, Mabalacat LGU, CDC, POSCO, GCR
21 Apr 2021	2 nd Angeles City Tree Appraisal Committee (ACTAC) Meeting	Angeles LGU, DOTr, PNR, GCR
21 Apr 2021	Site Inspection and Investigation in Apalit Station and Main Line	PAPs, LGU, DOTr, GCR
21 Apr 2021	Consultation with SAMANAKA PAPs on the Tree Cutting Activities in Zone C	SAMANAKA, CDC, POSCO, ACM, GCR
21 Apr 2021	Project Information Sheet Data Collection in Calumpit	PAPs, GCR

Date	Meeting	Participants
22 Apr 2021	Project Information Sheet Data Collection in Calumpit	PAPs, GCR
22 Apr 2021	CIS Activity for PAPs in Apalit Main Line	PAPs, GCR
23 Apr 2021	Notice of Taking (NoT) Signing of Pastolan Farmers / Re-issuance of First of Page of Issued NoTs	Pastolan, GCR
26 Apr 2021	Temporary Accommodation Activity (Calumpit)	PAPs, GCR
27 Apr 2021	Coordination Meeting for Rental Subsidy Orientation (Calumpit)	Brgy. Palimbang, Brgy. Calumpang, Brgy. Corazon, GCR
27 Apr 2021	Rental Subsidy Orientation (San Fernando)	PAPs, San Fernando LGU, GCR
28 Apr 2021	Rental Subsidy Orientation (Calumpit)	PAPs, GCR
28 Apr 2021	Rental Subsidy Orientation (Mabalacat)	SAMANAKA, Drop Zone resident, GCR
29 Apr 2021	Face to Face Supplementary Socio-Economic Survey (SES)	PAPs, DOTr, PNR, GCR
05 May 2021	Meeting with CDC, LGUs, GCR RAP & ENVI, GCR Site engineers regarding Calumpang Tree inside Depot North Area	DOTr, GCR, CDC, LGU
05 May 2021	Coordination meeting in Barangay Bulihan, Malolos with Barangay officials, CPN-01 Team, GCR RAP and Envi team.	DOTr, GCR, LGU
11 May 2021	Interface meeting at CEDC with AEJV team GCR Mr. Librado & Jomari	GCR, AEJV, CEDC
11 May 2021	Cultural Properties along NSCR-EX: Key Informant Interview with Angeles	GCR Envi Angeles City, Pampanga
11 May 2021	Cultural Properties along NSCR-EX: Key Informant Interview with Minalin and Apalit	DOTr, PNR, GCR, Minalin, and Apalit Bulacan
11 May 2021	Cultural Properties along NSCR-EX: Key Informant Interview with Calumpit and Malolos	DOTr, PNR, GCR Envi, Malolos City and Calumpit, Bulacan
17 May 2021	Tree cutting joint inspection with DENR PENRO, ENVI, Minalin LGU Santo Tomas LGU, GCR and ADJV Contractor from Santo Tomas San Fernando and Sindalan area	DOTr, GCR, ADJV, DENR, PENRO, LGU
17 May 2021	Validation of The Key Informant Interview (KII) Results	GCR, DOTr, PNR, Angeles LGU, Apalit LGU, Calumpit LGU
20 May 2021	Meeting with Calumpit Water District regarding waterlines affected by PROW	GCR, HMDJV, LGU
03 Jun 2021	CP N-04 IEC Program with the Barangay LGU (BLGU) of Brgy. San Francisco, Mabalacat, Pampanga.	Brgy. San Francisco, Mabalcat LGU, AEJV, GCR
10 Jun 2021	1 st Workshop with Apalit LGU re: Apalit Station Area	Apalit LGU, DOTr, PNR, GCR
30 Jun 2021	CP N-04 IEC Program with the BLGU of Brgy. Camachili, Mabalacat, Pampanga.	Brgy. Camachili, Mabalcat LGU, AEJV, GCR

3. Table 4 present ECC Conditions and the status of compliance for NSCR Clark Extension (MCRP) and NSCR Calamba Extension (SCRP), respectively.

Table 2: NSCR Clark Extension (also MCRP) ECC Conditions and Status of DOTr's Compliance

ECC Condition (ECC-CO-1807-0017)	Monitoring Results during Report Period
 Conduct an effective and continuing Information, Education and Communication (IEC) Program through the use of most effective media to inform and educate all stakeholders, especially the Contractors, workers, LGUs, businesses and local residents about the following: a. Project impacts and mitigating measures embodied in its EIS; b. Conditions stipulated in the ECC; c. Environmental and human safety features of the project; and d. Health consciousness alerts for any project-induced discomfort (from dust, smell, noise, vibration) as the project progresses throughout the whole route. 	 Ongoing compliance. Meetings with NSCR Clark Extension Project stakeholders held during this reporting period are summarized in Table 3. The NSCR-EX project website (<u>https://nscrex.com.ph/</u>) was pre-launched last quarter and is undergoing continuous development. The website is dedicated to inform the public about the project updates, the environment/social considerations of the project and FAQs on resettlement, livelihood, natural environment, etc. This also serves as an online interaction portal including receiving GRM concerns wherein complaints can be lodged through its Questions/Concerns page.
2. Implement a comprehensive Social Development Program (SDP) and submit a separate report together with the Compliance Monitoring Report (CMR) to the EMB Central Office using CMR Online on a semi-annual basis pursuant to EMB MC 2016-01.	 Ongoing compliance. The NSCR Clark Extension comprehensive SDP is being finalized during this reporting period and will be submitted together with the CMR in July 2021. CMR submission of NSCR Clark Extension Project for the 1st Semester 2021 covering the January to June will be submitted to DENR-EMB via <u>CMR Online</u> by 31 July 2021. The updated Social Development Program includes the programs/projects/activities that are currently and will be implemented by DOTr and the Contractors. This version also includes the Project Proposals with LGU's inputs from the previously held workshops, the Resettlement Action Plan (RAP), and the Environmental Management Plan. SDP activities implemented by the contractors during this monitoring period includes fencing to protect children and residents within the Project ROW (PROW) and construction site, conduct of safety orientation, safety inductions and toolbox meetings, and coordination with PESO regarding employment requirement under LRIP and Gender Equality and Sensitivity Inclusion (GESI) of the SDP. The Contractor of CP N-04 also conducted a job fair with the Holy Angeles University on May 2021. An On-The-Job (OJT) Training program for the graduating students was also offered. A Community Pantry was established in Brgy. Pampang, Angeles City in May 2021. The Contractors of CP N-04 purchased the root crops harvested by the Quitangil farmers and

ECC Condition (ECC-CO-1807-0017)		Monitoring Results during Report Period	
			through the Community Pantry.
3.	Submit detailed waste management program (WMP) for proper handling, collection and disposal of solid, hazardous and liquid wastes to EMB Central Office and EMB Region III within six (6) months prior to project construction. Proof of implementation shall be submitted together with the CMR.	• • •	Ongoing compliance. The detailed WMPs of the NSCR Clark Extension contractors are included in the Contractor's Environmental Management and Monitoring Plans (CEMMPs). NSCR Clark Extension is in Pre-Construction Phase. Contractors are coordinating with DENR-accredited waste and spoils haulers, and disposal sites in preparation for waste to be generated by the Project.
4.	Ensure that all the existing waterways affected by the proposed project construction are maintained and not obstructed.	•	Ongoing compliance. No obstructions were observed and reported in the rivers and other waterways within the project areas. The contractors are maintaining the waterways free from obstructions. Concrete culvert along the unknown creek between the boundary of Apalit and Minalin is being installed by CP N-01 contractor while a temporary bridge was provided by CP N-04 contractor along Quitangil river for safe access of vehicles and equipment without obstructing the river flow. The contractors are in the process of securing their Discharge Permits for their temporary facilities. For CP N-01, wastewater in laydown facility will be channeled into settling tanks so that they will not be directly discharged into any municipal drainage/bodies of water. Design and construction wastewater treatment facility is also ongoing for CP N-01, CP N-02 and CP N-03. Installation of gabion basket filters and construction of sediment settling pond was done for CP N-05 and ongoing for CP N-02 to prevent siltation. Other CPs are also in the process of designing sediment settling ponds. Detailed design also incorporated mitigation measures such as realignment and widening of waterways to ensure unobstructed and efficient water flow particularly at water crossings. Surface water quality monitoring is being
		•	conducted by NSCR Clark Extension contractors.
5.	Submit a detailed construction environmental management program, including mobilization and demobilization plans, for the construction	•	Ongoing compliance. CEMMPs were finalized and approved by the

ECC Condition (ECC-CO-1807-0017)	Monitoring Results during Report Period	
yards one month prior to project implementation. The plan should include the coordination with concerned LGUs to promote compatibility of adjoining land uses with the intended project stations including its exit and entrance.	 Engineer on: CP N-01: 16 Apr 2021 CP N-02: 12 May 2021 CP N-03: 14 May 2021 CP N-04: 18 Mar 2021 CP N-04: 19 May 2021 The CEMMPs were attached to the CMR submission for the 1st Semester 2021 covering the January to June. 	
 Submit a detailed plan for earth balling and replanting of mature native/endemic trees within three months prior to project construction. The plan should include the following: Specific recipient sites which have already been prepared and conditioned; Ensure high degree of survival; and Provision for regular maintenance until trees have re-establish in their new environment. 	 Ongoing compliance. The detailed plan for earth balling and replanting of mature native/endemic trees is being prepared during this reporting period and will be submitted together with the CMR in July 2021. In CP N-01, no trees in Bulacan were identified to be earthballed from the 2,756 trees in the tree cutting permit TCEP No. 2021-01. The permit expired on 15 Jun 2021 and was issued an extension on 16 Jun 2021 (valid until 21 Jul 2021). As of 30 Jun 2021, 3,083 trees were cut in Bulacan. For Pampanga, tree cutting and earthballing permit TEBP/TCP No. 2021-08 for the 1,696 trees to be cut and 40 to be earthballed was issued on 29 Apr 2021, but earthballing activities did not commence during this reporting period. As of 30 Jun 2021, 195 trees were cut. Coconut cutting activities did not commence during this reporting period. As of 30 Mar 2021 expired on 30 Jun 2021. A request for extension of the permit was submitted to DENR-PENRO on 16 Jun 2021. Earthballing activities did not commence during this reporting period, 3,655 trees have been cut. Coconut cutting in PNR ROW was issued on 20 Mar 2021 expired on 30 Jun 2021. As of this reporting period, 3,655 trees have been cut. Coconut cutting in PNR ROW with permit number NCR-PTC-10137 was completed on 09 Jun 2021. In CP N-03, tree cutting avtivity did not commence during this reporting period. Tree cutting period. Continuous coordination with the Angeles LGU to acquire Certificate of No Objections (CNOs) is ongoing. A separate application for the trees in San Fernando was being prepared during this quarter. 	

ECC Condition	Monitoring Results during Report Period
(ECC-CO-1807-0017)	
	 I C/EB permit application for CP N-01, CP N- 02 and CP N-03 project-affected trees outside the PNR ROW, did not commence during this reporting period. Tree validation for appraisal and acquiring LNO for project- affected land was completed for CP N-01 and ongoing for CP N-02 and CP N-03.
	 In CP N-04, TEBP/TCP No. 2020-02 for the 43 trees to be cut and 14 to be earthballed was issued an extension on 29 Apr 2021 valid until 29 May 2021. Tree cutting/earth balling was completed on 12 May 2021. Additional trees, on the other hand, have been identified and will be applied for TCP. TCP application documents are being prepared during this reporting period. CNOs acquired for CP N-04 during this reporting period were from the following offices.
	 BCDA (Ref. No. ZE2021-0177, issued on 10 Jun 2021) for the additional 217 project-affected trees within the 10-m additional working area within PROW and Quitanguil River Diversion
	- CDC (issued 17 Jun 2021) for the affected trees within the 10-m additional working area
	- CDC (issued 17 Jun 2021) for the affected trees within Quitanguil River Diversion Project
	- CENRO Mabalacat LGU (TCC No. 2021- 009, issued 21 Jun 2021) for the additional 89 affected Gmelina trees within the 10-m additional working area
	- CENRO Mabalacat LGU (TCC No. 2021- 010, issued 21 Jun 2021) for the additional 128 affected trees within the PROW and Quitanguil River Diversion
	• CP N-05 tree cutting and earthballing permit TEBP/TCP No. 2020-15 for the 3,323 trees to be cut and 410 to be earthballed expired on 31 May 2021. Permit extension was requested on 28 May 2021 and was released on 14 Jun 2021. Commencement of earthballing activity was on 29 Jun 2021. As of 30 Jun 2021, 2,521 trees have been cut and 45 trees were transplanted to Global Zoo, Clark Freeport Zone.
 Implement a greening program in line with the DENR's thrust for GHG Emission Reduction Program. The program shall be submitted to EMB 60 days prior to the project implementation. 	Ongoing coordination.The finalized draft MOA was submitted to the NGP of DENR Region 3 on 24 Jun 2021 for final comments, and is at DOTr OULA for legal pass.
8. Submit an approved Resettlement Action Plan (RAP) of the affected communities	 Ongoing compliance. Approved RAPs have already been

ECC Condition (ECC-CO-1807-0017)	Monitoring Results during Report Period
within two months prior to project construction.	 completed. The RAP is divided into the following: Mabalacat RAP (CP N-04 and N-05) Landowner RAP (CP N-01, N-02, N-03) Non-Landowner RAP (CP N-01, N-02, N-03) The RAPs are being implemented in the ongoing resettlement process and activities of the Project.
9. Conduct a detailed Traffic Impact Assessment (TIA) in coordination with the concerned LGUs for every proposed station prior to project construction integrating proposed road expansion projects of the concerned government agencies. Transport of heavy structures shall be scheduled during the period that may not cause traffic in the area.	 Ongoing compliance. The traffic management plans (TMPs) / temporary traffic control plans (TCPs) were developed by the contractors and included in the approved CEMMPs include the TMPs and TCPs for DOTr's submission of the CMR for the 1st semester 2021 (Jan-Jun) to DENR- EMB CO in July 2021.
 10. The Proponent shall set-up the following: 10.1 A readily available and replenishable Environmental Guarantee Fund (EGF) to cover the following expenses: a. for further environmental assessments, compensations/indemnification for whatever damages to life and property that may be caused by the project; b. rehabilitation and/or restoration of areas affected by the project's implementation; and c. abandonment/decommissioning of the project facilities related to the prevention of possible negative impacts; and as a source of fund for contingency and clean- up activities 	 Ongoing coordination. On 15 Mar 2021, DENR-EMB CO has reiterated to DOTr that the PHP 8 million budget for EGFas stated in the EIS, shall be allocated by the Project Proponent. Should there be a modification of the EGF amount, an amendment or supplemental MOA would suffice; EGF amount shall be specified in the draft MOA and be reviewed once submitted. DOTr to finalize the approach in estimating the EGF amount. A draft EGF MOA and a draft EGF Manual of Operations incorporating GRM were prepared for submission to and approval by DENR-EMB CO. Provisionally, the contractors will comply with provisions of their contracts, including their identified EGF amounts indicated in their BOQs. Should there be changes in the projects EGF is established, readily available and can be used as intended during the construction period.
10.2 Establish an MMT composed of representative(s) from the local environmental Non-Government Organization/s (NGOs), People's Organization/s (POs) and the Local Government Units per DAO 2017-15. The MMT shall primarily oversee the compliance of the Proponent with the Environmental Management and Monitoring Plan (EMMoP) and the ECC	 Ongoing compliance. The TPA conducted desk review and site visits to the contract packages in June 2021. The TPA is preparing the First Semi-annual External Monitoring Report which covers January to May 2021.

ECC Condition (ECC-CO-1807-0017)	Monitoring Results during Report Period	
conditions.		
 10.3 A replenishable Environmental Monitoring Fund (EMF) to cover all costs attendant to the operation of the MMT such as training, hiring of technical experts and resource persons, fieldwork and transportation. The amount and mechanics of EGF, EMF and the establishment of the MMT shall be determined by the EMB Central Office and the proponent through a Memorandum of Agreement (MOA) which shall be submitted in the 60 days prior to construction. 	 Ongoing compliance. The EMF for the MMT is no longer required since its functions have been assumed by the TPA, which is separately funded by DOTr through a contract when the TPA was engaged. 	
 Establish an Environmental Unit (EU) in 60 days prior to construction that shall competently handle the environment-related aspects of the project. In addition to the monitoring requirements as specified in the EMoP, the EU shall have the following responsibilities: a. Monitor actual project impacts vis-à-vis the predicted impacts and management measures in the EIS; b. Recommend revisions to the EMoP, whenever necessary subject to the approval of the EMB-CO; c. Ensure that data gathered during monitoring activities are properly documented, assessed, evaluated, and reported in accordance with the standard formats; and d. Ensure that monitoring and submission of reports to EMB-CO are carried out as required. 	 Ongoing compliance. DOTr EUs for NSCR-EX are established. Five PMO EU personnel completed the 40-hr PCO Training from 26–30 April 2021. NSCR Clark Extension contractors have also established their respective Environmental Management Units (EMUs). 	
12. The Proponent shall ensure that its Contractors and sub-contractors are provided with copies of this ECC, including the EMP, and that they will strictly comply with the relevant conditions of the ECC.	 Ongoing compliance. The General Consultant and the contractors were provided copies of the ECC and its amended and the EMP. The original ECC and the FS EIS, incorporating the EMP and EMOP, already formed part of the tender documents. The updated DD EIS and ECC Amendment have also been provided to the General Consultant and to the contractors in December 2020. DOTr, GCR and the contractors are continuously complying with the ECC Conditions and implementing the Project EMP and CEMMPs. 	
13. No activities shall be undertaken other than what were stipulated in the final EIS. Any	Ongoing progressThe updated EIS prepared to account for all	

ECC Condition (ECC-CO-1807-0017)	Monitoring Results during Report Period	
expansion and/ or modification of the Project beyond the Project description or change in alignment/ route that will cause significant impacts to the environment shall be subjected to a new Environmental Impact Assessment.	 design changes including COVID-19 risk aspects for the Clark Extension has already been transmitted to the EMB-CO on 07 September 2020 for further review and approval. It was approved with the issuance of amended ECC on 4 November 2020. No intended expansion and/or modification is planned within the following year from this 	
14. In case of transfer of ownership of this Project, the same conditions and restrictions shall apply to the transferee or grantee who shall secure in writing the corresponding amendment of this ECC from the EMB-CO within 15 working days reflecting such transfer.	 Not applicable. No intended transfer of ownership of NSCR-EX. 	
15. Secure clearance from DPWH, CIAC, and/or other relevant agencies prior to the conduct of the river works for the Dolores, Sapang Balen and Quitanguil Rivers	 Complied. Clearances secured from DPWH, CIAC and CDC in January and December 2020, respectively, for NSCR Clark Extension. 	
 16. Comply with mitigating measures and efficiency of the measures, as provided in the attached Annex A of the ECC Amendment. Development/Construction Phase 100% compliance with RA 9003 100% compliance with RA 6969 100% compliance with RA 6969 100% compliance with RA 9275 Operations Phase 100% compliance with RA 8749 100% compliance with RA 9003 100% compliance with RA 9275 Operations Phase 100% compliance with RA 9003 100% compliance with RA 9275 	 Ongoing compliance. The Project is in Development Phase. Compliance with RA 9003 The contractors prepared their detailed solid waste management plans in reference to the Project WMP. The plans are included in the approved CEMMPs and are being implemented by the contractors. Unused spoils from other contract packages are being collected by DENR accredited 3rd party hauler and/or being considered to be used in CP N-05 for backfilling. Compliance with RA 8749 Baseline noise level monitoring was conducted by CP N-01 and CP N-03 contractors while the CP N-04 and CP N-05 contractors are also in the process of procuring their handheld noise meters to control and assess nuisance noise during construction works. Baseline air quality monitoring were conducted by CP N-03 contractors while the CP N-05 contractors conducted by CP N-03 contractor while the CP N-04 and CP N-05 contractors are also in the process of procuring their handheld noise meters to control and assess nuisance noise during construction works. Baseline air quality monitoring were conducted by CP N-03 contractors while the CP N-04 and CP N-05 contractors conducted their quarterly air quality monitoring for this quarter. Vehicles/Equipment are used are ensured by the contractors to be in good working condition and to have passed 	

ECC Condition (ECC-CO-1807-0017)	Monitoring Results during Report Period		
	emission testing		
	 Water spraying of unpaved roads at least twice a day, especially during the dry season, is being implemented by the contractors 		
	 A speed limit of <10 kph within the construction site is being implemented by the contractors 		
	Compliance with RA 6969		
	 Temporary facilities are being constructed during this reporting period. Contractors have provided temporary hazardous waste storages 		
	 Contractors are in coordination with and in the process of procuring the services of prospective DENR-accredited 3rd party haulers and treaters. 		
	 Contractors are in the process of installing secondary containment to all temporary chemicals/chemical waste storage areas and eventually a permanent one when temporary facilities are completed and permanent chemicals/chemical waste storage areas are in place. 		
	Compliance with RA 9275		
	 Contractors are in the process of constructing their siltation ponds, bank reinforcements, gabion mattresses, and other siltation control measures. Details of the design of the siltation control measures will be required to be included in the approved CEMMP or a separate CEMMP. 		
	 Portable toilets are provided on site. Soliman E.C. was engaged by the contractors as third-party septic wastes hauler for their portable toilets. 		
Environmental Baseline and Monitoring			
Water quality (surface water)	Baseline/Before construction		
	Daily inspection		
	Quarterly		
	 Weekly, when construction site (pier / embankment construction) is adjacent to sampling point waterway 		
	 When instructed by Engineer based on complaints or pollution incidents 		
	8 stations conducted monitoring		
Water quality (groundwater)	Baseline/Once before construction		
	Daily inspection		
	3 stations conducted monitoring		

ECC Condition (ECC-CO-1807-0017)	Monitoring Results during Report Period
Water quality (effluent discharge)	• Upon commission, and when instructed by Engineer based on complaints or pollution incidents
	Quarterly
	0 stations conducted monitoring
Air quality	Once during dry season and once during wet season or once before construction
	Daily observation
	Monthly interview
	Quarterly
	 Immediately based in complaints or when instructed by Engineer based on complaints or pollution incidents
	6 stations conducted monitoring
Noise level	Baseline/Once before construction,
	Monthly
	 Immediately based in complaints or when instructed by Engineer based on complaints or pollution incidents
	6 stations conducted monitoring
Vibration level	Baseline/Once before construction
	Monthly
	• Immediately based in complaints or when instructed by Engineer based on complaints or pollution incidents
	4 stations conducted monitoring

Date	Meeting	Participants
05 Apr 2021	Clarification with and issuance of Notice of Taking to project-affected Pastolan farmers	Pastolan farmers, GCR
05 Apr 2021	Supervision of dismantling of structures in Barangay Lakandula, Mabalacat, Pampanga	Brgy. Lakandula representatives, GCR
06 Apr 2021	Temporary Accommodation Activity (Calumpit)	PAPs, GCR
07 Apr 2021	Temporary Accommodation Appraisal with San Fernando Station PAPs from Brgy. Lourdes, Brgy. Dolores and Brgy. Sto Niño, City of San Fernando, Pampanga	PAPs, GCR
07–30 Apr 2021	F2F Delivery of NOT to affected LOs in Bulacan & Pampanga	PAPs, GCR
08 Apr 2021	1 st Workshop for Angeles LGU re: Angeles Station Area	Angeles LGU, DOTr, PNR, GCR
12 Apr 2021	Meeting with N04 New Claimants	United Farmers, CABCOM, AEJV, GCR
12 Apr 2021	Validation of Land ownership of Mr. Rodolfo Ramos in Bulacan	PAP, GCR
14 Apr 2021	2 nd Workshop for Calumpit LGU re Calumpit Station	Calumpit LGU, DOTr, PNR, GCR
14 Apr 2021	Technical Meeting with CENRO Guiguinto, Bulacan LGUs regarding Tree Cutting	DOTr, GCR, CENRO Guguinto, Malolos LGU, Calumpit LGU
14 Apr 2021	Temporary Accommodation Activity (Calumpit)	PAPs, GCR
14 Apr 2021	Endorsement of Pastolan Farmers to Barangay San Francisco	Pastolan Punong Barangay, GCR
15 Apr 2021	Site Inspection of potential PAPs in the Dolores River Extension	SAMANAKA, Mabalacat CAO, POSCO, GCR
15 Apr 2021	Site Inspection of PAP concerns in the Drop Zone ROW Boundary	SAMANAKA, Mabalacat CAO, POSCO, GCR
15 Apr 2021	Temporary Accommodation Appraisal with San Fernando Station PAPs from Brgy. Lourdes, Brgy. Dolores and Brgy. Sto Niño, City of San Fernando, Pampanga	PAPs, GCR
16 Apr 2021	Site Inspection and Investigation in Apalit Station and Main Line	PAPs, GCR
20 Apr 2021	2 nd Workshop for San Fernando LGU re San Fernando Station	San Fernando LGU, DOTr, PNR, GCR
20 Apr 2021	Project Information Sheet Data Collection in Calumpit	PAPs, GCR
21 Apr 2021	Meeting with SAMANAKA for Tree Cutting and Earth- Balling Activities	SAMANAKA, Mabalacat LGU, CDC, POSCO, GCR
21 Apr 2021	2 nd Angeles City Tree Appraisal Committee (ACTAC) Meeting	Angeles LGU, DOTr, PNR, GCR
21 Apr 2021	Site Inspection and Investigation in Apalit Station and Main Line	PAPs, LGU, DOTr, GCR
21 Apr 2021	Consultation with SAMANAKA PAPs on the Tree Cutting Activities in Zone C	SAMANAKA, CDC, POSCO, ACM, GCR
21 Apr 2021	Project Information Sheet Data Collection in Calumpit	PAPs, GCR
22 Apr 2021	Project Information Sheet Data Collection in Calumpit	PAPs, GCR
22 Apr 2021	CIS Activity for PAPs in Apalit Main Line	PAPs, GCR
23 Apr 2021	Notice of Taking (NoT) Signing of Pastolan Farmers /	Pastolan, GCR

Table 3: NSCR Clark Extension (MCRP) Meetings with Project Stakeholders

Date	Meeting	Participants	
	Re-issuance of First of Page of Issued NoTs		
26 Apr 2021	Temporary Accommodation Activity (Calumpit)	PAPs, GCR	
27 Apr 2021	Coordination Meeting for Rental Subsidy Orientation (Calumpit)	Brgy. Palimbang, Brgy. Calumpang, Brgy. Corazon, GCR	
27 Apr 2021	Rental Subsidy Orientation (San Fernando)	PAPs, San Fernando LGU,GCR	
28 Apr 2021	Rental Subsidy Orientation (Calumpit)	PAPs, GCR	
28 Apr 2021	Rental Subsidy Orientation (Mabalacat)	SAMANAKA, Drop Zone resident, GCR	
29 Apr 2021	Face to Face Supplementary Socio-Economic Survey (SES)	PAPs, DOTr, PNR, GCR	
05 May 2021	Meeting with CDC, LGUs, GCR RAP & ENVI, GCR Site engineers regarding Calumpang Tree inside Depot North Area	DOTr, GCR, CDC, LGU	
05 May 2021	Coordination meeting in Barangay Bulihan, Malolos with Barangay officials, CPN-01 Team, GCR RAP and Envi team.	DOTr, GCR, LGU	
11 May 2021	Interface meeting at CEDC with AEJV team GCR Mr. Librado & Jomari	GCR, AEJV, CEDC	
11 May 2021	Cultural Properties along NSCR-EX: Key Informant Interview with Angeles	GCR Envi Angeles City, Pampanga	
11 May 2021	Cultural Properties along NSCR-EX: Key Informant Interview with Minalin and Apalit	DOTr, PNR, GCR, Minalin, and Apalit Bulacan	
11 May 2021	Cultural Properties along NSCR-EX: Key Informant Interview with Calumpit and Malolos	DOTr, PNR, GCR Envi, Malolos City and Calumpit, Bulacan	
17 May 2021	Tree cutting joint inspection with DENR PENRO, ENVI, Minalin LGU Santo Tomas LGU, GCR and ADJV Contractor from Santo Tomas San Fernando and Sindalan area	DOTr, GCR, ADJV, DENR, PENRO, LGU	
17 May 2021	Validation of The Key Informant Interview (KII) Results	GCR, DOTr, PNR, Angeles LGU, Apalit LGU, Calumpit LGU	
20 May 2021	Meeting with Calumpit Water District regarding waterlines affected by PROW	GCR, HMDJV, LGU	
03 Jun 2021	CP N-04 IEC Program with the Barangay LGU (BLGU) of Brgy. San Francisco, Mabalacat, Pampanga.	Brgy. San Francisco, Mabalcat LGU, AEJV, GCR	
10 Jun 2021	1 st Workshop with Apalit LGU re: Apalit Station Area	Apalit LGU, DOTr, PNR, GCR	
30 Jun 2021	CP N-04 IEC Program with the BLGU of Brgy. Camachili, Mabalacat, Pampanga.	Brgy. Camachili, Mabalcat LGU, AEJV, GCR	

Table 4: NSCR Calamba Extension (also SCRP) ECC Conditions and Status of DOTr's Compliance

	ECC Condition (ECC-CO-1807-0018)		Status of Compliance
1.	 Conduct an effective and continuing Information, Education and Communication (IEC) Program through the use of most effective media to inform and educate all stakeholders, especially the Contractors, workers, LGUs, businesses and local residents about the following: a. Project impacts and mitigating measures embodied in its EIS; b. Conditions stipulated in the ECC; c. Environmental and human safety features of the project; and d. Health consciousness alerts for any project-induced discomfort (from dust, smell, noise, vibration) as the project progresses throughout the whole route. 	 0 M F r a a	Ongoing compliance. Veetings with NSCR Calamba Extension Project stakeholders held during this reporting period are summarized in Table 5. The NSCR - EX project website (<u>https://nscr- ex.com.ph/</u>) was pre-launched last quarter and is undergoing continuous development. The website is dedicated to inform the public about the project updates, the environment/social considerations of the project and FAQs on resettlement, livelihood, natural environment, etc. This also serves as an online interaction portal including receiving GRM concerns wherein complaints can be lodged through its Questions/Concerns page.
2.	Implement a comprehensive Social Development Program (SDP) and submit a separate report together with the Compliance Monitoring Report (CMR) to the EMB Central Office using CMR Online on a semi-annual basis pursuant to EMB MC 2016-01.	 C T C C E C S S 	Ongoing compliance.TheNSCRCalambaExtensioncomprehensive SDP is being finalized duringthis reporting period and will be submittedcogether with the CMR in July 2021.CMRsubmission ofNSCRCalambaExtension Project for the 1st Semester 2021covering the January to June will besubmitted to DENR-EMB via CMR Online by31 July 2021.
3.	Submit detailed waste management program (WMP) for proper handling, collection and disposal of solid, hazardous and liquid wastes to EMB Central Office, EMB National Capital Region (NCR) and EMB-Region IV-A within six (6) months prior to project construction. Proof of implementation shall be submitted together with the CMR.	 C T E C t V 	Dingoing compliance. The detailed WMPs of the NSCR Calamba Extension will be available when the contractors are engaged and issued a Notice to Proceed, and shall be based on the draft WMP submitted by DOTr to DENR-EMB CO.
4.	Ensure that all the existing waterways affected by the proposed project construction are maintained and not obstructed.	 C T S E M (C C 	Dongoing coordination. The Project is still in the detailed design stage DOTr has been coordinating with DPWH, Metro Manila Development Authority (MMDA) and the National Irrigation Authority (NIA) regarding approval of the Project's design in relation to the affected drainages and waterways in the jurisdiction of said offices.
5.	Submit a detailed construction environmental management program, including mobilization and demobilization plans, for the construction yards one month prior to project implementation. The plan should include the	• 1 ti tr	The Project is still in the detailed design, and the EIS, EMP and EMoP are being updated to reflect changes in the design. The CEMMPs will be submitted by the contractors and within 60 days upon receipt

ECC Condition (ECC-CO-1807-0018)	Status of Compliance	
coordination with concerned LGUs to promote compatibility of adjoining land uses with the intended project stations including its exit and entrance.	of the NTP for the Project Engineer's review and approval.	
 Submit a detailed plan for earth balling and replanting of mature native/endemic trees within three months prior to project construction. The plan should include the following: Specific recipient sites which have already been prepared and conditioned; Ensure high degree of survival; and Provision for regular maintenance until trees have re-establish in their new environment. 	 The Project is still in the procurement stage. The detailed plan for earthballing and replanting of mature native/endemic trees will be drafted, initially, based on the tree inventory, and in detail, based on the tree cutting and earthballing permits that will be acquired and on the area/s for transplanting that will be identified by DENR Regional Offices (NCR and 4A). Tree inventory for NSCR Calamba Extension was completed on 11 Feb 2021 and a wrap-up meeting between DOTr, PNR, GCR and Simmons Consult International Inc. was held on 12 Apr 2021. Tree inventory reports and data were approved on 15 Jun 2021. The acquisition of CNOs from the affected cities and municipalities, as documentary requirements for the application of tree cutting and earthballing permit commenced in May 2021. The following CNOs were acquired from the following LGUs. Barangay Sto. Niño, City of Biñan (issued on 03 May 2021) City Government of Calamba (issued on 27 May 2021) Barangay Platero, City of Biñan (issued on 03 Jun 2021) The area/s for the transplanting of NSCR Calamba Extension-affected trees shall be identified by the DENR. 	
7. Implement a greening program in line with the DENR's thrust for GHG Emission Reduction Program. The program shall be submitted to EMB 60 days prior to the project implementation.	 The Project is still in the detailed design stage. The greening program will be drafted, initially, based on the tree inventory, and in detail, based on the coordination with and guidance by DENR and on the tree cutting and earthballing permits that will be acquired and on the area/s for transplanting that will be identified by DENR Regional Offices (NCR and 4A). 	
	• For this reporting period, initial coordination with DENR Region 4A and DENR NCR was done.	
	• Planning is ongoing. Requirements will be submitted once finalized.	

ECC Condition (ECC-CO-1807-0018)	Status of Compliance	
 Submit an approved Resettlement Action Plan (RAP) of the affected communities within two months prior to project construction. 	 Ongoing compliance. Some NSCR Calamba Extension RAPs were submitted to ADB in May and Jun 2021, and are under ADB/JICA review, while the rest will be submitted in Aug 2021. CP S-01: submitted on 14 May 2021 CP S-02 to CP S-03c: for submission in Aug 2021 CP S-04 to CP S-07: submitted on 31 May/21 Jun 2021 PNR Track Relocation Project RAPs are under ADB/JICA review. CP S-01, CP S-04 to CP S-07: under ADB/JICA review CP S-02 to CP S-03c: approval expected in Sep 2021 	
9. Conduct a detailed Traffic Impact Assessment (TIA) in coordination with the concerned LGUs for every proposed station prior to project construction integrating proposed road expansion projects of the concerned government agencies. Transport of heavy structures shall be scheduled during the period that may not cause traffic in the area.	 Ongoing compliance. NSCR Calamba Extension TIA being updated to reflect changes in the detailed design of the Project, including the Nagtahan Link. 	
 10. The Proponent shall set-up the following: 10.1 A readily available and replenishable Environmental Guarantee Fund (EGF) to cover the following expenses: a. for further environmental assessments, compensations/indemnification for whatever damages to life and property that may be caused by the project; b. rehabilitation and/or restoration of areas affected by the project's implementation; and c. abandonment/decommissioning of the project facilities related to the prevention of possible negative impacts; and as a source of fund for contingency and clean-up activities 	 Ongoing coordination. The Project is still in the detailed design stage. Ongoing DOTr consultation on EGF amount to be established The bidders have been requested to provide an EGF in their BOQs. 	
10.2 Establish an MMT composed of representative(s) from the local environmental Non-Government Organization/s (NGOs), People's Organization/s (POs) and the Local Government Units per DAO 2017-15. The MMT shall primarily oversee the compliance of the Proponent with the	 Ongoing compliance. The Project is still in the detailed design stage. The TPA is preparing the First semi-annual external monitoring report. 	

ECC Condition (ECC-CO-1807-0018)	Status of Compliance	
Environmental Management and Monitoring Plan (EMMoP) and the ECC conditions.		
 10.3 A replenishable Environmental Monitoring Fund (EMF) to cover all costs attendant to the operation of the MMT such as training, hiring of technical experts and resource persons, fieldwork and transportation. The amount and mechanics of EGF, EMF and the establishment of the MMT shall be determined by the EMB Central Office and the proponent through a Memorandum of Agreement (MOA) which shall be submitted in the 60 days prior to construction. 	 Ongoing compliance. The EMF for the MMT is no longer required since its functions have been assumed by the TPA, which is separately funded by DOTr through a contract when the TPA was engaged. 	
 11. Establish an Environmental Unit (EU) in 60 days prior to construction that shall competently handle the environment-related aspects of the project. In addition to the monitoring requirements as specified in the EMoP, the EU shall have the following responsibilities: a. Monitor actual project impacts vis-à-vis the predicted impacts and management measures in the EIS; b. Recommend revisions to the EMoP, whenever necessary subject to the approval of the EMB-CO; c. Ensure that data gathered during monitoring activities are properly documented, assessed, evaluated, and reported in accordance with the standard formats; and d. Ensure that monitoring and submission of reports to EMB-CO are carried out as required. 	 Ongoing compliance. DOTr EUs for NSCR-EX are established. The members of the environment team of the PMO have attended a 40-hr PCO Training from 26–30 April 2021. 	
12. The Proponent shall ensure that its Contractors and sub-contractors are provided with copies of this ECC, including the EMP, and that they will strictly comply with the relevant conditions of the ECC.	 Ongoing compliance. The Project is in the detailed design stage and procurement process of contractors is ongoing. The ECC, and the EIS incorporating the EMP and EMoP are provided in the tender documents. 	
13. No activities shall be undertaken other than what were stipulated in the final EIS. Any expansion and/ or modification of the Project beyond the Project description or change in alignment/ route that will cause significant impacts to the environment shall be subjected to a new Environmental Impact Assessment.	 Ongoing compliance. The Project is still in the detailed design stage and updating of the EIS is ongoing. No activities other than what were stipulated in the final EIS is being planned or undertaken in NSCR-EX during this reporting period. DOTr requested DENR-EMB CO for 	

ECC Condition (ECC-CO-1807-0018)	Status of Compliance	
	guidance on in NSCR Calamba Extension ECC compliance through a letter dated 14 Apr 2021, together with the NSCR Calamba Extension Project Profile presenting changes and updates in the EIS post ECC issuance in 2018.	
	• DENR-EMB CO responded on 31 May 2021 with a request for additional information on DOTr's request for amendment, and an initial evaluation of the submitted documents.	
	• DOTr is preparing for a response to DENR- EMB CO during the remainder of this reporting period.	
14. In case of transfer of ownership of this Project, the same conditions and restrictions shall apply to the transferee or grantee who shall secure in writing the corresponding amendment of this ECC from the EMB-CO within 15 working days reflecting such transfer.	 Not applicable. No intended transfer of ownership of NSCR-EX. 	

Date Meeting **Participants** 06 Apr 2021 Nagtahan Link Study-TIA (Hearing from MMDA about DOTr. PNR. GCR, demolishing Nagtahan Link) MMDA, SMDI DD 1st SCM for Barangay Bagumbayan, Tanyag, 06 Apr 2021 PAPs. DOTr. GCR. Western Bicutan, and North Daang Hari Morning and Ecocsys Afternoon Sessio 1st Workshop for Cabuyao LGU re: Cabuyao Station Cabuyao LGU, 07 Apr 2021 DOTr. PNR. GCR Area 08 Apr 2021 Manila Local Inter-Agency Committee (LIAC) Meeting Manila LGU, Barangay Representatives, SHFC, DHSUD, PCUP, DOTr, PNR, GCR 12 Apr 2021 **Relocation Coordination Meeting** DOTr, PNR, GCR, PCG, DPWH, MMDA 2nd Workshop for Taguig LGU re: Taguig Station Area Taguig LGU, DOTr, PNR, 15 Apr 2021 GCR 15 Apr 2021 Confirmation of outfall location in Sta. Rosa LGU in Sta. Rosa LGU, DOTr CPS-05 15 Apr 2021 Endorsed the letter to Manila Mayor's Office and Market Obrero discussion meeting with Manila DepEd and Manila Administrator, Manila Administrators office DepEd, Representative, GCR Detailed Design 1st Stakeholder Consultation Meeting 16 Apr 2021 PAPs. Fort Brgy. in Brgy. Fort Bonifacio, City of Taguig Bonifacio, DOTr, PNR, GCR, Ecosys 20 Apr 2021 North South Commuter Railway Extension (NSCR-PAPs. DOTr. GCR. Ex) Project (Calamba Extension) 3rd DD SCM LO Ecosys 22 Apr 2021 Taguig City Local Inter-Agency Committee (LIAC) Taguig LGU, DOTr, GCR Meeting 1st Workshop for Muntinlupa LGU re: Muntinlupa 23 Apr 2021 Muntinlupa LGU, DOTr, Station Area PNR, GCR Confirmation of outfall location in Paranague LGU in 23 Apr 2021 Paranaque LGU, Taguig CPS-03a to 03c LGU, DPWH DOTr, GCR 23 Apr 2021 Consultative Meeting with Market Administrative GCR. MAO. Obrero

Table 5: NSCR Calamba Extension (SCRP) Meetings with Project Stakeholders

	activity of Socio-Economic Survey and upcoming Stakeholders Consultation Meeting for the Obrero Market stall owners/vendors	Barangay Official
27 Apr 2021	1 st Workshop for Parañaque LGU re: Bicutan Station Area	Paranaque LGU, DOTr, PNR, GCR
27 Apr 2021	Special 3 rd DD SCM for Land Owners Biñan, Laguna	PAPs, DOTr, GCR
27 Apr 2021	Master list of Stallholders handover from Market Administrator Office to GCR	GCR, MAO, OMM
28 Apr 2021	Special 3 rd DD SCM for LO Calamba, Laguna	PAPs, LGU, GCR
29 Apr 2021	Socio Economic Survey (SES) interview for Obrero Market Stallholders	MLQHS Obrero Market Master, GCR

Office and Obrero Market Association re: upcoming

Association

Market

Date	Meeting	Participants
30 Apr 2021	Special 3 rd DD SCM for LO Calamba, Laguna	PAPs, DOTr, GCR
15 Jun 2021	2 nd Workshop with Parañaque LGU re: Bicutan Station Area	Paranaque LGU, DOTr, PNR, GCR
18 Jun 2021	1 st Workshop with Manila LGU re: Blumentritt Station Area	Manila LGU, DOTr, PNR, GCR

2.2 Consultation with Cultural Agencies and Interest Groups

- 4. For this monitoring period, DOTr has consulted with the cultural agencies (CAs) regarding the procedure for preservation of the historic structures/buildings affected by the NSCR Clark Extension Project. A Key Informant Interview (KII) via Zoom Teleconference was held with National Commission for Culture and the Arts (NCCA) on 29 April 2021. DOTr provided updates to NCCA on project details and assessment of cultural properties along NSCR Clark Extension.
- 5. Various KIIs were also conducted with the concerned Local Government Units (LGUs) and interest parties in May 2021. Among the KII participants are a group of railway enthusiast called the Philippine Railway Historic Society and a history professor from the College of Social Sciences and Philosophy, University of the Philippines. The stakeholders were consulted on the significance of the existing remnants of the old PNR structures. NCCA has also responded to the follow-up KII guide questions regarding PNR Historic Stations on 26 May 2021. Following the stakeholders' consultations, DOTr has developed a more strategic approach for the assessment and preservation of the historic structures/buildings affected by the project.

2.3 Establishment of Intra-LGU Tree Appraisal Committee

6. The establishment of Intra-LGU Tree Appraisal Committee (ILTAC) for the project-affected crops and trees (PACTs) commenced in the previous quarter. Joint validation of PACTs and LNO acquisition was completed for the concerned LGUs, except for San Fernando City. For this monitoring period, the activities of ILTAC of San Fernando City are ongoing. Meanwhile, the follow-up ILTAC meeting with Angeles City was conducted and the valuation matrix was finalized. The resolution establishing the valuation matrix as basis for the compensation of project-affected-persons (PAPS) with PACTs for Angeles City (Angeles City Tree Appraisal Committee Resolution No. 01 Series of 2021) was released on 21 June 2021.

3. Mitigation Measures

- 7. This section presents the results of the environmental monitoring activities covered by this reporting period when the project is in Pre-Construction Phase (Table 6 to Table 11 detail the measurements taken in the different monitoring stations).
- 8. Baseline ambient air quality monitoring for stations AAQ2 and AAQ3 in CP N-01 were conducted in the previous quarter. For this quarter, air quality monitoring for these stations were not done since no construction activities have not commenced in these areas of CP N-01. Meanwhile, baseline sampling was conducted in stations AAQ5 and AAQ-N09 in CP N-03. Ambient air quality for the monitored stations this quarter are within the standards for all the parameters, even for PM_{2.5} which has recorded exceedances in the last quarter and in the baseline EIS.
- 9. Baseline sampling for SW1, SW2 and SW3 were done in the previous quarter by CP N-01. For this quarter, CP N-01 continued their baseline sampling for the two remaining stations (SW4 and SW5). CP N-02 has not commenced environmental baseline or monitoring this quarter due to the third-party laboratory is undergoing procurement process. Meanwhile, baseline sampling was also conducted in the monitoring stations SW8, SW9 and SW10 in CP N-03. CP N-04 (SW11) and CP N-05 (DD SW1) have also conducted their quarterly and weekly, respectively, surface water quality monitoring.
- 10. Groundwater baseline sampling was conducted in GW4 and GW5 by CP N-03 this monitoring period. Meanwhile, CP N-05 also conducted their quarterly monitoring. Other contract packages

have not started conducting of groundwater baseline sampling during this quarter.

- 11. Noise level monitoring continued this quarter in stations N12 and DD N1 by CP N-04 and CP N-05, respectively. For station N03, noise level monitoring was not conducted since there are no construction activities in CP N-01 during this quarter. Meanwhile, baseline sampling was conducted by CP N-03 in N08 and N09 this quarter. Daytime noise levels for the stations monitored this quarter exceeded the WB EHS Guideline Value of 55 dBA for stations classified as Residential, Institutional and Educational (RIE) receptors, except for station N08. Meanwhile noise level at DD N1 is below the WB EHS Guideline Value of 70 dBA for stations classified as Industrial and Commercial (IC) receptors. Nighttime noise levels for the stations monitored this quarter exceeded the WBG EHS Guideline value of 45 dBA for stations classified under RIE receptors, while noise level in DD N1 is within the allowable value of 70 dBA for stations classified under IC receptors. Noise levels in the stations which are above the standards are still lower than the EIS baseline data which suggest that the exceedances cannot be associated with the activities of the project.
- 12. Similarly, vibration level monitoring continued this quarter in stations V12 and DD V01 by CP N-04 and CP N-05, respectively. For station V03, vibration level monitoring was not conducted since there are no construction activities in CP N-01. Meanwhile, baseline sampling was conducted by CP N-03 in V05 and V09 this quarter.
- 13. The values recorded for all monitoring stations during this quarter are generally lower than the values taken in the EIS baseline. Some values which exceeded the standards are highlighted.

			Bas	eline			202	21 Results				Country's Stan-		Referred	Remarks (Measure
Parameter	Unit	Samplin g Station	(EIS	2020)	Pı	revious Qu	arter		This Quart	ter	Sampling Date	dards ⁽¹⁾ (DAO	Standards for	national Stan-	Point,
		9	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun		2000-81, DAO 2013- 13)	Contract	dards (IFC / WHO) ⁽²⁾	Frequency , Method, etc.)
SO ₂	μg / Ncm	AAQ2	130.19	4.51	NB	NB	<7	NSS	NSS	NSS	25 Mar 2021	180	180	20	 Quarterly 24-hr
		AAQ3	134.93	6.27	NB	NB	9	NSS	NSS	NSS	25 Mar 2021				sampling
		AAQ5	ND	1.83	NB	NB	NB	NB	NB NB <12.0 14-16 J		14-16 Jun 2021				
		AAQ6	ND	7.65	NB	4.3	14.1	NSS NSS 12.9 15-16 26-27 16-47		15-16 Feb 2021 26-27 Mar 2021 16-47 Jun 2021					
		AAQ9	ND	1.83	NSS	SS NSS NSS NB NB <11.9 14-10		14-16 Jun 2021							
		DD AAQ1	2.38	-	7	NSS	NSS	9.4	NSS	9.3	7-8 Jan 2021 8-9 Apr 20211 17-18 Jun 2021				
NO ₂	μg / Ncm	AAQ2	16.18	35.61	NB	NB	<1	NSS	NSS	NSS	25 Mar 2021	150	150	200 (1- hour mean)	 Quarterly 24-hr
		AAQ3	14.19	41.22	NB	NB	<1	NSS	NSS	NSS	25 Mar 2021			mean)	sampling
		AAQ5	1.6	17.44	NB	NB	NB	B NB NB 3.49 14-16 Jun		14-16 Jun 2021					
	AAQ		3.66	62.45	NB	9.5	5.6	NSS	NSS	16.3	15-16 Feb 2021 26-27 Mar 2021 16-17 Jun 2021				
		AAQ9	ND	ND	NB	NB	NB	NB	NB	<3.11	14-16 Jun 2021				
		DD	8.79	-	4.3	NSS	NSS	3.5	NSS	2.5	8-9 Apr 20211	1			

Table 6: Air Quality (Emission Gas / Ambient Air Quality)

			Bas	olino			202	21 Results				Country's Stan-		Referred	Remarks (Measure
Parameter	Unit	Samplin g Station	(EIS	2020)	Pr	revious Qu	arter		This Quart	ter	Sampling Date	dards ⁽¹⁾ (DAO	Standards for	national Stan-	Point,
		g	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun		2000-81, DAO 2013- 13)	Contract	dards (IFC / WHO) ⁽²⁾	Frequency , Method, etc.)
		AAQ1									17-18 Jun 2021				
СО	ppm	AAQ2	1.14	ND	NB	NB	<1	NSS	NSS	NSS	25 Mar 2021	30 (1-hrs) 9 (8-hra)	30 (1-hrs) 9 (8-hra)	30 ⁽⁴⁾	 Quarterly 1-hr
		AAQ3	ND	2.29 NB NB <1 NSS N		NSS	NSS	25 Mar 2021				 Sampling 8-hr sampling 			
		AAQ5	ND	1.14	NB	NB	NB	NB	NB	4	14-16 Jun 2021				samping
		AAQ6	ND	ND	NB	1.35	1.24	NSS	NSS	6.59	15-16 Feb 2021 26-27 Mar 2021 16-17 Jun 2021				
			ND	ND	NB	NB	NB	NB	NB	ND	14-16 Jun 2021				
		DD AAQ1	1.14	-	ND	NSS	NSS	3.14	NSS	1.46	7-8 Jan 2021				
O ₃	µg / Ncm	AAQ2	ND	ND	NB	NB	2	NSS	NSS	NSS	25 Mar 2021	140 (1- hour	140 (1- hour	100 (8- hour	 Quarterly 1-hr
		AAQ3	ND ND NB NB		1	NSS	NSS	NSS	25 Mar 2021	mean)	mean)	mean)	sampling 8-hr sampling 		
		AAQ5	ND	ND	NB	NB	NB	NB	NB	1.28	14-16 Jun				
		AAQ6	ND	ND	NB	0.09	0.08	NSS	NSS	5.6	15-16 Feb 2021 26-27 Mar 2021 16-17 Jun 2021				
		AAQ9	ND	ND	NB	NB	NB	NB	NB	11.2	14-16 Jun 2021				
		DD AAQ1	ND	-	ND	NSS	NSS	0.2	NSS	5.3	7-8 Jan 2021 9 Apr 2021				

		Samplin	Bae	olino			202	21 Results				Country's Stan-		Referred	Remarks (Measure
Parameter	Unit	Samplin q Station	(EIS	2020)	Pr	revious Qu	arter		This Quart	ter	Sampling Date	dards ⁽¹⁾ (DAO	Standards for	national Stan-	ment Point,
		•	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun		2000-81, DAO 2013- 13)	Contract	dards (IFC / WHO) ⁽²⁾	Frequency , Method, etc.)
											18 Jun 2021	,			,
TSP	µg / Ncm	AAQ2	54.69	34.50	NB	NB	10	NSS	NSS	NSS	25 Mar 2021	230	230	-	 Quarterly 24-hr
		AAQ3	77.15	104.40	NB	NB	7	NSS	NSS	NSS	25 Mar 2021				samping
		AAQ5	181.63 93.12 NB		NB	NB	NB	NB	NB	78.6	14-16 Jun 2021				
	AAC		95.93	58.30	NB	37.2	55.7	NSS	NSS	80.7	15-16 Feb 2021 26-27 Mar 2021 16-17 Jun 2021				
		AAQ9	81.85	97.94	NB	NB	NB	NB	NB	NB 53.2 14-16 Jun 2					
		DD AAQ1	73.28	-	26.8	NSS	NSS	90.2	NSS	29.1	7-8 Jan 2021 8-9 Apr 20211 17-18 Jun 2021				
PM ₁₀	μg / Ncm	AAQ2	26.86	25.71	NB	NB	15	NSS	NSS	NSS	25 Mar 2021	150	150	50	 Quarterly 24-hr
		AAQ3	48.87	69.70	NB	NB	13	NSS	NSS	NSS	25 Mar 2021				sampling
		AAQ5	88.34	60.80	NB	NB	NB	NB	NB	20.0	14-16 Jun 2021				
		AAQ6	AQ6 45.79 49.76 NB		NB	10.8	30.3	NSS NSS 52.5		15-16 Feb 2021 26-27 Mar 2021 16-17 Jun 2021					
		AAQ9 Diff loc	44.35	46.54	NB	NB	NB	NB	NB	19.1	14-16 Jun 2021				

			Bas	olino			202	21 Results				Country's Stan-		Referred	Remarks (Measure
Parameter	Unit	Samplin g Station	(EIS	2020)	Pı	revious Qu	arter		This Quart	ter	Sampling Date	dards ⁽¹⁾ (DAO	Standards for	national Stan-	ment Point,
		9	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun		2000-81, DAO 2013- 13)	Contract	dards (IFC / WHO) ⁽²⁾	Frequency , Method, etc.)
		DD AAQ1	44.71	-	16.7	NSS	NSS	65.1	NSS	32.9	7-8 Jan 2021 8-9 Apr 20211 17-18 Jun 2021				
PM _{2.5}	µg / Ncm	AAQ2	15.65	24.15	NB	NB	98	NSS	NSS	NSS	25 Mar 2021	50 ⁽³⁾	50	25	 Quarterly 24-hr
		AAQ3	22.05	60.79	NB	NB	89	NSS	NSS	NSS NSS 25 Mar 2021					sampling
		AAQ5	22.83	54.00	NB NB NB NB		NB	10.6	14-16 Jun 2021						
		AAQ6	17.81	47.15	NB	10.8	14.7	NSS	NSS	32.3	15-16 Feb 2021 26-27 Mar 2021 16-17 Jun 2021				
		AAQ9	10.62	48.06	NB	NB	NB	NB	NB	14.4	14-16 Jun 2021				
		DD AAQ1	16.03	-	26.8	NSS	NSS	49.4	NSS	12.4	7-8 Jan 2021 8-9 Apr 20211 17-18 Jun 2021				
Pb	μg / Ncm	AAQ2	ND	0.0084	NB	NB	<0.03	NSS	NSS	NSS	25 Mar 2021	1.5 ⁽⁵⁾	-	-	 Quarterly 24-hr
		AAQ3	ND	0.0252	NB	NB	<0.03	NSS	NSS	NSS	25 Mar 2021				sampling
		AAQ5	0.0004	0.0092	NB	NB	NB	NB	NB	0.00365	14-16 Jun 2021				
		AAQ6	0.0043	ND	NB	ND	ND	NSS	NSS	0.014	15-16 Feb 2021 26-27 Mar 2021 16-17 Jun 2021	1 1 1			

Parameter Unit		Samplin	Bas (EIS	seline 2020)	Pi	revious Qu	202 arter	21 Results	This Quart	ter	Sampling Date	Country's Stan- dards ⁽¹⁾ (DAO	Standards for	Referred Inter- national Stan-	Remarks (Measure ment Point,
		g Station Dry Wet		Wet	Jan	Feb	Mar	Apr	Мау	Jun		2000-81, DAO 2013- 13)	Contract	dards (IFC / WHO) ⁽²⁾	Frequency , Method, etc.)
		AAQ9	ND	0.0048	NB	NB	NB	NB	NB	<0.00037	14-16 Jun 2021				
		DD AAQ1	ND	-	ND	NSS	NSS	ND	NSS	0.01	7-8 Jan 2021 8-9 Apr 20211 17-18 Jun 2021				

Notes: (1) National Ambient Air Quality Guideline for Criteria Pollutants of the Philippine Clean Air Act of 1999

(2) IFC General EHS Guidelines: Environmental Air Emissions and Ambient Air Quality, Table 1.1.1: WB-IFC Ambient Air Quality Guidelines, April 30, 2007

(3) DENR Administrative Order No. 2013-13

(4) WHO air quality guidelines for Europe (2000)

(5) Evaluation of this guideline is carried out for 24-hour averaging time and averaged over three moving calendar months. The monitored average value for any three months shall not exceed the guideline value.

ND -Not detected (by the third-party laboratory), NB - No baseline during the month; NSS - No sampling schedule for the month

							2021 F	Results						Referre d	Romarks	
		Someling	Baseline	(EIS 2020)	Pro	evious Qua	rter		This Quarte	r		Country's Standard	Standar	Internati onal Standar	(Measure ment Point, Frequenc y, Method, etc.)	
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	s (DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)		
		SW1	5	44	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021	75	75	-	Quarterly	
		SW2	5	21	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021				Visual	
Color	тен	SW3	10	20	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021				son	
Color 1	100	SW4	10	28	NB	NB	NB	NB	NSR	NSS	12 May 2021					
		SW5	42	93	NB	NB	NB	NB	NSR	NSS	12 May 2021					
		SW8	14	10	NB	NB	NB	NB	NB	50	29 Jun 2021					

Table 7: Water Quality (Surface/Ambient Water Quality)

							2021 F	Results						Referre d	
		Sampling	Baseline	(EIS 2020)	Pr	evious Qua	rter		This Quarte	ər		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment Point
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
		SW9	10	125	NB	NB	NB	NB	NB	20	25 June 2021				
		SW10	10	20	NB	NB	NB	NB	NB	50	29 Jun 2021				
		SW11	10	49	10	NSS	15	NSS	NSS	15	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	20	-	10	NSS	NSR	NSR	NSR	NSR	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	31	-	NB	NB	NB	NB	NB	50	29 Jun 2021				
		SW1	26	27.3	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021	25-31	25-31	-	Quarterl
		SW2	29.8	25.4	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021				У
		SW3	28.6	28.4	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021				 Laborat ory &
		SW4	30.2	28.2	NB	NB	NB	NB	29	NSS	12 May 2021				Field
		SW5	28.9	27.8	NB	NB	NB	NB	32	NSS	12 May 2021				(SM255
		SW8	26.0	25.8	NB	NB	NB	NB	NB	30	29 Jun 2021				ÒВ)
		SW9	29.7	29.9	NB	NB	NB	NB	NB	30	25 Jun 2021				
Temperature	°C	SW10	29.6	29.5	NB	NB	NB	NB	NB	25	29 Jun 2021				
		SW11	29.1	30.5	27.0	NSS	28.8	NSS	NSS	30	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	25.3	-	27.3	NSS	26.7	28.3	33.1 NB	30.2	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021 29 Jun 2021				
					1			1	1						1

							2021 F	Results						Referre d	
		Compling	Baseline	(EIS 2020)	Pro	evious Qua	rter		This Quarte	ər		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
		SW1	6.7	6.97	NB	NB	7.5	NSS	NSS	NSS	17 Mar 2021	6.5–9.0	6.5–9.0	EU: 6-9	Quarterl
		SW2	7.26	7.30	NB	NB	7.5	NSS	NSS	NSS	17 Mar 2021				y • Electro- metric Method
		SW3	7.09	7.49	NB	NB	7.5	NSS	NSS	NSS	17 Mar 2021				
		SW4	7.3	7.57	NB	NB	NB	NB	6.7	NSS	12 May 2021				
		SW5	7.2	7.11	NB	NB	NB	NB	7.8	NSS	12 May 2021				
		SW8	6.95	4.7	NB	NB	NB	NB	NB	7.1	29 Jun 2021				
nH (Bange)		SW9	6.48	7.13	NB	NB	NB	NB	NB	7.0	25 Jun 2021				
		SW10	6.53	6.86	NB	NB	NB	NB	NB	7.1	29 Jun 2021				
pri (italige)		SW11	5.99	7.25	6.7	NSS	7.3	NSS	NSS	7.0	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	7.62	-	6.1	NSS	7.4	7.5	7.8	7.2	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	7.53		NB	NB	NB	NB	NB	7.1	29 Jun 2021				
		SW1	1.6	3.0	NB	NB	0.6	NSS	NSS	NSS	17 Mar 2021	5	5	-	Quarterl
		SW2	11	10	NB	NB	7.2	NSS	NSS	NSS	17 Mar 2021				y Minkler (
		SW3	6.1	3.5	NB	NB	3.5	NSS	NSS	NSS	17 Mar 2021				Titrimetri
		SW4	7.9	8.0	NB	NB	NB	NB	<0.10	NSS	12 May 2021				С
Dissolved Oxygen (DO)	mg/L	SW5	4.2	10.6	NB	NB	NB	NB	<0.10	NSS	12 May 2021				
cxygon (BC)		SW8	3.8	14.07	NB	NB	NB	NB	NB	6	29 Jun 2021				
		SW9	3.93	15.24	NB	NB	NB	NB	NB	5	25 Jun 2021				
		SW10	2.18	10.19	NB	NB	NB	NB	NB	6	29 Jun 2021				
		SW11	9.17	17.52	6	NSS	7	NSS	NSS	7	26 Jan 2021				
							2021 F	Results						Referre d	
-----------------	------	------------------	----------	------------	-----------------	------------	-----------	----------	-------------	-----	---	------------------------------	--------------	---	--------------------------------------
		Sampling	Baseline	(EIS 2020)	Pre	evious Qua	rter		This Quarte	er		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment Point
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
											31 Mar 2021				
		DD SW1	5.89	-	6	NSS	7	7	6	8	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	4.76	-	NB	NB	NB	NB	NB	7	29 Jun 2021				
		SW1	10	35	NB	NB	186	NSS	NSS	NSS	17 Mar 2021	7	7	-	Quarterl
		SW2	9	12	NB	NB	50	NSS	NSS	NSS	17 Mar 2021				y ● 5-Dav
		SW3	8	24	NB	NB	49	NSS	NSS	NSS	17 Mar 2021				BOD
		SW4	9	23	NB	NB	NB	NB	27	NSS	12 May 2021				Test (SM
		SW5	49	30	NB	NB	NB	NB	35	NSS	12 May 2021				5210 B)
		SW8	25	28	NB	NB	NB	NB	NB	40	29 Jun 2021				
Biochemical		SW9	9	29	NB	NB	NB	NB	NB	15	25 Jun 2021				
Oxygen	mg/L	SW10	271	25	NB	NB	NB	NB	NB	17	29 Jun 2021				
Demand (BOD)		SW11	12	26	1	NSS	<1	NSS	NSS	10	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1 DD SW2	12	-	5 NB	NSS	10 NSR	<1 NB	15 NB	2	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021 29 Jun 2021				
Total Supported		SW1	21	36	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021	80	80	-	Ouarterl
Solids (TSS)	mg/L	SW2	31	27	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021				y
Solids (TSS)					∥ ·· · -	1		1							

							2021 F	Results						Referre d	
		Compling	Baseline	(EIS 2020)	Pro	evious Qua	rter		This Quarte	er		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
		SW3	38	68	NB	NB	NB	NSS	NSS	NSS	17 Mar 2021				Gravime true (SM)
		SW4	37	2000	NB	NB	NB	NB	26	NSS	12 May 2021				2540 D)
		SW5	86	38	NB	NB	NB	NB	37	NSS	12 May 2021				
		SW8	17	296	NB	NB	NB	NB	NB	11	29 Jun 2021				
		SW9	13.5	1,900	NB	NB	NB	NB	NB	17	25 Jun 2021				
		SW10	32	24	NB	NB	NB	NSS	NSS	91	29 Jun 2021				
		SW11	3.0	173	<2.38	NSS	52	NSS	NSS	102	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	5	-	16	NSS	18	6.0	13	7.5	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	18	-	NB	NB	NB	NB	NB	15	29 Jun 2021				
		SW1	0.0443	0.0722	NB	NB	<0.1	NSS	NSS	NSS	17 Mar 2021	1.5	1.5	-	Quarterl
		SW2	0.0407	0.115	NB	NB	<0.1	NSS	NSS	NSS	17 Mar 2021				у
		SW3	0.0492	0.179	NB	NB	<0.1	NSS	NSS	NSS	17 Mar 2021				 Colorim etry –
		SW4	0.07	0.0901	NB	NB	NB	NB	<0.10	NSS	12 May 2021				Chlorofo
Surfactanta		SW5	0.0679	0.31	NB	NB	NB	NB	0.19	NSS	12 May 2021				rm Extractio
(MBAS)	mg/L	SW8	0.067	0.193	NB	NB	NB	NB	NB	<0.10	29 Jun 2021				n
(MBAS)		SW9	0.082 7	0.15	NB	NB	NB	NB	NB	<0.10	25 Jun 2021				
		SW10	1.07	0.212	NB	NB	NB	NB	NB	0.27	29 Jun 2021				
		SW11	<0.007	0.299	0.1	NSS	0.3	NSS	NSS	0.4	26 Jan 2021 31 Mar 2021 14 Jun 2021				

							2021 F	Results						Referre d	
		Sampling	Baseline	(EIS 2020)	Pro	evious Qua	rter		This Quarte	er		Country's Standard	Standar ds for	Internati onal Standar	Remarks (Measure ment Point
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
		DD SW1	0.413	-	0.08 NB	NSS	0.3 NB	0.4 NB	0.1 NB	0.5	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021 29 Jun 2021				
		SW1	16	1 17	NB	NB	8	NSS	NSS	NSS	17 Mar 2021	2	2	-	Quarterl
		SW2	1.1	1.2	NB	NB	7	NSS	NSS	NSS	17 Mar 2021	-			y
		SW3	<0.5	1.63	NB	NB	6	NSS	NSS	NSS	17 Mar 2021				Gravime try (p
		SW4	1.1	1.56	NB	NB	NB	NB	<1	NSS	12 May 2021				Hexane
		SW5	19.7	1.47	NB	NB	NB	NB	<1	NSS	12 May 2021				Extractio
		SW8	1.65	1.25	NB	NB	NB	NB	NB	2.1	29 Jun 2021				5520 B)
		SW9	3.2	1.7	NB	NB	NB	NB	NB	2.1	25 Jun 2021				
Oil and Grease		SW10	1.7	1.2	NB	NB	NB	NB	NB	3.0	29 Jun 2021				
Ether Extracts)	mg/∟	SW11	<0.5	3.23	1.5	NSS	0.97	NSS	NSS	2.6	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	<0.5	-	1.7	NSS	0.73	5.6	3.5	1.3	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	0.92	-	NB	NB	NB	NB	NB	1.7	29 Jun 2021				
		SW1	0.109	0.145	NB	NB	0.26	NSS	NSS	NSS	17 Mar 2021	7	7	WB	Quarterl
Nitrate as	mg/l	SW2	0.655	0.147	NB	NB	0.14	NSS	NSS	NSS	17 Mar 2021			1993: 50	y Calarina
Nitrogen	IIIY/L	SW3	0.391	0.144	NB	NB	0.29	NSS	NSS	NSS	17 Mar 2021				 Colorim etry –
		SW4	0.207	0.181	NB	NB	NB	NB	<0.1	NSS	12 May 2021				Brucine

							2021 F	Results						Referre d	_
		Sampling	Baseline	(EIS 2020)	Pre	evious Qua	rter		This Quarte	r		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment Point
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
		SW5	0.0686	0.197	NB	NB	NB	NB	0.27	NSS	12 May 2021				(EPA
		SW8	0.0763	0.155	NB	NB	NB	NB	NB	0.09	29 Jun 2021				332.1)
		SW9	0.171	0.168	NB	NB	NB	NB	NB	0.16	25 Jun 2021				
		SW10	0.61	0.30	NB	NB	NB	NB	NB	0.11	29 Jun 2021				
		SW11	0.162	0.136	0.1	NSS	0.4	NSS	NSS	0.05	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	0.485	-	2.3	NSS	1.5	1.2	0.4	1.0	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	0.125	-	NB	NB	NB	NB	NB	0.10	29 Jun 2021				
		SW1	0.238	0.427	NB	NB	0.08	NSS	NSS	NSS	17 Mar 2021	0.5	0.5	-	Quarterl
		SW2	0.0723	0.323	NB	NB	0.02	NSS	NSS	NSS	17 Mar 2021				у
		SW3	0.123	0.209	NB	NB	0.03	NSS	NSS	NSS	17 Mar 2021				 Stannou s
		SW4	0.0938	0.464	NB	NB	NB	NSS	0.45	NSS	12 May 2021				Chloride
		SW5	2.88	0.925	NB	NB	NB	NSS	3.7	NSS	12 May 2021				Method (SM
		SW8	2.62	0.862	NB	NB	NB	NB	NB	1.28	29 Jun 2021				4500-Р
Phosphate as	mg/L	SW9	0.998	2.16	NB	NB	NB	NB	NB	0.78	25 Jun 2021				D)
Filospilorus		SW10	1.04	<0.08	NB	NB	NB	NB	NB	0.14	29 Jun 2021				baseline
		SW11	0.081	0.811	0.2	NSS	0.3	NSS	NSS	0.3	26 Jan 2021 31 Mar 2021 14 Jun 2021				standard and results were
		DD SW1	9.19	-	0.8	NSS	1.1	1.2	1.4	1.2	7 Jan 2021 11 Mar 2021 28 Apr 2021				converte d (standar

							2021 F	Results						Referre d	
		Sompling	Baseline	(EIS 2020)	Pre	evious Qua	rter		This Quarte	r		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
											27 May 2021				d was0 16
		DD SW2	14.8	-	NB	NB	NB	NB	NB	0.11	29 Jun 2021				3 mg/L), while Jan-Jun results shall comply with 0.5 mg/L standard
		SW1	0.03	<0.01	NB	NB	<0.0009	NSS	NSS	NSS	17 Mar 2021	0.05	0.05	EU	Quarterl
		SW2	0.02	<0.01	NB	NB	<0.0009	NSS	NSS	NSS	17 Mar 2021			1975: <0 005 /	у
		SW3	0.02	<0.01	NB	NB	<0.0009	NSS	NSS	NSS	17 Mar 2021			EU	OSEPA Method
		SW4	<0.01	<0.02	NB	NB	NB	NB	<0.0009	NSS	12 May 2021			1972: <0.05	8041A
		SW5	<0.01	<0.02	NB	NB	NB	NB	<0.0009	NSS	12 May 2021			0.00	
		SW8	0.03	<0.01	NB	NB	NB	NB	NB	<0.001	29 Jun 2021				
		SW9	0.03	0.01	NB	NB	NB	NB	NB	<0.001	25 Jun 2021				
Phenolic Substances and	ma/l	SW10	0.02	0.01	NB	NB	NB	NB	NB	NSR	29 Jun 2021				
Phenols		SW11	0.01	<0.01	ND	NSS	ND	NSS	NSS	ND	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	0.12	-	ND	NSS	ND	ND	ND	ND	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	0.072	-	NB	NB	NB	NB	NB	<0.001	29 Jun 2021				
Total coliforms	MPN/100 mL	SW1	240	3,500,000	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021	-	-	EU	 Quarterl

							2021 F	Results						Referre d	
		Sampling	Baseline	(EIS 2020)	Pre	evious Qua	rter		This Quarte	r		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment Point
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	s (DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
		SW2	240	17,000	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021			1975:	У
		SW3	35,000	35,000	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021			1972:	 Multiple Tube
		SW4	13,000	17,000	NB	NB	NB	NB	46,000	NSS	12 May 2021			10,000	Ferment
		SW5	92,000	35,000	NB	NB	NB	NB	94,000	NSS	12 May 2021				a-tion Technia
		SW8	1.6×10 ⁶	1.6x10 ⁶	NB	NB	NB	NB	NB	54×10 ⁴	29 Jun 2021				ue (SM
		SW9	2,400	3.5x10 ⁶	NB	NB	NB	NB	NB	35×10 ⁴	25 Jun 2021				9221B)
	SW10	1.7×10 ⁷	160,000	NB	NB	NB	NB	NSS	54,000	29 Jun 2021					
		SW11	<1.8	35,000	350	NSS	2,400	NSS	NSS	5,400	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	54×10 ³	-	5,400	NSS	16,400	<1.8	350	<1.8	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	24×10⁵	-	NB	NB	NB	NB	NB	16×10⁵	29 Jun 2021				
		SW1	240	330,000	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021	200	200	EU	 Quarterl
		SW2	34	14,000	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021			1975: 100 / FU	y Multin I a
		SW3	35,000	24,000	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021			1972:	 Multiple Tube
		SW4	2,300	2,100	NB	NB	NB	NSS	46,000	NSS	12 May 2021			2,000	Ferment
Fecal coliforms	MPN/100 ml	SW5	17,000	35,000	NB	NB	NB	NSS	94,000	NSS	12 May 2021				a-uon Techniq
Fecal coliforms	WILL TO THE	SW8	1.6×10 ⁶	9.2X10⁵	NB	NB	NB	NB	NB	35×10 ⁴	29 Jun 2021				ue (SM
		SW9	920	3.5X10 ⁶	NB	NB	NB	NB	NB	24×10 ⁴	25 Jun 2021				9221 E1)
		SW10	3.4×10 ⁶	24,000	NB	NB	NB	NB	NSS	54,000	29 Jun 2021				,
		SW11	<1.8	24,000	350	NSS	540	NSS	NSS	700	26 Jan 2021 31 Mar 2021				

							2021 F	Results						Referre d	
		Sampling	Baseline	(EIS 2020)	Pre	evious Qua	rter		This Quarte	r		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment Point
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
											14 Jun 2021				
		DD SW1	17×10 ³	-	1,700	NSS	2,400	<1.8	240	<1.8	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	13x10⁵	-	NB	NB	NB	NB	NB	16×10⁵	29 Jun 2021				
		SW1	69	41	NB	NB	29	NSS	NSS	NSS	17 Mar 2021	350	350	WB	 Quarterl
		SW2	1,623	22	NB	NB	21	NSS	NSS	NSS	17 Mar 2021			1993: 250	y • Argonto
		SW3	1,205	14	NB	NB	24	NSS	NSS	NSS	17 Mar 2021				metric
		SW4	41	13	NB	NB	NB	NB	20	NSS	12 May 2021				Method (SM450
		SW5	220	100	NB	NB	NB	NB	25	NSS	12 May 2021				0 CI-B)
		SW8	48	13	NB	NB	NB	NB	NB	67.4	29 Jun 2021				
		SW9	34	15.8	NB	NB	NB	NB	NB	33.7	25 Jun 2021				
Chloride as Cl	ma/l	SW10	87	3.4	NB	NB	NB	NB	NB	9.9	29 Jun 2021				
		SW11	13	13	17	NSS	20	NSS	NSS	18	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	111	-	71	NSS	127	230	178	167	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	57.89	-	NB	NB	NB	NB	NB	65.6	29 Jun 2021				
Copper		SW1	0.0228	0.0160	NB	NB	0.006	NSS	NSS	NSS	17 Mar 2021	0.02	0.02	WB	Quarterl
(Dissolved	mg/L	SW2	0.0361	0.0174	NB	NB	0.007	NSS	NSS	NSS	17 Mar 2021			1993: 2	у
Copper)		SW3	0.0257	0.0164	NB	NB	<0.003	NSS	NSS	NSS	17 Mar 2021				• ICP-

							2021 F	Results						Referre d	
		Sampling	Baseline	(EIS 2020)	Pre	evious Qua	rter		This Quarte	r		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment Point
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
		SW4	0.0441	0.0210	NB	NB	NB	NB	<0.003	NSS	12 May 2021				OES
		SW5	<0.005	0.0067	NB	NB	NB	NB	<0.003	NSS	12 May 2021				
		SW8	<0.005	0.015	NB	NB	NB	NB	NB	<0.005	29 Jun 2021				
		SW9	0.0267	0.0520	NB	NB	NB	NB	NB	<0.005	25 Jun 2021				
		SW10	0.0416	0.008	NB	NB	NB	NSS	NSS	<0.005	29 Jun 2021				
		SW11	0.0234	0.0293	0.004	NSS	<0.003	NSS	NSS	0.004	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	0.0106	-	0.006	NSS	0.06	0.05	0.08	0.05	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	0.0084	-	NB	NB	NB	NB	NB	<0.005	29 Jun 2021				
		SW1	0.0018	<0.0009	NB	NB	<0.005	NSS	NSS	NSS	17 Mar 2021	0.02	0.02	WB	Quarterl
		SW2	0.003	<0.0009	NB	NB	<0.005	NSS	NSS	NSS	17 Mar 2021			1993: 0 01	у
		SW3	<0.0009	<0.0009	NB	NB	<0.005	NSS	NSS	NSS	17 Mar 2021			0.01	• ICP- OES
		SW4	0.0018	<0.0009	NB	NB	NB	NSS	<0.005	NSS	12 May 2021				
		SW5	0.004	<0.0009	NB	NB	NB	NSS	<0.005	NSS	12 May 2021				
		SW8	0.0031	<0.0009	NB	NB	NB	NB	NB	<0.0007	29 Jun 2021				
Arsenic (As)	mg/L	SW9	0.0029	<0.0009	NB	NB	NB	NB	NB	<0.0007	25 Jun 2021				
		SW10	0.002	<0.0009	NB	NB	NB	NB	NB	0.0009	29 Jun 2021				
		SW11	0.0022	<0.0009	<0.008	NSS	<0.008	NSS	NSS	<0.005	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	<0.0009	-	<0.008	NSS	<0.008	<0.008	<0.005	<0.005	7 Jan 2021 11 Mar 2021				

							2021 F	Results						Referre d	
		0	Baseline	(EIS 2020)	Pr	evious Qua	rter		This Quarte	er		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment
Parameter	Unit	Sampling Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	s (DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
											28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	<0.0009	-	NB	NB	NB	NB	NB	<0.0007	29 Jun 2021				
		SW1	0.0041	<0.002	NB	NB	<0.003	NSS	NSS	NSS	17 Mar 2021	0.005	0.005	WB	Quarterl
		SW2	0.0041	<0.002	NB	NB	<0.003	NSS	NSS	NSS	17 Mar 2021			1993: 0.003	y - ICD
		SW3	<0.002	<0.002	NB	NB	<0.003	NSS	NSS	NSS	17 Mar 2021			0.000	• ICP- OES
		SW4	<0.002	0.0039	NB	NB	NB	NSS	<0.003	NSS	12 May 2021				
		SW5	<0.002	<0.002	NB	NB	NB	NSS	<0.003	NSS	12 May 2021				
		SW8	<0.002	0.0041	NB	NB	NB	NB	NB	<0.003	29 June 2021				
		SW9	0.0041	0.0101	NB	NB	NB	NB	NB	<0.003	25 June 2021				
Cadmium (Cd)	ma/l	SW10	<0.002	0.0034	NB	NB	NB	NB	NB	<0.003	29 June 2021				
	119/2	SW11	<0.002	0.0048	<0.001	NSS	<0.001	NSS	NSS	<0.001	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	<0.002	-	<0.001	NSS	<0.001	<0.001	<0.001	<0.001	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	-	-	NB	NB	NB	NB	NB	<0.003	29 Jun 2021				
		SW1	<0.002	<0.03	NB	NB	<0.005	NSS	NSS	NSS	17 Mar 2021	0.01	0.01	WB	Quarterl
Chromium		SW2	<0.002	<0.03	NB	NB	<0.005	NSS	NSS	NSS	17 Mar 2021			1993: 0.05	y Dialassa l
Hexavalent	mg/L	SW3	<0.002	<0.03	NB	NB	<0.005	NSS	NSS	NSS	17 Mar 2021			0.00	 Dipnenyl carbazid
(Cr ^{o+})		SW4	<0.002	<0.03	NB	NB	NB	NB	<0.005	NSS	12 May 2021]			e,
		SW5	0.004	<0.03	NB	NB	NB	NB	<0.005	NSS	12 May 2021				Colorim

							2021 F	Results						Referre d	
		Sampling	Baseline	(EIS 2020)	Pre	evious Qua	rter		This Quarte	ər		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment Point
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
		SW8	<0.002	<0.03	NB	NB	NB	NB	NB	<0.01	29 Jun 2021				etric Mothod
		SW9	<0.002	<0.03	NB	NB	NB	NB	NB	<0.01	25 Jun 2021				(SM350
		SW10	<0.002	<0.03	NB	NB	NB	NSS	NSS	<0.01	29 Jun 2021				0-Cr B)
		SW11	<0.002	<0.03	<0.004	NSS	<0.004	NSS	NSS	<0.005	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	<0.002	-	<0.004	NSS	<0.004	<0.004	<0.004	<0.004	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	-	-	NB	NB	NB	NB	NB	<0.01	29 Jun 2021				
		SW1	0.0289	0.027	NB	NB	<0.04	NSS	NSS	NSS	17 Mar 2021	0.1	0.1	WB	Quarterl
		SW2	0.0243	<0.001	NB	NB	<0.04	NSS	NSS	NSS	17 Mar 2021			1993: 0.07	У
		SW3	0.0368	<0.001	NB	NB	<0.04	NSS	NSS	NSS	17 Mar 2021			0.01	 Ion Selectiv
		SW4	0.0399	<0.001	NB	NB	NB	NB	<0.004	NSS	12 May 2021				e Flastrad
		SW5	0.0619	<0.001	NB	NB	NB	NB	<0.004	NSS	12 May 2021				e (SM
		SW8	0.051 6	<0.001	NB	NB	NB	NB	NB	<0.01	29 Jun 2021				4500
Cuenida (CNI-)		SW9	0.0274	<0.001	NB	NB	NB	NB	NB	0.12	25 Jun 2021				CN-F)
Cyanide (CN)	llig/∟	SW10	0.0269	<0.001	NB	NB	NB	NSS	NSS	<0.01	29 Jun 2021				
		SW11	0.0261	<0.001	<0.007	NSS	<0.007	NSS	NSS	<0.007	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	0.009	-	<0.007	NSS	<0.007	0.008	0.02	0.01	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021				

							2021 F	Results						Referre d	
		Compling	Baseline	(EIS 2020)	Pro	evious Qua	rter		This Quarte	r		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
											30 Jun 2021				
		DD SW2	0.017	-	NB	NB	NB	NB	NB	<0.01	29 Jun 2021				
		SW1	0.0530	0.0177	NB	NB	<0.01	NSS	NSS	NSS	17 Mar 2021	0.05	0.05	WB	 Quarterl
		SW2	0.0327	0.0114	NB	NB	<0.01	NSS	NSS	NSS	17 Mar 2021			0.01	y • ICP-
		SW3	0.017	<0.006	NB	NB	<0.01	NSS	NSS	NSS	17 Mar 2021				OES
		SW4	0.0282	<0.006	NB	NB	NB	NSS	<0.01	NSS	12 May 2021				
		SW5	<0.006	0.0088	NB	NB	NB	NSS	<0.01	NSS	12 May 2021				
		SW8	<0.006	<0.006	NB	NB	NB	NB	NB	<0.01	29 Jun 2021				
		SW9	0.0241	0.0455	NB	NB	NB	NB	NB	<0.01	25 Jun 2021				
Lead (Pb)	ma/l	SW10	0.0137	0.0247	NB	NB	NB	NB	NB	<0.01	29 Jun 2021				
	iiig/L	SW11	0.0327	0.0102	<0.005		<0.005	NSS	NSS	<0.005	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	<0.006	-	<0.005		<0.005	<0.005	<0.005	<0.005	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	0.0233	-	NB	NB	NB	NB	NB	<0.01	29 June 2021				
		SW1	<0.0001	<0.0001	NB	NB	<0.0001	NSS	NSS	NSS	17 Mar 2021	0.002	0.002	WB	 Quarterl
		SW2	<0.0001	<0.0001	NB	NB	<0.0001	NSS	NSS	NSS	17 Mar 2021			1993: 0.001	У
		SW3	<0.0001	<0.0001	NB	NB	<0.0001	NSS	NSS	NSS	17 Mar 2021			0.001	 Manual Cold
Mercury (Hg)	mg/L	SW4	<0.0001	<0.0001	NB	NB	NB	NB	<0.0001	NSS	12 May 2021				Vapor
		SW5	<0.0001	<0.0001	NB	NB	NB	NB	<0.0001	NSS	12 May 2021				AAs
		SW8	<0.0001	<0.0001	NB	NB	NB	NB	NB	<0.0004	29 Jun 2021				
		SW9	<0.0001	0.0001	NB	NB	NB	NB	NB	< 0.0004	25 Jun 2021				

							2021 F	Results						Referre d	
		Sampling	Baseline	(EIS 2020)	Pro	evious Qua	rter		This Quarte	r		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment Point
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
		SW10	<0.0001	0.0001	NB	NB	NB	NB	NB	<0.01	29 Jun 2021				
		SW11	<0.0001	0.0002	<0.0002	NSS	<0.0002	NSS	NSS	<0.0002	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	<0.0001	-	<0.0002	NSS	<0.0002	<0.0002	<0.0002	<0.0002	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	-	-	NB	NB	NB	NB	NB	<0.0004	29 Jun 2021				
		SW1	<0.01	<0.2	NB	NB	<0.036	NSS	NSS	NSS	17 Mar 2021	3	3	-	Quarterl
		SW2	<0.01	<0.2	NB	NB	<0.036	NSS	NSS	NSS	17 Mar 2021				У
		SW3	<0.01	<0.2	NB	NB	<0.036	NSS	NSS	NSS	17 Mar 2021				 EPA Method
		SW4	<0.01	<0.2	NB	NB	NB	NB	<0.036	NSS	12 May 2021				8141A
		SW5	<0.01	<0.2	NB	NB	NB	NB	<0.036	NSS	12 May 2021				
		SW8	<0.01	<0.2	NB	NB	NB	NB	NB	NSR	29 Jun 2021				
		SW9	<0.01	<0.2	NB	NB	NB	NB	NB	NSR	25 Jun 2021				
Organophosphat	ua/l	SW10	<0.01	<0.2	NB	NB	NB	NB	NB	NSR	29 Jun 2021				
Organophosphat e as Malathion μg	н <u>а</u> , г	SW11	<0.01	<0.2	ND	NSS	ND	NSS	NSS	NSR	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	<0.5	-	ND	NSS	ND	ND	ND	ND	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	<0.5	-	NB	NB	NB	NB	NB	NSR	29 Jun 2021				

							2021 F	Results						Referre d	
		Sampling	Baseline	(EIS 2020)	Pr	evious Qua	rter		This Quarte	ər		Country's Standard	Standar	Internati onal Standar	Remarks (Measure ment Point
Parameter	Unit	Station	Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun	Sampling Date	(DAO 2016-08, Class C)	Contrac t	ds (WHO 1993, EU 1975/19 72)	Frequenc y, Method, etc.)
		SW1	510	394	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021	-	-	-	Quarterl
		SW2	3,139	351	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021				y Canduat
		SW3	4,190	382	NB	NB	NSR	NSS	NSS	NSS	17 Mar 2021				 Conduct imetry
		SW4	322	314	NB	NB	NB	NB	NSR	NSS	12 May 2021				
		SW5	2,037	682	NB	NB	NB	NB	NSR	NSS	12 May 2021				
		SW8	677	158	NB	NB	NB	NB	NB	854	29 Jun 2021				
		SW9	500	236	NB	NB	NB	NB	NB	709.1	25 Jun 2021				
Electric	uS/cm	SW10	436	937	NB	NB	NB	NB	NB	89.25	29 Jun 2021				
conductivity	μο/em	SW11	340	248	364	NSS	428	NSS	NSS	438	26 Jan 2021 31 Mar 2021 14 Jun 2021				
		DD SW1	83	-	NSR	NSS	NSR	NSR	NSR	NSR	7 Jan 2021 11 Mar 2021 28 Apr 2021 27 May 2021 30 Jun 2021				
		DD SW2	513	-	NB	NB	NB	NB	NB	1318	29 Jun 2021				

ND – Not detected (by the third-party laboratory), NB – No baseline sampled/conducted during the month; NSR – No sampling results (parameter not analyzed); NSS – No sampling schedule for the month

			Bas	seline			Re	sults				Country's	Standa	Referre d Internati	Remarks (Measure-
Parameter	Unit	Sampling Station	(EIS	2020)	Pre	vious Qua	arter	۲ ۲	۲his Quart	er	Sampling Date	Standards (PNSDW 2017)	rds for Contra ct	onal Standar ds	ment Point, Frequency, Method.
			Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun		,		(WHO 1993)	etc.)
pH (Range)	-	GW4	6.62	6.70	NB	NB	NB	NB	NB	6.4	25 Jun 2021	6.5-8.5	6.5- 8.5	WB 1993: <8	Once before construct
		GW5	6.46	6.34	NB	NB	NB	NB	NB	6.0	25 Jun 2021				ion • Electro- metric
Color		DD GW1	6.52	-	6.1	NSS	NSS	6.5	NSS	NSS	7 Jan 2021 8 Apr 2021				Method
Color	TCU	GW4	<5	10	NB	NB	NB	NB	NB	10	25 Jun 2021	10	10	-	Once before
		GW5	<5	<5	NB	NB	NB	NB	NB	<5	25 Jun 2021				construct ion
		DD GW1	5	-	10	NSS	NSS	8	NSS	NSS	7 Jan 2021 8 Apr 2021				Compari son
Temperature	°C	GW4	27.9	28.5	NB	NB	NB	NB	NB	28	25 Jun 2021	-	-	-	Once before construct ion
		GW5	28.2	29.1	NB	NB	NB	NB	NB	28	25 Jun 2021				• Laborato ry & Field Method
		DD GW1	27.4	-	27.3	NSS	NSS	28.3	NSS	NSS	7 Jan 2021 8 Apr 2021				(SM2550 B)

Table 8: Water Quality (Groundwater Quality)

			Ba	seline			Res	sults				Country's	Standa	Referre d Internati	Remarks (Measure-
Parameter	Unit	Sampling Station	(EIS	S 2020)	Pre	evious Qu	arter		This Quart	er	Sampling Date	Standards (PNSDW 2017)	rds for Contra ct	onal Standar ds	ment Point, Frequency, Method.
			Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun		,		(WHO 1993)	etc.)
Sodium (Na)	mg/L	GW4	15	65	NB	NB	NB	NB	NB	45.41	25 Jun 2021	200	200	WB 1993:	Once before
		GW5	21	63	NB	NB	NB	NB	NB	45.30	25 Jun 2021			200	ion • Flame
		DD GW1	113	-	167	NSS	NSS	77	NSS	NSS	7 Jan 2021 8 Apr 2021				AAS
Potassium n (K)	mg/L	GW4	6.4	14	NB	NB	NB	NB	NB	13.50	25 Jun 2021	-	-	-	Once before
		GW5	7.2	10	NB	NB	NB	NB	NB	13.63	25 Jun 2021				construct ion • Flame
		DD GW1	468	-	12	NSS	NSS	8.8	NSS	NSS	7 Jan 2021 8 Apr 2021				AAS
Calcium (Ca)	mg/L	GW4	15	-	NB	NB	NB	NB	NB	40.10	25 Jun 2021	-	-	-	Once before
		GW5	30	7.9	NB	NB	NB	NB	NB	59.17	25 Jun 2021				construct ion • Flame
		DD GW1	29.3	-	21	NSS	NSS	18	NSS	NSS	7 Jan 2021 8 Apr 2021				AAS
Magnesium m (Mg)	mg/L	GW4	6.4	9.5	NB	NB	NB	NB	NB	8.42	25 Jun 2021	-	-	-	Once before
		GW5	13	31	NB	NB	NB	NB	NB	18.00	25 Jun 2021				ion • Flame
		DD GW1	9.28	-	10	NSS	NSS	8.1	NSS	NSS	7 Jan 2021 8 Apr 2021				AAS

			Ba	seline			Re	sults				Country's	Standa	Referre d Internati	Remarks (Measure-
Parameter	Unit	Sampling Station	(EIS	5 2020)	Pre	evious Qua	arter	1	This Quart	er	Date	Standards (PNSDW 2017)	rds for Contra ct	onal Standar ds	ment Point, Frequency, Method,
			Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun		·		(WHO 1993)	etc.)
Bicarbonate	mg/L	GW4	86	147	NB	NB	NB	NB	NB	195.3	25 Jun 2021	-	-	-	Once before
		GW5	113	113	NB	NB	NB	NB	NB	129.2	25 Jun 2021				construct ion
		DD GW1	144	-	219	NSS	NSS	179	NSS		7 Jan 2021 8 Apr 2021				y
Chloride n (Cl ⁻)	mg/L	GW4	31	19	NB	NB	NB	NB	NB	40.0	25 Jun 2021	250	250	WB 1993: 250	Once before construct ion
		GW5	61	48	NB	NB	NB	NB	NB	42.9	25 Jun 2021				Argento metric Method (SM4500
		DD GW1	84.3	-	128	NSS	NSS	152	NSS	NSS	7 Jan 2021 8 Apr 2021				ĊI-B)
Sulfate n (SO ⁴⁻)	mg/L	GW4	69	88	NB	NB	NB	NB	NB	49	25 Jun 2021	250	250	WB 1993:	Once before
		GW5	87	392	NB	NB	NB	NB	NB	70	25 Jun 2021			250	ion • Turbidim
		DD GW1	93	-	56	NSS	NSS	108	NSS	NSS	7 Jan 2021 8 Apr 2021				etric Method

			Bas	seline			Res	sults				Country's	Standa	Referre d Internati	Remarks (Measure-
Parameter	Unit	Sampling Station	(EIS	5 2020)	Pre	vious Qua	arter	Т	his Quart	er	Sampling Date	Standards (PNSDW 2017)	rds for Contra ct	onal Standar ds	ment Point, Frequency, Method.
			Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun				(WHO 1993)	etc.)
Nitrate-N	mg/L	GW4	0.18	1.2	NB	NB	NB	NB	NB	1.00	25 Jun 2021	50	50	WB 1993: 50	Once before construct
		GW5	0.55	0.18	NB	NB	NB	NB	NB	6.00	25 Jun 2021				Colorime try – Brucine
		DD GW1	0.13	-	0.9	NSS	NSS	2.2	NSS	NSS	7 Jan 2021 8 Apr 2021				(EPA 352.1)
Arsenic m (As)	mg/L	GW4	0.0016	<0.0009	NB	NB	NB	NB	NB	<0.000 7	25 Jun 2021	0.01	0.01	WB 1993:	 Once before
		GW5	0.0022	<0.0009	NB	NB	NB	NB	NB	0.0020	25 Jun 2021			0.01	construct ion • ICP-
		DD GW1	0	-	<0.008	NSS	NSS	<0.008	NSS	NSS	7 Jan 2021 8 Apr 2021				OES
Cadmium (Cd)	mg/L	GW4	<0.002	0.0051	NB	NB	NB	NB	NB	<0.003	25 Jun 2021	0.003	0.003	WB 1993:	Once before
(0-)		GW5	<0.002	<0.002	NB	NB	NB	NB	NB	<0.003	25 Jun 2021			0.003	ion
		DD GW1	0.0038	-	< 0.001	NSS	NSS	<0.001	NSS	NSS	7 Jan 2021 8 Apr 2021				OES

Parameter			Bas	seline			Res	sults				Country's	Standa	Referre d Internati	Remarks (Measure-
Parameter	Unit	Sampling Station	(EIS	2020)	Pre	vious Qu	arter	Т	his Quart	er	Sampling Date	Standards (PNSDW 2017)	rds for Contra ct	onal Standar ds	ment Point, Frequency, Method.
			Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun				(WHO 1993)	etc.)
Chromiu m as Hexavale nt Chromiu	mg/L	GW4	<0.002	<0.002	NB	NB	NB	NB	NB	NSR	25 Jun 2021	0.05	0.05	WB 1993: 0.05	Once before construct ion Dinhenvl
m (Cr ⁶⁺)		GW5	<0.002	0.0102	NB	NB	NB	NB	NB	NSR	25 Jun 2021				carbazid e, Colorime tric Method
Cyanide, m		DD GW1	0	-	<0.004	NSS	NSS	<0.004	NSS	NSS	7 Jan 2021 8 Apr 2021				(SM3500 -Cr B)
Cyanide, n as Free Cyanide (CN ⁻)	mg/L	GW4	0.0458	0.004	NB	NB	NB	NB	NB	<0.01	25 Jun 2021	0.5	0.5	WB 1993: 0.07	Once before construct ion
		GW5	0.0333	<0.001	NB	NB	NB	NB	NB	<0.01	25 Jun 2021				 Ion Selective Electrod e (SM
		DD GW1	0.014	-	<0.02	NSS	NSS	<0.02	NSS	NSS	7 Jan 2021 8 Apr 2021				4500 CN-F)
Lead (Pb)	mg/L	GW4	<0.006	0.068	NB	NB	NB	NB	NB	<0.01	25 Jun 2021	0.01	0.01	WB 1993:	Once before

			Bas	eline			Res	ults				Country's	Standa	Referre d Internati	Remarks (Measure-
Parameter	Unit	Sampling Station	(EIS	2020)	Pre	vious Qua	arter	Т	his Quart	er	Sampling Date	Standards (PNSDW 2017)	rds for Contra ct	onal Standar ds	ment Point, Frequency, Method,
			Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun				(WHO 1993)	etc.)
		GW5	<0.006	<0.006	NB	NB	NB	NB	NB	<0.01	25 Jun 2021			0.01	construct ion
		DD GW1	0	-	<0.05	NSS	NSS	<0.005	NSS		7 Jan 2021 8 Apr 2021				• ICP- OES
Mercury, mg (Hg)	mg/L	GW4	<0.0001	0.0017	NB	NB	NB	NB	NB	<0.000 4	25 Jun 2021	0.001	0.001	WB 1993: 0.001	Once before construct
		GW5	<0.0001	<0.0001	NB	NB	NB	NB	NB	<0.000 4	25 Jun 2021				ion ● Manual Cold
		DD GW1	0	-	<0.002	NSS	NSS	<0.000 2	NSS	NSS	7 Jan 2021 8 Apr 2021				Vapor AAs
Total M coliform 0	MPN/1 00 mL	GW4	<1.1	>8	NB	NB	NB	NB	NB	>8.0	25 Jun 2021	<1.1	<1.1	WB 1993: 0	Once before construct ion
		GW5	<1.1	>8	NB	NB	NB	NB	NB	>8.0	25 Jun 2021				 Multiple Tube Ferment ation Techniqu
		DD GW1	>8	-	>8.0	NSS	NSS	<1.1	NSS	NSS	7 Jan 2021 8 Apr 2021				e (SM 9221B)

			Ba	seline			Re	sults				Country's	Standa	Referre d Internati	Remarks (Measure-
Parameter	Unit	Sampling Station	(EIS	5 2020)	Pre	vious Qu	arter	٦	This Quart	er	 Sampling Date 	Standards (PNSDW 2017)	rds for Contra ct	onal Standar ds	ment Point, Frequency, Method.
			Dry	Wet	Jan	Feb	Mar	Apr	Мау	Jun		,		(WHO 1993)	etc.)
Fecal coliform	MPN/1 00 mL	GW4	<1.1	8	NB	NB	NB	NB	NB	>8.0	25 Jun 2021	-	-	WB 1993: 0	Once before construct ion
Conductivi µS		GW5	<1.1	8	NB	NB	NB	NB	NB	>8.0	25 Jun 2021				 Multiple Tube Ferment ation Techniqu
		DD GW1	<1.1	-	1.1	NSS	NSS	<1.1	NSS	NSS	7 Jan 2021 8 Apr 2021				e (SM 9221 E1)
Conductivi µ ty	µS/cm	GW4	326	556	NB	NB	NB	NB	NB	618.1	25 Jun 2021	-	-	-	Once before
		GW5	493	796	NB	NB	NB	NB	NB	819.8	25 Jun 2021				construct ion
		DD GW1	705	-	866	NSS	NSS	977	NSS	NSS	7 Jan 2021 8 Apr 2021				metry
Total m Dissolved Solids (TDS)	mg/L	GW4	160	273	NB	NB	NB	NB	NB	434	25 Jun 2021	600	600	WB 1993: 1.000	Once before
		GW5	242	390	NB	NB	NB	NB	NB	560	25 Jun 2021			1,000	ion • Gravimet
		DD GW1	458	-	497	NSS	NSS	671	NSS	NSS	7 Jan 2021 8 Apr 2021				ry (SM2540 C)

14. DOTr with assistance from the JICA Design Team prepared and submitted an updated Project Waste Management Plans (WMPs) for both the NSCR Clark Extension and NSCR Calamba Extension in August 2019, which were reviewed by GCR in February 2020. The WMP for NSCR Clark Extension was submitted by DOTr to DENR-EMB in July 2020. These WMPs serves as the benchmark for the Contractors' detailed WMP per GS 118 of the contract. As the Project is currently in Pre-Construction Phase, **Error! Not a valid bookmark self-reference.** presents the estimated waste stream during the Pre-Construction Phase.

Monitoring Item	Monitoring Results during Report Period
Tree cutting	CP N-01: 2 tons (Leaves, branches, and roots)
	CP N-02: 19,366 tons (unsuitable materials including tree cutting debris)
	CP N-03: 0 (no tree cutting during this reporting period)
	CP N-04: 10 m ³
	CP N-05: 483 m ³
Demolition rubbles	CP N-01: 0 (none so far)
	CP N-02: 0 (none so far)
	CP N-03: 0 (none so far)
	CP N-04: 0 (none so far)
	CP N-05: 1,200 m ³
Domestic refuse	CP N-01: 17.40 tons
	CP N-02: 16.80 tons
	CP N-03: 0.863 ton
	CP N-04: 4 metric tons/quarter
I invite a sufficient	CP N-05: 2,410 M ^o
Liquid septic tank	CP N-01: 240 M3
wastes	CP N-02: 80.40 M3 CD N-02: 8 000 litera
	CP N-03. 3,000 IIIEIS CD N 04: 16 unite pertable teilete
	CP N 05(10, 760)
Hozordouo	CP N-05. 10, 700 L CP N 01: 0 (none co for)
Materiala (Conoral)	CP N - 01. 0 (none so far)
Materials (Gerieral)	CP N 03: 0 (none so far)
	CP N 04: 0 (none so far)
	$CP N_{-04}$. 0 (none so far) $CP N_{-05}$: 0 (none so far)
Hazardous	$CP N_{-01} \cdot 0$ (none so far)
Materials CCO	$CP N_{-0}$ (none so far)
	CP N-03: 0 (none so far, only lubricants, paint, hydraulic oil, coolant)
	CP N-04 O (none so far)
	CP N-05: Nil
	CP N-05: NII

	Table 9: Pre-Construction	Phase Estim	ated Waste Stream	n and Its Status
--	---------------------------	-------------	-------------------	------------------

- 15. Tree cutting wastes such as leaves, branches, roots and other unsuitable materials are being hauled by the contractors and deposited in their selected disposal sites. For CP N-01, MNB Hauler hauls out and disposes the construction wastes of CP N-01 to Metro Clark Waste Management Corporation (MCWM). For CP N-02, tree cutting wastes are included in the clearing and grubbing works of A&N Construction and are deposited in the disposal site in Bamban, Tarlac. For CP N-04, tree cutting wastes are deposited in CDC while for CP N-05, A.C. Mangio Enterprises (ACME), the tree cutting subcontractor, also transports and stores the tree cutting waste within its own property in Capas, Tarlac.
- 16. For the domestic refuse, MNB Hauler also transports the wastes of CP N-01 to MCWM. Meanwhile for CP N-02, the wastes in the temporary facilities are collected by the subcontractor and the BLGU of Brgy. Malpitic during Tuesdays, Thursdays, and Fridays. For CP N-03, domestic wastes are also being collected by third-party. Some subcontractors of CP N-03 have a mobile Material Recovery Facility (MRF) while for others, wastes are also being collected by the BLGU. For CP N-04 and CP N-05, wastes are collected by and disposed to MCWM.
- 17. For the liquid septic tank wastes, E.C. Soliman was engaged by all the contractors as third-party septic waste hauler for their portable toilets.

			Base	eline											2021 R	Results										
Sampli		(EIS :	2020,	WBG 20	007)					Pre	vious Q	uarter							Th	is Quar	ter				NPCC (Lab)	WBG (EIS)
Station		Dry			Wet			January	,		Februar	у		March			April			Мау	-		June			
	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA		
		1310			1546															0900 H	56.4				60	Dayti me 0700
	29- Jan- 18	H- 1410 H	61. 1	08- Jul- 18	H- 1646 H	69. 7			ampling No sampling I								26- 27 Ma	1800 H	49.2				65	H- 2200 H (RIE): 55		
1102	28-	2310			0/30		No	o samplir	ng	N	o sampli	ing	N	o sampli	ng	No	o samplii	ng	y 202	2200 H	50.1	No	o samplii	ng	70	Nightti me
	29 Jan 2018	H- 0010 H	65. 8	08- Jul- 18	H- 0530 H	63									1	0500 H	51.8				65	2200 H- 0700 H (RIE): 45				
		1304			1155									0900 H	75.4										65	Dayti me
J	30- Jan- 18	H- 1404 H	67. 3	07- Jul- 18	H- 1255 H	79. 1							27– 28	1800 H	59.4										70	0700 H- 2200 H (RIE): 55
N03	20	0004			0000		NC	o samplii	ng	N	o sampli	ing	Mar 202 1	2200 H	60.1	NC	samplii	ng	N	o sampl	ing	NC	samplii	ng	65	Nightti me
	30– 31 Jan 2018	2304 H- 0004 H	63	6–7 Jul 2018	2336 H- 2436 H	67. 3							1	0500 H	66.1										60	2200 H- 0700 H (RIE): 45
NOR	Feb 2,	1002 H-	65.	July 4,	1600 H-	72.	No	sampli	ng	N	o sampli	ina	NL	- - campli	ng	No	sampli	00	NL	o sampl	ing	15-	0730 H	44. 7	65	Dayti me
INUO	2018 8	1102 H	7	2018 8	1700 H	5		sampin	iy		o sampi	ing		o sampli	чy		sampiii	iy		o sampi	ing	Jun	0830 H	48. 9	65	0700 H-

Table 10: Noise Level

			Base	eline		2021 Results																				
Sampli		(EIS :	2020,	WBG 20	007)					Prev	vious Q	uarter							Thi	is Quari	ter				NPCC (Lab)	WBG (EIS)
Station		Dry			Wet			January	/	I	Februar	у		March			April			Мау			June			
	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA		
																						202 1	0930 H	46. 7	70	2200 H
																							1030 H	45. 5	70	(RIE). 55
																							1130 H	45. 6	70	
																							1230 H	45. 3	70	
																							1330 H	44. 5	70	
																							1430 H	44. 3	70	
																							1530 H	44. 8	70	
																							1630 H	46. 4	70	
																							1730 H	44. 9	70	
																							1830 H	44. 7	70	
																							1930 H	45	65	
																							2030 H	44. 6	65	Niabtti
	Fob	2202		lukz	0327																		2130 H	45. 7	65	me 2200
	1, 2018	H- 2302	62. 5	5, 2018	H- 0427	59. 8																	2230 H	42. 6	65	H- 0700
	_0.0	Н		_0.0	Н																		2330 H	45. 9	60	н (RIE): 45
																							0030 H	42. 6	60	
																							0130 H	39. 1	60	

			Base	eline			2021 Results																			
Sampli		(EIS	2020,	WBG 20	007)					Prev	ious Q	uarter	_						Thi	s Quar	ter				NPCC (Lab)	WBG (EIS)
Station		Dry			Wet			January		F	Februar	у		March			April			Мау			June			
	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA		
																							0230 H	38. 3	60	
																							0330 H	42. 9	60	
																							0430 H	44. 4	60	
																							0530 H	51. 8	65	
																							0630 H	52. 2	65	
																							0700 H	48. 7	65	
																							0800 H	50. 5	65	
																							0900 H	49. 5	70	
																							1000 H	54. 2	70	
																							1100 H	61. 4	70	Dayti
NOO	Mar	1340 H-	59.	July	1300 H-	67.	Na	e e recentive		NL			N			N			Nia			14- 15	1200 H	49. 4	70	те 0700 Н-
1109	2, 2018	1440 H	9	12, 2018	1400 H	6		samplin	ig		o sampii	ing		o sampii	ng	IN	io sampi	ing	INC	sampi	ing	202 1	1300 H	49. 3	70	2200 H
																							1400 H	50. 2	70	(RIE): 55
																							1500 H	48. 1	70	
																							1600 H	50	70	
																							1700 H	48. 1	70	
																							1800 H	47. 4	70	

			Base	eline											2021 F	Results	5									
Sampli		(EIS :	2020,	WBG 20	007)					Prev	vious Q	uarter							Th	is Quar	ter				NPCC (Lab)	WBG (EIS)
Station		Dry			Wet			January			Februar	у		March			April			Мау	-		June			
	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA		
																							1900 H	47. 8	65	
																							2000 H	45. 5	65	
																							2100 H	45. 8	65	
																							2200 H	43. 7	65	
																							2300 H	44. 4	60	Nightti
	Mar 6-7	2330 H-	64.	July	2220 H-	71.																	0000 H	41. 2	60	2200 H-
	2018	0030 H	4	2018	2320 H	5																	0100 H	40. 8	60	0700 H (PIE):
																							0200 H	35. 5	60	45
																							0300 H	37. 2	60	
																							0400 H	51. 2	60	
																							0500 H	50. 1	65	
												-						T			-		0600 H	47	65	
	Mar	1108		Julv	0900						0900 H	62.0 9		0900 H	50.1 1		0900 H	62.5 2		0900 H	66.1 3				50	Dayti me 0700
N12	3, 2018	H- 1208 H	61. 5	19, 2018	H- 1000 H	81. 4	Nc	samplir	ng	15– 16 Feb	1800 H	55.8 6	26– 27 Mar	1800 H	52.2 5	29- 30 Apr	1800 H	63.6 1	28– 29 Ma v	1800 H	61.4 9	No	o samplii	ng	55	H- 2200 H (RIE): 55
	Mar 7.	0355 H-	61.	July 17-	2320 H-	91.				202 1	2200 H	41.3 9	202 1	2200 H	44.9	202 1	2200 H	48.2 3	202 1	2200 H	52.1 6				50	Nightti me 2200
	2018	0455 H	2	18, 2018	2420 H	9					0500 H	54.6 1		0500 H	52.6 9		0500 H	55.6		0500 H	70.9 8				45	H- 0700 H

			Base	eline											2021 F	Results	;									
Sampli		(EIS	2020,	WBG 20	007)					Prev	/ious Qı	uarter							Th	is Quar	ter				NPCC (Lab)	WBG (EIS)
Station		Dry			Wet			January		F	Februar	у		March			April	_		Мау			June			
	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA		
																										(RIE): 45
								0748 H	46. 8		0719 H	47.5		0815 H	63.8		0711 H	46.1		0850 H	54.4		0700 H	44. 9	J:70 F:65 M:65 A:65 M:65 J:65	
DD N1	Mar 1, 2019	1300 H- 1400 H	52. 4	-	-	-	7–8 Jan 202 1	0948 H	43. 7	10– 11 Feb 202 1	0919 H	45.6	11– 12 Mar 202 1	1015 H	50.2	8-9 Apr 202 1	0911 H	46.5	12- 13 Ma y 202 1	1050 H	49.3	17- 18 Jun 202 1	0900 H	45. 5	J:75 F:70 M:70 A:70 M:70 J:70	Dayti me 0700 H- 2200 H (IC): 70
								1148 H	43. 1		1119 H	53.1		1215 H	39.6		111 H	47		1250 H	55.5		1100 H	49. 4	J:75 F:70 M:70 A:70 M:70 J:70	

			Base	eline											2021 F	Results										
Sampli		(EIS :	2020,	WBG 20	007)					Prev	vious Q	uarter							Th	is Quar	ter				NPCC (Lab)	WBG (EIS)
ng Station		Dry			Wet			January	,		Februar	у		March			April			Мау			June			
	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA		
								1348 H	43. 5		1319 H	47.1		1415 H	45.1		1311 H	49.7		1450 H	53.8		1300 H	48. 6	J:75 F:70 M:70 A:70 M:70 J:70	
								1548 H	47. 5		1519 H	45.8		1615 Н	49.9		1511 H	47.9		1650 H	50.7		1500 H	47. 7	J:75 F:7 M:70 A:70 M:70 J:70	
								1748 H	54. 4		1719 H	45.9		1815 H	45.9		1711 H	46.5		1850 H	49.4		1700 H	47. 8	J:75 F:70 M:65 A:70 M:65 J:70	

			Base	eline											2021 R	Results	5									
Sampli		(EIS :	2020,	WBG 20	007)					Prev	vious Qu	uarter							Th	is Quar	ter				NPCC (Lab)	WBG (EIS)
ng Station		Dry			Wet			January			ebruar	у		March			April			Мау			June			
	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA		
								1948 H	49. 3		1919 H	54.3		2015 H	42.2		1911 H	45.1		2050 H	44.9		1900 H	44. 1	J:70 F:65 M:65 A:65 M:65 J:65	
	Mar 2, 2019	0200 H- 0300 H	56. 3	-	-	-		2148 H	44. 5		2119 H	54.8		2215 H	42.4		2111 H	44.9		2250 H	43.2		2100 H	42. 6	J:70 F:65 M:60 A:65 M:60 J:65	Nightti me 2200 H- 0700 H (IC): 70
								2348 H	42. 8		2319 H	51.7		0015 H	42.4		2311 H	43.4		0050 H	43.5		2300 H	40. 8	J:65 F:60 M:60 A:60 M:60 J:60	

			Base	eline											2021 R	esults	;									
Sampli		(EIS :	2020,	WBG 20	007)					Prev	vious Qu	uarter							Th	is Quar	ter				NPCC (Lab)	WBG (EIS)
ng Station		Dry			Wet			January		1	Februar	у		March			April			Мау			June			
	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA	Date	Time	dBA		
								0148 H	44		0119 H	46.2		0215 H	42.4		0111 H	42.2		0250 H	42.8		0100 H	41. 8	J:65 F:60 M:60 A:60 M:60 J:60	
								0348 H	47. 2		0319 H	47.3		0415 H	42.6		0311 H	42 2		0450 H	44.4		0300 H	41. 7	J:65 F:60 M:60 A:60 M:60 J:60	
								0548 H	47. 4	•	0519 H	46.7		0615 H	47.5		0511 H	43.1		0650 H	45.2		0500 H	42. 6	J:70 F:65 M:65 A:65 M:65 J:65	
NPCC M	C 1980-	002 Star	ndards	for Nois	se in Ger	neral A	reas								WBG	EHS G	Guideline	s for Co	ommun	nitv Nois	e (2007	·)			1	

NPCC MC 1980-002 Standards for Noise in General Areas

WBG EHS Guidelines for Community Noise (2007)

			Base	eline											2021 F	Results	;								
Sampli		(EIS :	2020, \	NBG 20	007)					Prev	∕ious Qı	uarter							Th	is Quar	ter			NPCC (Lab)	WBG (EIS)
ng Station		Dry			Wet			January		1	Februar	у		March			April			Мау			June		
	Date Time dBA Date																								
Accordin Morning Daytime Evening Nighttime	DateTimedBADateTimedBADateTimedBADateTimedBADateTimedBADateTimedBAding to land-use classifications AA, AAa, AAb, A, Ba. and C Range: ng (5 a.m 9 a.m.): 45-70 dBA ng (6 p.m 6 p.m.): 50-75 dBA ng (6 p.m 10.p.m.): 45-70 dBA ime (10 p.m 5 a.m.): 40-65 dBAResidential, Institutional and Educational (RIE): Daytime (7 a.m 10 p.m.) 55 dBA Nighttime (10 p.m 7 a.m.) 45 dBAIndustrial and Commercial (IC): Daytime (7 a.m 10 p.m.) 70 dBA Nighttime (10 p.m 7 a.m.) 45 dBA														Ą										
a - Area o b Areas o c RIE – F - Guid - Acce Noise im	directly f directly f Resident eline val ptable ir pacts sh	fronting c ronting c ial, Instit lues are ndoor no pould not	or facin or facin utional for nois ise lev excee	g wider g a four , Educa se level els for r d the le	than four- thane roa ational; IC s measu residentia avels of th	ir-lane ad whe C – Ind red ou al, insti	road w erein NF ustrial, t of doo tutiona deline v	/herein N PCC MC Comme ors. I and ed value or r	NPCC 1980 ercial ucatio	MC 19 -002 Si nal sett	80-002 \$ tandards tings refe	Standai for No er to W	rds for l ise in C B-EHS	Noise in General (2007).	Genera Areas p d levels	al Area olus +5 of 3 dl	s plus + dBA coi B at the	10 dBA rection	correc factor	tion fact is applie	or is ap ed. ion off-s	plied.			

							2021 F	Results					Standards for	Referred Internati	
Parameter	Unit	Samplin g	Base (EIS :	eline 2020)	Pre	evious Qua	rter	r	This Quarte	ər	Sampling Date	Country's Standard	Contract (US FTA-VA-90- 1003-06 (2006) Table 12-3.	onal Standard s (U.S. FTA, 2016,	Remarks (Measurement Point,
		Station	in/s	dB	Jan	Feb	Mar	Apr	Мау	Jun		5	Vibration Damage Criteria)	Ground- Borne Vibration Impact Criteria) ⁾	Method, etc.)
Vibration level	VdB	V03	0.02 8	86.3	NB	NB	2.938 mm/s with 100.9 dBANSSNSSNSSNSSNSSNSSNSSNSS0.986		NSS	27–28 Mar 2021	No standar ds	i. Reinforced- concrete, steel or timber (no plaster): 0.5	72 (Catego ry 2, Freque nt	 Monthly 24-hr sampling Vibron Seismomet 	
		V08	0.05 1	93.2	NB	NB	NB	NB	NB	0.986 mm/s with 102.7 VdBA	14-16 Jun 2021		ii. Engineered concrete and masonry (no plaster): 0.3	Events)	er
		V09	0.05 3	91.1	NB	NB	NB	NB	NB	0.795m m/s with 92.6 VdBA a	14-16 Jun 2021		in/s iii.Non- engineered timber and		
		V12	0.10 2	98.9	NB	55	NSS	53.5	53	No samplin g	13–14 Apr 2021 14-15 May 2021		buildings: 0.2 in/s iv.Buildings extremely		

Table 11: Vibration Level

			Bas	eline			2021 F	Results			_		Standards for	Referred Internati onal	
Parameter	Unit	Samplin g	(EIS	S 2020)	Pre	vious Qua	rter	т	his Quarte	ər	Sampling	Country's Standard	FTA-VA-90- 1003-06 (2006) Table 12-3.	Standard s (U.S. FTA, 2016.	Remarks (Measurement Point,
		Station	in/s	dB	Jan	Feb	Mar	Apr	Мау	Jun	Date	S	Construction Vibration Damage Criteria)	Ground- Borne Vibration Impact Criteria) ⁾	Frequency, Method, etc.)
		DD V01	0.00 073	71.1	56	53	NSS	53	53	58	10–11 Apr 2021 28-29 May 16-17 Jun 2021		susceptible to vibration damage: 0.12 in/s		

4. Natural Environment

4.1 NSCR Clark Extension

18. The tree inventory survey conducted during the detailed engineering design estimated 10,504 trees to be removed along the planned ROW and depot area of the NSCR Clark Extension project. These trees are to be cut and/or earth-balled for transplantation. Replacement seedlings to compensate for the affected trees will be determined by the DENR in cooperation with the LGU concerned. The replacement trees shall form part of the DOTr's compliance to an ECC condition to contribute to the National Greening Program (NGP) of the DENR. It will be implemented as a Greening Program patterned after a successful precedent convergence partnership between DENR and DPWH. A MOA between DOTr, DENR and PNR was drafted and currently under final review by DENR to seal the partnership. The necessary administrative processes were followed to secure tree cutting/earth balling permit from DENR, as well as in the participation to the NGP.

19. Validation of the affected trees within the PNR ROW and the release of tree cutting permits for CP N-01 and CP N-02 was completed by DOTr with assistance from GCR on the last quarter. For this quarter, tree cutting is ongoing for CP N-01, CP N-02, CP N-04 and CP N-05. Coconut cutting in CP N-01 did not commence during this reporting period, while CP N-02 completed on 09 June 2021. Meanwhile, validation activity for the affected trees within PNR ROW is ongoing for CP N-01, CP N-02 and CP N-03 in this quarter.

20. For the project-affected trees outside the PNR ROW, the process of validating trees for appraisal and obtaining LNO for project-affected land was completed for CP N-01 and ongoing for CP N-02 and CP N-03.

4.2 NSCR Calamba Extension

21. The tree inventory service provider, Simmons Consult International, Inc., for the NSCR Calamba Extension has been engaged in December 2020. Conduct of the tree inventory survey was completed last quarter and a wrap-up meeting with Simmons Consult was held in April. The acquisition of Certificate of No Objections (CNOs) from the affected cities and municipalities, as documentary requirements for the application of tree cutting permit commenced in May 2021. CNOs from Cabuyao City and Calamba City were acquired on 12 May 2021 and 27 May 2021, respectively.

22. At the current Pre-Construction Phase of the Project, tree cutting activities are being carried out sequentially for contract packages that have been issued tree cutting and earth balling permits, while the other contract packages are still undergoing permit application. Table 12 presents the currently applicable monitoring item for the ecosystem.

Monitoring Item	Monitoring Results during Report Period
Number of trees that will be affected by the NSCR	CP N-01 – 3,083 trees have been cut in PNR
Clark Extension Project	ROW Bulacan segment under tree cutting permit TCEP No. 2021-01. 1,696 trees to be cut and 40 to be earthballed in Pampanga segment under tree cutting and earthballing permit TEBP/TCP No. 2021-08. As of this quarter, 195 trees have been cut in Pampanga segment. Coconut cutting did not commence during this reporting period.
	CP N-02 – 3, 917 trees to be cut and 194 to be earthballed under tree cutting and earthballing permit TEBP/TCP No. 2021-06. Tree cutting within the PNR ROW commenced on 19 May 2021 and 3,655 trees has been cut as of this quarter. Coconut cutting in PNR ROW with permit number NCR-PTC-10137 was completed on 09

Table 12: Ecosystem

Monitoring Item	Monitoring Results during Report Period
	Jun 2021.
	CP N-03 – Tree cutting activity did not commence during this reporting period. TC/EB permit application for PNR ROW is being prepared during this quarter.
	CP N-04 – 43 trees to be cut and 14 trees to be earthballed under tree cutting and earthballing permit TEBP/TCP No. 2020-02. Tree cutting/earth balling was completed on 12 May 2021. The 14 earthballed trees were transplanted to Global Zoo, Clark Freeport Zone that was also completed on 12 May 2021.
	CP N-05 – 3,323 trees to be cut and 410 trees to be earthballed under tree cutting and earthballing permit TEBP/TCP No. 2020-15. As of this quarter, 2,521 trees have been cut and 45 trees were transplanted to Global Zoo, Clark Freeport Zone. Coconut cutting did not commence during this reporting period.
Tree inventory for the NSCR Calamba Extension NGP	Tree inventory for NSCR Calamba Extension was completed on 11 Feb 2021 and a wrap-up meeting with Simmons Consult was held on 12 Apr 2021.
	The Greening Program for NSCR Calamba Extension Project will be drafted, initially, based on the tree inventory, and in detail, based on the tree cutting and earthballing permits that will be acquired and on the area/s for transplanting that will be identified by DENR Regional Offices (NCR and 4A).
	 Tree-related activities during this quarter include the following. Final review of tree inventory reports and data (report approved on 15 Jun 2021) Scheduling of tree-related activities (i.e., coordination meetings, CNO acquisition, etc.) Initial coordination meetings with NSCR Calamba Extension Project stakeholders (i.e., DENR-PENRO Laguna, Department of Agriculture Regional Field Office (DA RFO) 4A, Biñan LGU, Sta. Rosa LGU, San Pedro LGU, DENR NCR)

5. Social Environment

23. A separate monitoring report is being prepared and will be submitted by the Social Environment and Resettlement Team for the resettlement, and living/livelihood.

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Baseline Sampling Laboratory Results for CP N-01

Surface Water Quality (SW4 and SW5) Noise Level (N02)

North-South Commuter Railway Extension Project

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Baseline Sampling Laboratory Results for CP N-01

Surface Water Quality (SW4 and SW5)

North-South Commuter Railway Extension Project
F.A.S.T Laboratories

TECHNICAL EXCELLENCE INTEGRITY QUALITY SERVICE

SOCIAL RESPONSIBILITY

F.A.S.T Laboratories – Clark-Angeles

717 Magalang Road, Pandan, Angeles City

TEST REPORT

Reference No: CP2105-1276 Page 1 of 4

CUSTOMER NAME	: HDEC-MEGAWIDE-DONGAH JV	
ADDRESS	: #20 N. Domingo St. Brgy. Valencia 1112 Quezon City	
PROJECT NAME	: MALOLOS-CLARK RAILWAY PROJECT	
PROJECT ADDRESS	: Malolos, Bulacan to Minalin Pampanga	
SAMPLE/S SUBMITTED	: SURFACE WATER	
DATE / TIME SAMPLED	: 12 MAY 2021/ 10:42 AM	
SAMPLED BY	: F.A.S.T. LABORATORIES PERSONNEL	
DATE/TIME RECEIVED	: 12 MAY 2021/ 01:30 PM	
DATE/TIME ANALYZED	: 12 MAY 2021/ 03:42 PM	
ANALYZED BY	: H.Q.SIMBULAN, R.M.PASION	
DATE REPORTED	: 20 MAY 2021	

Sample	Multiple Tube Fermentation Technique Most Probable Number (MPN) per 100 ml				
	Fecal Coliform Count	Total Coliform Count			
SW4-Pampanga River, Apalit, Pampanga (Upstream) (CP2105-1276-01)	20 x 10 ³	32 x 10 ³			

Results are those obtained at the time of examination and relate only to the sample/s tested.

Reference:

APHA AWWA and WEF 2017. Standard Method for the Examination of Water and Wastewater, 23rd edition.

CERTIFIED BY: 20 May 2021 Miras V/Pujalte Microbiology Supervisor – Luzon Micro Reg. No. 15-00243

NOTED BY 221 Rey Christian S. Marbella, RCh Technical Manager PRC Chem. Reg. No. 11036

21 mars 2021

Roland A. Lazan, RCh Laboratory Business Manager PRC Chem. Reg. No. 11880

Terms and Conditions:

1. This report is prepared for the SOLE USE of the customer and is prepared based on the item submitted, the services required by the customer and the conditions under which the Services are performed by F.A.S.T Laboratories. The report is not intended to be representative of similar or equivalent items and does not constitute an endorsement by F.A.S.T Laboratories on the item.

2. The report shall not be reproduced EXCEPT IN FULL and SHALL NOT be used for advertisement, publicity material, and press release or for litigation purposes WITHOUT the written permission of F.A.S.T Laboratories.

3. F.A.S.T Laboratories shall under no circumstances be liable to the customer or its representatives for any direct or indirect loss or damage suffered by the customer or its representatives howsoever arising or whether connected with the services provided by FAST Laboratories

4. This report is NOT OFFICIAL and VALID unless stamped with the seal of F.A.S.T Laboratories. It shall be kept on file for six (6) months from the date of issue.

ACCREDITATIONS/RECOGNITIONS: Dept. of Environment and Natural Resources (DENR)

Dept. of Health (DOH)
Dept. of Agriculture – Bureau of Animal Industry (DA-BAI)

Food and Drugs Administration (FDA)
Bureau of Fisheries and Aquatic Resources (BFAR)
Laguna Lake Development Authority (LLDA)

MAIN OFFICE: 62, 20th Avenue, Cubao, Quezon City 1109 • Tels. (02) 913-0240 to 41, (02) 913-8848 • Telefax: (02) 913-0250 • Globe 0917 523 4178 • www.fastlaboratories.com.ph BRANCHES

he First Analytical Services And Technical Cooperative

A.S.T Laboratories

TECHNICAL EXCELLENCE INTEGRITY QUALITY SERVICE SOCIAL RESPONSIBILITY

F.A.S.T Laboratories – Clark-Angeles

717 Magalang Road, Pandan, Angeles City

TEST REPORT

Reference No: CP2105-1276 Page 2 of 4

CUSTOMER NAME	: HDEC-MEGAWIDE-DONGAH JV
ADDRESS	: #20 N. Domingo St. Brgy. Valencia 1112 Quezon City
PROJECT NAME	: MALOLOS-CLARK RAILWAY PROJECT
PROJECT ADDRESS	: Malolos, Bulacan to Minalin Pampanga
SAMPLE/S SUBMITTED	: SURFACE WATER
DATE / TIME SAMPLED	: 12 MAY 2021/ 10:30 AM
SAMPLED BY	: F.A.S.T. LABORATORIES PERSONNEL
DATE/TIME RECEIVED	: 12 MAY 2021/ 01:30 PM
DATE/TIME ANALYZED	: 12 MAY 2021/ 03:58 PM
ANALYZED BY	: H.Q.SIMBULAN, R.M.PASION
DATE REPORTED	: 20 MAY 2021

Sample	Multiple Tube Fermentation Technique Most Probable Number (MPN) per 100 ml				
	Fecal Coliform Count	Total Coliform Count			
SW4-Pampanga River, Apalit, Pampanga (Downstream) (CP2105-1276-02)	46 x 10 ³	46 x 10 ³			

Results are those obtained at the time of examination and relate only to the sample/s tested.

Reference:

APHA AWWA and WEF 2017. Standard Method for the Examination of Water and Wastewater, 23rd edition.

CERTIFIED BY:

20 May 2021 Miraso Microbiology Supervisor – Luzon Micro Reg. No. 15-00243

NOTED BY

8021 Rev Christian S. Marbella, RCh Technical Manager PRC Chem. Reg. No. 11036

21 MAY 2021

Roland A. Lazan, RCh Laboratory Business Manager PRC Chem. Reg. No. 11880

Terms and Conditions:

1. This report is prepared for the SOLE USE of the customer and is prepared based on the item submitted, the services required by the customer and the conditions under which the Services are performed by F.A.S.T Laboratories. The report is not intended to be representative of similar or equivalent items and does not constitute an endorsement by F.A.S.T Laboratories on the item.

2. The report shall not be reproduced EXCEPT IN FULL and SHALL NOT be used for advertisement, publicity material, and press release or for litigation purposes WITHOUT the written permission of F.A.S.T Laboratories.

3. F.A.S.T Laboratories shall under no circumstances be liable to the customer or its representatives for any direct or indirect loss or damage suffered by the customer or its representatives howsoever arising or whether connected with the services provided by FAST Laboratories

4. This report is **NOT OFFICIAL and VALID unless stamped with the seal of F.A.S.T Laboratories**. It shall be kept on file for six (6) months from the date of issue.

ACCREDITATIONS/RECOGNITIONS: Dept. of Environment and Natural Resources (DENR)

Dept. of Health (DOH)
Dept. of Agriculture – Bureau of Animal Industry (DA-BAI)

Food and Drugs Administration (FDA)

Bureau of Fisheries and Aquatic Resources (BFAR)

Laguna Lake Development Authority (LLDA)

MAIN OFFICE: 62, 20th Avenue, Cubao, Quezon City 1109 • Tels. (02) 913-0240 to 41, (02) 913-8848 • Telefax: (02) 913-0250 • Globe 0917 523 4178 • www.fastlaboratories.com.ph BRANCHES :

A.S.T Laboratories The First Analytical Services And Technical Cooperative

> **TECHNICAL EXCELLENCE** INTEGRITY

QUALITY SERVICE

SOCIAL RESPONSIBILITY

.

F.A.S.T Laboratories – Clark-Angeles

CUSTOMED NAME

717 Magalang Road, Pandan, Angeles City

TEST REPORT

Reference No: CP2105-1276 Page 3 of 4

CUSTOMER NAME	HDEC MECANNIDE DOMONIU IN	Page 3 of 4
CUSTOMER NAME ADDRESS PROJECT NAME PROJECT ADDRESS SAMPLE/S SUBMITTED DATE / TIME SAMPLED SAMPLED BY DATE/TIME RECEIVED DATE/TIME ANALYZED ANALYZED BY DATE REPORTED	 HDEC-MEGAWIDE-DONGAH JV #20 N. Domingo St. Brgy. Valencia 1112 Quezon City MALOLOS-CLARK RAILWAY PROJECT Malolos, Bulacan to Minalin Pampanga SURFACE WATER 12 MAY 2021/ 11:45 AM F.A.S.T. LABORATORIES PERSONNEL 12 MAY 2021/ 01:30 PM 12 MAY 2021/ 04:17 PM H.Q.SIMBULAN, R.M.PASION 20 MAY 2021 	

Sample	Multiple Tube Fermentation Technique Most Probable Number (MPN) per 100 ml				
	Fecal Coliform Count	Total Coliform Count			
SW5-Malalam River, Minalin, Pampanga (Upstream) (CP2105-1276-03)	94 x 10 ³	94 x 10 ³			

Results are those obtained at the time of examination and relate only to the sample/s tested.

Reference:

APHA AWWA and WEF 2017. Standard Method for the Examination of Water and Wastewater, 23rd edition.

CERTIFIED BY:

20 May 2021 V/Puialte Miraso Microbiology Supervisor – Luzon Micro Reg. No. 15-00243

NOTED B 821 Rey Christian S. Marbella, RCh Technidal-Manager PRC Chem. Reg. No. 11036 21 MAY 2021

Roland A. Lazan, RCh Laboratory Business Manager PRC Chem. Reg. No. 11880

Terms and Conditions:

1. This report is prepared for the SOLE USE of the customer and is prepared based on the item submitted, the services required by the customer and the conditions under which the Services are performed by F.A.S.T Laboratories. The report is not intended to be representative of similar or equivalent items and does not constitute an endorsement by F.A.S.T Laboratories on the item.

2. The report shall not be reproduced EXCEPT IN FULL and SHALL NOT be used for advertisement, publicity material, and press release or for litigation purposes WITHOUT the written permission of F.A.S.T Laboratories.

3. F.A.S.T Laboratories shall under no circumstances be liable to the customer or its representatives for any direct or indirect loss or damage suffered by the customer or its representatives howsoever arising or whether connected with the services provided by FAST Laboratories

4. This report is NOT OFFICIAL and VALID unless stamped with the seal of F.A.S.T Laboratories. It shall be kept on file for six (6) months from the

ACCREDITATIONS/RECOGNITIONS: Dept. of Environment and Natural Resources (DENR) • Dept. of Health (DOH) • Dept. of Agriculture - Bureau Industry (DA-BAI) • Food and Drugs Administration (FDA) • Bureau of Fisheries and Aquatic Resources (BFAR) • Laguna Lake Development Authority (LLDA) of Animal

MAIN OFFICE: 62, 20th Avenue, Cubao, Quezon City 1109 • Tels. (02) 913-0240 to 41, (02) 913-8848 • Telefax: (02) 913-0250 • Globe 0917 523 4178 • www.fastlaboratories.com.ph

TECHNICAL EXCELLENCE INTEGRITY UNICAL EXCELLENCE SC

SOCIAL RESPONSIBILITY

F.A.S.T Laboratories – Clark-Angeles 717 Magalang Road, Pandan, Angeles City

TEST REPORT

Reference No: CP2105-1276 Page 4 of 4

CUSTOMER NAME	: HDEC-MEGAWIDE-DONGAH JV
ADDRESS	: #20 N. Domingo St. Brgy. Valencia 1112 Quezon City
PROJECT NAME	: MALOLOS-CLARK RAILWAY PROJECT
PROJECT ADDRESS	: Malolos, Bulacan to Minalin Pampanga
SAMPLE/S SUBMITTED	: SURFACE WATER
DATE / TIME SAMPLED	: 12 MAY 2021/ 11:36 AM
SAMPLED BY	: F.A.S.T. LABORATORIES PERSONNEL
DATE/TIME RECEIVED	: 12 MAY 2021/ 01:30 PM
DATE/TIME ANALYZED	: 12 MAY 2021/ 04:50 PM
ANALYZED BY	: H.Q.SIMBULAN, R.M.PASION
DATE REPORTED	: 20 MAY 2021

Sample	Multiple Tube Fermentation Technique Most Probable Number (MPN) per 100 ml				
Campio	Fecal Coliform Count	Total Coliform Count			
SW5-Malalam River, Minalin, Pampanga (Downstream) (CP2105-1276-04)	22 x 10 ³	22 x 10 ³			

Results are those obtained at the time of examination and relate only to the sample/s tested.

Reference:

APHA AWWA and WEF 2017. Standard Method for the Examination of Water and Wastewater, 23rd edition.

CERTIFIED BY: 20 May 2021 V/Pujalte Mirasch

Micro Siology Supervisor – Luzon Micro Reg. No. 15-00243

NOTED 202 Rey Christian S. Marbella, RCh Technical Manager PRC Chem. Reg. No. 11036

21 may 2021

Roland A, Lazan, RCh Laboratory Business Manager PRC Chem. Reg. No. 11880

Terms and Conditions:

1. This report is prepared for the SOLE USE of the customer and is prepared based on the item submitted, the services required by the customer and the conditions under which the Services are performed by F.A.S.T Laboratories. The report is not intended to be representative of similar or equivalent items and does not constitute an endorsement by F.A.S.T Laboratories on the item.

2. The report shall not be reproduced EXCEPT IN FULL and SHALL NOT be used for advertisement, publicity material, and press release or for litigation purposes WITHOUT the written permission of F.A.S.T Laboratories.

3. F.A.S.T Laboratories shall under no circumstances be liable to the customer or its representatives for any direct or indirect loss or damage suffered by the customer or its representatives howsoever arising or whether connected with the services provided by FAST Laboratories

4. This report is NOT OFFICIAL and VALID unless stamped with the seal of F.A.S.T Laboratories. It shall be kept on file for six (6) months from the date of issue.

ACCREDITATIONS/RECOGNITIONS: Dept. of Environment and Natural Resources (DENR)

Dept. of Health (DOH)
Dept. of Agriculture – Bureau of Animal Industry (DA-BAI)

Food and Drugs Administration (FDA)

Bureau of Fisheries and Aquatic Resources (BFAR)

Laguna Lake Development Authority (LLDA)

MAIN OFFICE: 62, 20th Avenue, Cubao, Quezon City 1109 • Tels. (02) 913-0240 to 41, (02) 913-8848 • Telefax: (02) 913-0250 • Globe 0917 523 4178 • www.fastlaboratories.com.ph BRANCHES

F.A.S.T. Labo tories

The First Analytical Services And Technical Cooperative

Cubao: 62 20th Avenue Cubao, Quezon City • Tels. (02)913-0240 to 41, (02)913-8848, (02)913-0250 | Calamba: Allied Concrete Building. KM 54, Makiling Calamba City, Laguna • Tels. (049)508-7138, (049)502-6520 | Cebu: Hi-way Central Bidg. M.C. Briones Highway, Mandaue City, Cebu • Tels. (032)346-2792, (02)343-3599 | Cagayan de Oro: 2F Casiño Bidg. C. M. Recto Ave, cor Camp Alagar Rd. Brgy. Lapasan, Cagayan de Oro City, Misamis Oriental • Tels. (088)852-4846, (088)880-8574 | Clark – Angeles: Stall 5,6, 7 SNB Bidg. 717 Magalang Road, Pandan, Angeles City, Pampanga • Tels. (045)304-4252, (045)304-4254

			A	NAL	YSI	SRE	QU	EST F	ORM EFERENCE NO.:	CP2101 1974 127 CP2105- 1274 127
REMIN	DER: Pleas	e write cle	early an	d legibl	У				19 Martin Temperature 1	Page of /
DATE :	May	12,2001	10000	XST.)52			3.0			
C	ustomer .		HDEC	-MEGA	WIDE-D	ONGAH.	JV	Tel N	LEax No :	/03178842226
Custon	ner Address:	- tioner of the	#20 N	DOMI	NGO ST.	BRGY.	VALEN	ICIA Cont	act Person :	MARIE DAPAR
	and she and the st		1112 (JUEZO	N CITY			E-ma	ail Address :	amdapan@hdec.co.kr
P	roject Name:	7 Leondoniug F	MALOL	OS -CLA	RK RAIL	AY PROJE	CT	Purchas	e Order No.:	MCRP-PO-0072
Proj	ect Address:	MA	LOLOS, E	BULACAI	N TO MINA	ALIN PAMP	ANGA	Conform	ed to F.A.S.T. FA	STOL-TCA-2102-099 REV3
				117	and a mile	the state		Quotatio	11 NO	and a second a second se
10 1.1	New Jose	U Water	ALCONTRACT	R	Wastewate	er	E Foo	d	□ Feeds	
Sam	ole Type :	D Pharm	aceutical		Swab	1	Air	Exposure Plate	s 🗆 Soil	Calibration
oun	ne i jpe :	Stack	(Air)		Ambient (Air)	Work Moni	Environment toring (WEM)	Others	agan Arrent Starp
Sample (indica	e Container: ate quantity)	Sterilize	d Bottle	D PET	Bottle	U Wide-N	outh Gl	ass Bottle	Amber Bottle	Others No.
Samula	Condition								1	
up	on receipt:	Ambient	Chil	led Refr	igerated	Frozer	1	Others (Pls	. describe)	Physics Company
	Dian Desuida			1	wheel have 5	- Cubmitter		100	1 12	endersen digite
virone	Plan Provide		nnling	2 San	iplea by L		by	FIFA.	lain	5-12-21
unny, H	Rainy, etc.):		nping.	D Pick	ed Up by		111	Printed Na	me and Signature	Date and Time
».	Sample De Location/Dat	escription <u>a</u> te and Time applicable)	nd Sampl of Sampl	ing ing (if	Sar (F.A.S	mple Code S.T. Lab Cod	le)	An	alysis and Test Me	thod Requested
	A COMA D	appreade	DIVED I	DALIT	DE MODELLO	a C03403	1774 1	04	- North -	(a primage of the
	1 244.4.1	AUFARGA	JPSTREA	M	15:4	2m		TOT	AL COLIFORM - MTF	T
	2 SW4 - P	AMPARGA	RIVER,	PALIL.	PAMPANG	A CP2103	-1270	-02 PEC	AL COLIFORM - MTP	T
		DC	WNSTRE	AM	10.3	orm	3	(AI	LSAMPLES)	Alighter of the state of the
	3 SW 5-1	ALALAM R	IVER, MI	NALIN, P	AMPANG	A CP2103	- 12704	03	Swittenia b.	
	21.62		UPSTREA	. 1.17	11:0	is am	5			
	4 SW 5-1	ALALAM R	NANSTRI	NALIN, P AM	11'21	A CP2103	6	-04		
12.		H.3			11-70	Aller	7		- Areahand	MS AND LEADINGS
-		_	-	-		-	-			Politica tale min.
-				-		shining !!	2	NE OLGO HOLSON KIT	reio Probase Didei acies	Weiner and a late second of
_	sector	to noissing of	oon kii n	ehem ed lin	outrenven F	Customer In	9	note LT. 2 Auro	minit E-richtelze nave and	Insulation of the second second
							1	0		សព្វាសា =0
pplem	entary Sheet	Attached 🗆	Yes,	page	s		No			
marks	Special Inst	tructions	no Simpler	018 2010	C Sou	narate ren	ort nor		turn Sample Contains	
Outso	ource:		1			Jude Cter	darde /		an Test Devent III	
						iude Stand	uards /s	pecifications	s on rest Report (if	applicable
				Coupline I	Ot	ners, pleas	se spec	ry:	FOR BASELINE / D	ENR COMPLIANCE
st Rep nd Re	oort Due Date port Thru:	e: May	21,203	/	Paymer Total A	nt Details: mount (VA	T Inc):	6,0	80.00 VATINC	ayment 🗆 Down paymer
Email		c - up	Deliv	very	Total Pa	avment		(R. No.	Date:
Courie	r (with additio	onal courier	charge)		Balance :					
ortify the	at the above int	formation aiv	en is truc	and	Daidrice		-		and returned theory of the large	
rrect an	d agree that thi	s contract wi	ill be carrie	d out ndition	Name o	of Custon	ner/Re	oresentative	e : Printed N	ame and Signature
bject to be back	page)				Date : _	10 19 1	A. (
ject to e back ceived	page) By:	4	7	20	Date : _	Enc	lorsed	to: (Laborato	ry):	during to 500 to 100 million of

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Baseline Sampling Laboratory Results for CP N-01

Noise Level (N02)

North-South Commuter Railway Extension Project

HDEC MEGAWIDE-DONGAH JV

Company Address: #20 N. Domingo St., Brgy. Valencia, 1112 Quezon City Contact Number: 09178593356; 09178062190 Email Address: <u>amdapar@hdec.co.kr</u>; <u>aypascual@megawide.com.ph</u>

15-June-2021

Attention: Engr. Amir Pascual

Subject: Ambient Air Sampling and Testing Report

Engr. Amir Pascual:

We hereby submit the attached report on ambient air sampling conducted for 24 hours on one (1) sampling station of North-South Commuter Railway Project CP N-01 (Malolos to Clark) site located at Calumpit Station in McArthur Highway, Calumpit Bulacan.

Please feel free to contact us if you have any questions regarding this report.

Thank you for choosing HiAdvance in serving your air quality requirement. We look forward to a continued partnership and new opportunities.

Sincerely,

Annabelle Bangoy Project Manager

NOISE LEVEL MEASUREMENT REPORT

Company Name	HDEC-MEGAWIDE-DONGAH JV		
Address	#20 N. Domingo St., Brgy. Valencia, 1112 Quezon City		
Project Name	North-South Commuter Railway Project CP N-01 (Malolos to Clark)		
Project Site(s)	Calumpit Station, McArthur Highway, Calumpit Bulacan		
Sampling Date	26 th -27 th of May, 2021		
Project Manager	Engr. Amir Pascual		

1.0 Noise Analysis Background

HiAdvance Philippines, Incorporated (HiAdvance) was contracted by HDEC-MEGAWIDE-DONGAH JV to monitor the Noise level measured at one (1) sampling location for twenty-four (24) hours with one (1) minute reading interval. Data collected will be reported based on 4-time zone interval. The Sampling location is located in the site mentioned above. The noise level monitoring was conducted last May 26-27, 2021.

Noise is defined as unwanted or excessive sound. Sound becomes unwanted when it interferes with normal activities within the work premises. Sound (noise) is described in terms of loudness, frequency and duration. Loudness is the sound pressure level measured on a logarithmic scale in units of decibels (dB).

2.0 Noise Introduction

Noise is defined as unwanted sound. It is measured in terms of sound pressure level and is usually expressed in decibels (dB). The human ear is less sensitive to higher and lower frequencies than it is to mid-range frequencies. To provide a measurement meaningful to humans, a weighting system that reduces the sound level of higher and lower frequency sounds, similar to what the human ear does, was developed. This filtering system is used in virtually all noise ordinances. Measurements taken with this "A weighted" filter are referred to as "dBA" readings.

There are two primary noise measurement descriptors that are used to assess noise impacts from traffic and transit projects, the L_{eq} and the L_{dn} , described below:

 L_{eq} : The equivalent sound level (L_{eq}) is the level of a constant sound for a specified period of time that has the same sound energy as an actual fluctuating noise over the same period of time.

The peak-hour L_{eq} is used for all traffic and light rail noise analyses at locations with daytime use, such as schools and libraries.

 L_{dn} : The day-night sound level (L_{dn}) is an L_{eq} over a 24-hour period, The L_{dn} is the primary noise-level descriptor for light rail noise at residential land uses.

In addition to the L_{eq} and L_{dn} , there is also a descriptor called the L_{max} and L_{min} . The L_{max} is the loudest 1 second over a measurement period while L_{min} is the minimum value measured over a certain period of time and is used in many local and state ordinances for noise coming from private land uses and for construction impact evaluation.

3.0 Noise Evaluation Methodology

For noise level monitoring, sound level frequency characteristics are based upon human hearing, using an A-weighted [dB (A)] frequency filter. The A-weighted filter is used to approximate the way humans hear sound.

EXTECH Model SDL600 with Serial No. H.399668, a digital sound level meter that meets ANSI and IEC Type 2 specifications was used to measure the noise level at the sampling points specified by the client. This measuring device has ± 1.5 dB accuracy with 0.1 dB resolution.

Prior to actual noise measurement, the digital sound level meter was calibrated using Extech 407766 Sound level Calibrator set at 94 dB.

4.0 Sampling Location

Calumpit Station

Latitude: 14.916466 E Longitude: 120.765738 N

4.1 Sampling period:

Twenty-four (24) hours with one (1) minute interval (4 Time Zones)

5.0 Data and Discussion of Results

Calumpit Station (Start Sampling time @ 1025H, 26th-27th of May, 2021

Sampling equipment is located inside the old Calumpit Station approximately 10m away from the parking lot. It is also approximately 10m away from the nearest household. The source of noise are the passing of various light to heavy vehicles such as tricycles, motorcycles in the access road, approximately 20m away from the highway; other residential noise and animal sounds such as dogs barking, birds chirping, crickets and other insects present at nighttime.

The weather condition during sampling is sunny. Traffic situation is light to moderate since it is near the highway.

✤ Table 1: Hourly Equivalent Sound Level, (Leq (h) – Calumpit Station

HOUR	TIME DURATION	Leq/Hr
1	10:25:14-11:25:14	48.5
2	11:25:14-12:25:14	47.5
3	12:25:14-13:25:14	47.1
4	13:25:14-14:25:14	47.3
5	14:25:14-15:25:14	48.1
6	15:25:14-16:25:14	45.4
7	16:25:14-17:25:14	46.1
8	17:25:14-18:25:14	43.8
9	18:25:14-19:25:14	43.0
10	19:25:14-20:25:14	41.9
11	20:25:14-21:25:14	43.8
12	21:25:14-22:25:14	43.1
13	22:25:14-23:25:14	42.8
14	23:25:14-00:25:14	41.9
15	00:25:14-01:25:14	41.6
16	01:25:14-02:25:14	37.0
17	02:25:14-03:25:14	42.0
18	03:25:14-04:25:14	38.7
19	04:25:14-05:25:14	44.3
20	05:25:14-06:25:14	43.4
21	06:25:14-07:25:14	45.6
22	07:25:14-08:25:14	47.6
23	08:25:14-09:25:14	47.5
24	09:25:14-10:25:14	44.8

Table 2: For 4-Time Zone with one (1) second interval

Time Zone	(LAeq)
0900H-1800H (Daytime)	56.4
1800H-2200H (Evening)	49.2
2200H-0500H (Nighttime)	50.1
0500H-0900H (Morning)	51.8

Table Chart Basis for the Calculation of SEL

Based on chart above, the measured L_{max} is 77.8 dBA while the L_{min} is 35.2 dBA. The table below summarize the cumulative 24-hours exposure for Calumpit Station. This value may be used as a baseline on the impact assessment for the upcoming North-South Commuter Railway Project.

Table 3: Day-Night Sound Level

Location	LAeq (Day)	LAeq (Night)	L _{do}
Calumpit Station	47.8	40.2	45.1

Prepared by:

Reviewed by:

Noted by:

Carrissah Clarisse T. Lico Data Encoder/Field Sampler (AQMD)

otelo dor A/QC Mahager (AQMD) Ø

Princess Galvez, RCh Laboratory Manager

ATTACHMENT 1

- > Field Data
- Sampling Picture

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonio St. Paseo de Magallanes Makati City, 1232 Phone No: (632) 854-8365 Fax No: (632) 729-4327

AMBIENT AIR SAMPLING FIELD DATA SHEET

Company: HDEC - MEGAWINE - 1) ON	NGAH	Date: 26-27 12421
Address: #20 4. Domineo st. DA	LLY VINENCIA 1112 QUEZON CITY	
Station No: Loca	ation: OLD CALUMPIT PAR SP	TON
Start Time: 1025H Enc	d Time: 025H GPS Reading:	Latitude j4 all y66
Ambient Temperature: 39. 8		Longitude h. Harry
Barometric Pressure: 29.50	Weather Condition: SUNNY	100. 100178
Filter ID No:	Type of Filter Paper Used:	Initial Weight:
Sampled Parameters: Arone (24H) NIBRADON (20H)	
Remarks: Proney (acept)	Willim DUM ATTING TO PAUL S POOD	VILLAND VILLAMO AND AND AND AND AND
AVING MARY 5 4000 ELEN WA	THE OLD CHUMPH PHIL STOPPON	Dem Charles 12 Martin Lais
NOISE MATTER EXAMINEN MALLA	a provide the second create the second	KOND LUKUG N ALLEY LODD
MAN MARY IN ADMIELA	2. 4120AT HULD ON P	AT THE PAREN'S 5107
	a votari (Victore,	
TSP Sampler		
Model: Sori		
MORET 26U	Calibration Date:	
PLAT 5/PLATO Samplar		
PM2.5/PM10 Sampler:		
Model: Seria	al No: Calibration Date:	
T (2) C - C		
Inree (3) Gas Sampler:		
Model: Seria	al No: Flow Rate:	
Barometer/Thermometer:		
Model: Seria	al No: Calibration Date:	-
Multi RAE / Air Quality Meter Equipme	ent:	
Model: Serie	al No: Calibration Date:	-
INITIAL FILTER PRESSURE:	- Carbon Monoxide:	-
FINAL FILTER PRESSURE:	Total VOC	-
1-1		
\wedge	1 TRILYCLE STATION	1
		_
M		A A
		PNR
and and	S S I	trion the
192532	3951 42	Y
	May ying boy	2 C
	IN - + III - AI MA	
	-pa	
136353	ER ESTY	5735
	T The the	J S J S
		1
		= 1 - 1 - 1 1
Team Leader:		min O ht
	QA/QC/Date:	- H
		MP-AIR-001-F05
		Rev. 0; 8 May 2018

COMPANY NAME: HDEC-MEGAWIDE-DONGAH JV Company Address: #20 N. Domingo St., Brgy. Valencia, 1112 Quezon City 24 Hours Noise Monitoring SAMPLING SITE: Calumpit Station

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Baseline Sampling Laboratory Results for CP N-03

Ambient Air Quality (AAQ5 and AAQ9/AAQ-N09) Surface Water Quality (SW8, SW9 SW10 and DD SW2) Groundwater Quality (GW4 and GW5) Noise Level (N08 and N09) Vibration Level (V05 and V09)

North-South Commuter Railway Extension Project

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Baseline Sampling Laboratory Results for CP N-03

Ambient Air Quality (AAQ5 and AAQ9/AAQ-N09)

North-South Commuter Railway Extension Project

Prism Express Consulting, Inc. Unit 11 Ground Floor, Kingswood Arcade Corner Pasong Tamo & Vito Cruz Extension, Makati City Contact No.: (02) 8651223 Email Address: <u>allanplete@yahoo.com/</u> cbtprismexpressconsulting@outlook.com

15-July-2021

Attention: Engr. Allan Plete

Subject: Ambient Air Sampling and Testing Report

Engr. Plete:

We hereby submit the attached report on ambient air sampling conducted for 24 hours on two (2) sampling stations of North-South Commuter Railway Project (NSCR-EX) Extension Project located at Pampanga.

Please feel free to contact us if you have any questions regarding this report.

Thank you for choosing HiAdvance in serving your air quality requirement. We look forward to a continued partnership and new opportunities.

Sincerely,

Annabelle Bangoy Project Manager

AMBIENT AIR SAMPLING REPORT

Prism Express Consulting, Inc.
Unit 11 Ground Floor, Kingswood Arcade Corner Pasong Tamo & Vito Cruz Extension, Makati City
North-South Commuter Railway (NSCR-EX) Extension Project
Pampanga
14 th -16 th of June, 2021
Engr. Allan Plete

1.0 INTRODUCTION

HiAdvance Philippines, Incorporated (HiAdvance) was contracted by Prism Express Consulting, Inc. to conduct twenty four (24)-hour ambient air sampling at two (2) sampling areas located at Pampanga project site. The sampling activity was held last June 14-16, 2021. Sampling was done to determine the concentrations of Nitrogen Dioxide, Sulfur Dioxide, Total Suspended Particulates (TSP), Particulate Matter as PM10, PM2.5, Lead (Pb), Ozone (O_3) and Carbon Monoxide (CO).

Noise and Vibration Level was also measured at the sampling locations. The values determined are presented in a separate report.

2.0 METHODOLOGY

Ambient air sampling equipment and analytical procedures used were based on DENR Standards. All supporting field data sheets and calibration record of equipment's are provided as attachments. The equipment and procedures are as follows:

Nitrogan Diavida (NO)						
Pafaranaa Pragadura:	Mothods of Air Sempling and Applyria 2 rd ad / James P. Ladge Jr					
Kelelelice Flocedule.	Methous of Alf Sampling and Analysis - 5 ed. / James P. Louge, JI.					
Sampling Equipment:	SKC Pump					
Method of Analysis:	Impinger Griess-Saltzman Reaction Method					
Sulfur Dioxide (SO ₂)						
Reference Procedure:	USEPA 40 CFR, Part 50, Appendix A					
Sampling Equipment:	SKC Pump					
Method of Analysis:	Tetra-chloromercurate (TCM) Absorber –Pararosaniline Colorimetric					
Total Suspended Particula	tes (TSP)					
Reference Procedure:	USEPA 40 CFR, Part 50, Appendix B					
Sampling Equipment:	High Volume Sampler					
Method of Analysis:	High Volume - Gravimetric Method					

Particulate Matters (PM10)

Reference Procedure:	USEPA 40 CFR, Part 50, Appendix J
Sampling Equipment:	High Volume Sampler
Method of Analysis:	Gravimetric Method

Particulate Matter as PM2.5

Reference Procedure: Sampling Equipment: Method of Analysis:

USEPA 40 CFR, Part 50, Appendix L High Volume with 2.5 micron particle-size inlet Hi Volume Gravimetric Method

Lead (Pb)

Reference Procedure: Sampling Equipment: Method of Analysis:

USEPA 40 CFR, Part 50, Appendix G High Volume Sampler/Filter Atomic Absorption Spectroscopy

Ozone (O₃)

Reference Procedure: Sampling Equipment: Method of Analysis:

Carbon Monoxide (CO)

Reference Procedure: Sampling Equipment: Method of Analysis:

Method 411, of Air Sampling and Analysis - 3rd ed. /James P. Lodge, Jr. SKC Pump Colorimetric Method

USEPA 40 CFR, Part 50, Appendix C Multi RAE Gas Analyzer/Air Quality Meter **Direct Reading**

The NO₂ and SO₂ samples were stored in amber bottles and were preserved on a cooler with ice. The samples were submitted to and analyzed by a DENR recognized laboratory using a Spectrophotometer. The TSP, PM10 and PM2.5 samples were conditioned before undergoing gravimetric analysis. Stock solutions, standard reagents, and other reagents are prepared using chemicals recommended by the reference methods mentioned above. Filter papers for Lead analysis were desiccated before submission to a DENR recognized subcontractor laboratory together with the sample for Ozone analysis. Carbon Monoxide (CO) was measured using a calibrated Multi RAE Gas Analyzer through direct readout.

Stock solutions, standard reagents and other reagents are prepared using chemicals recommended by the reference methods mentioned above.

3.0 **SAMPLING LOCATION**

3.1 The estimated location of the sampling station is briefly described as follows:

Station #1: AAQ9 - Angeles Old PNR Station

Latitude: 15.144947 N Longitude: 120.591071 E

Remarks/Sampling Environment Conditions:

- Ambient air sampling equipment were set up at semi-grassy/soil surface near the Old PNR Station building
- Approximately 50m away from South of Agapito del Rosario basketball court

- Approximately 10-15m away from residential, 20m away from access road and 25-30m away from commercial buildings
- Light to heavy rain started at 1400H-1500H
- At around 0540H, burning of garbage were observed (15-18m away from sampling point)
- Sunny with light to heavy rain fall weather condition

Station #2: AAQ5 - Angeles Station

Latitude: 15.135723 N Longitude: 120.597031 E

Remarks/Sampling Environment Conditions:

- Ambient air sampling equipment were set up at concrete ground
- Approximately 100m away from South of La Pieta chapel and crematorium
- Approximately10m away from the main road (4 lanes)
- Approximately 70m away from construction site (at the back of set up)
- Area is quite dirty because of the piles
- Sunny weather condition

3.2 Sampling Period

- > One (1) hour for Ozone and Carbon Monoxide
- **Twenty-four (24) hours** for TSP, PM10, PM2.5, SO₂, NO₂ and Pb

4.0 AMBIENT AIR SAMPLING RESULTS

Below are the ambient air sampling results. All supporting field data, analytical reports and calibration records are provided as attachments.

Table 4.1.1 24-hour Sampling

STATION NO.	LOCATION	NO2 (μg / Nm ³)	SO ₂ (μg / Nm ³)	TSP (μg / Nm ³)	РМ10 (µg / Nm ³)	РМ2.5 (µg / Nm ³)
1	AAQ9 – Angeles Old PNR Station	<3.11*	<11.9*	53.2	19.1	14.4
2	AAQ5 - Angeles Station	3.49	<12.0*	78.6	20.0	10.6
D	ENR NAAQSSAP	150	180	230	150	
Av	eraging Time (min)	1440	1440	1440	1440	1440

*Values detected are below the laboratory's Method Detection Limit

4 Table 4.1.2 24-hours Sampling - Lead

STATION NO.	LOCATION	Pb (lead) (µg/Ncm)				
1	1 AAQ9 – Angeles Old PNR Station					
2	AAQ5 - Angeles Station					
	DENR NAAQGV	-				
	1440					

Table 4.1.3 1-hour Sampling – Carbon Monoxide

STATION NO.	LOCATION	CO (ppm)			
1	AAQ9 – Angeles Old PNR Station	ND*			
2 AAQ5 - Angeles Station					
STANDARDS (D	STANDARDS (DAO2000-81)/ NAAQGCP Standard				
Averaging Time (min)					

* ND- Not Detectable

Table 4.1.4 1-hour Sampling - Ozone

STATION NO.	LOCATION	O3 (µg/Ncm)				
1	AAQ9 – Angeles Old PNR Station					
2	AAQ5 - Angeles Station	1.28				
	DENR NAAQGV	140				
	60					

5.0 DISCUSSION OF RESULTS

Ambient air quality standards (AAQS) define clean air, and are established to protect even the most sensitive individuals in our communities. An air quality standard defines the maximum amount of a pollutant that can be present in outdoor air without harm to the public's health.

The sampling activity was conducted on a sunny weather condition. The results of NO₂, SO₂, TSP, PM10 and Ozone for samples collected for twenty-four (24) hours were compared to the National Ambient Air Quality Standards for Sources Specific Air Pollutants from Industrial Sources/Operation (NAAQSSAP) as stipulated in Table 3, Section1, Rule XXVI and Part VII of the Implementing Rules and Regulations (IRR) of the Philippine Clean Air Act (R.A. 8749). *See Table 4*. All values for the pollutants identified are below its maximum permissible limits.

Currently, there are no existing limits from DENR for PM2.5 (using high volume sampler) and Pb (Lead) measured for 24 hrs. There are only guidance values available at present for samples taken for 24 hours. *See Table 4.1.1-4.1.2.*

The values from direct reading for Carbon Monoxide (CO) using a calibrated Gas analyzer was tabulated in *Table 4.1.3*. At the time of measurement, Carbon Monoxide concentration measured in the sampling stations did not exceed the standard limit based on *NAAQGCP Standard*. It must be emphasized, however, that the results are individual measurement during a certain point in time. They should not be considered as a universal condition of the area or process involved.

The air monitoring reading at station 1 was influenced by light vehicles passing along the access road which is 20 meters from the sampling location, parking, and waste burning. On the other hand, the light to heavy automobile emissions passing along the four-lane main road, access road, dusty area, and construction near the sampling point may have contributed at station 2.

6.0 CONCLUSION

The results of sampling and analysis for the sampling location, demonstrated that the ambient concentrations of NO_2 , SO_2 , TSP, PM10, Ozone (O₃) and CO are within the acceptable limits of the standards stipulated in the IRR of the Philippine Clean Air Act. However, PM 2.5 and Pb (Lead) are still for further evaluation as there are no existing limits for the specific sampling duration done on the sampling points.

Prepared by:

Marie Angellina P. Barcebal Team Leader (AQMD) Reviewed by:

QA/QC Manager (AQMD)

Noted by:

Princess Galvez, RCh Laboratory Manager

ATTACHMENT 1

> Computation of Ambient Air Parameters

- Nitrogen Dioxide
- o Sulfur Dioxide
- Total Suspended Particulates (TSP)
- Particulate Matter as PM10
- Particulate Matter as PM2.5
- o Pb (Lead)
- \circ Ozone (O₃)

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT NO2 SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Amb Tempera	oient ature (T)	Barometri (Pt	c Pressure ar)	Sampling Date Sa	Sampling Date Sampling Time	Sampling Duration	Flow Rate	Standard Mass Volume NO ₂		Concentration NO ₂	
JULION	۰C	к	in. Hg	mmHg	-		(t,minutes)	Li/min	Vmstd, Nm³	μg	μg/Ncm	
1	28.5	301.5	29.44	747.7	14-15 June 2021	1500H-1500H	1440	0.2	0.2800	0.301	<3.11	

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K

Pbar = barometric pressure, mm Hg

t = total sampling time, minute

Qa = actual flowrate through the orifice, fixed at 0.2 lpm

Vm(std) = sampled volume corrected to standard conditions, Nm3

NO2 mass = mass of nitrogen dioxide, μg

NO2 conc. = nitrogen dioxide concentrations, µg/Nm3

1,000 = conversion from liters to m3

Philippine Standard Pressure and Temperature

298 = Standard ambient temperature, K (25°C + 273)

760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{m(std)} = \frac{Q_a}{1,000} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$$

b. NO2 concentration, µg/Nm3

$$NO_2 conc. = \frac{NO_2 mass}{V_{m(sid)}}$$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT SO2 SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Aml Temper	bient ature (T)	Barometri (Pt	ic Pressure bar)	Sampling Date	Sampling Time	Sampling Duration	Flow Rate	Standard Volume	Mass SO ₂	Concentration SO ₂
	°C	к	in. Hg	mmHg			(t,minutes)	Li/min	Vmstd, Nm³	μg	µg/Ncm
1	28.5	301.5	29.44	747.7	14-15 June 2021	1500H-1500H	1440	0.2	0.2800	3.30	<11.9

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K

Pbar = barometric pressure, mm Hg

t = total sampling time, minute

Qa = actual flowrate through the orifice, fixed at 0.2 lpm

Vm(std) = sampled volume corrected to standard conditions, Nm3

SO2 mass = mass of sulfur dioxide, μg

SO2 conc. = sulfur dioxide concentrations, μ g/Nm3

1,000 = conversion from liters to m3

Philippine Standard Pressure and Temperature

298 = Standard ambient temperature, K (25°C + 273) 760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{m(std)} = \frac{Q_a}{1,000} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$$

b. SO2 concentration, µg/Nm3

$$SO_2 conc. = \frac{SO_2 mass}{V_{m(std)}}$$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT TSP SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Ami Temper	pient ature (T)	Barometri (Pt	ic Pressure Dar)	Sampling Date Sampling Time		Sampling Duration (t,minutes)	Flow Rate	Standard Volume	Mass TSP	Concentration TSP
	°C	К	In. Hg	mmHg				m3/min	Vmstd, Nm ^a	μg	µg/Ncm
1	28.5	301.5	29.44	747.7	14-15 June 2021	1500H-1500H	1440	1.167	1633.9	86900	53.2

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K Pbar = barometric pressure, mm Hg t = total sampling time, minutes Vm(std) = sampled volume corrected to standard conditions, Nm3 TSP mass = mass of total suspended particulates, µg TSPconc. = Total Suspended Particulates concentrations, µg/Nm3 Qa = actual flowrate , m3/min Philippine Standard Pressure and Temperature 298 = Standard ambient temperature, K (25°C + 273)

760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{m(std)} = \frac{Q_a}{T} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$$

b. TSP concentration, µg/Nm3

$$TSPconc. = \frac{TSPmass}{V_{m(std)}}$$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT PM10 SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Amb Tempera	pient ature (T)	(T) Barometric Pressure (Pbar) S. K in. Hg mmHg	Sampling Date	Sampling Time	Sampling Duration (t,minutes)	Flow Rate	Standard Volume	Mass PM10	Concentration PM10	
	°C	K					m3/min	Vmstd, Nm ³	μg	µg/Ncm	
1	28.5	301.5	29.44	747.7	14-15 June 2021	1500H-1500H	1440	1.181	1653.5	31600	19.1

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K Pbar = barometric pressure, mm Hg t = total sampling time, minutes Vm(std) = sampled volume corrected to standard conditions, Nm3 PM10 mass = mass of particulate matter 10, μg PM10 conc. = Particulate Matter 10 concentrations, μg/Nm3 Qa = actual flowrate , m3/min Philippine Standard Pressure and Temperature

298 = Standard ambient temperature, K (25°C + 273) 760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{m(std)} = \frac{Q_a}{T} \times \frac{298}{T} \times \frac{P_{har}}{760} \times t$$

b. PM10 concentration, µg/Nm3

$$PM10conc = \frac{PM10mass}{V_{m(std)}}$$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT PM2.5 SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Amb Tempera	oient ature (T)	Barometr (Pl	ic Pressure Dar)	Sampling Date	Sampling Time	Sampling Duration (t,minutes)	Flow Rate	Standard Volume	Mass PM2.5	Concentration PM2.5
	°C	К	in. Hg	mmHg				m3/min	Vmstd, Nm ^a	μg	µg/Ncm
1	28.5	301.5	29.44	747.7	14-15 June 2021	1500H-1500H	1440	1.181	1765.5	25500	14.4

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K Pbar = barometric pressure, mm Hg

t = total sampling time, minutes

Vm(std) = sampled volume corrected to standard conditions, Nm3

PM2.5 mass = mass of particulate matter 2.5, μg

PM2.5 conc. = Particulate Matter 2.5 concentrations, µg/Nm3

Qa = actual flowrate , m3/min

Philippine Standard Pressure and Temperature

298 = Standard ambient temperature, K (25°C + 273)

760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{m(std)} = \frac{Q_a}{T} \times \frac{298}{T} \times \frac{P_{har}}{760} \times t$$

b. PM2.5 concentration, µg/Nm3

$$PM2.5conc = \frac{PM2.5mass}{V_{n(suc)}}$$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT Pb SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Amblent Barometric Press Temperature (T) (Pbar)		ic Pressure Dar)	Sampling Date	Sampling Time	Sampling Duration (t,minutes)	Flow Rate	Standard Volume	Mass Pb	Concentration Pb	
	°C	ĸ	In. Hg	mmHg				m3/min	Vmstd, Nm ^a	μg	µg/Ncm
1	28.5	301.5	29.44	747.7	14-15 June 2021	1500H-1500H	1440	1.167	1633.9	0.60	<0.00037

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K Pbar = barometric pressure, mm Hg t = total sampling time, minutes Vm(std) = sampled volume corrected to standard conditions, Nm3 Pb mass = mass of lead, µg Pbconc. = Lead concentrations, µg/Nm3 Qa = actual flowrate , m3/min Philippine Standard Pressure and Temperature 298 = Standard ambient temperature, K (25°C + 273)

760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{in(std)} = \frac{Q_a}{T} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$$

b. Pb concentration, µg/Nm3

Pbconc . =
$$\frac{Pbmass}{V_{m(std)}}$$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT O₃ SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Ami Temper	Ambient Barometric Pressure Temperature (T) (Pbar)		Sampling Date Sam	Sampling Time	Sampling Duration (t,minutes)	Flow Rate	Standard Volume	Mass O ₃	Concentration O ₃	
	*C	К	in. Hg	mmHg				Ll/min	Vmstd, Nm ³	μg	µg/Ncm
1	28.5	301.5	29.44	747.7	14-15 June 2021	1500H-1500H	1440	1.000	1.4001	15.7	11.2

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K

Pbar = barometric pressure, mm Hg

t = total sampling time, minutes

Vm(std) = sampled volume corrected to standard conditions, Nm3

 O_3 mass = mass of Ozone, μg

 O_3 conc. = Ozone concentrations, $\mu g/Nm^3$

Qa = actual flowrate , m3/min

Philippine Standard Pressure and Temperature

298 = Standard ambient temperature, K (25°C + 273)

760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{m(std)} = \frac{Q_{u}}{T} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$$

b. O₃ concentration, μg/Nm³

 $O_3 conc.=("O_3" mas s)/V_(m(std))$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT NO2 SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Ambient Temperature (T)		Barometric Pressure (Pbar)		Sampling Date	Sampling Time	Sampling Duration	Flow Rate	Standard Volume	Mass NO₂	Concentration NO ₂	
	°C	к	in. Hg	mmHg	Samping Date	ounping	(t,minutes)	Li/min	Vmstd, Nm ³	μg	µg/Ncm	
2	30.9	303.9	29.47	748.7	15-16 June 2021	1630H-1630H	1440	0.2	0.2782	0.970	3.49	

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K

Pbar = barometric pressure, mm Hg

t = total sampling time, minute

Qa = actual flowrate through the orifice, fixed at 0.2 lpm

Vm(std) = sampled volume corrected to standard conditions, Nm3

NO2 mass = mass of nitrogen dioxide, µg

NO2 conc. = nitrogen dioxide concentrations, µg/Nm3

1,000 = conversion from liters to m3

Philippine Standard Pressure and Temperature

298 = Standard ambient temperature, K (25°C + 273) 760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{m(std)} = \frac{Q_a}{1,000} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$$

b. NO2 concentration, µg/Nm3

$$NO_2 conc. = \frac{NO_2 mass}{V_{m(std)}}$$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT SO2 SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Ambient Temperature (T)		Barometric Pressure (Pbar)		Sampling Date	Sampling Time	Sampling Duration	Flow Rate	Standard Volume	Mass SO ₂	Concentration SO ₂
	°C	к	in. Hg	mmHg			(t,minutes)	Li/mln	Vmstd, Nm ³	μg	μg/Ncm
2	30.9	303.9	29.47	748.7	15-16 June 2021	1630H-1630H	1440	0.2	0.2782	2.97	<12.0

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K

Pbar = barometric pressure, mm Hg

t = total sampling time, minute

Qa = actual flowrate through the orifice, fixed at 0.2 lpm

Vm(std) = sampled volume corrected to standard conditions, Nm3

SO2 mass = mass of sulfur dioxide, µg

SO2 conc. = sulfur dioxide concentrations, µg/Nm3

1,000 = conversion from liters to m3

Philippine Standard Pressure and Temperature

298 = Standard ambient temperature, К (25°С + 273) 760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{m(std)} = \frac{Q_a}{1,000} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$$

b. SO2 concentration, µg/Nm3

$$SO_2 conc. = \frac{SO_2 mass}{V_{m(std)}}$$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT TSP SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Ambient Baro Temperature (T)		Barometri (Pt	ic Pressure bar)	Sampling Date	Sampling Time	Sampling Duration (t,minutes)	Flow Rate	Standard Volume	Mass TSP	Concentration TSP
	*C	K	in. Hg	mmHg				m3/min	Vmstd, Nm ^a	μg	µg/Ncm
2	30.9	303.9	29.47	748.7	15-16 June 2021	1630H-1630H	1440	1.161	1614.9	127000	78.6

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K Pbar = barometric pressure, mm Hg t = total sampling time, minutes Vm(std) = sampled volume corrected to standard conditions, Nm3 TSP mass = mass of total suspended particulates, µg TSPconc. = Total Suspended Particulates concentrations, µg/Nm3 Qa = actual flowrate , m3/min

Philippine Standard Pressure and Temperature

298 = Standard ambient temperature, K (25°C + 273) 760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{m(std)} = \frac{Q_a}{T} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$$

b. TSP concentration, µg/Nm3

$$TSPconc. = \frac{TSPmass}{V_{m(std)}}$$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT PM10 SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Amb Tempera	pient ature (T)	Barometri (Pt	ic Pressure bar)	Sampling Date	Sampling Time	Sampling Duration (t,minutes)	Flow Rate	Standard Volume	Mass PM10	Concentration PM10
	°C	ĸ	in. Hg	mmHg				m3/min	Vmstd, Nm ^a	μg	µg/Ncm
2	30.9	303.9	29.47	748.7	15-16 June 2021	1630H-1630H	1440	1.181	1642.7	32800	20.0

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

760 = Standard atmospheric pressure, mm Hg

T = ambient temperature, K Pbar = barometric pressure, mm Hg t = total sampling time, minutes Vm(std) = sampled volume corrected to standard conditions, Nm3 PM10 mass = mass of particulate matter 10, μg PM10 conc. = Particulate Matter 10 concentrations, μg/Nm3 Qa = actual flowrate , m3/min Philippine Standard Pressure and Temperature 298 = Standard ambient temperature, K (25°C + 273) **B. Formulas used in Calculations:**

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{m(skl)} = \frac{Q_a}{T} \times \frac{298}{T} \times \frac{P_{har}}{760} \times t$$

b. PM10 concentration, µg/Nm3

$$PM10conc = \frac{PM10mass}{V_{m(sid)}}$$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT PM2.5 SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME: Prism Express Consulting, Inc.

Station	Amt Tempera	pient ature (T)	Barometri (Pt	ic Pressure bar)	Sampling Date	Sampling Time	Sampling Duration (t,minutes)	Flow Rate	Standard Volume	Mass PM2.5	Concentration PM2.5
	°C K in. Hg mmHg	mmHg				m3/min	Vmstd, Nm ³	μg	µg/Ncm		
2	30.9	303.9	29.47	748.7	15-16 June 2021	1630H-1630H	1440	1.181	1749.8	18500	10.6

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K Pbar = barometric pressure, mm Hg t = total sampling time, minutes Vm(std) = sampled volume corrected to standard conditions, Nm3 PM2.5 mass = mass of particulate matter 2.5, μg PM2.5 conc. = Particulate Matter 2.5 concentrations, μg/Nm3 Qa = actual flowrate , m3/min Philippine Standard Pressure and Temperature

298 = Standard ambient temperature, K (25°C + 273) 760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$\mathcal{V}_{m(std)} = \frac{Q_a}{T} \times \frac{298}{T} \times \frac{P_{har}}{760} \times t$$

b. PM2.5 concentration, µg/Nm3

$$PM2.5conc = \frac{PM2.5mass}{V_{m(s(u))}}$$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT Pb SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Ami Temper	bient ature (T)	Barometri (Pt	ic Pressure bar)	Sampling Date	Sampling Time	Sampling Duration (t,minutes)	Flow Rate	Standard Volume	Mass Pb	Concentration Pb
	°C	к	in. Hg	mmHg				m3/min	Vmstd, Nm ^a	μg	µg/Ncm
2	30.9	303.9	29.47	748.7	15-16 June 2021	1630H-1630H	1440	1.161	1614.9	5.89	0.00365

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K Pbar = barometric pressure, mm Hg t = total sampling time, minutes Vm(std) = sampled volume corrected to standard conditions, Nm3 Pb mass = mass of lead, µg Pbconc. = Lead concentrations, µg/Nm3 Qa = actual flowrate , m3/min Philippine Standard Pressure and Temperature

298 = Standard ambient temperature, K (25°C + 273) 760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{m(std)} = \frac{Q_a}{T} \times \frac{298}{T} \times \frac{P_{har}}{760} \times V_{har}$$

b. Pb concentration, µg/Nm3

Pbconc . =
$$\frac{Pbmass}{V_{m(std)}}$$

STANDARDIZED SAMPLE VOLUMES FOR 24-HOUR AMBIENT O₃ SAMPLING PROJECT NAME: Ambient Air Monitoring COMPANY NAME : Prism Express Consulting, Inc.

Station	Amt Tempera	oient ature (T)	Barometr (Pl	ic Pressure bar)	Sampling Date	Sampling Time	Sampling Duration (t,minutes)	Flow Rate	Standard Volume	Mass O₃	Concentration Os
	°C	К	in. Hg	mmHg				Li/min	Vmstd, Nm ⁵	μg	μg/Ncm
2	30.9	303.9	29.47	748.7	15-16 June 2021	1630H-1630H	1440	1.000	1.3910	1.8	1.28

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K

Pbar = barometric pressure, mm Hg

t = total sampling time, minutes

Vm(std) = sampled volume corrected to standard conditions, Nm3

 O_3 mass = mass of Ozone, µg

 O_3 conc. = Ozone concentrations, $\mu g/Nm^3$

Qa = actual flowrate , m3/min

Philippine Standard Pressure and Temperature

298 = Standard ambient temperature, K (25°C + 273)

760 = Standard atmospheric pressure, mm Hg

B. Formulas used in Calculations:

a. Total volume of air sampled, corrected to standard condition (Nm3)

$$V_{m(std)} = \frac{Q_a}{T} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$$

b. O₃ concentration, μg/Nm³

 $O_3 conc.=("O_3" mas s)/V_(m(std))$

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St., Paseo de Magallanes, 1232 Makati City, Philippines Office: +632.7729.4327 Fax No: +632.8854.8365 Email: info@hiadvance.com.ph Website: www.hiadvance.com.ph

ATTACHMENT 2

Certificate of Laboratory Analysis

HiAdvance Philippines

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St. Paseo de Magallanes, 1232 Makati City, PHILIPPINES Office : +632.729.4327 Fax No: +632.854.8365 philippines@hiadvance.com

SUMMARY REPORT

Prism Express	s Consulting, Inc.		Project:	Ambient Air M	Ionitoring
Unit A-11 Arcad	le Kingswood Condom	unium Cor., Pasong Tan	no Project Number:	[none]	
and Vito Cruz E	xtension Makati City, I	PHILIPPINES	Project Manager:	Engr. Allan Pl	ete
SAMPLED : RECEIVED:	14-Jun-21 to 16-Jun-2 17-Jun-21	21	ANALYZED: REPORTED:	17-Jun-21 to 01-Jul-21 19:	19-Jun-21 03
LAB #		M21F293-01	M21F293-02		
MATRIX		Ambient Air	Ambient Air		
SAMPLE ID		STN#1	STN#2		
		AAQ-N09, V09	AAQ5, N08, V08		
Param	eters				
Total Suspended I TSP	Particulates,	53.2	78.6	µg/Ncm	High Volume – Gravimetric Method
Nitrogen Dioxide		<3.11*	3.49	µg/Ncm	Griess- Saltzman Method
Sulfur Dioxide		<11.9*	<12.0*	µg/Ncm	Pararosaniline Method
Particulate Matter PM10	10 Micron,	19.1	20.0	µg/Ncm	High Volume — Gravimetric Method
Particulate Matter PM2.5	2.5 Micron,	14.4	10.6	µg/Ncm	High Volume – Gravimetric Method

Special Notes

* Values detected are below the laboratory's Method Detection Limit

HiAdvance Philippines Incorporated

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Report Prepared by

Annabelle Bangoy

Project Manager

Certified Correct by

Princess Galvez, RCh Laboratory Manager

Data Summary for Ambient Air Analysis

TSP	M21F293-01	M21F293-02		
Pressure, inHg	29.44	29.47		
Temperature, °C	28.5	30.9		
Flowrate, m³/min	1.167	1.161		
Sampling Duration, min	1440	1440		
Pressure, STD	29.92	29.92		
Temperature, STD	298	298		
Volume of Air, Nm ³	1633.9	1614.9		
μg TSP (MDL = 1665)	86900	127000		
Concentration, µg/Ncm	53.2	78.6		

NO ₂	M21F293-01	M21F293-02		
Pressure, inHg	29.44	29.47		
Temperature, °C	28.5	30.9		
Flowrate, L/min	0.2	0.2		
Sampling Duration, min	1440	1440		
Pressure, STD	29.92	29.92		
Temperature, STD	298	298		
Volume of Air, Vm	0.2800	0.2782		
μg NO ₂ (MDL =0.871)	0.301	0.970		
Concentration, µg/Ncm	1.08	3.49		
Reported as less than, ug/Ncm	3.11			

SO ₂	M21F293-01	M21F293-02
Pressure, inHg	29.44	29.47
Temperature, °C	28.5	30.9
Flowrate, L/min	0.2	0.2
Sampling Duration, min	1440	1440
Pressure, STD	29.92	29.92
Temperature, STD	298	298
Volume of Air, Vm	0.2800	0.2782
μg SO ₂ (MDL =3.34)	3.30	2.97
Concentration, µg/Ncm	11.8	10.7
Reported as less than, ug/Ncm	11.9	12.0

Note: Values in italics are less than the laboratory's Method Detection Limit

Data Summary for Ambient Air Analysis

PM10	M21F293-01	M21F293-02		
Pressure, inHg	29.44	29.47		
Temperature, °C	28.5	30.9		
Flowrate, m³/min	1.181	1.181		
Sampling Duration, min	1440	1440		
Pressure, STD	29.92	29.92		
Temperature, STD	298	298		
Volume of Air, Nm ³	1653.5	1642.7		
μg PM10 (MDL= 1972)	31600	32800		
Concentration, µg/Ncm	19.1	20.0		

PM2.5	M21F293-01	M21F293-02
Pressure, inHg	29.44	29.47
Temperature, °C	28.5	30.9
Flowrate, m ³ /min	1.181	1.181
Sampling Duration, min	1440	1440
Pressure, STD	29.92	29.92
Temperature, STD	298	298
Volume of Air, Nm ³	1765.5	1749.8
μg PM2.5 (MDL= 1972)	25500	18500
Concentration, µg/Ncm	14.4	10.6

Date Received:

Sample Description:

CH UNION LABORAT

Main Office: Mach Union Building, 335 Alabang-Zapote Road, Talon 3, 1740 Las Plñas City, Philippines Extension Office: Anfra Bldg., FMC-LTO Cmpd., 314 Alabang-Zapote Road, Talon 1, 1740 Las Piñas City Tel. No.: (02) 8553-8381 / (02) 8553-8382 / (02) 8553-8879 / (02) 8550-2573 Fax No.: (02) 8553-8878 Email: info@machunion.com . Website: www.machunion.com Accredited: Philippine Accreditation Bureau (DTI-PAB) = Department of Health (DOH) = Food & Drugs Administrati Recognizad: Department of Environment & Natural Resources (DENR-EMB) = Bureau of Animal Industry (DA-BAI) Istration (FDA)

Result of Analysis						
Job Number: Customer:	MU21022981 NCRMKT-000089 HIAD	Laboratory Number	MU21022981-001	Date:	06/29/2021	
Address:	3rd Fir. Unit 5&6 Mega (Center Bldg., San Antonio St.,	Paseo De Magallanes, Makati City	/		
Date Sampled:	06/15/2021 *		Analyzed Date:	06/21/2021		
Date Received:	06/21/2021					

Analysis are based on sample (s) of: NCRMKT-000089 HIADVANCE PHILIPPINES, INC. Mach Union Water Laboratory, Inc. does not guarantee that sample(s) submitted is (are) representative of the whole bulk from where ithtey was (were) taken. Reproduction of this report is not authorized except in full, without written approval of the laboratory.

Sample ID	Parameters	Method	Units	Result
M21F293 - 01	Lead	Flame AAS	ug	< 0.6

Reference:

Compendium of Methods for the Determination of Inorganics Compound in Ambient Air. US EPA. 1999

Air Ambient Sample in Filter Paper

**Customer/s is/are given (7) days upon receipt of report to question any discrepancies (i.e. customer name & address, sample description, result, etc.)

This document has been signed by those names that appear on this report and are the authorised signatories.

Checked by:

Katri gulayan, RCh Cheme PRC#: 0013681

MU21022981_FINAL_210629 1638H

Certified by:

Mara Marisa T. Manaor, RC

Supervising Chemist PRC#: 0005465

Noted by Aladino M. Abulenc Technical Manager

Page 1 of 1

H UNION LABORATORIES INC.

Main Office: Mach Union Bullding, 335 Alabang-Zapote Road, Talon 3, 1740 Las Piñas City, Philippines Extension Office: Anfra Bidg., FMC-LTO Cmpd., 314 Alabang-Zapote Road, Talon 1, 1740 Las Piñas City Tel. No.: (02) 8553-8381 / (02) 8553-8382 / (02) 8553-8879 / (02) 8550-2573 Fax No.: (02) 8553-8878 Email: info@machunion.com Website: www.machunion.com

AccredRed: Philippine Accreditation Bureau (DTI-PAB) • Department of Health (DOH) • Food & Drugs Administration (FDA) Recognized: Department of Environment & Natural Resources (DENR-EMB) • Bureau of Animal Industry (DA-BAI)

Result of Analysis						
Job Number: Customer: Address:	MU21022982 NCRMKT-000089 HIAE 3rd Elr. Unit 586 Mega (Laboratory Number OVANCE PHILIPPINES, INC. Center Bidg. San Antonio St	MU21022982-001 Paseo De Manallanes, Makati Ci	Date:	06/29/2021	
Aug. 635.						
Date Sampled:	06/16/2021 *		Analyzed Date:	06/21/2021		
Date Received:	06/21/2021					
Sample Description:	Air Ambient Sample in F	Filter Paper				
Analysis are based on sar	mple (s) of: NCRMKT-000069	HIADVANCE PHILIPPINES, INC.				
Mach Union Water La was (were) taken. Reproc	aboratory, Inc. does not g duction of this report is not au	uarantee that sample(s) submit thorized except in full, without writt	ted is (are) representative of the en approval of the laboratory.	whole bulk fi	om where it/the	
Sample ID	Parameters	Method	Units	Result		
M21F293 - 02	Lead	Flame AAS	ug	5.89		

Reference:

Compendium of Methods for the Determination of Inorganics Compound in Ambient Air. US EPA. 1999

**Customer/s is/are given (7) days upon receipt of report to question any discrepancies (i.e. customer name & address, sample description, result, etc.)

This document has been signed by those names that appear on this report and are the authorised signatories.

Checked by:

qullayan, RCh Katrina Chemis PRC#: 0013681

Certified by:

Munana Marisa T. Manaor, RCh Supervising Chemist PRC#: 0005465

Noted by:

Aladino M. Technical Manager

MU21022982_FINAL_210629 1638H

Page 1 of 1

Unit 201-203 & 406 Rizalina Annex Bldg. 1677 Quezon Avenue, Quezon City Tel. No. 8927-77-15 Fax No. 8929-4824 Email: info@elarsi.com

CLIENT	:	HI ADVAN	CE	PHIL. INC	Lab. Report No.	3	211735-AA
ADDRESS	;	3rd Floor, M	aga	a Center Bldg., Paseo de	Date Sampled	2	06-15-21 to 06-16-21
		Magallanes,	Ma	akati	Date Received	2	06-21-21
Contact Num	ber	5	-	8854-8365	Date Analyzed	1	06-21-21 to 06-24-21
Nature of Sar	nple	/s	:	Ambient Air Sample	Date Reported	12(06-24-21
NO. OF Sample	e/s a	suomittea	•	(WO (Z)			

[REPORT OF ANALYSES]

Sample No.	Sample ID	Ozone (O ₃), µg
ES-2108802	M21F293-01	15.74
ES-2108803	M21F293-02	1.78
Method	the second s	Method 411 / Colorimetric

Detection Limit

Reference

James P. Lodge, Methods for Ambient Air Sampling & Analysis, 3rd edition

Analyzed By:

MIKO ALYSSA P. MAMANGON, RCh Laboratory Analyst 1 PRC Lic. No. 0014933

Analyzed By:

MARINELLA FRANCESCA S. CARLOS, RChT Laboratory Chemical Technician PRC Lic. No. 0003462 Checked By:

JULIE CHRISTILLE HAPPY G. MORTE, RCh Laboratory Supervisor PRC Lic. No. 0012578

0.30

Certified Correct By: RENATO M. GOFREDO, JR., RCh Laboratory Manager PRC Lic. No. 0009824

Test results reflect the quality of the samples as received. No portion of this report may be reproduced in any form, without written authorization of ELARSI, Inc. This report is not valid without the official dry seal and watermarks of the laboratory

Page 1 of 1 Page/s

EL HRAFORM_10

RECOGNIZED LABORATORY C.R. No. 005/2018

ACCREDITED LABORATORY 13-008-2123-LW-2

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St., Paseo de Magallanes, 1232 Makati City, Philippines Office: +632.7729.4327 Fax No: +632.8854.8365

Email: info@hiadvance.com.ph Website: www.hiadvance.com.ph

ATTACHMENT 3

- Field Data Sheet
- Sampling Pictures

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonio 5L: Paseo de Magallanes Makati City, 1232 Phone No: (632) 854-8365 Fac No: (632) 729-4327

AMBIENT AIR SAMPLING FIELD DATA SHEET

Company: PRISM EXPRECES CONSULTING INC.	Date: 14 June 2021 - 15 June 202
Address UNIT 11 GROUND TLOOR, KINGGNOOD APCADE COR. PALONG TRAC	+ VITO CAUZ EXT. MAKAN CITY
Station No: Location:AAb - NO9, YO9 - Angelec bld PAR stat	MERS 14 JUN 20 St.
Ambient Temperatures to the End Time: 15101+ GPS Reading: La	titude 515,125964 15,144947°
Barometric Pressure: 10.00 Woother Conditions (ngitude ~ 13.0.597517 120.591071°
Filter ID No:	light to heavy rain call
Sampled Parameters: the PMIC man for No. No.	- I initial weight:
Remarks: Amplicat cat up was alreaded at a curi acquid but and	in provide all ost day
bldd, 10 to 15 meters away Eron residential "In meters amon	t time Arrest load i It to 20 adea
away from commissival peadings hulldings ; cain started	at 1400H - 1500H ;
@ 0540H burning of gar bage were observed (15 to 18 meters away groms a	cangling, pt.)
	· // ·
Model: The The State 2139	XII and Disch
Calibration Date:	916 600
PM2.5/PM10 Sampler	
Model: TE-5010X7 Serial No: 7140/ 2240 Calibration Date:	oy pro row
Three (3) Gas Sampler:	
Model: PAC3 Serial No: 6090001 Flow Rate:	0-21/min
Model: one Tit	
Lalibration Date: 2	0-5046-2020
Multi RAE / Air Quality Meter Equipment	
Model: MULTRAE Serial No: Moless THYZ Calibration Date:	3-JAN-2020
100 / PMIO P12.5	
INITIAL FILTER PRESSURE: 2/ 18 17 Carbon Monoxide:	0
FINAL FILTER PRESSURE: 21-8 18-C 17-G Total VOC:	
THE P	
BOALS GRUD Clinic	
A A A A A A A A A A A A A A A A A A A	
1981	
	0
DID VISTATion pt.	
	(TCP, PM10, PM2,5, NO2, 502, 03)
Amie	Sampling pt.
Residential	
Jara P-P-7 parking Lot	
CIAN	1-101A
Team Leader: QA/QC /Date:	ys the
	0 1.
	MP-AIR-001-F05

Rev 0; 3 May 2018

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonio St. Paseo de Magallanes Makati City, 1232 Phone No: (632) 854-8365 Fax No: (632) 729-4327

FIELD DATA SHEET FOR PARTICULATE MATTER Twenty four (24) Hour Sampling

Station: 1 AAB-N09, v09	Date: June 14-15,2021			
Parameter:	PM 2.5	PM 10	TSP	
Filter Paper No.	2(. 098	21.[3]	2.145	
Hourly Flow Rate (m ³ /m)	-	-	-	
Average Flow Rate (m ³ /m)	Altra -	-	-	
Total Operation Time (min)	1440mins.	1440mins	1440 mins	
Initial Weight of Filter Paper (g)	0_3876	4.4025	7 6715	
Final Weight of Filter Paper (g)	-	-	-	
Dust Contents (g)	-	-	-	
Total Volume of Air Sampled (m ³)	-	-	-	

Remarks: ---

Name & Signature of Official on Duty: -

Team Leader:

QA/QC/Date: 41

MP-AIR-012-F03b Rev. 0; 8 May 2018

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonio St. Paseo de Magailanes Mokaŭ Ciry, 1232 Phone No: (632) 854-8355 Fax No: (632) 729-4327

Hourly Reading	Ambie	nt Temp., T	Barometric Pr	ressure, Pbar	Sampling	Sampling	Flow Rate	Standard Volume
	°C	x	in Hg	mm Hg	Date	lime	ipm	Vstd, Nm ³
0	28.7	30.7	29.41	747.0	T	1500H	Т	T
1	28.7	30.7	27.42	7473		1600 H		
2	27.9	7W.9	29.43	747 C		HOOH		
3	26.5	199 5	29 43	7475		1800 H		
4	26.4	299.4	29.45	748.0		19004		
5	25.9	298.9	29.46	748.0	19 June 203	JANDH		
6	25.8	298.8	2.14.47	748.3		AIMH		
7	25-6	294.6	29.48	2485		3200H		
8	lle.7	279.3	19.47	748.8		22004	-	
9	25.7	298.7	29.47	798.5	-	24004		
10	25.4	298.4	19.46	748.5		0100H	0-2	
11	25.4	298.9	29.46	748.3		ALIDAH	L	
12	25.5	278.5	29.45	748.3		ADDA	1	
13	25.4	298.9	29.45	748.6		hilmu		
14	25.3	298.3	29.43	748.6		00004	min	
15	25.3	2983	29.43	747.5		06004		
16	26.7	298.2	19.42	7475		n 76.04		
17	ille is	2796	19.44	7473	15 June 2021	DRADH		4
18	28.6	70.0	19.44	797.8		09 004		
19	71.9	3049	29.43	747.8	1	loech		
20	33.8	Jues	29,41	747 5		Hodel		
21	356	4076	29,46	747.0		12004		
22	36.4	409.4	29.37	546.5		19004		
23	171	310-1	29.29	744.5		4001		
24	17.5	5105	29.29	74:5	1	1004	1	-

NITROGEN DIOXIDE (NO₂) AIR VOLUME CALCULATION Twenty Four (24) Hour Sampling

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K

P_{bar} = barometric pressure, mm Hg

t = total sampling time, minutes

 $V_{m(stal)}$ = sampled volume corrected to standard conditions, Nm³

 $Q_{\rm a}$ = actual flowrate through the orifice, fixed at 0.2 lpm

1,000 = conversion from liters to m³

Philippine Standard Pressure and Temperature

298 = Standar ambient temperature, K (25°C + 273) 760 = Standard atmospheric pressure, mm Hg

B. Formula used in Calculation:

a. Total volume of air sampled, corrected to standard condition (Nm³)

$$V_{m(std)} = \frac{Q_a}{1,000} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$$

Team Leader:

QA/QC/Date: MALA

MP-AIR-017-F02c Rev_0; 8 May 2018

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonio St. Paseo de Magallanes Makati City, 1232 Phone No: (632) 854-8365 Fax No: (632) 729-4327

Hourly Reading	Ambie	nt Temp., T	Barometric P	ressure, Pbar	Sampling	Sampling	Flow Rate	Standard Volume
	°C	к	in Hg	mm Hg	vare	1 80THC	lpm	Vstd, Nm ³
0	28.7	301.2	29.41	747.0	Т	150041	T	_
1	28.7	30.7	29.42	7473		HOOH		
2	27.9	300.9	29.43	747-5		13 AO LI		
3	26.5	299.5	29.43	7475		SPOH		
4	24.4	299.4	29.46	748.0		1900H		
5	25.9	248.9	29.44	748.3	14 June 202	2 hant		
6	25.8	298.8	29.47	748.5		HOOH		
7	25.6	2986	29.48	7484	1	HOLEA		
8	16.3	299.3	29.47	746.5		tâmil		
9	25.7	248.7	29.47	748.5	-1	Jalooh	0.2	
10	25.4	298.4	29.46	748.3		Disoli	1	
11	25.4	298.4	39.46	748.3		Hadel	1	
12	21.5	298.5	19.45	748.0		DAMAN	1	
13	25.4	298.4	29.45	748.0		04adH	min	
14	253	198.3	2743	747.5		HARI		
15	25.3	2983	19.43	7475	1	them H		
16	15.9	298.2	29.42	747.3	It has 20	HOFE		
17	26.6	2996	29.44	7478	13 June Pop	0,500 (4)		
18	28.6	301.5	29.44	747.5		(DoonH		
19	31.9	304.9	29.43	147.5		10001		
20	338	mult 4	29.41	747.0		100 H		
21	35.6	309.4	29.40	7465		1200H		
22	36-4	300.4	29.39	746.5		HOOH		
23	27.1	-3101	29,29	746.3		14004		
24	775	310.5	29.39	1965	1	15004		L

SULFUR DIOXIDE (SO₂) AIR VOLUME CALCULATION Twenty Four (24) Hour Sampling

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K

P_{bar} = barometric pressure, mm Hg

t = total sampling time, minutes

 $V_{m(stal)}$ = sampled volume corrected to standard conditions, Nm^3

 \mathbf{Q}_{a} = actual flowrate through the orifice, fixed at 0.2 lpm

 $1,000 = \text{conversion from liters to m}^3$

Philippine Standard Pressure and Temperature

298 = Standar ambient temperature, K (25°C + 273)

760 = Standard atmospheric pressure, mm Hg

B. Formula used in Calculation:

a. Total volume of air sampled, corrected to standard condition (Nm³)

$$V_{m(sid)} = \frac{Q_a}{1,000} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$$

Team Leader:

QA/QC/Date: MAJAS

MP-AIR-013-F02c

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonio St. Paseo de Magallanes Makati City, 1232 Phone No: (632) 854-8365 Fox No: (632) 729-4327

AIR SAMPLING DATA SHEET FOR OTHER PARAMETERS

Company:	Prism Express Consulting lac	Team Members:	
Address:	Unit 11 Ground Floor king would preade comin lawing tame	1.) MED	3.) MPB
	and vite Cours Extension, Makati Ghu	2.) R DV	4.) JAS
Station No:	11		
Location:	AAB-NO9, VO9	Date: IS June DOR	1

	FILTER HOLDER #	Flowrate	e, L/min	TIME		
OTHER PARAMIETERS.	PUMP SERIAL #	Start	End	Start	End	
Dzone	028727			08004	6900H	
Vibration		-				
		-		1	1	
					-	

OBSERVATIONS:

light to heavy vehicles were observed during the time of promitering - DOSSING OF 1

- sampling area is within the parking but (automobiles have been parked

MP-AIR-001-F01 Rev. 0; 8 May 2018

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonio St. Paseo de Magallanes Makati Gry. 1232 Phone Ho: (532) 354-3355 Fax No: (532) 723-4327

AMBIENT AIR SAMPLING FIELD DATA SHEET

Company:	PRISM E	APREL S	CONSULTING INC.		Date: 15-16	JUNE CO-	21	
Address:	D LL TIAU	12-0UNO	PLOOR KINGGNOOD APCADI	E COR. PHONE TAMAD	+ VITO CAUZ	EXT . MAR	CITY CITY	+
Start Time:	11-2011		Location: AARS, ND8, VD8	Angeles station				-
Ambient Ten	ngerature:	240	cita (1090H	GPS Reading:	tude 15,135	123		
Barometric P	ressare:	29 40	Weather Condition:	Contract	gittide 120 57	1031		-
Filter ID No:2	21132 2111 C	21147	Type of Filter Paper Used:	GUAL FAILED FIGHE	Initial Weight	TSP PM	10 1Pm25	r.
Sampled Para	ameters: <u>-</u>	SP pmio	MAST SOS NOS HOUSE	BOME CO FOL	T Inclar aa eight.	26869 44	4039 442	35
Remarks: -	Ambient a	quipment	were set up at concrete	ground : 10 m away	From the m	ain mad (Ulanas	1
Approx	10 m	away 1	man construction site (It the back of ret	up); area i	caute di	tu him	ine
na ha	Tre parts	pprax	to to 25 m away troom Funer	al chapd	1.3.4		9 0100	N W
	1 3' TEMITOS I	MILS P	b, No2, 502, Noise, 145	20,03				
TSP Sampler								
Model:	78-5070	¥Z	Serial No: 2139	Calibration Date:	AN ALL AND			
	-				14 149 102 10			
Model:	Sampler		ALL ALL TRAD					
INIOGEI.	TE- 50 H	DXE	Serial No: 140 / 1240	Calibration Date:	14 AU 62220			
Three (B) Gas	Samplers							
Model:	PAC3		Serial No: 10090001	Flow Sate	A-2 Limin			
E Contra and and	ALL AND ADDRESS OF			100011000				
Barometer/Th	termomete	The second						
Model:	MB- 310		Seriai No: AI 56424	Calibration Date	- 50 46 - 2-020			
MUSERAE / A	r Duplity M	totor Found	amant					
Model:	MULTI RATE	Corr Colui	Serial No: Malan -	Colliburation Data				
-	The second	1	P / PMIO PA2.5	Canor anon Date 3				
INITIAL FILTER	R PRESSURI		22-4 19.2 18-6	Carbon Monoxide:	4	WAL-WB		
FINAL FILTER	PRESSURE:	- 13	23.2 20.4 19-8	Total VOC:	-I	W-NW (Dowtime	6/15
1		>				S-SE (1 milton	10/20.)
M	200	ella 1	Instructor	m site			Turginia.	
T IL.	11_		M SIS CI			1	1	
	1		83		()	21	X	
Vileastren	SIR	The state		The she is				1
TK.	is 1	na li		H sampung pt		-1-1		
	17-1	8		(TSP, FIN 10, FM2.5, NO , 14	2) T			
			test T	Pb, 00,03			*	
	1		· <u>µ</u>					
			- (4 Lamec) -	((
·	1		Main model	al day				
				igninay) ->				
					*			
						1		1
Team Leader:	6	201		0.100 10 1	101	A		
	CA	1 M		QA/QC /Date:	~ T/1			-
	\subseteq				,			
						MP-AIR-001-F05	i	
						Rev. D: B May 20)13 -	

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonio St. Paseo de Magallanes Makati City, 1232 Phone No: (632) 854-8365 Fax No: (632) 729-4327

FIELD DATA SHEET FOR PARTICULATE MATTER

Twenty four (24) Hour Sampling

Station: 14 2	42				
Parameter:	PM 2.5	PM 10	TSP		
Filter Paper No.	21132(1) 21116	21132	21147		
Hourly Flow Rate (m ³ /m)		0,117 0			
Average Flow Rate (m ³ /m)			1		
Total Operation Time (min)	1440mins.	144anon 5	1440 mm		
Initial Weight of Filter Paper (g)	44288	44039	76819		
Final Weight of Filter Paper (g)					
Dust Contents (g)					
Total Volume of Air Sampled (m ³)	-		1		

Remarks:

Name & Signature of Official on Duty:

Team Leader:

QA/QC/Date: 4/1 A

MP-AIR-012-F03b Rev. 0; 8 May 2018

HiAdvance Philippines, Inc. 3rd floor Wage Centre San Antonio SL Paseo de Wagellanes Makari (Phy. 1232 Mone No: (632) 4554-8365 Fax No. (632) 723-4327

Hourly	Ambier	nt Temp., T	Barometric P	ressure, Pbar	Sampling	Sampling	flow Rate	Standard Volume
in the second	°C	x	in Hg	നന Hg	Oate	Ime	ipm	Vstd, Nm ³
0	34,0	307-0	29.40	746.8	T	1630H	т	7
ĩ	32.7	305.7	29,40	744.8		173041		
2	71.9	304.9	29.4)	747.0		18304		
3	30.1	303.)	19-41	247,0	15 500	19304		
4	19.7	102.7	19.50	7493	2021	20304		
5	27.6	300.5	29.57	749.6	1	21364		
5	26.7	Vic.7	19.51	1.47.6		22304		
7	25.9	298.9	1950	74.9.3		23304		
8	15.8	27.8.8	29.50	7153	4	2450N		
9	25.6	298.6	29.48	748.8	ī	01304		
10	25.1	298.1	19.48	748.8		0230H	6-2	
11	74.0	300.6	29.47	748.5		OSZON	L	
12	1614	349.1	2.9.07	748.5		04304	1	
13	267	299.7	199.47	748-5		05304		
14	20.0	303-0	29.52	749.8		0630H	win	
15	30.1	303.5	29.52	749.8		67304		
15	31.1	34.1	29.53	750:1	IL JUN	08304		
17	31.1	34,1	2953	1:025	2021	09304		
18	22:57.7	310.3	29.49	749.0	1	10304		
19	334	310.4	29.49	749.6		11304		
20	33.5	310.3	27.99	749.0		12304		
21	76.7	309.3	29.46	7488		13304		
22	21.7	7082	29.44	1426		14304		
23	38-9	20187	29,44	7446		15344		
24	3.00	202.6	29.45	448. U	1	16304		<u>č</u>

NITROGEN DIOXIDE (NO2) AIR VOLUME CALCULATION Twenty Four (24) Hour Sampling

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K

P_{bar} = barometric pressure, mm Hg

t = total sampling time, minutes

 $V_{m(stat)}$ = sampled volume corrected to standard conditions, Nm³

 Q_{e} = actual flowrate through the orifice, fixed at 0.2 lpm

1,000 = conversion from liters to m³

Philippine Standard Pressure and Temperature

298 = Standar ambient temperature, K (25°C + 273)

750 = Standard atmospheric pressure, mm Hg

B. Formula used in Calculation:

a. Total volume of air sampled, corrected to standard condition (Nm³)

 $V_{m(std)} = \frac{Q_a}{1,000} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$ Team Leader:

QA/QC/Date: MAJA

MP-AIR-017-F02c Rev 0; 8 May 2018

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonia St. Paseo de Magallones Marati City, 1232 Phone No: (632) 854-365 Fax No: (532) 729-4327

Hourly	Ambia	ent Temp., T	Barometric P	ressure, Poar	Sampling	Sampling	Flow Rate	Standard Volume
WE DOWN	°C	×	in Hg	mm Hg	Date	lime	າຍເຊ	Vstd, Nm ³
C	34,0	307.0	29.40	THIO 8	-	1630 H	T	T
1	32.7	705.7	29,40	7468		17 3011		
Ż	319	304.9	29.41	747.0		18 364		
3	30 -1	342.1	29.41	7420		19304		
Ą	29.7	30.7	29.50	749.3	13 JUN	2030H		
5	27.8	300.8	29.51	749-0	- 2001	2304		
6	26.7	299.2	29.51	749.6		22.30H		1.000
7	25.9	298.9	19.50	799.7		2330H		
8	25.8	278-8	19.10	749.7	1	2430H		
9	25.4	2518.5	29.48	748.1	-	01304	02	
10	25.1	2982)	29.48	7988		0230H		
11	29.0	200-0	24.47	7485		03 301		
12	26.4	299.4	29.47	748.5		6430H	/	
13	16.7	249.7	29.47	7485		05304	min	
14	30.0	207.0	29.52	749.8	1 Sul	66304		
15	30.5	335	29.52	749,8	NO CON	07304		
16	31.)	304.1	29.53	750.1	2021	08304		
17	31.1	314.1	29.0	750.1	1	NOSE PO		
13	37.3	310.3	29.49	749.0		10 30H		
.19	37.4	710 4	29.49	747.0		11 304		
20	37.5	310.5	29.49	749.0		12304		
21	36.3	319.3	29.46	748.5		13 304		
22	35.7	208.2	29.44	797.8		14304		
23	357	718.7	29.44	747.8		15 304		
24	14.4	3076	29.45	748.2	1	16 304		1

SULFUR DIOXIDE (SO₂) AIR VOLUME CALCULATION Twenty Four (24) Hour Sampling

A. Nomenclature (Terms are listed by the order of their appearance in the table above)

T = ambient temperature, K

P_{bar} = barometric pressure, mm Hg

t = total sampling time, minutes

V_{m(std)} = sampled volume corrected to standard conditions, Nm³

 Q_a = actual flowrate through the orifice, fixed at 0.2 lpm

 $1,000 = \text{conversion from liters to m}^3$

Philippine Standard Pressure and Temperature

298 = Standar ambient temperature, K (25°C + 273)

760 = Standard atmospheric pressure, mm Hg

B. Formula used in Calculation:

a. Total volume of air sampled, corrected to standard condition (Nm³)

$$V_{m(s(d))} = \frac{Q_a}{1,000} \times \frac{298}{T} \times \frac{P_{bar}}{760} \times t$$

QA/QC/Datz MAC

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonio St. Paseo de Magallanes Mokati City, 1232 Phone No: (632) 854-8365 Fax No: (632) 729-4327

AIR SAMPLING DATA SHEET FOR OTHER PARAMETERS

Company:	Prism Express Consulting 190	Team Members:
Address:	Nort 11 Groupd Floor kingingoud Angady comer passing tame	1.) MED
	and vite Cariz Extension, Makati City	2.) RPV
Station No:	2	
Location:	AADS . NOB . VOR	Date:

FILTER HOLDER #	Flowrate	e, L/min	TIME		
PUMP SERIAL #	Start	End	Start	End	
	-		08 du H	69004	
	-				
	FILTER HOLDER # PUMP SERIAL #	FILTER HOLDER # Flowrate PUMP SERIAL # Start	FILTER HOLDER # Flowrate, L/min PUMP SERIAL # Start End End	FILTER HOLDER # Flowrate, L/min TIN PUMP SERIAL # Start End Start	

OBSERVATIONS:

- 11-15m away from the main and	(4 Lanec) , sampling	time during nich bour were large volu	present of tight to heaven
vahieles and neterna hit	Cleans 10-15 m	Malan Ermo Excerci Chapi	1 0. 5
- returnes are parsing on ,		and discussion with a second	

MP-AIR-001-F01

3.) MPB 4.) ,145

Rev. 0; 8 May 2018

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St., Paseo de Magallanes, 1232 Makati City, Philippines Office: +632.7729.4327 Fax No: +632.8854.8365 Email: info@hiadvance.com.ph Website: www.hiadvance.com.ph

Air Monitoring Stations HiAdvance Philippines Inc.

COMPANY NAME: Prism Express Consulting, Inc.

Ambient Air Sampling

ADDRESS: Unit 11 Ground Floor, Kingswood Arcade Corner Pasong Tamo & Vito Cruz Extension, Makati City

Station 1: SET-UP

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St., Paseo de Magallanes, 1232 Makati City, Philippines Office: +632.7729.4327 Fax No: +632.8854.8365 Email: info@hiadvance.com.ph Website: www.hiadvance.com.ph

Ambient Air Monitoring Stations HiAdvance Philippines Inc.

COMPANY NAME: Prism Express Consulting, Inc.

Ambient Air Sampling

ADDRESS: Unit 11 Ground Floor, Kingswood Arcade Corner Pasong Tamo & Vito Cruz Extension, Makati City

Station 1: RECOVERY

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St., Paseo de Magalianes, 1232 Makati City, Philippines Office: +632.7729.4327 Fax No: +632.8854.8365 Email: info@hiadvance.com.ph Website: www.hiadvance.com.ph

Ambient Air Monitoring Stations HiAdvance Philippines Inc.

COMPANY NAME: Prism Express Consulting, Inc.

Ambient Air Sampling

ADDRESS: Unit 11 Ground Floor, Kingswood Arcade Corner Pasong Tamo & Vito Cruz Extension, Makati City

Station 2: SET-UP

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St., Paseo de Magallanes, 1232 Makati City, Philippines Office: +632.7729.4327 Fax No: +632.8854.8365 Email: info@hiadvance.com.ph Website: www.hiadvance.com.ph

Ambient Air Monitoring Stations HiAdvance Philippines Inc.

COMPANY NAME: Prism Express Consulting, Inc.

Ambient Air Sampling

ADDRESS: Unit 11 Ground Floor, Kingswood Arcade Corner Pasong Tamo & Vito Cruz Extension, Makati City

Station 2: RECOVERY

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Baseline Sampling Laboratory Results for CP N-03

Surface Water Quality (SW8, SW9, SW10 and DD SW2)

North-South Commuter Railway Extension Project

Barangay Road, Bo. Mamplasan, Biñan, Laguna, Philippines 4024 Telefax : (02):889-9058; (049):539-0102; (02):848-6954 Email : customer.service@pstrealabs.com.ph

CERTIFICATE OF ANALYSIS

- Customer : PRISM EXPRESS CONSULTING, INC.
- Address : No.54 South Maya Philamlife Homes West Triangle, Quezon City
- Attention : MR. ALLAN PLETE

Contact Information: 0915-789-6905/allanplete@yahoo.com

DENR Recognized Laboratory with C.R No. 011/2018

Original Issue	~
Duplicate issue by request	
Revision Copy	

CAN	: C21-07-119
Date of Issue	:7/7/2021
RAN	:R21-06-800
INVOICE #	:-
Date Received	1:6/29/2021
Date Sampled	1:6/29/2021
Date Analyzed	1:6/29-7/5/2021

RESULTS OF ANALYSIS

Sample Descriptions	Parameters	Results	Units	Methods
Surface Water				
SW-8	рН	7.1		Electrometric
1023H	Temperature	30	°C	Laboratory and Field
	Color	50	ACU	Visual Comparison
	Conductivity@26.5°C	854.0	μS/cm	Laboratory
	* Flow Rate	4.1	m/s	Direct Reading - Flow Meter
	* Width	5	m	Direct Reading - Tape Meter
	* Depth	8	cm	Direct Reading - Tape Meter
	Dissolved Oxygen (DO)	6	mg/L	DO Meter
	Biochemical Oxygen Demand (BOD)	40	mg/L	5 - Day BOD Test
	Total Suspended Solids (TSS)	11	mg/L	Gravimetric, dried at 103-105 °C
	Oil and Grease	2.1	mg/L	Liquid-Liquid, Partition - Gravimetric
	Surfactants (MBAS)	<0.10	mg/L	Anionic Surfactants as MBAS
	Phenols	<0.001	mg/L	Chloroform Extraction
	Hexavalent Chromium (Cr ⁶⁺)	< 0.01	mg/L	Colorimetric
	Phosphate	1.28	mg/L	Stannous Chloride
	Nitrate as NO ₃ ⁻ -N ^a	0.09	mg/L	Colorimetric, Brucine
	Chloride (Cl ⁻)	67.4	mg/L	Argentometric
	Cyanide (CN [−])	< 0.01	mg/L	Cyanide - Selective Electrode (w/o distillation)
	Arsenic (As)	< 0.0007	mg/L	Manual Hydride Generation AAS
	Cadmium (Cd)	<0.003	mg/L	Direct Air-Acetylene Flame
	Dissolved Copper (Cu)	< 0.005	mg/L	Direct Air-Acetylene Flame
	Mercury (Hg)	<0.0004	mg/L	Cold Vapor AAS
	Lead (Pb)	<0.01	mg/L	Direct Air-Acetylene Flame
	Total Coliform	54 x 10 ⁴	MPN/100mL	Multiple Tube Fermentation Technique -
				Standard Total Coliform Fermentation Technique
	Thermotolerant (Fecal) Coliform	35 x 10 ⁴	MPN/100mL	Multiple Tube Fermentation Technique -
				Fecal Coliform Procedure

Not valid without OMLI dry seal

Page 1 of 3

Sample Descriptions	Parameters	Results	Units	Methods
SW-9	pH	7.0	-	Electrometric
1148H	Temperature	30	°C	Laboratory and Field
	Color	20	ACU	Visual Comparison
	Conductivity@26.5°C	709.1	μS/cm	Laboratory
	* Flow Rate	5.8	m/s	Direct Reading - Flow Meter
	* Width	8.3	m	Direct Reading - Tape Meter
	* Depth	12	cm	Direct Reading - Tape Meter
	Dissolved Oxygen (DO)	5	mg/L	DO Meter
	Biochemical Oxygen Demand (BOD)	15	mg/L	5 - Day BOD Test
	Total Suspended Solids (TSS)	17	mg/L	Gravimetric, dried at 103-105 °C
	Oil and Grease	2.1	mg/L	Liquid-Liquid, Partition - Gravimetric
	Surfactants (MBAS)	<0.10	mg/L	Anionic Surfactants as MBAS
	Phenols	< 0.001	mg/L	Chloroform Extraction
	Hexavalent Chromium (Cr6+)	<0.01	mg/L	Colorimetric
	Phosphate	0.78	mg/L	Stannous Chloride
	Nitrate as NO ₃ ⁻ -N ^a	0.16	mg/L	Colorimetric, Brucine
	Chloride (Cl ⁻)	33.7	mg/L	Argentometric
	Cyanide (CN ⁻)	0.12	mg/L	Cyanide - Selective Electrode (w/o distillation)
	Arsenic (As)	<0.0007	mg/L	Manual Hydride Generation AAS
	Cadmium (Cd)	< 0.003	mg/L	Direct Air-Acetylene Flame
	Dissolved Copper (Cu)	<0.005	mg/L	Direct Air-Acetylene Flame
	Mercury (Hg)	< 0.0004	mg/L	Cold Vapor AAS
	Lead (Pb)	< 0.01	mg/L	Direct Air-Acetylene Flame
	Total Coliform	35 x 10⁴	MPN/100mL	Multiple Tube Fermentation Technique -
				Standard Total Coliform Fermentation Technique
	Thermotolerant (Fecal) Coliform	24 x 10 ⁴	MPN/100mL	Multiple Tube Fermentation Technique -
				Fecal Coliform Procedure
DD SW2	РН	7.1	-	Electrometric
0940H	Temperature	30	°C	Laboratory and Field
	Color	50	ACU	Visual Comparison
	Conductivity@26.4	1318	μS/cm	Laboratory
	* Flow Rate	3.7	m/s	Direct Reading - Flow Meter
	* Width	8.9	m	Direct Reading - Tape Meter
	* Depth	6	cm	Direct Reading - Tape Meter
	Dissolved Oxygen (DO)	7	mg/L	DO Meter
	Biochemical Oxygen Demand (BOD)	29	mg/L	5 - Day BOD Test
	Total Suspended Solids (TSS)	15	mg/L	Gravimetric, dried at 103-105 °C
	Oil and Grease	1.7	mg/L	Liquid-Liquid, Partition - Gravimetric
	Surfactants (MBAS)	<0.10	mg/L	Anionic Surfactants as MBAS
	Phenols	< 0.001	mg/L	Chloroform Extraction
	Hexavalent Chromium (Cr ⁶⁺)	< 0.01	mg/L	Colorimetric
	Phosphate	0.11	mg/L	Stannous Chloride
	Nitrate as NO ₃ ⁻ -N ^a	0.10	mg/L	Colorimetric, Brucine
	Chloride (Cl ⁻)	65.6	mg/L	Argentometric
	Cyanide (CN ⁻)	<0.01	mg/L	Cyanide - Selective Electrode (w/o distillation)
	Arsenic (As)	<0.0007	mg/L	Manual Hydride Generation AAS

Not valid without OMLI dry seal

Page 2 of 3

C21-07-119

Sample Descriptions	Parameters	Results	Units	Methods
	Cadmium (Cd)	< 0.003	mg/L	Direct Air-Acetylene Flame
	Dissolved Copper (Cu)	<0.005	mg/L	Direct Air-Acetylene Flame
	Mercury (Hg)	< 0.0004	mg/L	Cold Vapor AAS
	Lead (Pb)	< 0.01	mg/L	Direct Air-Acetylene Flame
	Total Coliform	16 x 10⁵	MPN/100mL	Multiple Tube Fermentation Technique -
				Standard Total Coliform Fermentation Technique
	Thermotolerant (Fecal) Coliform	16 x 10⁵	MPN/100mL	Multiple Tube Fermentation Technique -
				Fecal Coliform Procedure

Note : * Parameter which is/are outside the laboratory's PNS ISO/IEC 17025:2017 scope of accreditation. The customer is given 7 days upon receipt to raise questions or clarifications on any part or content of the certificate, otherwise the result(s) is /are deemed accepted.

CHRISTOPHER D. HERNANDEZ, RMicro-PAM

Microbiology Section Head

Certified Correct	by:	hr:	Approved by:	Ph
Reference Remarks	: Standard Methods for the Examinati : Results relate only to the items teste	ion of Water and Wastewater, 23rd e ed and received by the laboratory.	ed.; ^a USEPA Method 352.1	an dise
Sample Submission	:Sampled by the OMLI staff			
Total No. of Samples	s:3 To t	tal Analysis : 75		

MA. CRISTINA REFERENTE, RCh

PRC No. 0007398

Laboratory Head

Not valid without OMLI dry seal

Page 3 of 3

ALVIN P. BASCO, RCh

PRC No. 0011786

Head of Operations

OSTREA MINERAL LABORATORIES, Inc. Assaying and Environmental Testing Specialist

Barangay Road, Bo. Mamplasan, Biñan, Laguna, Philippines 4024 Telefax : (02) 889-9058; (049) 539-0102; (02) 848-6951 Email : customer.service@ostrealabs.com.ph

CERTIFICATE OF ANALYSIS

Customer : PRISM EXPRESS CONSULTING, INC.

Address : No. 54 South Maya Philamlife Homes West Triangle, Quezon City

Attention : MR. ALLAN PLETE

Contact Information: 0915-789-6905/allanplete@yahoo.com

DENR Recognized Laboratory with C.R No. 011/2018

Original Issue	\checkmark
Duplicate issue by request	
Revision Copy	

 CAN
 : C21-07-41

 Date of Issue
 : 7/6/2021

 RAN
 : R21-06-753

 INVOICE #
 :

 Date Receive
 : 6/25/2021

 Date Sample
 : 6/25-7/2/2021

RESULTS OF ANALYSIS

Sample Descriptions	Parameters	Results	Units	Methods
Surface Water				
SW-10	рН	7.1	- 103	Electrometric
1330H	Temperature	25	°C	Laboratory and Field
	Color	50	ACU	Visual Comparison
	Conductivity @ 25.7 °C	89.25	μS/cm	Laboratory
	* Depth	7.5	cm	Direct Reading - Tape Meter
	* Flow Rate	42.1	m/s	Direct Reading - Flow Meter
	* Width	3	m	Direct Reading - Tape Meter
	Dissolved Oxygen (DO)	6	mg/L	DO Meter
	Biochemical Oxygen Demand (BOD)	17	mg/L	5 - Day BOD Test
	Total Suspended Solids (TSS)	91	mg/L	Gravimetric, dried at 103-105 °C
	Oil and Grease	3.0	mg/L	Liquid-Liquid, Partition - Gravimetric
	Surfactants (MBAS)	0.27	mg/L	Anionic Surfactants as MBAS
	Hexavalent Chromium (Cr ⁶⁺)	<0.01	mg/L	Colorimetric
	Phosphate	0.14	mg/L	Stannous Chloride
	Nitrate as NO ₃ ⁻ -N ^a	0.11	mg/L	Colorimetric, Brucine
	Chloride (Cl ⁻)	9.9	mg/L	Argentometric
	Cyanide (CN⁻)	<0.01	mg/L	Cyanide - Selective Electrode (w/o distillation)
	Arsenic (As)	0.0009	mg/L	Manual Hydride Generation AAS
	Cadmium (Cd)	< 0.003	mg/L	Direct Air-Acetylene Flame
	Dissolved Copper (Cu)	<0.005	mg/L	Direct Air-Acetylene Flame
	Lead (Pb)	<0.01	mg/L	Direct Air-Acetylene Flame

Not valid without OMLI dry seal

Page 1 of 2

C21-07-41

Sample Descript	ions Parame	eters	Results	Units	Metho	ds		
	Mercury	(Hg)	<0.0004	mg/l	Cold Va	nor AAS		
	Total Co	liform	54×10^3	MPN/100ml	Multipl	e Tube Fermentatio	an Tachniqua	
	i otali co		J4 X 10		Standay	d Total California La	on rechnique -	
	Thermot	colorant Coliform	$E4 \times 10^{3}$	MDN/100ml	Standar	a Total Collform Fe	ermentation Technique	
	mermor		54 X 10°	WPN/100mL	Nultipl	e Tube Fermentatio	on Technique -	
				20	Fecal Co	oliform Procedure		
Note : * Paramete The custom otherwise t	r(s) which is/a er is given 7 d he result(s) is/	re outside the laboratory's I ays upon receipt to raise qu 'are deemed accepted.	PNS ISO/IE estions or	C 17025:2017 clarifications	7 scope on any	of accreditation. part or content c	f the certificate,	
Total No. of Sample	e:1	Total Ana	lysis : 24					
Sample Submission	Sampled by	the OMLI staff						
Reference	: Standard Me	thods for the Examination of W	Vater and V	Vastewater, 23	rd ed.; "l	JSEPA Method 352	.1.	
Remarks	: Results relate	e only to the item tested and re	eceived by t	he laboratory.				
Certified Correct b	by:	/dell		600		Approved by:	lb	
	CHRISTOP	HER D. HERNANDEZ, RMicro-PAM	MA. CRIST	INA F. REFERENT	E, RCh		ALVIN P. BASCO, RCh	
	Μ	icrobiology Section Head	PR	RC No. 0007398			PRC No. 0011786	
			La	boratory Head			Head of Operations	

Page 2 of 2

OSTREA MINERAL LABORATORIES, IC. Assaying and Environmental Testing Specialist

Barangay Road, Bo. Mamplasan, Biñan, Laguna, Philippines 4024 Telefax : (02) 889-9058; (049) 539-0102; (02) 848-6951 Email : customer.service@ostrealabs.com.ph

CAN

RAN

INVOICE #

DENR Recognized Laboratory with C.R No. 011/2018

:C21-07-119A

:R21-06-800

Original Issue Duplicate issue by request Revision Copy

Date of Issue :7/22/2021

Date Received: 6/29/2021 Date Sampled: 6/29/2021

:-

Date Analyzed: 6/29-7/15/2021

CERTIFICATE OF ANALYSIS

- **Customer** : PRISM EXPRESS CONSULTING, INC.
- Address : No.54 South Maya Philamlife Homes West Triangle, Quezon City
- Attention : MR. ALLAN PLETE

Contact Information: 0915-789-6905/allanplete@yahoo.com

RESULTS OF ANALYSIS

Sample Descriptions Surface Water	Parameters	Results	Units	Methods
SW-8	* Malathion	<0.5	ug/L	Gas Chromatographic-MS
1023H				
	Phenol and Phenolic Substances	<0.00006	mg/L	Gas Chromatographic-MS
	Phenol			
	2-Chlorophenol			
	2,4-Dichlorophenol			
	2,4,6-Trichlorophenol			
SW-9	* Malathion	<0.5	ug/L	Gas Chromatographic-MS
1148H				
	Phenol and Phenolic Substances	<0.00006	mg/L	Gas Chromatographic-MS
	Phenol			
	2-Chlorophenol			
	2,4-Dichlorophenol			
	2,4,6-Trichlorophenol			

Not valid without OMLI dry seal

	Sample Descriptions	Parameters	Results	Units	Methods
	DD SW2	* Malathion	<0.5	ug/L	Gas Chromatographic-MS
	0940H				
		Phenol and Phenolic Substances	<0.00006	mg/L	Gas Chromatographic-MS
		Phenol			
		2-Chlorophenol			
		2,4-Dichlorophenol			
		2,4,6-Trichlorophenol			
Note :	* Parameter which is/are The customer is given 7 d otherwise the result(s) is	outside the laboratory's PNS ISG ays upon receipt to raise questic /are deemed accepted.	O/IEC 170 ons or cla	25:2017 scope ifications on a	of accreditation. ny part or content of the certificate,
Total No	o. of Samples :3	Total Analysis	s : 6		
Sample	Submission : Sampled by	the OMLI staff			

Reference	: Standard Methods for the Examination of Water and Wastewater, 23rd ed.
Remarks	: Results relate only to the items tested and received by the laboratory

Certified Correct by:

MA. CRISTINA F. REFERENTE, RCh PRC No. 0007398 Laboratory Head

Certified Correct and Approved by:

ALVIN P. BASCO, RCh PRC No. 0011786 Head of Operations

Not valid without OMLI dry seal

Barangay Road, Bo. Mamplasan, Biñan, Laguna, Philippines 4024 Telefax : (02) 889-9058; (049) 539-0102; (02) 848-6951 : customer.service@ostrealabs.com.ph Email

CAN

DENR Recognized Laboratory with C.R No. 011/2018

V

Original Issue Duplicate issue by request **Revision Copy**

CERTIFICATE OF ANALYSIS

- Customer : PRISM EXPRESS CONSULTING, INC.
- : No. 54 South Maya Philamlife Homes West Triangle, Quezon City **Address**
- : MR. ALLAN PLETE Attention

Contact Information: 0915-789-6905/allanplete@yahoo.com

:C21-07-41A Date of Issue :7/15/2021 :R21-06-753 RAN INVOICE # :--Date Received: 6/25/2021 Date Sampled: 6/25/2021 Date Analyzed: 6/25-7/14/2021

RESULTS OF ANALYSIS

Sample Descriptions	Parameters	Results	Units	Methods
Surface Water				
SW-10	* Malathion	<0.5	ug/L	Gas Chromatographic-MS
1330H				
	Phenol and Phenolic Substances	<0.00006	mg/L	Gas Chromatographic-MS
	Phenol			
	2-Chlorophenol			
	2,4-Dichlorophenol			
	2,4,6-Trichlorophenol			

Note: * Parameter(s) which is/are outside the laboratory's PNS ISO/IEC 17025:2017 scope of accreditation. The customer is given 7 days upon receipt to raise questions or clarifications on any part or content of the certificate, otherwise the result(s) is /are deemed accepted.

Total No. of Sample : 1	Total Analysis : 2

Sample Submission	. Sampled by the Owle stan
Reference	: Standard Methods for the Examination of Water and Wastewater, 23rd ed.
Remarks	: Results relate only to the item tested and received by the laboratory.

Certified Correct by:	5-	Certified Correct	lb	
	MA. CRISTINA F. REFERENTE, RCh PRC No. 0007398 Laboratory Head	and Approved by.	ALVIN P. BASCO, RCh PRC No. 0011786 Head of Operations	

Not valid without OMLI dry seal

Page 1 of 1

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Baseline Sampling Laboratory Results for CP N-03

Groundwater Quality (GW4 and GW5)

North-South Commuter Railway Extension Project

OSTREA MINERAL LABORATORIES, Inc.

Barangay Road, Bo. Mamplasan, Biñan, Laguna, Philippines 4024 Telefax : (02) 889-9058; (049) 539-0102; (02) 848-6951 Email : customer.service@ostrealabs.com.ph

Assaying and Environmental Testing Specialist

DENR Recognized Laboratory with C.R No. 011/2018

CERTIFICATE OF ANALYSIS

- Customer : PRISM EXPRESS CONSULTING, INC.
- Address : No. 54 South Maya Philamlife Homes West Triangle, Quezon City
- Attention : MR. ALLAN PLETE

Contact Information: 0915-789-6905/allanplete@yahoo.com

Original Issue	\checkmark
Duplicate issue by request	
Revision Copy	

CAN : C21-07-53 Date of Issue : 7/6/2021 RAN : R21-06-752 INVOICE # : Date Receive : 6/25/2021 Date Sample : 6/25-7/2/2021

RESULTS OF ANALYSIS

Sample Descriptions	Parameters	Results	Units	Methods	PNS for Drinking Water 2017
Ground water					
GW-4	pH	6.4	-	Electrometric	6.5-8.5
0845H	Temperature	28	°C	Laboratory and Field	-
DO - 5 mg/L	Color (True)	10	CU	Visual Comparison	-
	Conductivity@25.6°C	618.1	μS/cm	Laboratory	-
	Total Dissolved Solids (TDS)	434	mg/L	Gravimetric, dried at 180 °C	600
	Hexavalent Chromium (Cr ⁶⁺)	<0.01	mg/L	Colorimetric	-
	Nitrate as NO₃ ⁻ -N	1.00	mg/L	Nitrate Electrode	50.00
	Chloride (Cl⁻)	40.0	mg/L	Argentometric	250
	Total Cyanide (CN [−])	<0.01	mg/L	Cyanide - Selective Electrode (w/ distillation)	0.50
	Bicarbonate (HCO3 ⁻ -Alkalinity as CaCO3)	195.3	mg/L	Potentiometric	-
	Sulfate (SO4 ²⁻)	49	mg/L	Turbidimetric	250
	Arsenic (As)	<0.0007	mg/L	Manual Hydride Generation AAS	0.01
	Cadmium (Cd)	<0.003	mg/L	Direct Air-Acetylene Flame	0.003
	Calcium (Ca)	40.10	mg/L	Direct Nitrous Oxide-Acetylene Flame	-
	Lead (Pb)	<0.01	mg/L	Direct Air-Acetylene Flame	0.01
	Magnesium (Mg)	8.42	mg/L	Direct Air-Acetylene Flame	-
	Mercury (Hg)	<0.0004	mg/L	Cold Vapor AAS	0.001
	Potassium (K)	13.50	mg/L	Direct Air-Acetylene Flame	-
	Sodium (Na)	45.41	mg/L	Direct Air-Acetylene Flame	200
	Total Coliform	> 8.0	MPN/100mL	Multiple Tube Fermentation	<1.1

Not valid without OMLI dry seal

Page 1 of 2

Sample Descriptions	Parameters	Results	Units	Methods		PNS for Drinking Water 2017
	Thermotolerant (Fecal) Col	iform > 8.0	MPN/100mL	Multiple Tube Fe	rmentation	<1.1
Note : The cu otherw	stomer is given 7 days upo vise the result(s) is/are dee	on receipt to raise que	estions or clari	fication on any	part or content of t	he certificate,
Total No. of Sa	ample : 1	Total Ana	l ysis : 21			
Sample Submi	ssion: Sampled by the ON	/ILI staff				
Reference Remarks	: Standard Methods for : Results relate only to	or the Examination of W o the item tested and re	ater and Waste ceived by the la	water, 23rd ed. boratorv.		
Certified Cor	rect by:				Approved by:	() ()
	CHRISTOPHER D. HE Microbiolog	RNANDEZ, RMicro-PAM gy Section Head	MA. CRISTINA F PRC No. Laborat	REFERENTE, RCh 0007398 ory Head		ALVIN P. BASCO, RCh PRC No. 0011786 Head of Operations
Not valid with	out OMLI dry seal	F State Stat	age 2 of 2			C21-07-53

OSTREA MINERAL LABORATORIES, Inc. Assaying and Environmental Testing Specialist

Barangay Road, Bo. Mamplasan, Biñan, Laguna, Philippines 4024 Telefax : (02) 889-9058; (049) 539-0102; (02) 848-6951 Email : customer.service@ostrealabs.com.ph

DENR Recognized Laboratory with C.R No. 011/2018

CERTIFICATE OF ANALYSIS

Customer : PRISM EXPRESS CONSULTING, INC.

Address : No. 54 South Maya Philamlife Homes West Triangle, Quezon City

Attention : MR. ALLAN PLETE

Contact Information: 0915-789-6905/allanplete@yahoo.com

Original Issue	\checkmark
Duplicate issue by request	
Revision Copy	

CAN : C21-07-53A Date of Issue : 7/6/2021 RAN : R21-06-752 INVOICE # : Date Receive : 6/25/2021 Date Sample : 6/25-7/2/2021 Date Analyzed: : 6/25-7/2/2021

RESULTS OF ANALYSIS

Sample Descriptions	Parameters	Results	Units	Methods	PNS for Drinking Water 2017
Ground water					
GW-5	рН	6.0	-	Electrometric	6.5-8.5
1246H	Temperature	28	°C	Laboratory and Field	-
DO - 7 mg/L	Color (True)	<5	CU	Visual Comparison	-
	Conductivity@25.5°C	819.8	μS/cm	Laboratory	-
	Total Dissolved Solids (TDS)	560	mg/L	Gravimetric, dried at 180 °C	600
	Hexavalent Chromium (Cr ⁶⁺)	<0.01	mg/L	Colorimetric	-
	Nitrate as NO₃ ⁻ -N	6.00 [°]	mg/L	Nitrate Electrode	50.00
	Chloride (Cl ⁻)	42.9	mg/L	Argentometric	250
	Total Cyanide (CN⁻)	<0.01	mg/L	Cyanide - Selective Electrode (w/ distillation)	0.50
	Bicarbonate (HCO ₃ ⁻ -Alkalinity as CaCO ₃)	129.2	mg/L	Potentiometric	-
	Sulfate (SO ₄ ^{2–})	70	mg/L	Turbidimetric	250
	Arsenic (As)	0.0020	mg/L	Manual Hydride Generation AAS	0.01
	Cadmium (Cd)	<0.003	mg/L	Direct Air-Acetylene Flame	0.003
	Calcium (Ca)	59.17	mg/L	Direct Nitrous Oxide-Acetylene Flame	-
	Lead (Pb)	<0.01	mg/L	Direct Air-Acetylene Flame	0.01
	Magnesium (Mg)	18.00	mg/L	Direct Air-Acetylene Flame	-
	Mercury (Hg)	<0.0004	mg/L	Cold Vapor AAS	0.001
	Potassium (K)	13.63	mg/L	Direct Air-Acetylene Flame	-
	Sodium (Na)	45.30	mg/L	Direct Air-Acetylene Flame	200
	Total Coliform	> 8.0	MPN/100mL	Multiple Tube Fermentation	<1.1

Not valid without OMLI dry seal

Page 1 of 2
Sample Descriptions	Parameters	F	Results	Units	Methods		PNS for Drinking Water 2017
	Thermotolera	nt (Fecal) Coliform	> 8.0	MPN/100mL	Multiple Tube F	ermentation	<1.1
Note : The cus otherw	stomer is giver ise the result(n 7 days upon receipt to ra s) is/are deemed accepted	ise que l.	stions or clar	ification on any	y part or content of	the certificate,
Total No. of Sa	mple:1	Tot	al Analy	ysis : 21			
Sample Submis	Standar: Standar	d by the OMLI staff d Methods for the Examination	on of Wa	ater and Waste	water 23rd ed		
Remarks	: Results	relate only to the item tested	and rec	eived by the la	iboratory.		
Certified Corr	rect by:	Libelt		4		Approved by:	Ar
	CHRIS	STOPHER D. HERNANDEZ, RMicro Microbiology Section Head	o-PAM	MA. CRISTINA F PRC No Labora	REFERENTE, RCh . 0007398 tory Head		ALVIN P. BASCO, RCh PRC No. 0011786 Head of Operations

Not valid without OMLI dry seal

Page 2 of 2

C21-07-53A

This Report is the confidential property of the client named. Prior client approval is required to verify and confirm the information contained herein. Persons acting without diligent verification do so at their peril. Unless otherwise authorized, all reprographic, dissemination and publication rights are reserved, including downloads, digital and image files and representations.

Uninterrupted Total Quality Service Since 1976

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Baseline Sampling Laboratory Results for CP N-03

Noise Level (N08 and N09)

North-South Commuter Railway Extension Project

Prism Express Consulting, Inc. Company Address: Unit 11 GF, Kingswood Arcade cor., Pasong Tamo and Vito Cruz Extension, Makati City Email Address: <u>allanplete@yahoo.com</u>; <u>cbtprismexpressconsulting@outlook.com</u> Contact No.: (02) 8651223/09152067231

5-July-2021

Attention: Engr. Allan Plete

Subject: Ambient Noise Level Measurement Report

Engr. Plete:

We hereby submit the attached report on noise level monitoring conducted for 24-hours on two (2) sampling locations of North-South Commuter Railway (NSCR-EX) Extension Project located at Pampanga.

Please feel free to contact us if you have any questions regarding this report.

Thank you for choosing HiAdvance in serving your air quality requirement. We look forward to a continued partnership and new opportunities.

Sincerely,

Annabelle Bangoy Project Manager

NOISE LEVEL MEASUREMENT REPORT

Company Name	Prism Express Consulting, Inc.
Address	Unit 11 GF, Kingswood Arcade cor., Pasong Tamo and Vito Cruz Extension, Makati City
Project Name	North-South Commuter Railway (NSCR-EX) Extension Project
Project Site(s)	Pampanga
Sampling Date	14 th -16 th of June, 2021
Project Manager	Engr. Allan Plete

1.0 Noise Analysis Background

HiAdvance Philippines, Incorporated (HiAdvance) was contracted by Prism Express Consulting, Inc. to monitor the Noise level measured at two (2) sampling locations for twenty-four (24) hours with thirty (30) seconds reading interval. The sampling locations are located in the site mentioned above. The noise level monitoring was conducted last June 14-16, 2021.

Noise is defined as unwanted or excessive sound. Sound becomes unwanted when it interferes with normal activities within the work premises. Sound (noise) is described in terms of loudness, frequency and duration. Loudness is the sound pressure level measured on a logarithmic scale in units of decibels (dB).

2.0 Noise Introduction

Noise is defined as unwanted sound. It is measured in terms of sound pressure level and is usually expressed in decibels (dB). The human ear is less sensitive to higher and lower frequencies than it is to mid-range frequencies. To provide a measurement meaningful to humans, a weighting system that reduces the sound level of higher and lower frequency sounds, similar to what the human ear does, was developed. This filtering system is used in virtually all noise ordinances. Measurements taken with this "A weighted" filter are referred to as "dBA" readings.

There are two primary noise measurement descriptors that are used to assess noise impacts from traffic and transit projects, the L_{eq} and the L_{dn} , described below:

 L_{eq} : The equivalent sound level (L_{eq}) is the level of a constant sound for a specified period of time that has the same sound energy as an actual fluctuating noise over the same period of time.

The peak-hour L_{eq} is used for all traffic and light rail noise analyses at locations with daytime use, such as schools and libraries.

 L_{dn} : The day-night sound level (L_{dn}) is an L_{eq} over a 24-hour period, The L_{dn} is the primary noise-level descriptor for light rail noise at residential land uses.

In addition to the L_{eq} and L_{dn} , there is also a descriptor called the L_{max} and L_{min} . The L_{max} is the loudest 1 second over a measurement period while L_{min} is the minimum value measured over a certain period of time and is used in many local and state ordinances for noise coming from private land uses and for construction impact evaluation.

3.0 Noise Evaluation Methodology

For noise level monitoring, sound level frequency characteristics are based upon human hearing, using an A-weighted [dB (A)] frequency filter. The A-weighted filter is used to approximate the way humans hear sound.

EXTECH Model SDL600 with Serial No. H.399668, a digital sound level meter that meets ANSI and IEC Type 2 specifications was used to measure the noise level at the sampling points specified by the client. This measuring device has ± 1.5 dB accuracy with 0.1 dB resolution.

Prior to actual noise measurement, the digital sound level meter was calibrated using Extech 407766 Sound level Calibrator set at 94 dB.

4.0 Sampling Location

- Station #1: N09 (Angeles old PNR Station-Brgy. Claro M. Recto) Latitude: 15.144623 N Longitude: 120.591232 E
- Station #2: N08 (Angeles Station-Near La Pieta Memorial Cemetery, Brgy. Pulungbulu) Latitude: 15.135989 N Longitude: 120.597784 E

4.1 Sampling period:

Twenty-four (24) hours with thirty (30) seconds interval

5.0 Data and Discussion of Results

N09 (Angeles old PNR Station-Brgy. Claro M. Recto) (Start Sampling time @ 1500H, 14th-15th of June, 2021

Noise meter was set up at semi grassy/soil near the Old PNR Station approximately 50m away from south of Agapito del Rosario's basketball court near a residential area. It is also approximately 20m away from the access road and 25-30m away from the commercial buildings.

Noise comes from the passing of various light vehicles along the main road and access road; people chatting and animal sounds such as dogs barking, birds chirping, chicken noise during daytime; crickets and other insects present at nighttime.

The weather condition during sampling is sunny with occasional rain. Traffic situation is light to moderate since it is near the access road.

HOUR	TIME DURATION	Leq/Hr
1	15:00:03-16:00:03	48.1
2	16:00:03-17:00:03	50.0
3	17:00:03-18:00:03	48.1
4	18:00:03-19:00:03	47.4
5	19:00:03-20:00:03	47.8
6	20:00:03-21:00:03	45.5
7	21:00:03-22:00:03	45.8
8	22:00:03-23:00:03	43.7
9	23:00:03-00:00:03	44.4
10	00:00:03-01:00:03	41.2
11	01:00:03-02:00:03	40.8
12	02:00:03-03:00:03	35.3
13	03:00:03-04:00:03	37.2
14	04:00:03-05:00:03	. 51.2
15	05:00:03-06:00:03	50.1
16	06:00:03-07:00:03	47.0
17	07:00:03-08:00:03	48.7
18	08:00:03-09:00:03	50.5
19	09:00:03-10:00:03	49.5
20	10:00:03-11:00:03	54.2
21	11:00:03-12:00:03	61.4
22	12:00:03-13:00:03	49.4
23	13:00:03-14:00:03	49.3
24	14:00:03-15:00:03	50.2

✤ Table 1: Hourly Equivalent Sound Level, (Leq (h) – N09

N08 (Angeles Station-Near La Pieta Memorial Cemetery, Brgy. Pulungbulu) (Start Sampling time @ 1630H, 15th-16th of June, 2021

Noise meter was set up at a concrete ground, approximately 10m away from the main road (4 Lanes). It is also approximately 70m away from the construction site (at the back of the set up); around 100m away from south of La Pieta chapel and crematorium.

The sources of noise are the passing of various light to heavy vehicles along the main road and access road; ambulance sirens; crickets and other insects present at nighttime.

The weather condition during sampling is sunny to fair. Traffic situation is light to moderate since it is near the access road.

HOUR	TIME DURATION	Leg/Hr
1	16:30:15-17:30:15	46.4
2	17:30:15-18:30:15	44.9
3	18:30:15-19:30:15	44.7
4	19:30:15-20:30:15	45.0
5	20:30:15-21:30:15	44.6
6	21:30:15-22:30:15	45.7
7	22:30:15-23:30:15	42.6
8	23:30:15-00:30:15	45.9
9	00:30:15-01:30:15	42.6
10	01:30:15-02:30:15	39.1
11	02:30:15-03:30:15	38.3
12	03:30:15-04:30:15	42.9
13	04:30:15-05:30:15	44.4
14	05:30:15-06:30:15	51.8
15	06:30:15-07:30:15	52.2
16	07:30:15-08:30:15	44.7
17	08:30:15-09:30:15	48.9
18	09:30:15-10:30:15	46.7
19	10:30:15-11:30:15	45.5
20	11:30:15-12:30:15	45.6
21	12:30:15-13:30:15	45.3
22	13:30:15-14:30:15	44.5
23	14:30:15-15:30:15	44.3
24	15:30:15-16:30:15	44.8

✤ Table 2: Hourly Equivalent Sound Level, (Leq (h) – N08

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St., Paseo de Magallanes, 1232 Makati City, Philippines Office: +632.7729.4327 Fax No: +632.8854.8365 Email: info@hiadvance.com.ph Website: www.hiadvance.com.ph

Table ChartsBasis for the Calculation of SEL

Figure 1: Station- N09 (Angeles old PNR Station-Brgy. Claro M. Recto)

Figure 2: Station- N08 (Angeles Station-Near La Pieta Memorial Cemetery, Brgy. Pulungbulu)

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St., Paseo de Magallanes, 1232 Makati City, Philippines Office: +632.7729.4327 Fax No: +632.8854.8365 Email: info@hiadvance.com.ph Website: www.hiadvance.com.ph

Based on the chart in the previous page, Station-N09 has the following measured values L_{max} is 75.8 dBA while the L_{min} is 45.0 dBA. For Station N08, the measured L_{max} is 79.3 dBA while the L_{min} is 41.6 dBA. The table below summarizes the cumulative 24-hours exposures on both stations. These values may be used as a baseline on the impact assessment for the upcoming North-South Commuter Railway (NSCR-EX) Extension Project.

Table 3: Day-Night Sound Level

Location	LAeq (Day)	LAeq (Night)	$\mathbf{L}_{\mathtt{dn}}$
N09	53.7	43.4	50.6
N08	47.2	42.3	47.2

Prepared by:

Carrissal Clarisse T. Lico

Data Encoder/Field Sampler (AQMD)

Reviewed by:

Sotelo A/QC Manager (AQMD)

Noted by:

Princess Galvez, RCh Laboratory Manager

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St., Paseo de Magallanes, 1232 Makati City, Philippinec Office: +632.7729.4327 Fax No: +632.8854.8365 Email: info@hiadvance.com.ph Website: www.hiadvance.com.ph

ATTACHMENT 1

- Field Data
- Sampling Picture

M21F293

Prism Express Consulting, Inc./ Noise Level Measurement Report

HIAdvance

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonio St. Paseo de Magallanes Makrdi City. 1232 Phone No: (632) 854-8365 Fax No: (632) 729-4327

AMBIENT AIR SAMPLING FIELD DATA SHEET

Company: PRISM PAPAEES CONSULTING INC.	Date: 14 June 2021 - 15 June 2021
Address: UNIT 11 GROUND FLOOR, KINGSWOOD ARCADE COR. PARONG TARAC	ot vire cause pxt . which city
Station No: 1 Location: A h5 ND9, 704	MPB 14JUN 2014
Start Time: 1510H End Time: 1510H GPS Reading: La	titude (15.145 904 15.14491++ 15.1
Ambient lemperature: 19,5 °C	ngitude 120-59 1517 120-59101 40-
Barometric Pressure: 29.40 Weather Condition: Sunny the High	, light to heavy rain could
Filter ID No: Type of Filter Paper Used: Godd Filter Paper Used:	Initial Weight:
Sampled Parameters: 150, PMIC, AM2.5, SOZ, NOZ, NOISE, OZONE, CO, Ph	
Remarks: Ambient set up was exected at a simil grassy / coil surge	ace near the old PNR statum
bldg., 10 to 15 meters away prom residential 20 meters and	y from Mileis Wald 1 25 to 20 moto
away from commissional readenter buildings, can started	at 1400H - 1900H
In acut burning of gar bage were observed (15 to 18 meters away from .	sampling pt.)
ICD/Sampler	
Model: The Internation Section Nation 7(39 Collibration Date:	3V 016 2524
Calibration Date.	
PM2 5/PM10 Sampler	-e)
Model: Serial No: 9149/ 7749 Calibration Date:	54 pre 2000
Calibration Date.	
Three (3) Gas Sampler	
Model: BACA Serial No: 50090001 Flow Rate:	b-2 Limin
Barometer/Thermometer	
Model: PHD-318 Serial No: AT 50424 Calibration Date:	7-TUNE- 2020
Multi RAE / Air Quality Meter Equipment:	
Model: MULTIRAE Serial No: MO! Etco THYZ Calibration Date:	3-57-2020
tap / pm/10 / pm2.5	
INITIAL FILTER PRESSURE: 21 / 18 17 Carbon Monoxide:	0
FINAL FILTER PRESSURE: 21.8 18.C 17-G Total VOC:	_
1 - iline	
I V The Hot	
BOALS BRULE	
211	
STA SIST Wibration pt	
	TTP. PMID OVIT VIE (TS. 03)
	Campling the
A noise	Company pt.
Residential	
Juin grand francisco et a	
Gul	1-1011
Team Leader: QA/QC /Date: -	ups the
	V
	MP-AIR-001-F05

HiAdvance Philippines, Inc. 3ra floor Mago Cenre San Antonio St. Paseo de Magallones Makati City. 1232 Phone No: (632) 854-8365 Fax No: (532) 729-4327

AMBIENT AIR SAMPLING FIELD DATA SHEET

Company:	PRISM E	APREL S	CONSULTI	MG INC.				Date:	5-16	JUNE	2021	
Station No.	D LL THU	ROUND	TLOOR, K	INGONOOD A	HACADE CO	R. PALONE	TANAD	+ VITO	CAUZ	· 7×9	MARCAM	CIM
Station NO;			Location:	ALDS, NOS	804					hellow a		
Start lime:	163011		End Time:	16301		GPS Readi	ng: Lati	tude	5,135	72350	Ra	
Ambient le	mperature:	34.0					Link	ellude	20'59	70217		
Barometric	Pressare:	29 40		Weather Cor	ndition: C.	nnd	No. of Concession, Name	Contraction of	CR	- Sulling	04	
Filter ID No:	21132 21110	\$ 121147	Туре	of Filter Pape	r Used: Guna	S FAICED	TUGETE	Linitia	Moight	TSP	1Pmic 1	Pm2.5
Sampled Pa	rameters: -	SP PMIO	PART :	SOO NOO N	ANCE	DUMETE		1 Initia	AAGIRUU	2686	9 HHUO39	144238
Remarks:	Ambient	auomant	141-1-1		36 020	e cojp	b , 14	hratma-	0			1
Quan	10	Authorit	yuare (set up at co	n chete grou	nd 10 m	away	From	the n	ain vo	ad (41	anos)
DE th	a milar i	away	: KB-00 000	ostnichan ic	ite (at fi	k back of	e ret	up);	aka i	1 quite	dirty	hemine
na bia	Trena	pprox	Lo to 25 h	n away trom	Funeral C	lapd						4
ay mrs.	LSGPMID.	MIS ; F	6, NO2, 50	2,00,00	the W.	03						
ICO Comolos												
i de de la		- e - i		R 1 4 m								
wodel;	16-5070	XZ	Serial No:	2179		alibration Da	ite:	ALL ATA	101			
State of States	PARTIAL COLORINA DATA							<u></u>	Phi Call			
+2/12.5/PM1	0 Sampler											
Model:	15-207	540	Serial No:	2140 / 224	iv c	alibration Da	te:	14 AUC	S NAD			
-		12		/					# UW			
Three (3) Ga	s Sampler.											
Model:	PACO		Serial No:	F009000	1	Flow Ra	na-	A. 2 L	min			
-						5 Fee 36 170		0-20,				
Barometer/1	Inerhiometr											
Model:	PHE- 310		Serial No:	AT 5547		allbration De						
			301101.1301			andration Da	IE _29	-JUHE	- 2-021	2		
MUITI RAE / 4	Air Quality IV	leter Emil	-incontr									
Model:	HAVET RATE		Serial No:	Maller			12					
			CITCI NU.	- 99.01 EPE	huz (alibration Da	te: 3	- 234-	2020			
INITIAL ENTE	R PRESSIO	8 T.	11/10	10 1942.5							PB	
FINAL FILTER	Dersuiter	-	12.9/19.	18-6	Carb	on Monoxide	B;	4		WA-		
2 11 m 3 m 3 3 m 1 2m 1 2m 1 3	STILLIOU ME:		23.21 20	11-1		Total VC	Ж:	-		W-N	IN Llow	thme ie
[1.6					5-5	E Com	thema later
- C	200	114 .	X	Im	styletym	070	(1	_	and the second section is	100	and a la
1 N	X		S1 2	1 1.5	6.1.0)	-				11	
		1 4		11 22			- 1		~	-		
	17-6	1 10			Name of Concession, Name of Co	an -	21	(- \/	~ 1		N.
Vibertren /	$\neg 1 = 1$	D S	E L	A						-)		
1 TV	D.	0 15		T	()	8) camping	pt	7	1-1	-11		
	12 11	page 1	E	1	(1)	2 martin Darg +	- MA04	101	1			1
	IT	, 4	A I	7 7	CI8	I WLIUS PALLIS		~)	Ŧ			-#
	1.5	- 1		test	ł	6 601 03			11			Ĩ
		5		0		·····						
	s 191 -			- (Alamar)								
~				LT Lonies								-
		5		Main r	rad (highin	(4)				-		
			-			·/	>					1
	* 1 A					(T)		~				_
	1							- 1	~	1 /	1	
Team Leader:	0	hhl				04/00/0-	1.	1	41	1	-	
1						QA/QC/Da	re: 4	-	1/1	~ ~		
1	\cup						1		/ .			
										MP-AIR-	001-F05	
										Rev_0:3	May 2018 -	

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St., Paseo de Magallanes, 1232 Makati City, Philippines Office: +632.7729.4327 Fax No: +632.8854.8365 Email: info@hiadvance.com.ph Website: www.hiadvance.com.ph

COMPANY NAME: Prism Express Consulting, Inc. Company Address: Unit 11 GF, Kingswood Arcade cor., Pasong Tamo and Vito Cruz Extension, Makati City

24-Hours Noise Monitoring SAMPLING SITE: N09 & N08

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Baseline Sampling Laboratory Results for CP N-03

Vibration Level (V05 and V09)

North-South Commuter Railway Extension Project

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St., Paseo de Magallanes, 1232 Makati City, Philippines Office: +632.7729.4327 Fax No: +632.8854.8365 Email: info@hiadvance.com.ph Website: www.hiadvance.com.ph

Prism Express Consulting, Inc.

Company Address: Unit 11 GF, Kingswood Arcade cor., Pasong Tamo and Vito Cruz Extension, Makati City Email Address: <u>allanplete@yahoo.com</u>; <u>cbtprismexpressconsulting@outlook.com</u> Contact No.: (02) 8651223/09182067231

5-July-2021

Attention: Engr. Allan Plete

Subject: Ground Vibration Monitoring Report

Engr. Plete,

We hereby submit the attached report on ground vibration monitoring conducted for 24-hours on two (2) sampling locations of North-South Commuter Railway (NSCR-EX) Extension Project located at Pampanga.

Please feel free to contact us if you have any questions regarding this report.

Thank you for choosing HiAdvance in serving your ambient air quality requirement. We look forward to a continued partnership and new opportunities.

Sincerely,

Annabelle Bangoy

Annabelle Bangoy Project Manager

GROUND VIBRATION MONITORING REPORT

Company Name	Prism Express Consulting, Inc.
Address	Unit 11 GF, Kingswood Arcade cor., Pasong Tamo and Vito Cruz Extension, Makati City
Project Name	North-South Commuter Railway (NSCR-EX) Extension Project
Sampling Site(s)	Pampanga
Sampling Date	14 th -16 th of June, 2021
Contact Person	Engr. Allan Plete

1.0 Vibration Analysis Background

HiAdvance Philippines, Incorporated (HiAdvance) was contracted by Prism Express Consulting, Inc. to conduct Ground Vibration monitoring at two (2) sampling areas located within Pampanga project site. Sampling was conducted last June 14-16, 2021.

Ambient Vibration is the recording, evaluation and interpretation of the vibration behavior of a structure under ambient influences without artificial excitation. Noise Monitoring is also included in this report.

Ground Vibration can be caused by construction, equipment or blasting, etc. Seismographs can be used to measure and record ground vibration. It is measured in terms of Peak Particle Velocity (PPV) and the units are mm/s. PPV refers to the movement within the ground of molecular particles and not surface movement. Ground vibration on a building or structure should be measured outside the structure and at ground level. The displacement value in mm refers to the movement of particles at the surface.

2.0 Sampling Location

2.1 Sampling Station:

V09 - Angeles old PNR Station Latitude: 15.14481 E Longitude: 120.591072 N

Remarks/Environmental Conditions:

- It is set up in a grassy ground open field area approximately 25m-30m away from a commercial building and from y intersection road
- Approximately 10m away from the old station wall
- Various light and heavy vehicles passing in the access road which is approximately 20m away from the sampling point
- Approximately 10m away from residential areas
- No construction activity near the area
- No drilling and excavation observed
- Sunny with light to heavy rainfall weather conditions

V08 – Angeles Station (Near La Pieta Memorial Cemetery) Latitude: 15.14492 E Longitude: 120.591059 N

Remarks/Environmental Conditions:

- It is set up in a grassy ground open field in Brgy. Pulungbulu residential area
- Near y intersection road
- Approximately 10m away from the main road (4-lanes)
- Approximately 20-25m away from La Pierta chapel and crematorium
- Approximately 70m away from the construction site
- Approximately 15m away from near guard post
- Various light vehicles passing in the road
- Sunny to fair weather condition

2.2 Sampling Period:

Twenty-four (24) Hours

3.0 Measured Ground Vibration Analysis

3.1 See data summary table on the next page. All supporting field data, analytical reports and calibration records are provided as attachments.

3.1.1 DATA

TABLE:

						/ibration Analys	sis	МАХ		ISEE Linear I	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Ү (Т)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
		15:14:59	0.015	0.389	0.009	0.006	0.006	0.007	0.0686	89.6	19.7
		15:18:27	0.014	0.360	0.008	0.006	0.007	0.007	0.0686	<88	16.5
		15:21:17	0.014	0.364	0.008	0.006	0.007	0.007	0.0686	88.4	>100
		15:27:59	0.018	0.455	0.011	0.007	0.006	0.008	0.0785	98.5	73.1
		15:35:43	0.014	0.367	0.007	0.008	0.006	0.007	0.0686	91.6	>100
		15:36:53	0.015	0.386	0.007	0.007	0.006	0.007	0.0654	92.4	64.0
	ş	15:45:05	0.014	0.350	0.007	0.005	0.006	0.006	0.0588	89.6	>100
		16:18:00	0.016	0.407	0.008	0.007	0.007	0.007	0.0719	<88	42.7
		16:22:52	0.014	0.367	0.007	0.007	0.006	0.007	0.0654	<88	51.2
V09	15:14:59PM-17:03:22PM	16:23:00	0.016	0.402	0.007	0.007	0.007	0.007	0.0686	91.9	85.3
		16:23:39	0.005	0.133	0.005	0.005	0.007	0.006	0.0556	100.8	>100
		16:27:09	0.016	0.413	0.010	0.008	0.007	0.008	0.0817	<88	>100
		16:32:31	0.014	0.362	0.008	0.007	0.005	0.007	0.0654	90.5	>100
		16:41:30	0.013	0.335	0.007	0.020	0.012	0.013	0.1275	<88	85.3
		16:41:33	0.015	0.374	0.006	0.023	0.008	0.012	0.1209	<88	24.4
		16:54:24	0.019	0.475	0.012	0.009	0.007	0.009	0.0915	92.9	39.4
		17:01:05	0.016	0.410	0.006	0.022	0.007	0.012	0.1144	88.2	42.7
		17:03:22	0.014	0.357	0.007	0.007	0.007	0.007	0.0686	89.6	>100

3.1.2 DATA

TABLE:

					v	ibration Analys	is	MAX		ISEE Linear I	Aicrophone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Y (T)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
		17:39:07	0.006	0.149	0.006	0.006	0.005	0.006	0.0556	100.9	36.6
		17:53:53	0.005	0.135	0.005	0.006	0.005	0.005	0.0523	100.7	>100
		18:08:05	0.016	0.406	0.009	0.006	0.006	0.007	0.0686	91.8	>100
		18:30:56	0.017	0.425	0.009	0.008	0.006	0.008	0.0752	<88	64.0
		18:36:49	0.012	0.312	0.007	0.007	0.006	0.007	0.0654	89.2	56.9
		18:45:37	0.019	0.492	0.016	0.008	0.007	0.010	0.1013	94.9	>100
		18:56:33	0.019	0.472	0.015	0.007	0.007	0.010	0.0948	88.4	>100
	17:39:07PM-23:19:54PM	20:45:14	0.005	0.138	0.005	0.005	0.006	0.005	0.0523	101.4	>100
		21:00:22	0.007	0.169	0.006	0.006	0.005	0.006	0.0556	100.4	>100
1/00		21:16:20	0.005	0.126	0.005	0.006	0.005	0.005	0.0523	101.8	>100
V05		21:25:09	0.005	0.130	0.004	0.005	0.005	0.005	0.0458	99.9	>100
		22:06:52	0.009	0.217	0.007	0.007	0.005	0.006	0.0621	100.4	64.0
		22:08:15	0.006	0.142	0.006	0.005	0.006	0.006	0.0556	100.9	64.0
		22:33:42	0.014	0.354	0.007	0.005	0.006	0.006	0.0588	<88	28.4
		22:42:51	0.014	0.343	0.009	0.007	0.006	0.007	0.0719	<88	85.3
		22:43:46	0.009	0.233	0.006	0.010	0.006	0.007	0.0719	106.1	>100
		23:07:29	0.015	0.382	0.007	0.006	0.007	0.007	0.0654	<88	64.0
		23:17:59	0.009	0.217	0.007	0.008	0.006	0.007	0.0686	106.1	>100
		23:19:51	0.027	0.681	0.015	0.019	0.008	0.014	0.1373	89.4	73.1
		23:19:54	0.015	0.375	0.011	0.010	0.011	0.011	0.1046	<88	>100

3.1.3 DATA

TABLE:

					١	/ibration Analys	is	МАХ		ISEE Linear Microphone	
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Y (T)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
		23:23:22	0.016	0.415	0.009	0.010	0.007	0.009	0.0850	<88	>100
		23:23:37	0.013	0.330	0.007	0.005	0.005	0.006	0.0556	<88	39.4
		23:24:34	0.031	0.795	0.017	0.012	0.012	0.014	0.1340	92.6	>100
		23:27:03	0.006	0.147	0.006	0.006	0.006	0.006	0.0588	105.3	>100
		0:32:49	0.005	0.131	0.005	0.007	0.005	0.006	0.0556	102.5	>100
		1:29:21	0.016	0.399	0.007	0.012	0.007	0.009	0.0850	<88	28.4
		5:26:02	0.019	0.479	0.012	0.007	0.006	0.008	0.0817	<88	>100
		6:17:07	0.018	0.464	0.010	0.007	0.006	0.008	0.0752	92.6	46.5
1/00	22-22-22DM 09-54-04AM	6:27:26	0.015	0.388	0.008	0.006	0.006	0.007	0.0654	<88	51.2
VUS	23.23.22110-00.34.044101	7:15:17	0.014	0.364	0.007	0.020	0.006	0.011	0.1079	89.6	56.9
		7:15:30	0.012	0.303	0.005	0.021	0.006	0.011	0.1046	<88	15.1
		7:17:49	0.012	0.314	0.006	0.017	0.005	0.009	0.0915	<88	>100
		7:17:53	0.013	0.324	0.005	0.018	0.006	0.010	0.0948	<88	73.1
		7:18:43	0.012	0.317	0.005	0.017	0.006	0.009	0.0915	<88	73.1
		7:54:27	0.024	0.612	0.022	0.011	0.010	0.014	0.1406	91.2	85.3
		8:49:35	0.013	0.324	0.008	0.006	0.006	0.007	0.0654	98.0	>100
		8:52:04	0.014	0.352	0.007	0.006	0.006	0.006	0.0621	89.6	11.1
		8:54:04	0.016	0.411	0.009	0.005	0.006	0.007	0.0654	96.3	>100

3.1.4 DATA

TABLE:

AREA/STATION		TIME TRIGGER		Velocity Units (mm/sec)	١	/ibration Analys	iis	MAX Acceleration (milli(g)s) AVERAGE	m/s2	ISEE Linear I	Vicrophone
	MONITORINGTIME		Velocity Units (in /sec)		X (R)	Ү (Т)	z (v)			NOISE (Decibel)	ZeroCrossing Frequency (Hz)
		8:54:13	0.016	0.400	0.007	0.006	0.007	0.007	0.0654	92.1	32.0
		8:54:18	0.023	0.576	0.011	0.009	0.007	0.009	0.0883	95.3	51.2
		8:54:21	0.016	0.400	0.009	0.007	0.006	0.007	0.0719	91.4	13.8
		8:59:56	0.015	0.376	0.006	0.006	0.005	0.006	0.0556	97.7	3.30
		9:02:15	0.015	0.390	0.007	0.007	0.007	0.007	0.0686	89.4	7.30
		9:02:18	0.014	0.368	0.006	0.007	0.005	0.006	0.0588	89.6	8.40
		9:02:40	0.011	0.268	0.006	0.005	0.007	0.006	0.0588	103.8	9.70
		9:06:06	0.015	0.375	0.007	0.006	0.007	0.007	0.0654	94.2	32.0
		9:08:31	0.013	0.330	0.006	0.007	0.006	0.006	0.0621	91.9	4.80
V09	8:54:13AM-9:17:20AM	9:09:28	0.013	0.329	0.007	0.006	0.006	0.006	0.0621	93.5	25.6
		9:09:52	0.013	0.330	0.007	0.006	0.006	0.006	0.0621	91.8	13.8
		9:10:27	0.016	0.395	0.007	0.006	0.007	0.007	0.0654	90.7	3.10
		9:10:47	0.015	0.374	0.005	0.006	0.006	0.006	0.0556	91.4	73.1
		9:13:21	0.010	0.257	0.006	0.005	0.005	0.005	0.0523	100.7	3.20
		9:14:32	0.015	0.384	0.009	0.005	0.007	0.007	0.0686	89.4	N/A
		9:15:15	0.014	0.343	0.007	0.005	0.005	0.006	0.0556	93.4	7.50
		9:15:35	0.016	0.394	0.007	0.007	0.007	0.007	0.0686	94.4	30.1
		9:16:53	0.011	0.271	0.005	0.005	0.005	0.005	0.0490	101.3	2.60
		9:17:20	0.016	0.407	0.006	0.006	0.007	0.006	0.0621	100.0	3.70

3.1.5 DATA

TABLE:

					١	/ibration Analys	is	MAX		ISEE Linear M NOISE (Decibel) 96.8 97.1 92.6 95.9 100.5 91.6 91.2 91.8 91.8 91.8 91.9 91.8 91.9 91.8 93.8 93.8 93.8 90.5 91.6 93.1 90.7 93.1 95.5	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Y (T)	z (V)	Acceleration (milli(g)s) AVERAGE	m/s2		ZeroCrossing Frequency (Hz)
		9:21:23	0.016	0.407	0.009	0.007	0.007	0.008	0.0752	96.8	N/A
		9:21:49	0.019	0.475	0.008	0.007	0.007	0.007	0.0719	97.1	28.4
		9:21:52	0.019	0.495	0.009	0.007	0.008	0.008	0.0785	92.6	7.10
		9:24:29	0.014	0.368	0.007	0.006	0.007	0.007	0.0654	95.9	4.30
		9:24:49	0.011	0.292	0.006	0.006	0.005	0.006	0.0556	100.5	4.70
		9:26:34	0.013	0.331	0.006	0.007	0.005	0.006	0.0588	91.6	N/A
		9:26:49	0.013	0.339	0.006	0.006	0.005	0.006	0.0556	91.2	2.50
		9:28:43	0.016	0.396	0.006	0.006	0.006	0.006	0.0588	91.8	5.40
1/00	0-21-22484 0-40-42484	9:30:00	0.014	0.347	0.006	0.005	0.005	0.005	0.0523	91.8	2.40
009	9:21:23AWI-9:40:42AWI	9:30:20	0.015	0.370	0.005	0.006	0.006	0.006	0.0556	91.9	12.5
		9:30:47	0.015	0.375	0.007	0.007	0.006	0.007	0.0654	91.8	N/A
		9:34:22	0.014	0.356	0.006	0.006	0.006	0.006	0.0588	93.8	N/A
		9:34:52	0.016	0.410	0.007	0.007	0.006	0.007	0.0654	90.5	<1
		9:34:57	0.013	0.339	0.007	0.006	0.006	0.006	0.0621	91.6	2.90
		9:35:33	0.015	0.388	0.007	0.007	0.006	0.007	0.0654	93.1	4.30
		9:37:12	0.014	0.351	0.007	0.006	0.005	0.006	0.0588	90.7	10.7
		9:38:13	0.017	0.433	0.007	0.006	0.006	0.006	0.0621	93.1	4.70
		9:40:42	0.014	0.343	0.007	0.006	0.006	0.006	0.0621	95.5	5.40

3.1.6 DATA

TABLE:

AREA/STATION					1	/ibration Analys	sis	MANY		ISEE Linear	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Y (Т)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
		9:40:49	0.015	0.380	0.007	0.005	0.005	0.006	0.0556	98.9	7.10
		9:41:07	0.015	0.378	0.006	0.005	0.006	0.006	0.0556	91.2	1.90
		9:41:36	0.016	0.417	0.007	0.007	0.006	0.007	0.0654	89.4	N/A
		9:43:26	0.015	0.370	0.006	0.005	0.005	0.005	0.0523	98.3	3.50
		9:46:06	0.017	0.435	0.009	0.006	0.007	0.007	0.0719	99.1	8.00
		9:46:17	0.014	0.362	0.007	0.006	0.006	0.006	0.0621	93.2	2.60
		9:47:05	0.015	0.387	0.007	0.006	0.006	0.006	0.0621	94.6	28.4
		9:47:10	0.014	0.354	0.006	0.007	0.007	0.007	0.0654	93.9	N/A
		9:47:13	0.014	0.368	0.006	0.006	0.006	0.006	0.0588	97.1	2.50
V09	9:40:49AM-9:50:43AM	9:48:14	0.013	0.333	0.007	0.006	0.007	0.007	0.0654	91.9	1.10
		9:48:55	0.015	0.386	0.006	0.006	0.005	0.006	0.0556	92.4	N/A
		9:49:48	0.015	0.383	0.008	0.006	0.006	0.007	0.0654	94.3	32.0
		9:49:51	0.014	0.353	0.006	0.007	0.005	0.006	0.0588	96.1	85.3
		9:50:27	0.017	0.426	0.007	0.007	0.007	0.007	0.0686	92.8	N/A
		9:50:30	0.024	0.622	0.015	0.011	0.007	0.011	0.1079	91.9	28.4
		9:50:33	0.021	0.538	0.014	0.007	0.008	0.010	0.0948	89.4	N/A
		9:50:37	0.015	0.371	0.007	0.005	0.006	0.006	0.0588	90.1	<1
		9:50:40	0.018	0.445	0.008	0.006	0.006	0.007	0.0654	96.1	3.20
		9:50:43	0.015	0.387	0.006	0.006	0.006	0.006	0.0588	102.8	4.20

3.1.7 DATA

TABLE:

					١	/ibration Analys	sis	MAX		ISEE Linear I NOISE (Decibel) 96.7 93.4 91.4 93.1 96.0 93.8 102.5 102.0 93.8 102.5 102.0 93.8 94.8 95.2 93.2 94.3 94.3 91.8 100.1 98.7 103.0	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Ү (Т)	z (V)	Acceleration (milli(g)s) AVERAGE	m/s2		ZeroCrossing Frequency (Hz)
		9:50:47	0.014	0.368	0.006	0.007	0.005	0.006	0.0588	96.7	2.30
		9:51:59	0.016	0.402	0.007	0.006	0.006	0.006	0.0621	93.4	1.90
		9:52:47	0.015	0.389	0.07	0.005	0.006	0.027	0.2648	91.4	3.40
		9:54:03	0.014	0.346	0.006	0.007	0.007	0.007	0.0654	93.1	2.10
		9:54:50	0.014	0.348	0.007	0.006	0.006	0.006	0.0621	96.0	7.40
		9:54:59	0.014	0.364	0.007	0.005	0.005	0.006	0.0556	93.8	73.10
		9:55:23	0.011	0.278	0.005	0.005	0.006	0.005	0.0523	102.5	2.30
		9:55:50	0.013	0.335	0.006	0.007	0.006	0.006	0.0621	102.0	3.60
1/00	0.50.47484 10.04.52484	9:56:56	0.017	0.432	0.007	0.006	0.005	0.006	0.0588	92.4	11.6
V09	9:50:47AW-10:04:53AW	9:57:07	0.014	0.361	0.005	0.007	0.005	0.006	0.0556	89.8	N/A
		9:57:26	0.015	0.373	0.006	0.005	0.007	0.006	0.0588	94.8	4.20
		9:57:31	0.015	0.381	0.007	0.006	0.006	0.006	0.0621	95.2	3.30
		9:57:35	0.016	0.416	0.007	0.005	0.006	0.006	0.0588	93.2	1.40
		10:00:05	0.016	0.398	0.007	0.006	0.005	0.006	0.0588	94.3	28.4
		10:04:04	0.014	0.343	0.005	0.006	0.005	0.005	0.0523	91.8	1.80
		10:04:22	0.011	0.275	0.006	0.005	0.006	0.006	0.0556	100.1	4.40
		10:04:39	0.015	0.391	0.008	0.005	0.006	0.006	0.0621	98.7	5.30
		10:04:53	0.014	0.364	0.007	0.007	0.005	0.006	0.0621	103.0	3.40

3.1.8 DATA

TABLE:

AREA/STATION					١	ibration Analys	is	MAX		ISEE Linear I	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Y (T)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	ISEE Linear N NOISE (Decibel) 94.9 94.9 100.4 92.3 92.6 98.0 104.8 99.2 92.9 94.3 94.2 96.3 94.9 94.2 96.3 91.2 103.1 90.7 100.7 100.8 107.7 92.9	ZeroCrossing Frequency (Hz)
		10:05:16	0.014	0.356	0.006	0.006	0.006	0.006	0.0588	94.9	2.80
		10:05:48	0.012	0.316	0.006	0.006	0.006	0.006	0.0588	100.4	5.10
		10:07:59	0.015	0.388	0.0007	0.0007	0.006	0.002	0.0242	92.3	16.5
		10:09:09	0.016	0.395	0.007	0.006	0.007	0.007	0.0654	92.6	1.80
		10:09:58	0.014	0.351	0.006	0.005	0.006	0.006	0.0556	98.0	2.20
		10:11:12	0.014	0.359	0.007	0.006	0.006	0.006	0.0621	104.8	4.30
		10:11:22	0.015	0.374	0.006	0.006	0.005	0.006	0.0556	99.2	4.80
		10:11:45	0.013	0.333	0.006	0.006	0.006	0.006	0.0588	92.9	N/A
		10:12:21	0.013	0.325	0.007	0.007	0.005	0.006	0.0621	94.3	1.50
V09	10:05:16AM-10:21:33AM	10:14:55	0.014	0.344	0.007	0.007	0.005	0.006	0.0621	94.9	4.00
		10:14:59	0.016	0.414	0.007	0.005	0.006	0.006	0.0588	94.2	6.80
		10:16:49	0.015	0.389	0.006	0.005	0.005	0.005	0.0523	96.3	5.60
		10:18:38	0.015	0.391	0.006	0.006	0.005	0.006	0.0556	91.2	4.00
		10:18:47	0.013	0.336	0.006	0.008	0.006	0.007	0.0654	103.1	>100
		10:19:13	0.014	0.355	0.007	0.007	0.007	0.007	0.0686	90.7	<1
		10:20:45	0.011	0.291	0.006	0.006	0.005	0.006	0.0556	100.7	3.20
		10:20:55	0.014	0.348	0.007	0.006	0.006	0.006	0.0621	100.8	2.10
		10:21:07	0.012	0.301	0.007	0.005	0.006	0.006	0.0588	107.7	3.70
		10:21:33	0.014	0.352	0.006	0.006	0.007	0.006	0.0621	92.9	2.10

3.1.9 DATA

TABLE:

					١	/ibration Analys	sis	МАХ		ISEE Linear I NOISE (Decibel) 103.1 95.1 91.6 106.5 100.2 100.5 101.8 97.8 92.1 92.6 91.8 91.9 91.9 90.9 93.6 100.5 103.3 92.3	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Ү (Т)	z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
		10:22:17	0.014	0.368	0.007	0.006	0.008	0.007	0.0686	103.1	5.20
		10:22:27	0.016	0.418	0.007	0.006	0.006	0.006	0.0621	95.1	2.60
		10:22:35	0.017	0.420	0.008	0.006	0.005	0.006	0.0621	91.6	<1
		10:24:38	0.015	0.377	0.007	0.006	0.005	0.006	0.0588	106.5	10.7
		10:24:46	0.014	0.354	0.006	0.006	0.005	0.006	0.0556	100.2	4.30
		10:24:49	0.013	0.328	0.007	0.006	0.006	0.006	0.0621	100.5	4.20
		10:26:53	0.014	0.357	0.006	0.009	0.006	0.007	0.0686	101.8	3.10
		10:26:59	0.014	0.349	0.007	0.007	0.006	0.007	0.0654	97.8	5.90
100	10.23.17484 10.22.59484	10:27:45	0.017	0.443	0.010	0.007	0.006	0.008	0.0752	92.1	2.50
V09	10:22:17AW-10:55:56AW	10:28:08	0.014	0.363	0.006	0.005	0.007	0.006	0.0588	92.6	3.20
		10:28:35	0.014	0.354	0.006	0.005	0.005	0.005	0.0523	91.8	N/A
		10:29:07	0.014	0.367	0.006	0.006	0.005	0.006	0.0556	91.9	2.10
		10:29:27	0.015	0.383	0.007	0.006	0.005	0.006	0.0588	90.9	1.10
		10:29:45	0.016	0.418	0.007	0.006	0.006	0.006	0.0621	93.6	46.5
		10:29:57	0.012	0.294	0.005	0.006	0.005	0.005	0.0523	100.5	2.20
		10:31:47	0.013	0.318	0.006	0.005	0.006	0.006	0.0556	103.3	3.20
		10:33:14	0.014	0.363	0.007	0.007	0.006	0.007	0.0654	92.3	1.40
		10:33:58	0.015	0.378	0.007	0.006	0.006	0.006	0.0621	92.4	<1

3.1.10 DATA

TABLE:

					١	/ibration Analy	sis			ISEE Linear I	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Ү (Т)	Z (V)	MAX Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
		10:34:05	0.016	0.405	0.007	0.007	0.006	0.007	0.0654	92.1	2.30
		10:34:17	0.012	0.314	0.006	0.006	0.005	0.006	0.0556	101.0	7.80
		10:37:03	0.015	0.371	0.007	0.005	0.006	0.006	0.0588	94.1	4.10
		10:37:09	0.014	0.366	0.007	0.007	0.006	0.007	0.0654	91.1	N/A
		10:42:17	0.014	0.366	0.007	0.008	0.006	0.007	0.0686	95.5	28.4
		10:44:14	0.016	0.398	0.006	0.006	0.006	0.006	0.0588	95.1	23.3
		10:44:38	0.013	0.340	0.007	0.006	0.006	0.006	0.0621	91.1	1.10
		10:45:38	0.018	0.461	0.007	0.006	0.006	0.006	0.0621	93.2	16.0
		10:46:41	0.012	0.303	0.007	0.007	0.005	0.006	0.0621	101.3	32.0
V09	10:34:05AM-10:50:59AM	10:47:35	0.016	0.406	0.007	0.006	0.005	0.006	0.0588	92.8	2.20
		10:47:52	0.023	0.573	0.012	0.023	0.021	0.019	0.1831	93.5	1.50
		10:48:01	0.013	0.330	0.006	0.006	0.005	0.006	0.0556	100.7	3.40
		10:48:21	0.013	0.341	0.006	0.005	0.006	0.006	0.0556	94.8	10.9
		10:48:35	0.014	0.364	0.007	0.006	0.006	0.006	0.0621	105.3	4.10
		10:48:38	0.013	0.337	0.007	0.006	0.007	0.007	0.0654	100.0	N/A
		10:48:51	0.014	0.347	0.006	0.006	0.006	0.006	0.0588	96.3	4.90
		10:50:16	0.016	0.401	0.006	0.006	0.006	0.006	0.0588	92.6	73.1
		10:50:44	0.016	0.402	0.007	0.007	0.005	0.006	0.0621	96.1	4.60
		10:50:59	0.011	0.270	0.006	0.005	0.006	0.006	0.0556	100.9	3.00

3.1.11 DATA

TABLE:

						Vibration Analys	sis	MAX		ISEE Linear M NOISE (Decibel) 102.6 104.2 94.4 99.9 94.2 101.5 99.9 95.1 96.5 101.3 101.6 90.7 93.2 95.7 91.6 102.1 93.9 94.2	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Y (T)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2		ZeroCrossing Frequency (Hz)
		10:51:09	0.011	0.286	0.005	0.006	0.006	0.006	0.0556	102.6	8.50
		10:52:20	0.016	0.409	0.006	0.006	0.005	0.006	0.0556	104.2	3.50
		10:52:57	0.013	0.333	0.007	0.005	0.006	0.006	0.0588	94.4	5.00
		10:53:33	0.014	0.352	0.006	0.006	0.006	0.006	0.0588	99.9	4.00
		10:54:32	0.015	0.391	0.007	0.006	0.006	0.006	0.0621	94.2	3.10
		10:55:30	0.011	0.279	0.006	0.005	0.005	0.005	0.0523	101.5	2.80
	-	10:56:22	0.011	0.271	0.007	0.006	0.006	0.006	0.0621	99.9	13.1
		10:56:28	0.017	0.441	0.010	0.007	0.007	0.008	0.0785	95.1	26.9
		10:56:31	0.013	0.329	0.007	0.007	0.007	0.007	0.0686	96.5	85.3
V09	10:51:09AM-11:14:05AM	10:57:14	0.010	0.263	0.006	0.007	0.006	0.006	0.0621	101.3	85.3
		10:57:21	0.011	0.268	0.005	0.010	0.006	0.007	0.0686	101.6	85.3
		10:59:12	0.013	0.338	0.007	0.007	0.006	0.007	0.0654	90.7	6.60
		10:59:51	0.013	0.342	0.007	0.006	0.006	0.006	0.0621	93.2	16.0
		11:02:46	0.016	0.415	0.007	0.007	0.007	0.007	0.0686	95.7	46.5
		11:04:33	0.015	0.371	0.007	0.007	0.006	0.007	0.0654	91.6	4.30
		11:11:47	0.008	0.205	0.005	0.005	0.006	0.005	0.0523	102.1	4.20
		11:13:13	0.013	0.327	0.007	0.007	0.009	0.008	0.0752	93.9	4.20
		11:13:17	0.013	0.325	0.006	0.007	0.009	0.007	0.0719	94.2	5.60
		11:14:05	0.013	0.337	0.007	0.007	0.005	0.006	0.0621	96.9	4.30

3.1.12 DATA

TABLE:

						vibration Analy	sis	MAX		ISEE Linear	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Ү (Т)	z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
		11:14:56	0.007	0.184	0.006	0.006	0.006	0.006	0.0588	102.0	3.30
		11:16:51	0.008	0.208	0.006	0.007	0.006	0.006	0.0621	100.3	3.50
		11:16:55	0.017	0.437	0.012	0.007	0.005	0.008	0.0785	98.6	3.40
		11:17:22	0.015	0.374	0.007	0.006	0.006	0.006	0.0621	92.3	21.3
		11:20:06	0.012	0.316	0.008	0.005	0.006	0.006	0.0621	90.5	5.10
		11:23:45	0.014	0.353	0.007	0.006	0.006	0.006	0.0621	94.2	30.1
		11:24:53	0.007	0.183	0.006	0.005	0.006	0.006	0.0556	103.1	5.00
		11:26:44	0.009	0.217	0.005	0.005	0.005	0.005	0.0490	102.4	5.80
		11:26:48	0.009	0.219	0.006	0.005	0.005	0.005	0.0523	100.7	5.30
V09	11:14:56AM-11:37:26AM	11:26:51	0.010	0.251	0.007	0.006	0.006	0.006	0.0621	100.0	4.30
		11:28:20	0.009	0.241	0.005	0.006	0.005	0.005	0.0523	100.8	3.10
		11:28:41	0.007	0.189	0.006	0.005	0.005	0.005	0.0523	105.3	5.00
		11:28:48	0.010	0.256	0.008	0.007	0.006	0.007	0.0686	100.5	9.00
		11:29:05	0.009	0.236	0.006	0.010	0.006	0.007	0.0719	100.7	3.80
		11:29:11	0.007	0.190	0.006	0.005	0.006	0.006	0.0556	102.8	7.80
		11:29:14	0.008	0.208	0.006	0.006	0.006	0.006	0.0588	101.3	6.40
		11:34:01	0.015	0.391	0.010	0.007	0.005	0.007	0.0719	91.4	14.6
		11:37:23	0.009	0.240	0.006	0.011	0.006	0.008	0.0752	101.3	>100
		11:37:26	0.007	0.188	0.005	0.006	0.006	0.006	0.0556	101.0	>100

3.1.13 DATA

TABLE:

						Vibration Analys	iis	МАХ		ISEE Linear N NOISE (Decibel) 98.1 101.1 90.5 100.5 99.9 92.1 93.8 100.9 101.4 90.9 102.6 102.3 100.9 91.6 93.8 93.8 102.4	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Ү (Т)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2		ZeroCrossing Frequency (Hz)
		11:40:22	0.013	0.337	0.007	0.006	0.006	0.006	0.0621	98.1	N/A
		11:40:26	0.007	0.190	0.005	0.005	0.005	0.005	0.0490	101.1	4.20
		11:44:13	0.015	0.388	0.008	0.007	0.006	0.007	0.0686	90.5	34.1
		11:46:46	0.007	0.185	0.005	0.006	0.006	0.006	0.0556	100.5	8.30
		12:01:55	0.008	0.196	0.005	0.005	0.005	0.005	0.0490	99.9	N/A
		12:03:24	0.018	0.465	0.008	0.007	0.007	0.007	0.0719	92.1	17.7
		12:03:27	0.025	0.631	0.012	0.007	0.007	0.009	0.0850	93.8	21.3
		12:03:54	0.008	0.192	0.005	0.006	0.005	0.005	0.0523	100.9	8.70
		12:10:51	0.010	0.243	0.005	0.006	0.005	0.005	0.0523	101.4	3.60
V09	11:40:22AM-12:21:02PM	12:12:03	0.014	0.363	0.007	0.007	0.005	0.006	0.0621	90.9	20.5
		12:13:14	0.009	0.226	0.006	0.006	0.005	0.006	0.0556	102.6	5.60
		12:13:20	0.009	0.219	0.005	0.006	0.006	0.006	0.0556	102.3	4.60
		12:15:45	0.009	0.236	0.005	0.005	0.006	0.005	0.0523	100.9	7.00
		12:16:40	0.012	0.312	0.006	0.005	0.006	0.006	0.0556	91.6	1.60
		12:16:50	0.015	0.373	0.007	0.008	0.007	0.007	0.0719	93.8	3.50
		12:16:54	0.016	0.413	0.007	0.007	0.009	0.008	0.0752	98.2	85.3
		12:16:58	0.021	0.545	0.010	0.012	0.006	0.009	0.0915	94.7	4.90
		12:21:02	0.010	0.248	0.007	0.006	0.005	0.006	0.0588	102.4	4.70

3.1.14 DATA

TABLE:

AREA/STATION					N	/ibration Analys	sis	DAAY		ISEE Linear I	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Y (T)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
		12:24:40	0.010	0.248	0.006	0.006	0.006	0.006	0.0588	100.1	3.50
		12:44:54	0.007	0.169	0.005	0.006	0.005	0.005	0.0523	102.1	7.40
		12:44:59	0.010	0.244	0.005	0.006	0.005	0.005	0.0523	103.5	4.70
		12:49:57	0.016	0.402	0.007	0.006	0.006	0.006	0.0621	96.2	26.9
		12:50:12	0.007	0.185	0.006	0.006	0.006	0.006	0.0588	101.5	14.6
		13:04:35	0.015	0.379	0.008	0.006	0.006	0.007	0.0654	91.2	5.10
		13:06:15	0.013	0.340	0.005	0.005	0.007	0.006	0.0556	88.9	3.00
		13:06:21	0.013	0.342	0.007	0.006	0.007	0.007	0.0654	95.5	5.20
		13:06:41	0.009	0.229	0.006	0.007	0.006	0.006	0.0621	104.1	2.50
V09	12:24:40PM-13:39:08PM	13:07:05	0.009	0.221	0.007	0.006	0.005	0.006	0.0588	100.9	4.20
	-	13:07:35	0.018	0.448	0.007	0.005	0.005	0.006	0.0556	90.7	4.10
		13:15:25	0.007	0.188	0.005	0.006	0.005	0.005	0.0523	100.7	2.40
		13:16:39	0.007	0.175	0.007	0.005	0.006	0.006	0.0588	100.1	2.50
		13:17:43	0.008	0.195	0.005	0.006	0.005	0.005	0.0523	100.7	3.80
		13:19:10	0.008	0.206	0.006	0.006	0.006	0.006	0.0588	101.0	6.00
		13:20:27	0.009	0.226	0.006	0.005	0.005	0.005	0.0523	102.5	4.00
		13:21:02	0.007	0.188	0.007	0.006	0.005	0.006	0.0588	104.4	5.80
		13:26:25	0.012	0.315	0.007	0.005	0.006	0.006	0.0588	90.3	3.50
		13:39:08	0.010	0.265	0.006	0.006	0.007	0.006	0.0621	100.8	3.10

3.1.15 DATA

TABLE:

					Vibration Analysis X (R) Y (T)	is	MAX		ISEE Linear I	Vicrophone	
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Ү (Т)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	ISEE Linear I NOISE (Decibel) 102.00 100.10 92.60 104.70 90.50 91.40 103.80 93.40 103.30 107.20 100.90 103.10 100.00 100.90 100.10 100.00 89.80 101.40	ZeroCrossing Frequency (Hz)
		13:41:57	0.010	0.248	0.006	0.006	0.005	0.006	0.0556	102.00	3.40
		13:43:02	0.009	0.240	0.006	0.007	0.006	0.006	0.0621	100.10	3.60
		13:43:07	0.013	0.342	0.008	0.006	0.006	0.007	0.0654	92.60	N/A
		13:44:20	0.011	0.273	0.006	0.007	0.006	0.006	0.0621	104.70	3.90
		13:47:18	0.013	0.319	0.007	0.006	0.006	0.006	0.0621	90.50	1.90
		13:49:04	0.013	0.324	0.007	0.007	0.006	0.007	0.0654	91.40	5.30
		13:50:56	0.009	0.230	0.006	0.006	0.005	0.006	0.0556	103.80	4.00
		13:54:16	0.013	0.332	0.007	0.007	0.006	0.007	0.0654	93.40	16.50
Voo	12.41.57084 14:02:20084	13:54:38	0.008	0.191	0.006	0.007	0.005	0.006	0.0588	103.30	5.40
VUS	13:41:57 PWI-14:02:30 PWI	13:55:26	0.010	0.252	0.005	0.005	0.006	0.005	0.0523	107.20	2.10
		13:55:51	0.007	0.172	0.006	0.005	0.005	0.005	0.0523	100.90	4.60
		13:57:25	0.008	0.200	0.006	0.005	0.005	0.005	0.0523	103.10	3.20
		13:57:39	0.007	0.183	0.006	0.006	0.006	0.006	0.0588	100.00	7.90
		13:57:42	0.007	0.182	0.006	0.005	0.005	0.005	0.0523	100.90	3.50
		13:57:53	0.009	0.232	0.006	0.009	0.006	0.007	0.0686	100.10	9.80
		13:59:19	0.010	0.242	0.006	0.007	0.007	0.007	0.0654	101.00	4.00
		14:01:22	0.013	0.332	0.007	0.006	0.006	0.006	0.0621	89.80	3.30
		14:02:30	0.009	0.219	0.006	0.006	0.005	0.006	0.0556	101.40	12.50

3.1.16 DATA

TABLE:

AREA/STATION					v	ibration Analys	is	MAY		ISEE Linear I	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Y (T)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	ISEE Linear N NOISE (Decibel) 92.60 100.50 103.70 101.70 102.50 99.90 92.60 101.10 102.90 102.00 91.80 103.10 89.80 103.10 89.80 101.30 96.70 93.60 96.50 100.30 101.10	ZeroCrossing Frequency (Hz)
		14:04:23	0.015	0.379	0.007	0.007	0.007	0.007	0.0686	92.60	21.3
		14:04:53	0.010	0.242	0.006	0.005	0.005	0.005	0.0523	100.50	3.60
		14:05:01	0.010	0.243	0.006	0.005	0.005	0.005	0.0523	103.70	5.00
		14:06:06	0.008	0.198	0.005	0.006	0.007	0.006	0.0588	101.70	5.80
		14:11:00	0.009	0.240	0.007	0.006	0.006	0.006	0.0621	102.50	5.00
		14:12:17	0.011	0.276	0.006	0.006	0.005	0.006	0.0556	99.90	3.20
		14:16:02	0.015	0.381	0.008	0.006	0.006	0.007	0.0654	92.60	3.90
		14:17:37	0.011	0.267	0.006	0.006	0.006	0.006	0.0588	101.10	85.3
		14:19:30	0.009	0.236	0.006	0.006	0.007	0.006	0.0621	102.90	3.70
V09	14:04:23PM-14:48:53PM	14:20:19	0.009	0.230	0.006	0.005	0.005	0.005	0.0523	102.00	4.80
		14:25:23	0.014	0.351	0.006	0.005	0.005	0.005	0.0523	91.80	2.10
		14:26:32	0.009	0.225	0.006	0.005	0.006	0.006	0.0556	103.10	3.60
		14:28:24	0.014	0.353	0.006	0.006	0.005	0.006	0.0556	89.80	2.00
		14:33:32	0.008	0.201	0.006	0.007	0.004	0.006	0.0556	101.30	8.70
		14:35:19	0.014	0.355	0.006	0.006	0.006	0.006	0.0588	96.70	28.4
		14:38:13	0.013	0.341	0.008	0.006	0.006	0.007	0.0654	93.60	5.50
		14:41:55	0.019	0.474	0.009	0.006	0.008	0.008	0.0752	96.50	2.60
		14:43:40	0.010	0.245	0.006	0.006	0.005	0.006	0.0556	100.30	4.50
		14:48:53	0.009	0.218	0.006	0.006	0.006	0.006	0.0588	101.10	4.30

3.1.17 DATA

TABLE:

AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	Vibration Analysis			МАХ		ISEE Linear Microphone	
					X (R)	Y (T)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
V09	14:55:34PM-14:59:47PM	14:55:34	0.007	0.177	0.005	0.005	0.005	0.005	0.0490	101.70	6.00
		14:56:29	0.008	0.206	0.005	0.006	0.006	0.006	0.0556	100.20	5.60
		14:59:19	0.007	0.174	0.005	0.006	0.006	0.006	0.0556	102.90	2.00
		14:59:44	0.007	0.186	0.005	0.005	0.006	0.005	0.0523	107.50	10.2
		14:59:47	0.007	0.185	0.006	0.006	0.006	0.006	0.0588	104.40	2.70

3.1.18 DATA

TABLE:

AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	Vibration Analysis			МАХ		ISEE Linear Microphone	
					X (R)	Y (T)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
V08	17:01:12PM-01:11:40AM	17:01:12	0.005	0.123	0.005	0.005	0.005	0.005	0.0490	104.3	2.60
		20:01:21	0.030	0.766	0.039	0.139	0.024	0.067	0.6603	148.0	56.9
		20:01:51	0.039	0.986	0.060	0.008	0.088	0.052	0.5099	102.7	4.10
		20:01:58	0.004	0.100	0.005	0.004	0.006	0.005	0.0490	107.5	18.3
		20:02:32	0.004	0.110	0.005	0.005	0.005	0.005	0.0490	100.7	30.1
		21:17:47	0.014	0.364	0.005	0.006	0.005	0.005	0.0523	<88	25.6
		21:22:07	0.005	0.134	0.005	0.006	0.005	0.005	0.0523	99.9	>100
		21:57:17	0.014	0.343	0.006	0.006	0.006	0.006	0.0588	<88	73.1
		21:59:26	0.025	0.640	0.006	0.009	0.006	0.007	0.0686	91.2	39.4
		22:17:54	0.013	0.335	0.005	0.007	0.006	0.006	0.0588	94.9	25.6
		22:18:31	0.012	0.305	0.005	0.007	0.005	0.006	0.0556	88.4	56.9
		23:08:04	0.006	0.161	0.005	0.006	0.005	0.005	0.0523	102.4	>100
		23:10:31	0.016	0.405	0.005	0.007	0.005	0.006	0.0556	88.2	19.7
		23:45:31	0.015	0.381	0.005	0.007	0.005	0.006	0.0556	89.8	85.3
		23:50:39	0.005	0.123	0.005	0.005	0.006	0.005	0.0523	101.1	>100
		0:38:41	0.019	0.495	0.030	0.005	0.026	0.020	0.1994	<88	9.10
		0:51:51	0.005	0.130	0.005	0.005	0.007	0.006	0.0556	104.4	>100
		1:11:40	0.004	0.107	0.005	0.006	0.007	0.006	0.0588	103.0	>100

3.1.19 DATA

TABLE:

AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	١	/ibration Analys	is	MAX Acceleration (milli(g)s) AVERAGE	m/s2	ISEE Linear Microphone	
					X (R)	Y (T)	Z (V)			NOISE (Decibel)	ZeroCrossing Frequency (Hz)
V08	1:11:43AM-10:23:49PM	1:11:43	0.004	0.113	0.006	0.005	0.005	0.005	0.0523	103.8	>100
		5:34:43	0.015	0.369	0.005	0.006	0.005	0.005	0.0523	89.4	73.1
		6:16:46	0.012	0.314	0.006	0.009	0.006	0.007	0.0686	88.7	51.2
		6:58:28	0.005	0.132	0.006	0.005	0.005	0.005	0.0523	102.3	>100
		7:26:56	0.005	0.123	0.005	0.005	0.006	0.005	0.0523	100.0	>100
		7:36:52	0.013	0.319	0.006	0.006	0.006	0.006	0.0588	90.5	42.7
		7:52:16	0.014	0.348	0.004	0.007	0.005	0.005	0.0523	<88	73.1
		7:55:11	0.013	0.321	0.005	0.023	0.012	0.013	0.1308	91.6	N/A
		7:55:25	0.005	0.136	0.005	0.005	0.005	0.005	0.0490	107.3	23.3
		8:07:58	0.006	0.146	0.007	0.006	0.006	0.006	0.0621	103.1	>100
		8:08:13	0.006	0.142	0.005	0.007	0.007	0.006	0.0621	101.4	>100
		8:53:39	0.020	0.518	0.028	0.005	0.020	0.018	0.1733	<88	N/A
		9:24:36	0.012	0.313	0.007	0.013	0.013	0.011	0.1079	91.8	>100
		9:55:03	0.006	0.155	0.007	0.006	0.005	0.006	0.0588	100.5	85.3
		9:58:56	0.006	0.159	0.005	0.005	0.006	0.005	0.0523	100.5	39.4
		9:59:08	0.006	0.158	0.005	0.005	0.005	0.005	0.0490	100.9	30.1
		10:15:32	0.008	0.207	0.006	0.006	0.007	0.006	0.0621	103.5	4.30
		10:15:37	0.007	0.174	0.006	0.005	0.005	0.005	0.0523	102.0	32.0
		10:23:49	0.007	0.178	0.006	0.006	0.005	0.006	0.0556	100.2	3.60

3.1.20 DATA

TABLE:

GROUND VIBRATION AND NOISE MONITORING TABLE

1					Vibration Analysis			МАХ		ISEE Linear I	Microphone
AREA/STATION	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Y (T)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
	10:26:02	0.016	0.413	0.006	0.007	0.006	0.006	0.0621	90.3	3.90	
		10:51:43	0.013	0.333	0.006	0.007	0.004	0.006	0.0556	92.8	4.50
		10:57:55	0.007	0.180	0.005	0.006	0.005	0.005	0.0523	102.2	28.4
		10:59:32	0.007	0.169	0.005	0.006	0.006	0.006	0.0556	100.6	64.0
	10:26:02AM-12:02:57PM	11:03:12	0.008	0.197	0.006	0.005	0.011	0.007	0.0719	102.5	>100
		11:10:18	0.016	0.404	0.005	0.007	0.004	0.005	0.0523	94.7	4.70
		11:16:46	0.017	0.440	0.006	0.006	0.005	0.006	0.0556	96.1	51.2
		11:26:06	0.008	0.192	0.005	0.005	0.006	0.005	0.0523	101.1	6.40
		11:27:28	0.007	0.177	0.006	0.005	0.005	0.005	0.0523	103.2	>100
V08		11:27:46	0.012	0.296	0.006	0.006	0.005	0.006	0.0556	101.9	>100
		11:42:19	0.006	0.142	0.005	0.005	0.005	0.005	0.0490	101.1	3.70
		11:42:38	0.006	0.158	0.005	0.006	0.004	0.005	0.0490	100.7	16.5
		11:45:21	0.011	0.288	0.012	0.006	0.011	0.010	0.0948	101.8	6.90
		11:52:54	0.006	0.160	0.004	0.005	0.005	0.005	0.0458	100.5	3.20
		12:02:44	0.005	0.129	0.006	0.005	0.005	0.005	0.0523	100.5	>100
		12:02:48	0.005	0.129	0.005	0.005	0.005	0.005	0.0490	101.7	>100
		12:02:52	0.010	0.265	0.012	0.005	0.010	0.009	0.0883	101.7	5.40
	-	12:02:57	0.005	0.129	0.006	0.006	0.005	0.006	0.0556	100.9	3.90

3.1.21 DATA

TABLE:

GROUND VIBRATION AND NOISE MONITORING TABLE

					V	/ibration Analys	is	MAY		ISEE Linear I	Microphone			
AREA/STATION MONITORI	MONITORINGTIME	MONITORINGTIME	MONITORINGTIME	MONITORINGTIME	TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Y (T)	Z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
		12:06:50	0.005	0.121	0.007	0.007	0.007	0.007	0.0686	102.4	>100			
		12:09:40	0.007	0.189	0.008	0.006	0.006	0.007	0.0654	108.3	9.00			
		12:09:43	0.005	0.136	0.008	0.005	0.005	0.006	0.0588	105.5	3.80			
		12:09:48	0.006	0.142	0.006	0.005	0.006	0.006	0.0556	102.6	5.30			
		12:09:52	0.006	0.146	0.0006	0.005	0.007	0.004	0.0412	104.7	11.9			
		12:22:15	0.005	0.133	0.005	0.005	0.007	0.006	0.0556	100.1	>100			
		12:25:12	0.013	0.339	0.012	0.008	0.03	0.017	0.1634	91.6	64.0			
		12:33:12	0.006	0.146	0.005	0.006	0.005	0.005	0.0523	99.9	3.00			
		12:42:51	0.005	0.117	0.005	0.005	0.004	0.005	0.0458	101.0	8.10			
V08	12:06:50PM-14:16:01PM	12:47:58	0.005	0.122	0.006	0.005	0.005	0.005	0.0523	100.2	85.3			
		13:09:07	0.005	0.132	0.005	0.006	0.005	0.005	0.0523	99.9	5.10			
		13:16:40	0.005	0.117	0.006	0.005	0.005	0.005	0.0523	101.7	>100			
		13:16:43	0.005	0.122	0.005	0.005	0.005	0.005	0.0490	100.6	>100			
		13:24:59	0.013	0.325	0.005	0.007	0.005	0.006	0.0556	91.9	24.4			
		13:58:55	0.017	0.437	0.025	0.007	0.024	0.019	0.1831	95.1	4.10			
		14:07:32	0.016	0.407	0.005	0.007	0.005	0.006	0.0556	90.7	46.5			
		14:12:35	0.005	0.122	0.006	0.005	0.006	0.006	0.0556	101.4	7.10			
		14:15:43	0.008	0.199	0.006	0.005	0.016	0.009	0.0883	100.8	>100			
		14:16:01	0.016	0.399	0.031	0.006	0.017	0.018	0.1765	90.9	7.30			

3.1.22 DATA

TABLE:

GROUND VIBRATION AND NOISE MONITORING TABLE

						Vibration Analy	sis	MAX		ISEE Linear Microphone	
AREA/STATION	MONITORINGTIME	ONITORINGTIME TIME TRIGGER	Velocity Units (in /sec)	Velocity Units (mm/sec)	X (R)	Y (T)	z (V)	Acceleration (milli(g)s) AVERAGE	m/s2	NOISE (Decibel)	ZeroCrossing Frequency (Hz)
		14:35:08	0.006	0.155	0.007	0.005	0.010	0.007	0.0719	100.5	85.3
		14:44:35	0.004	0.113	0.006	0.004	0.005	0.005	0.0490	100.2	4.80
		14:44:47	0.005	0.130	0.007	0.005	0.005	0.006	0.0556	103.2	2.80
		14:44:51	0.005	0.127	0.005	0.005	0.005	0.005	0.0490	104.4	3.10
		14:44:56	0.006	0.150	0.007	0.005	0.006	0.006	0.0588	103.1	3.70
		14:49:45	0.013	0.336	0.006	0.009	0.006	0.007	0.0686	93.5	9.10
	14:35:08PM-16:50:12PM	14:49:49	0.016	0.395	0.005	0.009	0.006	0.007	0.0654	89.6	5.40
		14:49:52	0.018	0.456	0.005	0.010	0.005	0.007	0.0654	88.4	8.8
		14:49:56	0.019	0.478	0.005	0.011	0.006	0.007	0.0719	90.3	34.1
VOR		14:49:59	0.018	0.469	0.005	0.012	0.004	0.007	0.0686	92.9	7.40
V08		14:50:03	0.019	0.489	0.005	0.009	0.006	0.007	0.0654	90.7	73.1
		14:50:06	0.019	0.477	0.005	0.010	0.005	0.007	0.0654	88.7	N/A
		14:50:12	0.014	0.353	0.005	0.007	0.005	0.006	0.0556	90.1	46.5
		14:50:16	0.014	0.352	0.005	0.007	0.005	0.006	0.0556	90.9	21.3
		15:01:24	0.004	0.107	0.005	0.006	0.005	0.005	0.0523	103.1	64.0
		15:08:57	0.004	0.110	0.005	0.006	0.005	0.005	0.0523	100.8	10.4
		15:40:15	0.006	0.140	0.005	0.005	0.006	0.005	0.0523	102.3	>100
		15:54:29	0.012	0.309	0.016	0.007	0.026	0.016	0.1602	91.1	56.9
		16:25:56	0.014	0.356	0.020	0.009	0.017	0.015	0.1504	92.4	36.6
		16:50:12	0.006	0.154	0.006	0.005	0.006	0.006	0.0556	100.7	>100

4.0 Discussion of Result and Conclusion

Below is the evaluation provided by the team who conducted the monitoring.

Sampling started at around 3PM, vibrometer was placed approximately 10m away from the old PNR Station for Station-V09 and approximately 10m away from the main road (4-lanes) for Station-V08. Recording is done for twenty-four (24) hours.

Based on the table (see attachment on the report soft copy), there are 303 events recorded for the whole twenty-four (24) hour monitoring duration at Station-V09 while there are only 96 events recorded for Station-V08.

For Station-V09, the highest reading recorded is at around 11PM (23:24:34) with **0.795 mm/sec** value. Noise measured is 92.6 VdBA and with zero frequency of >100 Hz. However, for Station-V08, the highest reading recorded is at around 8PM (20:01:51) with **0.986 mm/sec** value. Noise measured during this time is 102.7 VdBA and with zero frequency of 4.10 Hz.

Probable sources of ground vibration for Station-V09 are the various vehicles passing in the main road and from vehicles entering/exiting in the Old station while for Station-V08 sources are the footsteps and various vehicles passing in the facility.

Vibration is perceptible by human starts at 2.00 mm/sec and plaster cracking on concrete occurs at 50 mm/sec.

Prepared by Mel Gibbson E. Ogay Team Leader (AOMD)

NOTED by:

Reviewed by:

A/QC Manager (AQMD)

HiAdvance Philippines Incorporated 3F Maga Center, San Antonio St., Paseo de Magallanes, 1232 Makati City, Philippines Office: +632.7729.4327 Fax No: +632.8854.8365 Email: info@hiadvance.com.ph Website: www.hiadvance.com.ph

Ambient Air Monitoring Stations

HiAdvance Philippines Inc.

COMPANY NAME: Prism Express Consulting, Inc.

PROJECT NAME: North-South Commuter Railway (NSCR-EX) Extension Project

SAMPLING SITE: Station-V09 & Station-V08

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonio St. Paseo de Magallanes Makati Gry. 1232 Phone No: (632) 854-8365 Fax No: (632) 729-4327

AMBIENT AIR SAMPLING FIELD DATA SHEET

Company: PRISM EXPRESS CONSUME INC.	Date: 14-15 MM 2011
Address: WIT II KNOWN FLOOR KAGINDON MCADE CENTER P.	HONG TIMO THU VIT CEUZ EXTENSION LARED UM
Station No: (Location: Arts 1, NOA, VDA	A A A A A A A A A A A A A A A A A A A
Start Time: 1500# End Time: 1500# Pitalan	GPS Reading: Latitude (5.1949)
Ambient Temperature:	Longitude 100 JULE?
Barometric Pressure: Weather Condition:	CUARY light to heavy minerall
Filter ID No:Type of Filter Paper Used:	Initial Weight:
Sampled Parameters: VIGRADAN	
Remarks: STANNI DEMED AT THE AUDILIET BETIDE DID AND	DES STRADOR BOUNDED 31 MONDE MANDE
FROM THE ALD SPANNIS WAY FOOT IS DRAWN AT A FOUND	V GROWN WORDLES HASTE VOILDAND DUILADU OTASIS
The hardery lide there is a contract of the	WI I WAR I A F TOXICE VE CAN DAILARD ALOUCH
The full of the want to prove a war of the	BURDALL BUDGER BUDGER PUDGER CONTROLOGICA AUTOR
WALL ENAM THE WORKING DATION IN THE LIME DATE	The ONE ENDING DOC VIEWING A PLATE
TSP Sampler	and the set of same the solers of CLOTION
Model: Social No.	Colliburation Data
PM2 E/PM10 Samalary	
Piviz,5/Pivizu Sampler:	
Serial No:	Calibration Date:
Three (2) Care Carryland	
Inree (3) Gas Sampler:	
Serial No:	Flow Rate:
Barometer/Thermometer:	*
Model: Serial No:	Calibration Date:
Multi RAE / Air Quality Meter Equipment:	<u></u>
Model: Serial No:	Calibration Date:
INITIAL FILTER PRESSURE:	arbon Monoxide:
FINAL FILTER PRESSURE:	Total VOC:
L=	
	and and the second
1 - Repaired	
XIB20 PT	10 meters
DS 42 11/20	
Commental in a commentation of the commentatio	the
	AT & IEN PT
hand a second se	
Team Leader:	QA/QC/Date: My h total
	/ /
\smile	MP-AIR-001-F05
	Rev. 0; 8 May 2018

HiAdvance Philippines, Inc. 3rd floor Maga Centre San Antonio St. Paseo de Magallanes Mokati Gry, 1232 Phone No: (632) 854-8365 Fax No: (632) 729-4327

AMBIENT AIR SAMPLING FIELD DATA SHEET

Company: PRISM EXPLOSI CONFULTING INC.	Date: 15 - 16 Ju 2021
Address: UNIT II GROUND FLOOR KINGSWOOD M	COME CONTER PASONG TIME IN THE COUL PUBLICON MARTICITY
Station No: 2 Location: ASS. V.	D§
Start Time: 17004 End Time: 17004	GPS Reading: Latitude 15,14492
Ambient Temperature:	Longitude 120-591053
Barometric Pressure: Weather Cond	dition: SUKARY
Filter ID No: Type of Filter Paper	Used: Initial Weight:
Sampled Parameters: VIBRATION	
Remarks: STATION LITURE MT THE RIGHT SIDE WARY OF	LA PIETA CROMMERIUM OFFICE. STATION IS POSITIONED 5 MODERS
FROM OFFICES WALL. EDUT IS ERECTOR ON & CO,	NCRETE GROUND. VERTELET MUST DAIERIED DURING NORDE
me monucicos mon y-wither par fi	was as Tricycle! My Hicyclel. NO CONSONCHAN
KERNIM UNGERVER KERNEY NO SPARA KERNE HOVER &	RE FROM DEROH TO 12004. MORPHUE CONNER ME FORD
activities that FOOTTANS FLAM WEAF OF	THE FRILLITY.
TSP Sampler:	
Model: - Serial No: -	Calibration Date:
PM2.5/PM10 Sampler:	
Model: Serial No:	Calibration Date:
Three (3) Gas Sampler:	
Model: Serial No:	Flow Rate:
Barometer/Thermometer:	
Model:	Calibration Date:
Multi RAE / Air Quality Meter Equipment:	
Model: Serial No:	Calibration Date:
	2
INITIAL FILTER PRESSURE:	Carbon Monoxide:
FINAL FILTER PRESSURE:	Total VOC:
IA PIETA 401	
CREMAINAUPI FILS 19	
OPPIGE /	
15m 15m	(Ev/0/
108	
/ worker /	
704	
AR JVS	
	and the court
LP DP ENTRY GATE	EXII GATE
\sim	- 1011
Team Leader:	ON/OC/Data: MACHITA
	uniacionale.
\setminus	
\smile	
	1648 0, 0 1918 y 2010

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Monitoring Sampling Laboratory Results for CP N-04

Ambient Air Quality (AAQ6) Surface Water Quality (SW11) Noise Level (N12) Vibration Level (V12)

North-South Commuter Railway Extension Project

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Monitoring Sampling Laboratory Results for CP N-04

Ambient Air Quality (AAQ6)

North-South Commuter Railway Extension Project

Customer : **ACCIONA-EEI JV** Project Name : Malolos Clark Railway Project (CP N-04) Attn : Mr. Arnold C. Mariñas

Date of Sampling: June 16 to 17, 2021

Station I.D.	Location	TSP (µg/Ncm)	PM₁₀ (µg/Ncm)	ΡΜ_{2.5} (μg/Ncm)	Pb (µg/Ncm)	NO₂ (µg/Ncm)	SO₂ (µg/Ncm)	O ₃ (µg/Ncm)	CO (ppm)
AAQ6	Near Mabalacat Substation (Brgy. Camachiles, Mabalacat, Pampanga)	80.7	52.5	32.3	0.014	16.3	12.9	5.6	6.59
DENF (NAAQS	Standard S/NAAQGV)^	230	150	50	1.5*	150	180	60	9
Re	emarks	Passed	Passed	Passed	Passed	Passed	Passed	Passed	Passed

TSP, PM₁₀, PM_{2.5}, Pb, NO₂, SO₂, O₃ = Corrected to 25°C, 760mmHg; ND = Not Detected

^RA 8749 (Philippine Clean Air Act of 1999)

*Evaluation of this guideline is carried out for 3-month averaging time

Prepared by:

Ba QA/QC Assistant

Certified by:

Kristin Anne C. Castillo QA/QC Manager

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Monitoring Sampling Laboratory Results for CP N-04

Surface Water Quality (SW11)

North-South Commuter Railway Extension Project

30 June 2021

Acciona - EEI JV 5th F, Unit 502, One West Aeropark Building Clark Global City, Pampanga

ATTN.:	Engr. Arnold Marinas
Project Name:	THE MALOLOS CLARK RAILWAY PROJECT - MCRP CP N-04
Lab. No.:	P00114347-01

Enclosed are the results for sample received by CRL Environmental Corporation and tested for the parameters in the enclosed chain of custody.

Our DOH Accreditation with Accreditation No. <u>3-001-20-LW-2</u>, is valid from January 01, 2020 until December 31, 2022.

Likewise, our DENR Recognition with C. R. No. 023/2018, will expire on September 24, 2021.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARIA CARMELA Q. CAPULE

Chief Operating Officer

Results of Analyses

Acciona - EEI JV

5th F, Unit 502, One West Aeropark Building Clark Global City, Pampanga

Date Received: 06/14/2021

SN: F00084172.001

Lab No.:P00114347

Project Name: THE MALOLOS CLARK RAILWAY PROJECT - MCRP CP N-04

Attention: Engr. An

Ligi. Antiola Marina		Engr.	Arnold	Marinas
----------------------	--	-------	--------	---------

Test Description	Results	Units	Test Methods	Date Analyzed	By	Ref
Sample No.: P00114347-01			DateSampled: 06-14-21 11:06			J
Sample ID: SW II - QUITANGIL RIVER			Matrix: Surface Water			
-Metals-						
Arsenic**	< 0.005	ma/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/17/21	PPG	
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/17/21	PPG	
Lead**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/17/21	PPG	
Mercury**	< 0.0002	mg/L	Cold Vapor AAS	06/18/21	MGEP	
Chromium**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/17/21	PPG	
Dissolved Copper	0.004	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/17/21	PPG	
-Microbiology-						
Total Coliforms**	5,400	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	06/14/21	IMBG	
Fecal Coliforms**	700	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	06/14/21	IMBG	
-Wet Chemistry-						
pH**, onsite	7.0	1.52	Electrometric Method (SM 4500-H+ B)	06/14/21	1.00	
Temperature**, onsite	30.0	°C	Laboratory & Field Method (SM2550 B)	06/14/21		
Color**	15	TCU	Visual Comparison	06/14/21	MPT	
Conductivity, onsite	438	µS/cm	Conductimetry	06/14/21		
Dissolved Oxygen**	7	mg/L	Winkler/Titrimetric	06/14/21	PSSM	
Biological Oxygen Demand**	10	mg/L	5-Day BOD Test (SM 5210 B)	06/16/21	PSSM	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.4	mg/L	Colorimetry - Chloroform Extraction	06/14/21	AGAS	
Total Suspended Solids**	102	mg/L	Gravimetry (SM 2540 D)	06/17/21	MPT	
Oil & Grease	2.6	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520 B)	06/17/21	WBD	
Chloride**	18	mg/L	Argentometric Method (SM4500 CI-B)	06/17/21	MLJ	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	06/16/21	ANBB	
Cyanide, Free**	< 0.007	mg/L	Ion Selective Electrode (SM 4500 CN-F)	06/17/21	MPY	
Nitrate - N**	0.05	mg/L	Colorimetry - Brucine (EPA 352.1)	06/17/21	NGCM	
PhosphateP**	0.3	mg/L	Stannous Chloride Method (SM 4500-P D)	06/14/21	MPY	

>>> end of result set for Sample No .: P00114347-01 <<<

>>> end of result set for Lab No.:P00114347; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Page 1 of 2 FN>>>>00386312>>>>

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

Analyzed by:

Ina Micaela B. Gonzales PRC License No.: 0087105 Microbiological Testing

Prescilla C. Gatbonton PRC License No.: 679 Chemical Testing

m

Nathaniel Glenn C. Martin PRC License No.: 14175 Chemical Testing

Certified by:

Geraldine T. Yabut PRC License No.: 0027218 Microbiological Testing

harpin

Ronald G. Espiritu PRC License No.: 9248 Chemical Testing

a C. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroyo PRC License No.: 6701 Chemical Testing

Date: 06/30/2021

06/30/2021

Date:

Date: 06/30/2021

Date:

a/30m Date:

Date:

6mmm Date:

SN: F00084172.001

Disclaimer. This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the efficient dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00386312>>>>

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Results of Analyses

Acciona - EEI JV

5th F, Unit 502, One West Aeropark Building Clark Global City, Pampanga

SN: F00084172.002

Lab No.:P00114347

Project Name: THE MALOLOS CLARK RAILWAY PROJECT - MCRP CP N-04

Attention: Engr. Arnold Marinas

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	Ву	Ref
Sample No.: P00114347-01			DateSampled	: 06-14-21 11:06				
Sample ID: SW II - QUITANGIL RIVER			Matrix: Surfa	ce Water				
-Organics-								
PHENOLS								
2.4.6-trichlorophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	06/17/21	CNCP	
2.4-dichlorophenol	ND	mg/L	0.0010	0.0010	USEPA Method 8041A	06/17/21	CNCP	
2.4-dimethylphenol	ND	mg/L	0.0011	0.0011	USEPA Method 8041A	06/17/21	CNCP	
2,4-dinitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/17/21	CNCP	
2-chlorophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/17/21	CNCP	
2-methyl-4.6-dinitrophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	06/17/21	CNCP	
2-nitrophenol	ND	mg/L	0.0006	0.0006	USEPA Method 8041A	06/17/21	CNCP	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.0019	USEPA Method 8041A	06/17/21	CNCP	
4-nitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/17/21	CNCP	
pentachlorophenol	ND	mg/L	0 0018	0.0018	USEPA Method 8041A	06/17/21	CNCP	
phenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/17/21	CNCP	

>>> end of result set for Sample No.:P00114347-01 <<<

>>> end of result set for Lab No.:P00114347; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Page 1 of 2 FN>>>>00386313>>>>

 CRL Environmental

 Corporation

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc.
Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ)
Pampanga, 2023 Philippines
Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
Email: crl@crllabs.com • http://www.crllabs.com

Analyzed by:

Adardo

Chastee Neill C. Prado PRC License No.: 12769 Chemical Testing

Certified by:

KAWY

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

distudriques

Mary Anne G. Rodriguez PRC License No.: 10281 Chemical Testing

Date:	06/30/2021	

06/30/2021

Date: 06/30/2021

Date:

SN: F00084172.002

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: erl@crllabs.com • http://www.crllabs.com

01 July 2021

Acciona - EEI JV 5th F, Unit 502, One West Aeropark Building Clark Global City, Pampanga

ATTN.:	Engr. Arnold Marinas
Project Name:	THE MALOLOS CLARK RAILWAY PROJECT - MCRP CP N-04
Lab. No.:	P00114347-01

Enclosed are the result and QC Data for sample received by CRL Environmental Corporation which was subcontracted to ASSET Laboratories, LV, NV, USA for testing of the requested parameter in the enclosed chain of custody.

The above Lab. No. has a corresponding Lab. ID N045934-001A by ASSET Laboratories, LV, NV, USA.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARTA CARMELA Q. CAPULE Chief Operating Officer

ASSET Laboratories

Date: 25-Jun-21

CLIENT:	CRL Environmental Corporation	
Project:	P00114347	CASE NARRATIVE
Lab Order:	N045934	

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Results were J-Flag. "J" is used to flag those results that are between the PQL (Practical Quantitation Limit) and the calculated MDL (Method Detection Limit). Results that are "J" Flagged are estimated values since it becomes difficult to accurately quantitate the analyte near the MDL.

CALIFORNIA [P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ASSET Laboratories

Date: 25-Jun-21

CLIENT: Project: Lab Order: Contract No:	CRL Environmental C P00114347 N045934	orporation	Work C	order Sampl	e Summary
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N045934-001A	P00114347-01	Surface Water	6/14/2021 11:06:00 AM	6/18/2021	6/25/2021

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 PA ID CA01638 NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

ANALYTICAL RESULTS

Print Date: 25-Jun-21

CLIENT:	CRL Environme	ntal Corporation		Client Sample ID: P00114347-01								
Lab Order: N045934 Collection Date: 6/14/2021 11:06:00 AM												
Project: P00114347 Matrix: SURFACE WATER												
Lab ID:	N045934-001											
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed				
ORGANOPH	OSPHORUS PESTIC	IDES										
	1	EPA 3510C		EPA	8141A							
RunID: NV00	922-GC11_210622A	QC Batch: 881	100		PrepDa	ate:	6/21/2021	Analyst: JJS				
Malathion		ND	0.035	0.18		ug/L	1	6/22/2021 01:12 PM				
Surr: Tribu	tyl Phosphate	81.3	0	54-143		%REC	1	6/22/2021 01:12 PM				
Surr: Triph	enyl Phosphate	90.4	0	46-145		%REC	1	6/22/2021 01:12 PM				

Qualifiers:

ASSET Laboratories

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit

Results are wet unless otherwise specified

ASSET LABORATORIES

E Value above quantitation range

J Analyte detected below quantitation limits

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

 EALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

"Serving Clients with Passion and Professionalism"

4 of 5

ASSET Laboratories

-

Date: 25-Jun-21

CLIENT: CRL Environmental Corporation Work Order: N045934

Project: P00114347

ANALYTICAL QC SUMMARY REPORT

TestCode: 8141_W

Sample ID: LCS-88100	SampType: LCS	TestCode: 8141_W U	nits: ug/L	Prep Date: 6/21/2021	RunNo: 153741
Client ID: LCSW	Batch ID: 88100	TestNo: EPA 8141A EF	PA 3510C	Analysis Date: 6/22/2021	SeqNo: 4251866
Analyte	Result	PQL SPK value SPK F	Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	0.726	0.20 0.7500	0 96.8	55 141	
Surr: Tributyl Phosphate	0.626	0.7500	83.5	54 143	
Surr: Triphenyl Phosphate	0.674	0.7500	89.9	46 145	
Sample ID: LCSD-88100	SampType: LCSD	TestCode: 8141_W U	nits: ug/L	Prep Date: 6/21/2021	RunNo: 153741
Client ID: LCSS02	Batch ID: 88100	TestNo: EPA 8141A EF	A 3510C	Analysis Date: 6/22/2021	SeqNo: 4251867
Analyte	Result	PQL SPK value SPK F	Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	0.770	0.20 0.7500	0 103	55 141 0.7256	5.98 20
Surr: Tributyl Phosphate	0.635	0.7500	84.7	54 143	0 20
Surr: Triphenyl Phosphate	0.701	0.7500	93.4	46 145	0 20
Sample ID: MB-88100	SampType: MBLK	TestCode: 8141_W Ur	nits: ug/L	Prep Date: 6/21/2021	RunNo: 153741
Client ID: PBW	Batch ID: 88100	TestNo: EPA 8141A EP	A 3510C	Analysis Date: 6/22/2021	SeqNo: 4251868
Analyte	Result	PQL SPK value SPK F	Ref Val %REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	ND	0.20			
Surr: Tributyl Phosphate	0.628	0.7500	83.7	54 143	
Surr: Triphenyl Phosphate	0.677	0.7500	90.3	46 145	

Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit R S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out CALIFORNIA (P:562.219.7435 F:562.219.7436 NEVADA | P:702.307.2659 F:702.307.2691 di ASSET LABORATORIES 11110 Artesia Blvd., Ste B. Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046 "Serving Clients with Passion and Professionalism"

RPD outside accepted recovery limits

Calculations are based on raw values

5 of 5

Rev. 3.0

100

01/04/18

CHAIN OF CUSTODY RECORD

Page___ of ____

										FOF	LAE	ORA	TOR	YUS	E ONI	LY:		1 the	02	fari	2'(
CR.	L Environmental							T	Meth	od of	Transp	ort	T					Samp	le Co	nditior	n Upon	Recei	pt			
	Corporation		Lab. No.	Po	0/14347			_	Walk	-in			1.Ci	HILLED			YC	N		4. SE	ALED				YD	N
Bidg. 2, Berthaphil Compound 1, I	Berthaphil, Inc. Industrial Park		PO#						Cour	ier							-								-	
Jose Abad Santos Ave., Clark Fre Tel: (6345) 599-3943 • (6345) 499	eport Zone, Clarkfield, Pampanga, Philip 9-6529 • (632) 552-5100	pines	F.O.#					-	DPS	EVD	Н		2.HE	ADSPA	ACE (V	'OA)	۲L	ЛN		5. # C	OF SPLS	S MAT	CHC	oc	¥L	NЦ
Fax (6345) 599-3963			Logged By: _	1211P	Date:06-14-	2 Time:	13101		CRL	LAF.	D	/	3.00	ONTAIN		TACT	vГ		ñ	6 PR	ESERV	ED			vP'	NП
Customer: A cciona	EET JV					Address:					/		1			11101				0.114	Tot: (10			1421	
Attn:						City						c	tata:				710	Cadar			Faul (
Project Name:			Proj	ect #:		Tony.			S	Sample	er:	(Print	ted Na	me)			Zip	Code:			Fax:() nature)			
Dellassiste dt	19											EU	GEN	EN	ERPI	0.	N.				Z	-hi				
Kelinquished by: (Signature and	d Printed Name)	6			Date:		Ti	me:		Re	ceived	by: (Sig	gnature a	and Printed	Name)						Date:	1			Time:	
Relinguished by: (Signature and	Printed Name)	1.			u-14-	.2	-	11701	1								1	RIP				a	-14-2	1		150 14
)				Date:		10	me:		Re	ceived	by: (Sig	gnature a	ind Printed	i Name)						Date:				Time:	
Relinquished by: (Signature and	d Printed Name)				Date:		Tir	me:		Re	ceived	by: (Sig	gnature a	nd Printed	Name)						Date:				Time:	
SHIP TO LAB:		hereby a	authorize CRL to	perform the w	vork indicated below:		Sen	d Repo	ort To:								S	oecial	Instru	iction	s/Com	ments				1
		Proje	ect Mgr. /	Submi	itter:		Attn:	1	ARL	OLi	2.0	np	RIK	AFC	AC	cia	44-0	Om		1	1/F	2	T	0	the c	5.)
(SUB CONTRACT)		FV.	PALA	1.50	t.	1/1 21					-			e				,	V	VI	NI	7	D	T	120g	
DATE:		1.0-	1430M	110	Date:/	19/21	Co:	4	AC	CI	DILI	AF	EF	1 5	Y		-11	EHE	SR	. J	UN	N	Em	TEKS	500	Makes
CUSTOMER I.D.			Find Na		Phi		Add	nee'										21	120	PIP	en-	TTE	- 1	dos	- 1	19614
			A	AM			- uu	633.	L								-1'	75	1	Bn	EF.	IF	4	nor	ANE	Ĩ
			()	Signat	ture		City:				State:			Zip:		1	_			14	L' Fa	SIL	1 /	angle	•	
Unless otherwise	Sample Archive / Disposal:		<u> </u>				Analy	rite (sistes)	11	7	11	7	77		77	$\overline{\mathbf{T}}$	T	C	IRCLE	E APP	ROPRI	ATE			T	
remaining samples will	Laboratory Standard						Requ	uested	//	//	//	//	//	//	1		,		,	MAT	RIX	,		Z	5	
be disposed of 15 days	Others							/	11	1	11	//	//	///	//	13	131		//	//	11	1		TA		
report	*\$10.00 FE	PER HA	AZARDOUS SA	MPLE DISPO	SAL			11		/ /	1		//	//	11	3/2	12	12/0	12	1	8/	Con	tainer	(s) a		
LAB USE ONLY		Sam	ple Description		AR (211-22-21)		1/	//	//	1		1	//	11		1/5	3/0	3/3	3	12	1/			US L		
E M Lab No	Sample	10			Sampling	Sampling	1	//	1	//	11	//	/	//	131	5		5	1	1.	2/			La Ca		
PRO 11 XI ZUIZZI	Sample		Distar		Date	Time	ff	4	77	-		+	H		6/0	14	15/3	\$18	2/3	\$10	TAT V	#	Туре		RE	MARKS
454701	Owna	ngil	mi eci		UMA	1106H	++	+	++	+	\vdash	+	\vdash	++	+	14	+	+	+	+		\vdash	-+	+	+	
							++	+	++	-	\vdash	+	\vdash	++		++	_	++	+	+		\square		+	+	
							++	+	++	+		+	\vdash	++		++	-	+	+	+		\square		+		
							++	+	++	+	\vdash	+	\vdash	++	+	++	+	++	+	+		\square		+		
							++	+	++		\vdash	+	\vdash	++	-	++	+	++	+	+		\square		+	-	
							++	+	++	+	\vdash	+	\vdash	++	_	\vdash	+	++	+	-	-	\square		_		
							++		\square	\square		\square		++		\square		\square							1	
							\square		\square	\square				\square												
							\square																			
TAT starts 8 a.m. the fo	ollowing day TAT: A = 0	vernight	t	B =	Emergency Next		C =	Criti	cal 2		D =	U	rgent		E	_	Routin	ne 7	1	Pre	eservat	ives:				
it sample received beyond the laboratory	12 noon at	24 nrs.	1. N		Workday		<u> </u>	Worl	kdays		5-	3 W	orkday	s	L .	Alexand	Workd	lays	1	H=	HCI I	N=HN	103	S=H2	SO4 (C=<6°C
and incontatory	Contain	er Type	es: T=Tub	e V=V	/OA L=Liter	P=Pin	t J	J=Jar	B=1	Tedlar			G=(Glass	P=P	Plastic	M	=Meta	al	Z=2	Zn(AC)	12	O=N	aOH	T=N	$a_2S_2O_3$

DISTRIBUTION: White with report, Yellow to folder, Pink to submitter

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Monitoring Sampling Laboratory Results for CP N-04

Noise Level (N12)

North-South Commuter Railway Extension Project

Customer : **ACCIONA-EEI JV** Project Name : Malolos Clark Railway Project (CP N-04) Attn : Mr. Arnold C. Mariñas

Date of Sampling: April 29 to 30, 2021 (24-hour Sampling)

		Noise Level dB(A)*							
Station I.D.	Location	Morning (0500H-0900H)	Daytime (0900H-1800H)	Evening (1800H-2200H)	Nighttime (2200H-0500H)				
N12	Brgy. San Francisco, Mabalacat, Pampanga	55.60	62.52	63.61	48.23				
Environmental Quality Standards^		50	55	50	45				
	Remarks	Exceeded	Exceeded	Exceeded	Exceeded				

[^]Rules and Regulations of the National Pollution Control Commission (1978) *Class "A" (Area which is primarily used for residential purposes)

Note: Measured noise levels mostly came from constant vehicle traffic, animals, birds and from residential area.

Prepared by:

B۶ 2C Assistant

Certified by:

Kristin Anne C. Castillo QA/QC Manager

Customer : **ACCIONA-EEI JV** Project Name : Malolos Clark Railway Project (CP N-04) Attn : Mr. Arnold C. Mariñas

Date of Sampling: May 28-29, 2021 (24-hour Sampling)

		Noise Level dB(A)*							
Station I.D.	Location	Morning (0500H-0900H)	Daytime (0900H-1800H)	Evening (1800H-2200H)	Nighttime (2200H-0500H)				
N12	Mabalacat Municipal Cemetery, Brgy. San Francisco Residential Area	70.98	66.13	61.49	52.16				
Enviro	onmental Quality Standards^	50	55	50	45				
	Remarks	Exceeded	Exceeded	Exceeded	Exceeded				

^Rules and Regulations of the National Pollution Control Commission (1978)

*Class "A" (Area which is primarily used for residential purposes)

Note: Measured noise levels mostly came from constant vehicle traffic, animals, birds and from residential area.

Prepared by:

Certified by:

for Anne C. Castillo /QC Manager

Customer : **ACCIONA-EEI JV** Project Name : Malolos Clark Railway Project (CP N-04) Attn : Mr. Arnold C. Mariñas

Date of Sampling: June 16 to 17, 2021 (24-hour Sampling)

		Noise Level dB(A)*							
Station I.D.	Location	Morning (0500H-0900H)	Daytime (0900H-1800H)	Evening (1800H-2200H)	Nighttime (2200H-0500H)				
N12	Mabalacat Municipal Cemetery, Brgy. San Francisco Residential Area	49.13	50.08	53.24	46.45				
Enviro	onmental Quality Standards^	50	55	50	45				
	Remarks	Within	Within	Exceeded	Exceeded				

^ARules and Regulations of the National Pollution Control Commission (1978)

*Class "A" (Area which is primarily used for residential purposes)

Note: Measured noise levels mostly came from constant vehicle traffic, animals, insects and from residential area.

Prepared by:

Certified by:

Kristin Anne C. Castillo QA/QC Manager

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Monitoring Sampling Laboratory Results for CP N-04

Vibration Level (V12)

North-South Commuter Railway Extension Project

Measurement and Impact Assessment of Vibration Monitoring

Monitoring Results

April 2021

th IDA MARIE R. BUEN

Geologist/Survey Supervisor

MARK LINUS RAMOS Technical QA/QC

Date: June 2, 2021

A. Overview

A vibration monitoring study was conducted at a site situated in Mabalacat, Pampanga, during which seismic recording instruments were deployed to collect 24-hour data of ambient vibration for the site. This vibration study report describes the following :

- a. Methodology used in data collection and analysis;
- b. Measured baseline levels of vibration in the various sites;
- c. Spatial or temporal patterns in the vibration levels.

Vibration monitoring survey for April was conducted last May 14-15, 2021 due to anti-Covid 19 restrictions on people going in the province of Pampanga.

B. Site Location

The location of the site and the schedule for the survey were a-priori defined. The site was located near the entrance of the Mabalacat Municipal Cemetery and was in a rural area where there was little to no traffic. The geographic coordinates of the site are shown below.

Site	Latitude	Longitude	Survey Date
V-12	15° 12' 59.9184" N	120° 34' 23.898" E	May 14- 15, 2021

|--|

C. Measurement for Vibration Conditions

At the site, 24-hour sampling was undertaken where vibration was recorded using the Vibron Seismometer which is a seismic data recorder connected to a geophone. One triaxial sensor was installed at the observation area in an orthogonal arrangement. The triaxial sensor has a natural frequency of 4.5Hz and a sampling frequency of 200 samples per second.

The seismic sensors were deployed on the concrete pavement. The data recording in the site was supervised by a crew of two which alternated on 12-hour shifts to complete the 24-hour sampled recording.

The V-12 observation site (Figure 1) is located in a farmland about 1.5 kilometers away from the nearest runway of Clark International Airport, at approximately 150 meters away from Subic-Clark-Tarlac Expressway (SCTEX), and 350 meters away from Gil Puyat Avenue. The sources of spike in vibration levels are predominantly caused by motorcycles, cars, and aircraft.

Figure 1. The location of the survey site in Google Earth

Figure 2. Chart depicting the maximum vibration levels in VdB for the Horizontal, Transverse Axis (X-axis) at V-12.

Figure 3. Chart depicting the maximum vibration levels in VdB for the Horizontal, Parallel Axis (Y-axis) at V-12.

Figure 4. Chart depicting the maximum vibration levels in VdB for the Vertical Axis (Z-axis) at V-12.

Figure 5. Chart depicting the acceleration levels in inches/second² for the Horizontal, Transverse Axis (X-axis) at V-12.

Figure 6. Chart depicting the acceleration levels in inches/second² for the Horizontal, Parallel Axis (Y-axis) at V-12.

Figure 7. Chart depicting the acceleration levels in inches/second² for the Vertical Axis (Z-axis) at V-12.

Figure 8. Chart depicting the velocity levels in inches/second for the Horizontal, Transverse Axis (X-axis) at V-12.

Figure 9. Chart depicting the velocity levels in inches/second for the Horizontal, Parallel Axis (Y-axis) at V-12.

Figure 10. Chart depicting the acceleration levels in inches/second² for the Vertical Axis (Z-axis) at V-12.

D. Vibration Criteria

The approach used in this study follows the prescription of the British Standard 7385 (1993). The Philippines' Environmental Management Bureau has not defined any vibration standards or procedures of investigation in the Philippines.

The vibration level measurements were carried out according to U.S. FTA 2006 guidelines. Regular samples of vibration data over 24-hour observation period for each station were conducted. The figures show the result of the vibration in the site in terms of velocity, acceleration, and vibration levels that vary throughout the day. For each site, some notable features can be distinguished indicating in some instances the human activity that causes the background vibration. Vibration data was processed with reference velocity of 1x10⁻⁶ per second.

Land Use Catagory	Vibra (VdB	ation Impact re 1 micro in	Levels ch/sec)	Noise Impact Levels (dB re 20 micro Pascals)					
Land Use Category	Frequent Events ¹	Occasional Events ²	Infrequent Events ³	Frequent Events ¹	Occasional Events ²	Infrequen Events ³			
Category 1: Buildings where vibration would interfere with interior operations.	65 VdB ⁴	65 VdB ⁴	65 VdB ⁴	n/a ⁵	n/a ⁵	n/a ⁵			
Category 2: Residences and buildings where people normally sleep.	72 VdB	75 VdB	80 VdB	35 dBA	38 dBA	43 dBA			
Category 3: Institutional land uses with primarily daytime use.	75 VdB	78 VdB	83 VdB	40 dBA	43 dBA	48 dBA			
Notes: 1. "Frequent Events" is defining the into this category. 2. "Occasional Events" is defining the intervents of the intervents of the intervents of the intervent is definite the intervent intervents of the intervent is the intervent intervent intervent is the intervent of the intervent in	ed as more than fined as betwee rations. ined as fewer th tes. ed on levels than sensitive manu- ng lower vibrati	a 70 vibration ev en 30 and 70 vib an 30 vibration t are acceptable facturing or rese ion levels in a bu	ents of the same ration events of events of the sar for most modera arch will require ilding often req	source per day the same sourc ne kind per day tely sensitive e e detailed evalu uires special de	 Most rapid tran e per day. Most of This category is equipment such as tration to define the HVA 	usit projects fai commuter trun includes most s optical lie acceptable C systems and			

Table 2. Ground-Borne Vibration and Noise Impact Criteria (FTA, 2006)

5. Vibration-sensitive equipment is generally not sensitive to ground-borne noise.

* RMS Vibration Velocity Level in VdB relative to 10⁻⁶ inches/second

Figure 11. Ground-Borne Vibration and Noise Impact Criteria (FTA, 2006)

The California Department of Transportation (Caltrans) provides a summary of vibration criteria for the peak particle velocity set in inches per second that have been reported by various researchers, organizations, and governmental agencies.

Table 3. Human response to steady state vibration (Reiher, 1931)

PPV (in/sec)	Human Response	
3.6 (at 2 Hz)-0.4 (at 20 Hz)	Very disturbing	
0.7 (at 2 Hz)-0.17 (at 20 Hz)	Disturbing	
0.10	Strongly perceptible	
0.035	Distinctly perceptible	
0.012	Slightly perceptible	

Table 4. Human response to continuous vibration from traffic (Whiffen, 1971)

PPV (in/sec)	Human Response	
0.4-0.6	Unpleasant	
0.2	Annoying	
0.1	Begins to annoy	
0.08	Readily perceptible	
0.006-0.019	Threshold of perception	
Table 5. Human response to transient vibration (Wiss, 1974)

PPV (in/sec)	Human Response			
2.0	Severe			
0.9	Strongly perceptible			
0.24	Distinctly perceptible			
0.035	Barely perceptible			

Table 6. Construction Vibration Criteria

Building Category	PPV (in/sec)	Approximate L_v^{\dagger}				
I. Reinforced-concrete, steel or timber (no plaster)	0.5	102				
II. Engineered concrete and masonry (no plaster)	0.3	98				
III. Non-engineered timber and masonry buildings	0.2	94				
IV. Buildings extremely susceptible to vibration damage	0.12	90				
[†] RMS velocity in decibels (VdB) re 1 micro-inch/second						

E. Summary

Observations of vibration at the site indicates that the site varies in levels of vibration from a low of **50 VdB** to a high of **53 VdB**, acceleration varies from **0.05 in/s**² to **0.14 in/s**², and peak velocities that range from **0.0013 in/s** to **0.0018 in/s**. These values are generally lower and are not considered as annoyance to residential areas.

It can be observed that activities such as aircraft taking off or hovering above ground during their operation hours paired with small vehicles passing through the observation site throughout the day do not have a significant effect on the vibration levels in the area. The sources of vibration are generally from small vehicles and aircraft. In this area, the range of vibration levels may go beyond **50** VdB which is the typical background vibration.

In addition, the highest peak velocity acquired during the survey is 0.0018 in/s. Correlating this value to **Table 6**, it does not imply any significant potential building damage effects. Furthermore, this peak velocity value corresponds to human response as barely perceptible (**Table 5**).

The summary of observed peak values for vibration (VdB) and peak velocities (in/s) are shown below which show the maximum vibration velocity (VdB) and the maximum peak velocities (in/s) for each of the stations during certain periods of the day.

Survey Stations		Vibration Levels (VdB)						
		Morning	Day	Evening	Night			
		(5am-9am)	(9am-6pm)	(6pm-10pm)	(10pm-5am)			
	X-axis	50 VdB	50 VdB	51 VdB	50 VdB			
V-12	Y-axis	53 VdB	52 VdB	52 VdB	52 VdB			
	Z-axis	52 VdB	52 VdB	51 VdB	50 VdB			

Table 7. Maximum vibration levels in the site during certain periods of the day

Table 8. The recorded peak vibrations in the site

	Recorded Peak		
Survey Sites	Vibration	Dook Timo	
	(VdB)	reak IIIIe	
V-12	53 VdB, Y-axis	Morning (5am-9am)	

Table 9. Maximum peak velocities in the site during certain periods of the day

Survey Stations		Velocity (in/s)						
		Morning	Day	Evening	Night			
		(5am-9am)	(5am-9am) (9am-6pm)		(10pm-5am)			
	X-axis	0.0013 in/s	0.0013 in/s	0.0014 in/s	0.0013 in/s			
V-12	Y-axis	0.0018 in/s	0.0017 in/s	0.0017 in/s	0.0017 in/s			
	Z-axis	0.0017 in/s	0.0017 in/s	0.0016 in/s	0.0015 in/s			

Table 10. The recorded peak velocity in the site

Survey Sites	Recorded Peak Velocity (in/s)	Peak Time	
V-12	0.0018 in/s, Y-axis	Morning (5am-9am)	

Survey Stations		Acceleration (in/s ²)						
		Morning	Day	Evening	Night			
		(5am-9am) (9am-6pm)		(6pm-10pm)	(10pm-5am)			
	X-axis	0.08 in/s ²	0.06 in/s ²	0.09 in/s ²	0.07 in/s ²			
V-12	Y-axis	0.07 in/s ²	0.06 in/s ²	0.05 in/s ²	0.05 in/s ²			
	Z-axis	0.14 in/s ²	0.13 in/s ²	0.11 in/s ²	0.09 in/s ²			

Table 11. Maximum peak accelerations in the site during certain periods of the day

Table 12. The recorded peak acceleration in the site

	Recorded Peak	
Survey Sites	Acceleration	Dook Timo
	(in/s)	Peak IIIIe
V-12	0.14 in/s², Z-axis	Morning (5am-9am)

Figure 12. Chart depicting the peak vibration levels (VdB) during certain periods of the day.

Figure 13. Chart depicting the peak acceleration levels (in/s^2) during certain periods of the day.

Peak Acceleration Levels

Figure 14. Chart depicting the peak velocity levels (in/s) during certain periods of the day.

Tables of comparison for vibration levels among the result of the 1st month observation (February 2021), 2nd month observation (March 2021), and the 3rd month observation (April 2021)

		Vibration Levels (VdB) (1st month, February 2021)						Vibration (2 nd mor	n Levels (VdB) hth, March 2021)	
Survey Station		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	52 VdB	53 VdB	53 VdB	51 VdB		51.5 VdB	51 VdB	51 VdB	50.5 VdB
V-12	Y-axis	54 VdB	55 VdB	54 VdB	53 VdB		53.5 VdB	53 VdB	53 VdB	52.5 VdB
	Z-axis	54 VdB	55 VdB	54 VdB	53 VdB		52 VdB	52.5 VdB	52.5 VdB	51.5 VdB

Survey Station		Vibration Levels (VdB) (3 rd month, April 2021)					
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)		
	X-axis	50 VdB	50 VdB	51 VdB	50 VdB		
V-12	Y-axis	53 VdB	52 VdB	52 VdB	52 VdB		
	Z-axis	52 VdB	52 VdB	51 VdB	50 VdB		

Tables of comparison for velocity levels among the result of the 1st month observation (February 2021), 2nd month observation (March 2021), and the 3rd month observation (April 2021)

Survey Station		Velocity Levels (in/s) (1 st month, February 2021)					Velocity Levels (in/s) (2 nd month, March 2021)			
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	0.0015 in/s	0.0019 in/s	0.0017 in/s	0.0014 in/s		0.0038 in/s	0.0035 in/s	0.0035 in/s	0.0033 in/s
V-12	Y-axis	0.0015 in/s	0.0018 in/s	0.0016 in/s	0.0014 in/s		0.0047 in/s	0.0046 in/s	0.0045 in/s	0.0043 in/s
	Z-axis	0.0015 in/s	0.0018 in/s	0.0017 in/s	0.0014 in/s		0.0042 in/s	0.0044 in/s	0.0045 in/s	0.0038 in/s

		Velocity Levels (in/s) (3 rd month, April 2021)					
Survey S	itation	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)		
	X-axis	0.0013 in/s	0.0013 in/s	0.0014 in/s	0.0013 in/s		
V-12	Y-axis	0.0018 in/s	0.0017 in/s	0.0017 in/s	0.0017 in/s		
	Z-axis	0.0017 in/s	0.0017 in/s	0.0016 in/s	0.0015 in/s		

Tables of comparison for acceleration levels among the result of the 1st month observation (February 2021), 2nd month observation (March 2021), and the 3rd month observation (April 2021)

Survey Station			Acceleration (1 st month, F	n Levels (in/s²) February 2021)		Acceleration Levels (in/s²) (2 nd month, March 2021)			
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	0.11 in/s ²	0.13 in/s ²	0.08 in/s ²	0.065 in/s ²	0.26 in/s ²	0.21 in/s ²	0.28 in/s ²	0.15 in/s ²
V-12	Y-axis	0.16 in/s ²	0.17 in/s ²	0.12 in/s ²	0.09 in/s ²	0.18 in/s ²	0.22 in/s ²	0.17 in/s ²	0.13 in/s ²
	Z-axis	0.13 in/s ²	0.25 in/s ²	0.14 in/s ²	0.06 in/s ²	0.3 in/s ²	0.37 in/s ²	0.35 in/s ²	0.3 in/s ²

Survey Station		Acceleration Levels (in/s ²) (3 rd month, April 2021)					
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)		
	X-axis	0.08 in/s ²	0.06 in/s ²	0.09 in/s ²	0.07 in/s ²		
V-12	Y-axis	0.07 in/s ²	0.06 in/s ²	0.05 in/s ²	0.05 in/s ²		
	Z-axis	0.14 in/s ²	0.13 in/s ²	0.11 in/s ²	0.09 in/s ²		

Figure 15. Chart depicting the difference in Horizontal, Transverse (X-axis) **peak vibration levels** (**VdB**) among the 1st month, 2nd month, and 3rd month of observation during certain periods of the day.

Figure 16. Chart depicting the difference in Horizontal, Parallel (Y-axis) **peak vibration levels (VdB**) among the 1st month, 2nd month, and 3rd month of observation during certain periods of the day.

Figure 17. Chart depicting the difference in Vertical (Z-axis) **peak vibration levels (VdB**) among the 1st month, 2nd month, and 3rd month of observation during certain periods of the day.

Figure 18. Chart depicting the difference in Horizontal, Transverse (X-axis) **peak velocity levels (in/s)** among the 1st month, 2nd month, and 3rd month of observation during certain periods of the day.

Figure 19. Chart depicting the difference in Horizontal, Parallel (Y-axis) **peak velocity levels (in/s)** among the 1st month, 2nd month, and 3rd month of observation during certain periods of the day.

Figure 20. Chart depicting the difference in Vertical (Z-axis) **peak velocity levels** (**in/s**) among the 1st month, 2nd month, and 3rd month of observation during certain periods of the day.

Figure 21. Chart depicting the difference in Horizontal, Transverse (X-axis) **peak acceleration levels** (**in/s2**) among the 1st month, 2nd month, and 3rd month of observation during certain periods of the day.

Figure 22. Chart depicting the difference in Horizontal, Parallel (Y-axis) **peak acceleration levels** (**in/s2**) among the 1st month, 2nd month, and 3rd month of observation during certain periods of the day.

Figure 23. Chart depicting the difference in Vertical (Z-axis) **peak acceleration levels** (**in/s2**) among the 1st month, 2nd month, and 3rd month of observation during certain periods of the day.

F. Appendix

EQUIPMENT SPECIFICATIONS

Power			
	DC Input	12V DC Battery	
	AC Input	100 - 240V 50/60Hz 0.3A	
Micro Computer	r	•	
	Processor	Amlogic ARM Cotex-A5 (ARMv7) 1.5Ghz quad core CPUs	
	GPU	Mali-450 MP2	
	RAM	1Gbyte DDR3 SDRAM	
	Storage	32Gbyte Sandisk Ultra Class 10 SD Card	
Analog to Digita	l Converter		
	Inputs	14 analog Input (16-18+Bits Depending on speed)	
Display			
		7 Inch Touch Screen	
Sensors			
	Туре	Geophone	
	Model	RTC-4.5Hz-395	
	Frequency		
		natural frequency (fn)	4.5Hz
		Tolerance	+-0.5Hz
		Max Tilt Angle for Specified fn	0
		Typical spurious frequency	>160hz
	Damping		
		Typical open circuit damping	0.7
		Tolerance	10.00%
	Distortion		
		Distortion with 0.7 in/s p.p to case velocity	<0.3%
		Distortion measurement frequency	12Hz
		Max tilt angle for distortion specification	0
	Coil Resistance		
		standard	395 ohm
		Tolerance	5.00%
	Sensitivity		
		sensitivity	23.4 V/m/s
		Tolerance	10.00%
Connections			
	Туре	CAT 6 Ethernet Cable	

Pictures taken during the actual survey

Measurement and Impact Assessment of Vibration Monitoring

Monitoring Results

Neil Johannes C. Botor Survey Supervisor

Matter Pamos	

Date: June 11, 2021

Date: June 11, 2021

A. Overview

A vibration monitoring study was conducted at a site situated in Mabalacat, Pampanga, during which seismic recording instruments were deployed to collect 24-hour data of ambient vibration for the site. This vibration study report describes the following:

- a. Methodology used in data collection and analysis;
- b. Measured baseline levels of vibration in the various sites;
- c. Spatial or temporal patterns in the vibration levels.

Vibration monitoring survey for May was conducted last May 31- June 1, 2021.

B. Site Location

The location of the site and the schedule for the survey were a-priori defined. The site was located near the entrance of the Mabalacat Municipal Cemetery and was in a rural area where there was little to no traffic. The geographic coordinates of the site are shown below.

Site	Latitude	Longitude	Survey Date
V-12	15° 12' 59.9184" N	120° 34' 23.898" E	May 31 - June 1, 2021

Table 1. The survey site and its geographic coordinates.

C. Measurement for Vibration Conditions

At the site, 24-hour sampling was undertaken where vibration was recorded using the Vibron Seismometer which is a seismic data recorder connected to a geophone. One triaxial sensor was installed at the observation area in an orthogonal arrangement. The triaxial sensor has a natural frequency of 4.5Hz and a sampling frequency of 200 samples per second.

The seismic sensors were deployed on the concrete pavement. The data recording in the site was supervised by a crew of two which alternated on 12-hour shifts to complete the 24-hour sampled recording.

The V-12 observation site (Figure 1) is located in a farmland about 1.5 kilometers away from the nearest runway of Clark International Airport, at approximately 150 meters away from Subic-Clark-Tarlac Expressway (SCTEX), and 350 meters away from Gil Puyat Avenue. The sources of spike in vibration levels are predominantly caused by motorcycles, cars, and aircraft.

Figure 1. The location of the survey site in Google Earth

Figure 2. Chart depicting the maximum vibration levels in VdB for the Horizontal, Transverse Axis (X-axis) at V-12.

Figure 3. Chart depicting the maximum vibration levels in VdB for the Horizontal, Parallel Axis (Y-axis) at V-12.

Figure 4. Chart depicting the maximum vibration levels in VdB for the Vertical Axis (Z-axis) at V-12.

Figure 5. Chart depicting the acceleration levels in inches/second² for the Horizontal, Transverse Axis (X-axis) at V-12.

Figure 6. Chart depicting the acceleration levels in inches/second² for the Horizontal, Parallel Axis (Y-axis) at V-12.

Figure 7. Chart depicting the acceleration levels in inches/second² for the Vertical Axis (Z-axis) at V-12.

Figure 8. Chart depicting the velocity levels in inches/second for the Horizontal, Transverse Axis (X-axis) at V-12.

Figure 9. Chart depicting the velocity levels in inches/second for the Horizontal, Parallel Axis (Y-axis) at V-12.

Figure 10. Chart depicting the acceleration levels in inches/second² for the Vertical Axis (Z-axis) at V-12.

D. Vibration Criteria

The approach used in this study follows the prescription of the British Standard 7385 (1993). The Philippines' Environmental Management Bureau has not defined any vibration standards or procedures of investigation in the Philippines.

The vibration level measurements were carried out according to U.S. FTA 2006 guidelines. Regular samples of vibration data over 24-hour observation period for each station were conducted. The figures show the result of the vibration in the site in terms of velocity, acceleration, and vibration levels that vary throughout the day. For each site, some notable features can be distinguished indicating in some instances the human activity that causes the background vibration. Vibration data was processed with reference velocity of 1x10⁻⁶ per second.

	Vibra (VdB	ation Impact re 1 micro in	Levels ch/sec)	No (dB	evels ascals)	
Land Use Category	Frequent Events ¹	Occasional Events ²	Infrequent Events ³	Frequent Events ¹	Occasional Events ²	Infrequent Events ³
Category 1: Buildings where vibration would interfere with interior operations.	65 VdB ⁴	65 VdB ⁴	65 VdB ⁴	n/a ⁵	n/a ⁵	n/a ⁵
Category 2: Residences and buildings where people normally sleep.	72 VdB	75 VdB	80 VdB	35 dBA	38 dBA	43 dBA
Category 3: Institutional land uses with primarily daytime use.	75 VdB	78 VdB	83 VdB	40 dBA	43 dBA	48 dBA
Notes: 1. "Frequent Events" is defining this category. 2. "Occasional Events" is defining the save this many operation of the save this many operation of the same same same same same same same sam	ed as more than fined as betwee rations. ined as fewer th res. ed on levels that sensitive manu- ng lower vibrati	a 70 vibration ev en 30 and 70 vib an 30 vibration t are acceptable facturing or rese ion levels in a bu	ration events of ration events of events of the sar for most modera earch will requir uilding often req	e source per day the same source ne kind per day ttely sensitive e e detailed evalu uires special de	 Most rapid transfer e per day. Most This category is equipment such as transfer to define the sign of the HVA 	nsit projects fai commuter trun includes most s optical ne acceptable C systems and

Table 2. Ground-Borne Vibration and Noise Impact Criteria (FTA, 2006)

5. Vibration-sensitive equipment is generally not sensitive to ground-borne noise.

* RMS Vibration Velocity Level in VdB relative to 10⁻⁶ inches/second

Figure 11. Ground-Borne Vibration and Noise Impact Criteria (FTA, 2006)

The California Department of Transportation (Caltrans) provides a summary of vibration criteria for the peak particle velocity set in inches per second that have been reported by various researchers, organizations, and governmental agencies.

Table 3. Human response to steady state vibration (Reiher, 1931)

PPV (in/sec)	Human Response		
3.6 (at 2 Hz)-0.4 (at 20 Hz)	Very disturbing		
0.7 (at 2 Hz)-0.17 (at 20 Hz)	Disturbing		
0.10	Strongly perceptible		
0.035	Distinctly perceptible		
0.012	Slightly perceptible		

Table 4. Human response to continuous vibration from traffic (Whiffen, 1971)

PPV (in/sec)	Human Response	
0.4–0.6	Unpleasant	
0.2	Annoying	
0.1	Begins to annoy	
0.08	Readily perceptible	
0.006-0.019	Threshold of perception	

PPV (in/sec)	Human Response		
2.0	Severe		
0.9	Strongly perceptible		
0.24	Distinctly perceptible		
0.035	Barely perceptible		

Table 6. Construction Vibration Criteria

Building Category	PPV (in/sec)	Approximate L_v^{\dagger}
I. Reinforced-concrete, steel or timber (no plaster)	0.5	102
II. Engineered concrete and masonry (no plaster)	0.3	98
III. Non-engineered timber and masonry buildings	0.2	94
IV. Buildings extremely susceptible to vibration damage	0.12	90
[†] RMS velocity in decibels (VdB) re 1 micro-inch/second	I	

E. Summary

Observations of vibration at the site indicates that the site varies in levels of vibration from a low of **50 VdB** to a high of **53 VdB**, acceleration varies from **0.07 in/s**² to **0.25 in/s**², and peak velocities that range from **0.0030 in/s** to **0.0045 in/s**. These values are generally lower and are not considered as annoyance to residential areas.

It can be observed that activities such as an aircraft taking off or hovering above ground during their operation hours paired with small vehicles passing through the observation site throughout the day do not have a significant effect on the vibration levels in the area. The sources of vibration are generally from small vehicles and aircraft pass-by. In this area, the range of vibration levels may go beyond **50 VdB** which is the typical background vibration.

In addition, the highest peak velocity acquired during the survey is 0.0045 in/s. Correlating this value to **Table 6**, it does not imply any significant potential building damage effects. Furthermore, this peak velocity value corresponds to human response as barely perceptible (**Table 5**).

The summary of observed peak values for vibration (VdB) and peak velocities (in/s) are shown below which show the maximum vibration velocity (VdB) and the maximum peak velocities (in/s) for each of the stations during certain periods of the day.

Survey Stations		Vibration Levels (VdB)				
		Morning Day Evening		Evening	Night	
		(5am-9am)	(5am-9am) (9am-6pm)		(10pm-5am)	
	X-axis	53 VdB	52 VdB	52 VdB	52 VdB	
V-12	Y-axis	50 VdB	50 VdB	50 VdB	49 VdB	
	Z-axis	52 VdB	52 VdB	52 VdB	50 VdB	

Table 7. Maximum vibration levels in the site during certain periods of the day

 Table 8. The recorded peak vibrations in the site

	Recorded Peak	
Survey Sites	Vibration	
	(VdB)	Реак Пте
V-12	53 VdB, X-axis	Morning (5am-9am)

Table 9. Maximum peak velocities in the site during certain periods of the day

		Velocity (in/s)									
Survey Stations		Morning Day		Evening	Night						
		(5am-9am) (9am-6pm)		(6pm-10pm)	(10pm-5am)						
	X-axis	0.0044 in/s	0.0044 in/s	0.0044 in/s	0.0041 in/s						
V-12	Y-axis	0.0034 in/s	0.0032 in/s	0.0031 in/s	0.0031 in/s						
	Z-axis	0.0042 in/s	0.0045 in/s	0.0043 in/s	0.0037 in/s						

Table 10. The recorded peak velocity in the site

Survey Sites	Recorded Peak Velocity (in/s)	Peak Time
V-12	0.0045 in/s, Z-axis	Day (9am-6pm)

		Acceleration (in/s ²)									
Survey Stations		Morning Day		Evening	Night						
		(5am-9am) (9am-6pm)		(6pm-10pm)	(10pm-5am)						
	X-axis	0.14 in/s ²	0.13 in/s ²	0.13 in/s ²	0.09 in/s ²						
V-12	Y-axis	0.13 in/s ²	0.14 in/s ²	0.12 in/s ²	0.07 in/s ²						
	Z-axis	0.19 in/s ²	0.25 in/s ²	0.20 in/s ²	0.12 in/s ²						

Table 11. Maximum peak accelerations in the site during certain periods of the day

Table 12. The recorded peak acceleration in the site

	Recorded Peak	
Survey Sites	Acceleration	
	(in/s)	Peak Time
V-12	0.25 in/s², Z-axis	Day (9am-6pm)

Figure 12. Chart depicting the peak vibration levels (VdB) during certain periods of the day.

Peak Velocity Levels

Figure 13. Chart depicting the peak acceleration levels (in/s²) during certain periods of the day.

Figure 14. Chart depicting the peak velocity levels (in/s) during certain periods of the day.

Tables of comparison for vibration levels among the result of the 1st month observation (February 2021), 2nd month observation (March 2021), 3rd month observation (April 2021) and the 4th month observation (May 2021).

Survey Station			Vibration (1 st month, F	Levels (VdB) ebruary 2021)			Vibration (2 nd mont	Levels (VdB) h, March 2021)	
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	52 VdB	53 VdB	53 VdB	51 VdB	51.5 VdB	51 VdB	51 VdB	50.5 VdB
V-12	Y-axis	54 VdB	55 VdB	54 VdB	53 VdB	53.5 VdB	53 VdB	53 VdB	52.5 VdB
	Z-axis	54 VdB	55 VdB	54 VdB	53 VdB	52 VdB	52.5 VdB	52.5 VdB	51.5 VdB

Survey Station			Vibration (3 rd month	Levels (VdB) 1, April 2021)			Vibration (4 th mon	n Levels (VdB) th, May 2021)	
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	50 VdB	50 VdB	51 VdB	50 VdB	53 VdB	52 VdB	52 VdB	52 VdB
V-12	Y-axis	53 VdB	52 VdB	52 VdB	52 VdB	50 VdB	50 VdB	50 VdB	49 VdB
	Z-axis	52 VdB	52 VdB	51 VdB	50 VdB	52 VdB	52 VdB	52 VdB	50 VdB

Tables of comparison for velocity levels among the result of the 1^{st} month observation (February 202), 2^{nd} month observation (March 2021), 3^{rd} month observation (April 2021) and the 4^{th} month observation (May 2021).

Survey Station			Velocity I (1 st month, F	evels (in/s) ebruary 2021)						
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	0.0015 in/s	0.0019 in/s	0.0017 in/s	0.0014 in/s		0.0038 in/s	0.0035 in/s	0.0035 in/s	0.0033 in/s
V-12	Y-axis	0.0015 in/s	0.0018 in/s	0.0016 in/s	0.0014 in/s	1	0.0047 in/s	0.0046 in/s	0.0045 in/s	0.0043 in/s
	Z-axis	0.0015 in/s	0.0018 in/s	0.0017 in/s	0.0014 in/s		0.0042 in/s	0.0044 in/s	0.0045 in/s	0.0038 in/s

Survey Station		Velocity Levels (in/s) (3 rd month, April 2021)					Velocity Levels (in/s) (4 th month, May 2021)			
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	0.0013 in/s	0.0013 in/s	0.0014 in/s	0.0013 in/s		0.0044 in/s	0.0044 in/s	0.0044 in/s	0.0041 in/s
V-12	Y-axis	0.0018 in/s	0.0017 in/s	0.0017 in/s	0.0017 in/s		0.0034 in/s	0.0032 in/s	0.0031 in/s	0.0031 in/s
	Z-axis	0.0017 in/s	0.0017 in/s	0.0016 in/s	0.0015 in/s		0.0042 in/s	0.0045 in/s	0.0043 in/s	0.0037 in/s

Tables of comparison for acceleration levels among the result of the 1st month observation (February 2021), 2nd month observation (March 2021), 3rd month observation (April 2021) and the 4th month observation (May 2021).

		Acceleration (1 st month, F	n Levels (in/s²) February 2021)			Acceleration (2 nd mont	on Levels (in/s²) h,March 2021)		
Survey Station		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	0.11 in/s ²	0.13 in/s ²	0.08 in/s ²	0.06 in/s ²	0.26 in/s ²	0.21 in/s ²	0.28 in/s ²	0.15 in/s ²
V-12	Y-axis	0.16 in/s ²	0.17 in/s ²	0.12 in/s ²	0.09 in/s ²	0.18 in/s ²	0.22 in/s ²	0.17 in/s ²	0.13 in/s ²
	Z-axis	0.13 in/s ²	0.25 in/s ²	0.14 in/s ²	0.06 in/s ²	0.3 in/s ²	0.37 in/s ²	0.35 in/s ²	0.3 in/s ²

Survey Station			Acceleration (3 rd month	n Levels (in/s²) n, April 2021)		Acceleration Levels (in/s²) (4 th month, May 2021)			
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	0.08 in/s ²	0.06 in/s ²	0.09 in/s ²	0.07 in/s ²	0.14 in/s ²	0.13 in/s ²	0.13 in/s ²	0.09 in/s ²
V-12	Y-axis	0.07 in/s ²	0.06 in/s ²	0.05 in/s ²	0.05 in/s ²	0.13 in/s ²	0.14 in/s ²	0.12 in/s ²	0.07 in/s ²
	Z-axis	0.14 in/s ²	0.13 in/s ²	0.11 in/s ²	0.09 in/s ²	0.19 in/s ²	0.25 in/s ²	0.20 in/s ²	0.12 in/s ²

Figure 16. Chart depicting the difference in Horizontal, Parallel (Y-axis) **peak vibration levels (VdB**) among the 1st month, 2nd month, 3rd month and 4th month of observation during certain periods of the day.

Figure 17. Chart depicting the difference in Vertical (Z-axis) **peak vibration levels (VdB)** among the 1st month, 2nd month, 3rd month and 4th month of observation during certain periods of the day.

Figure 18. Chart depicting the difference in Horizontal, Transverse (X-axis) **peak velocity levels (in/s)** among the 1st month, 2nd month, 3rd month and 4th month of observation during certain periods of the day.

Figure 19. Chart depicting the difference in Horizontal, Parallel (Y-axis) **peak velocity levels (in/s)** among the 1st month, 2nd month, 3rd month and 4th month of observation during certain periods of the day.

Figure 20. Chart depicting the difference in Vertical (Z-axis) **peak velocity levels** (**in/s**) among the 1st month, 2nd month, 3rd month and 4th month of observation during certain periods of the day.

Figure 21. Chart depicting the difference in Horizontal, Transverse (X-axis) **peak acceleration levels** (**in/s2**) among the 1st month, 2nd month, 3rd month and 4th month of observation during certain periods of the day.

Figure 22. Chart depicting the difference in Horizontal, Parallel (Y-axis) **peak acceleration levels** (**in/s2**) among the 1st month, 2nd month, 3rd month and 4th month of observation during certain periods of the day.

Figure 23. Chart depicting the difference in Vertical (Z-axis) **peak acceleration levels** (**in/s2**) among the 1st month, 2nd month, 3rd month and 4th month of observation during certain periods of the day.

F. Appendix

EQUIPMENT SPECIFICATIONS

Power			
	DC Input	12V DC Battery	
	AC Input	100 - 240V 50/60Hz 0.3A	
Micro Computer	r		
	Processor	Amlogic ARM Cotex-A5 (ARMv7) 1.5Ghz quad core CPUs	
	GPU	Mali-450 MP2	
	RAM	1Gbyte DDR3 SDRAM	
	Storage	32Gbyte Sandisk Ultra Class 10 SD Card	
Analog to Digita	l Converter	+	-
	Inputs	14 analog Input (16-18+Bits Depending on speed)	
Display		· · · · · · · · ·	
		7 Inch Touch Screen	
Sensors			
	Туре	Geophone	
	Model	RTC-4.5Hz-395	
	Frequency		
		natural frequency (fn)	4.5Hz
		Tolerance	+-0.5Hz
		Max Tilt Angle for Specified fn	0
		Typical spurious frequency	>160hz
	Damping		
		Typical open circuit damping	0.7
		Tolerance	10.00%
	Distortion		
		Distortion with 0.7 in/s p.p to case velocity	<0.3%
		Distortion measurement frequency	12Hz
		Max tilt angle for distortion specification	0
	Coil Resistance		
		standard	395 ohm
		Tolerance	5.00%
	Sensitivity		
		sensitivity	23.4 V/m/s
		Tolerance	10.00%
Connections	•	•	
	Туре	CAT 6 Ethernet Cable	

Pictures taken during the actual survey

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Monitoring Sampling Laboratory Results for CP N-05

Ambient Air Quality (DD AAQ1) Surface Water Quality (DD SW1) Groundwater Quality (DD GW1) Noise Level (DD N1) Vibration Level (DD V01)

North-South Commuter Railway Extension Project

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Monitoring Sampling Laboratory Results for CP N-05

Ambient Air Quality (DD AAQ1) Noise Level (DD N1)

North-South Commuter Railway Extension Project

REPORT CERTIFICATION

AMBIENT AIR QUALITY AND NOISE MONITORING

OF

NORTH-SOUTH COMMUTER RAILWAY EXTENSION PROJECT (CP N-05) POSCO Engineering and Construction Co., Ltd.

CFZ, Pampanga

Laboratory Order No. P00011297

The Sampling and Analysis data reflected in this report were validated and checked under my supervision, and I hereby certify that, to the best of my knowledge, the test report is authentic and accurate.

Prepared by

Jerec O. Ceria QA/QC Officer CRL Calabarquez Corporation

Date

Certified by	:	
_		Kristin Anne C. Castillo
		QA/QC Manager
		CRL Calabarquez Corporation
Date	:	
AMBIENT AIR QUALITY AND NOISE MONITORING

OF

NORTH-SOUTH COMMUTER RAILWAY EXTENSION PROJECT (CP N-05) POSCO Engineering and Construction Co., Ltd.

CFZ, Pampanga

SUBMITTED TO:Mr. JONEL A. ELAMPAROPOSITION:ENVIRONMENTAL ENGINEER

Prepared and Submitted by:

CRL Calabarquez Corporation

April 8 to 9, 2021

1. INTRODUCTION

POSCO Engineering and Construction Co., Ltd. hired the services of CRL Calabarquez Corporation to conduct ambient air sampling test within the location defined on *Table 1.A.* The project includes ambient air and noise monitoring for 8 hours and 24 hours in terms of parameters listed on Table 1.A. Summary of sampling results for ambient air and noise monitoring were tabulated and shown in Tables 5-1 to 5-3 including that of the meteorological and operating data referred to as Annex A.

1.A Sampling Location, Compounds and Parameters Tested

Sampling Station Name/Description	Parameters Tested*			
	Ambient	Noise		
Station AAQ01 Depot Site	TSP, PM ₁₀ , PM _{2.5} , Pb, NO ₂ , SO ₂ , O ₃ , CO	-		
Station DD N1 Depot Site	-	Yes		

Location: CFZ, Pampanga

*TSP = Total Suspended Particulate Matter; PM_{10} = Particulate Matter at 10μ ; $PM_{2.5}$ = Particulate Matter at 2.5 μ ; Pb = Lead; NO₂ = Nitrogen Dioxide; SO₂ = Sulfur Dioxide; O₃ = Ozone; CO = Carbon Monoxide

This environmental sampling report presents the test results gathered by CRL Calabarquez Corporation at the project site of POSCO Engineering and Construction Co., Ltd. located at CFZ, Pampanga on April 8 to 9, 2021. The report will be used to evaluate actual concentrations of air pollutants as baseline data for the North-South Commuter Railway Extension Project. The report will also serve as a pertinent document for the firm's compliance with the Department of Environment and Natural Resources (DENR). The results are then compared with the DENR Standards under National Ambient Air Quality Standards (NAAQS) and National Ambient Air Quality Guideline Values (NAAQGV) of Republic Act 8749 or known as the Philippine Clean Air Act of 1999.

2. METHODOLOGY

2.1 AMBIENT AIR QUALITY MONITORING

2.1.1 SAMPLING EQUIPMENT

There were three (3) types of ambient air sampler used (see *Table 2.A*).

Equipment Name/Description	Brand/Model	Testing Capabilities*
High Volume Sampler	Tisch Environmental/5009/5170V	TSP, PM10, PM2.5, Pb
Personal Sampler	SKC	NO ₂ , SO ₂ , O ₃
Anemometer	Lutron	Wind Speed

2.A <u>Ambient Air Monitoring Equipment Specification</u>

*TSP = Total Suspended Particulate Matter; PM_{10} = Particulate Matter at 10µ; $PM_{2.5}$ = Particulate Matter at 2.5µ; Pb = Lead; NO₂ = Nitrogen Dioxide; SO₂ = Sulfur Dioxide; O₃ = Ozone

The high volume sampler is equipped with all weather shelter timer and flowchart meter and is powered by electricity through external power sources. The personal sampler is equipped with flow meter powered by external/internal power sources and a low flow controller. It is attached to parallel tubing with two (2) pieces of midget impingers. For SO_2 and O_3 , the bubbler has a straight orifice nozzle while for NO₂, the bubbler has a fritted nozzle. While for the anemometer, it has a range of 0.4 m/s - 30.0 m/s and is calibrated against standards that are traceable to National Institute of Standards and Technology (NIST).

2.1.2 SAMPLING METHODOLOGIES

The ambient air quality monitoring conducted by CRL Calabarquez Corporation was performed at an elevation of at least two (2) meters above the ground level and sampling was strategically stationed within the project site. After sampling was conducted, the gas samples were carefully recovered in the sampling bottles and preserved at low temperature and were immediately submitted to the laboratory for analysis.

2.1.2.1 FILTRATION METHOD BY HIGH VOLUME SAMPLER

TSP. Pb SAMPLING

Principle of Sampling - Ambient air was drawn through a glass fiber filter over a period of time. Particles having a diameter of 20-50 µm were collected ordinarily. The filter paper containing the sample was weighed; hence, the final weight of the sample over that of the standard volume of air sampled gave the concentration of TSP. A fraction of the filter paper was digested and analyzed for Pb using Flame Atomic Absorption Spectrophotometry (AAS).

2.1.2.2 FILTRATION METHOD BY HIGH VOLUME SAMPLER PM₁₀ SAMPLING

Principle of Sampling - Ambient air, with particle size less than 10µm was entered in a Tisch Environmental 10µ inlet by means of vacuum system. The air passes through a venturi type casing resulting to a flow rate of approximately 40 cubic feet per minute. The particles were collected in a glass fiber filter and determined by measuring gravimetrically. The filter paper containing the sample was weighed hence the final weight of the sample over that of the standard volume of air sampled gave the concentration of PM₁₀.

2.1.2.3 FILTRATION METHOD BY HIGH VOLUME SAMPLER

PM_{2.5} SAMPLING

<u>Principle of Sampling</u> - Ambient air, with particle size less than 2.5µm was entered in a Tisch Environmental 2.5µ inlet by means of vacuum system. The air passes through a venturi type casing resulting to a known flow rate. The particles were collected in a glass fiber filter and determined by measuring gravimetrically. The filter paper containing the sample was weighed hence the final weight of the sample over that of the standard volume of air sampled gave the concentration of PM_{2.5}.

2.1.2.4 ABSORPTION IN LIQUIDS FOR GASEOUS POLLUTANTS

NO₂, SO₂, O₃ SAMPLING

<u>Principle of Sampling</u> - A known volume of air was sampled with a wet-chemical system where a constant volume of air sample passes through a suitable reagent (absorbing reagent) that was reactive to the specific pollutant desired. As the air sample passes through the bubbler rack, the air diffuses forming air bubbles and slowly reacts to the chemical reagent forming a complex ion. The personal sampler was calibrated with NIST traceable digital calibrator to assure its accuracy. The samples were then analyzed using prescribed and approved methods.

2.1.2.5 GRAB SAMPLING

CO SAMPLING

<u>Principle of Sampling</u> - A gas sample was extracted from ambient air into a tedlar bag. The content of each tedlar bag was then analyzed using Non-Dispersive Infrared (NDIR) analyzer. The analyzer was flushed with nitrogen and calibrated. The tedlar bag containing the sample was attached to sample input and the gas sample was introduced at a flow rate of about 0.5L/min by applying gentle pressure to the tedlar bag. When the concentration indicated on the display was seen to stabilize it was recorded.

2.2 AMBIENT NOISE QUALITY MONITORING

2.2.1 SAMPLING EQUIPMENT

A digital sound level meter (precision type) was used in the noise monitoring activity conducted by CRL Calabarquez Corporation. The sound level meter used was Lutron that meets the ANSI-SI.4 1983 standard. The equipment has A weighting of 30 dB and maximum of 130 dB and resolution of 0.1 dB. This noise meter has internal oscillation system with 1Khzsquare wave generator for calibration.

The noise measurement was conducted within the one (1) station. The lowest and highest noise levels monitored were manually recorded. The multiple sounds reading each station was recorded and summarized by getting its logarithmic average. The result of this gave the equivalent noise level (Leq).

3. SAMPLING LOCATION

The one (1) sampling station was positioned within the project site. This station was pre-selected and was strategically distributed in order to evaluate the present air quality in the said vicinity. The one (1) location ambient air and noise were discussed with customer representative prior to the actual sampling (see sampling location defined on *Table 1.A*).

4. PERSONNEL INVOLVED

4.A Ambient Air and Noise Monitoring Sampler(s)

CRL Calabarquez Corporation

Name	Designation
Nher A. Pineda	Field Technician I
Vilenezard L. Sibal	Field Technician/Driver

4.B Observer(s)

Name	Designation
None	

4

CRL Calabarquez Corporation

5

5. RESULTS AND DISCUSSIONS

Table 5-1

Observed 8-hour Ambient Air Concentrations of parameters listed on Table 1.A in comparison with the

Station No.	Location	Date and Time of Sampling	TSP	P M 10	PM _{2.5}	Pb	NO ₂	SO ₂
DD AAQ01	Depot Site	April 8 to 9, 2021 1311H - 1311H	90.2	65.1	49.4	ND	3.5	9.4
 (N	DENR Standard AAQS/NAAQGV)	24-hr Sampling	230	150	50	20*	150	180

NAAQS/NAAQGV (in µg/Ncm)

ND = Not Detected or Below Method Detection Limit for Pb = 5.0µg *Evaluation of this standard is carried out for 30-minutes averaging time

Table 5-2

Observed 8-hour Ambient Air Concentrations of parameters listed on Table 1.A in comparison with the

NAAQGV (in µg/Ncm)

Station No.	Location	Date and Time of Sampling	O ₃	CO (ppm)
DD AAQ01	Depot Site	April 9, 2021 0511H – 1311H	0.2	3.14
D	ENR Standard (NAAQGV)	8-hr Sampling	60	9

Tables 5-1 and 5-2 present the results of sampling and analysis conducted from the one (1) station in comparison with the NAAQS/NAAQGV prescribed limit under Republic Act 8749 (Clean Air Act)

Implementing Rules and Regulations.

Parameters	Result/Conclusion
TSP	Passed the DENR Standard
PM ₁₀	Passed the DENR Standard
PM _{2.5}	Passed the DENR Standard
Pb	Passed the DENR Standard
NO ₂	Passed the DENR Standard
SO ₂	Passed the DENR Standard
O ₃	Passed the DENR Standard
СО	Passed the DENR Standard

5.A Ambient Air Monitoring Result/Conclusion

Table 5-3

Observed 24-hour Noise Level Propagation in Decibels dB(A) at Station DD N1

Depot Site						
Sampling Time	Average dB(A)	DENR Standard Maximum Allowable Noise Level, dB(A)***	Remarks			
April 8 to 9, 2021	40.7	70	Within			
1311H - 1511H	49.7	70	vvitriiri			
1511H - 1711H	47.9	70	Within			
1711H - 1911H	46.5	70	Within			
1911H - 2111H	45.1	65	Within			
2111H - 2311H	44.9	65	Within			
2311H - 0111H	43.4	60	Within			
0111H - 0311H	42.2	60	Within			
0311H - 0511H	42.2	60	Within			
0511H - 0711H	43.1	65	Within			
0711H - 0911H	46.1	65	Within			
0911H - 1111H	46.5	70	Within			
1111H - 1311H	47.0	70	Within			

4 014

*Ave_{Leq} = 10*Log{[(10^(Min/10)+10^(Max/10))/2]} (see Annex D for the complete noise level measurements)

***Category "C" 0900 H – 1800 H – 1800 H – 2200 H – 2200 H - 0500 H -0500 H – 0900 H –

A section which is primarily reserved as a light industrial area

70 dB (Daytime)[Maximum allowable limit based on division of 24-hour sampling]

dB (Evening)[Maximum allowable limit based on division of 24-hour sampling] 65

60 dB (Nighttime)[Maximum allowable limit based on division of 24-hour sampling]

65 dB (Morning)[Maximum allowable limit based on division of 24-hour sampling]

Note: Monitoring was conducted on a 2-hour interval. In practice, the start of sampling time is used as the basis for noise divisions.

Table 5-3 presens the results of noise level monitoring recorded in decibels dB(A) [Logarithmic equivalent (Leq) form]. The results are compared with the DENR Ambient Noise Quality Standards Sec. 78 Chapter IV, Article 1 of National Pollution Control Commission (NPCC) Rules and Regulations, 1978 standard limits for class C category.

5.B Noise Monitoring Result/Conclusion

Station Name/Description	Result/Conclusion
Station DD N1 Depot Site	All time divisions Passed the DENR Standard

6. REMARKS

Noise measurement was conducted on a 24-hour monitoring. Measurement was conducted 12 times every 2 hours interval so that a representative reading of noise level propagation will be monitored with respect to the time increment based on a 24-hour monitoring test. Monitoring was conducted on a sunny, cloudy and fair weather associated with light winds. The prevailing winds at the time of sampling mostly came from Northeast to Southwest (NE-SW) and North to South (N-S) directions.

ANNEX A

METEOROLOGICAL AND OPERATING DATA

POSCO Engineering and Construction Co.. Ltd. Ambient Air Quality and Noise Monitoring Report

Division of Twenty-four (24) Hours Sampling	Prevailing Wind Direction	Temperature ℃	Barometric Pressure mmHg	Remarks
April 8 to 9, 2021	NE-SW	34.4	735 7	Cloudy
1311H - 1511H		01.1	100.1	Cloudy
1511H - 1711H	NE-SW	31.6	736.1	Cloudy
1711H - 1911H	NE-SW	29.7	736.8	Cloudy
1911H - 2111H	NE-SW	28.4	737.3	Fair
2111H - 2311H	NE-SW	26.5	738.6	Fair
2311H - 0111H	N-S	26.7	739.0	Fair
0111H - 0311H	N-S	26.7	738.6	Fair
0311H - 0511H	NE-SW	25.5	737.4	Fair
0511H - 0711H	N-S	24.8	734.4	Fair
0711H - 0911H	NE-SW	28.8	739.4	Sunny
0911H - 1111H	NE-SW	36.2	739.3	Sunny
1111H - 1311H	N-S	36.9	737.9	Sunny

Station AAQ01 Depot Site

Average Station wind velocity :

0.13 – 0.91 m/s

ANNEX E

SAMPLING PHOTOS

Station AAQ01 Depot Site

Station DD N1 Depot Site

ANNEX F

SAMPLING COORDINATES

Station Depot Site	
15° 13' 04.2" N	
120° 33' 57.1" E	

REPORT CERTIFICATION

NOISE MONITORING

OF

NORTH-SOUTH COMMUTER RAILWAY EXTENSION PROJECT (CP N-05) POSCO Engineering and Construction Co., Ltd.

CFZ, Pampanga

Laboratory Order No. P00011404

The Sampling data reflected in this report were validated and checked under my supervision, and I hereby certify that, to the best of my knowledge, the test report is authentic and accurate.

Prepared by

2

Jerec O. Ceria QA/QC Officer CRL Calabarquez Corporation

:_____

Date

Certified by

:

Kristin Anne C. Castillo QA/QC Manager CRL Calabarquez Corporation

:_____

Date

NOISE MONITORING

OF

NORTH-SOUTH COMMUTER RAILWAY EXTENSION PROJECT (CP N-05) POSCO Engineering and Construction Co., Ltd.

CFZ, Pampanga

SUBMITTED TO:MR. JONEL A. ELAMPAROPOSITION:ENVIRONMENTAL ENGINEER

Prepared and Submitted by:

CRL Calabarquez Corporation

May 12 to 13, 2021

1. INTRODUCTION

POSCO Engineering and Construction Co., Ltd. hired the services of CRL Calabarquez Corporation to conduct noise monitoring within their project site. The project includes ambient noise monitoring for 24 hours at one (1) sampling station. Summary of results for noise monitoring were tabulated and shown in Table 5-1 including that of noise observations referred to as Annex A.

This environmental monitoring report presents the test results gathered by CRL Calabarquez Corporation at the project site of POSCO Engineering and Construction Co., Ltd. located at CFZ, Pampanga on May 12 to 13, 2021. The report will be used to evaluate the actual noise level propagation as baseline data for the North-South Commuter Railway Extension Project. The report will also serve as a pertinent document for the firm's compliance with the Department of Environment and Natural Resources (DENR). The results are then compared with the Environmental Quality Standards for Noise in General Areas under Rules and Regulations of the National Pollution Control Commission (NPCC) of 1978.

2. METHODOLOGY

2.1 SAMPLING EQUIPMENT

A digital sound level meter (precision type) was used in the noise monitoring activity conducted by CRL Calabarquez Corporation. The sound level meter used was Lutron that meets the ANSI-SI.4 1983 standard. The equipment has A weighting of 30 dB and maximum of 130 dB and resolution of 0.1 dB. This noise meter has internal oscillation system with 1Khzsquare wave generator for calibration.

2.2 SAMPLING METHODOLOGIES

The noise measurement was conducted within the project site. The lowest and highest noise levels monitored were manually recorded. The multiple sounds reading each station was recorded and summarized by getting its logarithmic average. The result of this gave the equivalent noise level (Leq).

Noise Monitoring Report

3. SAMPLING LOCATION

The one (1) sampling station was positioned within the project site. This station was pre-selected and was strategically chosen in order to evaluate the present noise quality in the said vicinity. The one (1) location ambient noise was discussed with customer representative prior to the actual sampling (see sampling location defined on *Table 3.A*).

3.A Sampling Location

Location: CFZ, Pampanga

	Sampling Station Name/Description
Station DD N1 Depot Site	

4. PERSONNEL INVOLVED

4.A Ambient Noise Monitoring Sampler(s)

CRL Calabarquez Corporation

Name	Designation
Juan Carlos A. Altez	Field Technician II
Jessie A. Igdalino	Field Technician/Driver

4.B Observer(s)

Name	Designation
None	

5. RESULTS AND DISCUSSIONS

Table 5-1

Observed 24-hour Noise Level Propagation in Decibels dB(A) at Station DD N1

Sampling Time	Average dB(A)	DENR Standard Maximum Allowable Noise Level, dB(A)***	Remarks				
May 12 to 13, 2021	5 4 A	65	\\/ithip				
0850H - 1050H	54.4		VVICIIII				
1050H - 1250H	49.3	70	Within				
1250H - 1450H	55.5	70	Within				
1450H - 1650H	53.8	70	Within				
1650H - 1850H	50.7	70	Within				
1850H - 2050H	49.4	65	Within				
2050H - 2250H	44.9	65	Within				
2250H - 0050H	43.2	60	Within				
0050H - 0250H	43.5	60	Within				
0250H - 0450H	42.8	60	Within				
0450H - 0650H	44.4	60	Within				
0650H - 0850H	45.2	65	Within				

Depot Site

*Ave_{Leq} = 10*Log{[(10^(Min/10)+10^(Max/10))/2]} (see Annex D for the complete noise level measurements)

***Category "C" A section which is primarily reserved as a light industrial area

0900 H - 1800 H - 70 dB (Daytime)[Maximum allowable limit based on division of 24-hour sampling]

1800 H – 2200 H – 65 dB (Evening)[Maximum allowable limit based on division of 24-hour sampling]

2200 H – 0500 H – 60 dB (Nighttime)[Maximum allowable limit based on division of 24-hour sampling]

0500 H – 0900 H – 65 dB (Morning)[Maximum allowable limit based on division of 24-hour sampling]

Note: Monitoring was conducted on a 2-hour interval. In practice, the start of sampling time is used as the basis for noise divisions.

POSCO Engineering and Construction Co., Ltd. Noise Monitoring Report

Table 5-1 presents the results of noise level monitoring recorded in decibels dB(A) [Logarithmic equivalent (L_{eq}) form]. The results are compared with the DENR Ambient Noise Quality Standards Sec. 78 Chapter IV, Article 1 of National Pollution Control Commission (NPCC) Rules and Regulations, 1978 standard limits for class C category.

3.A <u>Noise Monitoring Result Conclusion</u>	5.A	Noise	Monitoring	Result/Conclusion
--	-----	-------	------------	--------------------------

Station Name/Description	Result/Conclusion
Station DD N1 Depot Site	All time divisions Passed the DENR Standard

6. REMARKS

Noise measurement was conducted on a 24-hour monitoring. Measurement was conducted 12 times every 2 hours interval so that a representative reading of noise level propagation will be monitored with respect to the time increment based on a 24-hour monitoring test.

Measured noise levels mostly came from insects, passing vehicles along the highway, and from heavy equipment operation and ongoing construction within the vicinity.

ANNEX C

SAMPLING PHOTOS

POSCO Engineering and Construction Co.. Ltd. Noise Monitoring Report

Station DD N1 Depot Site

ANNEX D

SAMPLING COORDINATES

REPORT CERTIFICATION

AMBIENT AIR QUALITY AND NOISE MONITORING

OF

NORTH-SOUTH COMMUTER RAILWAY EXTENSION PROJECT (CP N-05) POSCO Engineering and Construction Co., Ltd.

CFZ, Pampanga

Laboratory Order No. P00011513

The Sampling and Analysis data reflected in this report were validated and checked under my supervision, and I hereby certify that, to the best of my knowledge, the test report is authentic and accurate.

Prepared by

Jerec O. Ceria QA/QC Officer CRL Calabarquez Corporation

:_____

Date

Certified by

Kristin Anne C. Castillo QA/QC Manager CRL Calabarquez Corporation

Date : _____

AMBIENT AIR QUALITY AND NOISE MONITORING

OF

NORTH-SOUTH COMMUTER RAILWAY EXTENSION PROJECT (CP N-05) POSCO Engineering and Construction Co., Ltd.

CFZ, Pampanga

SUBMITTED TO:MR. JONEL A. ELAMPAROPOSITION:ENVIRONMENTAL ENGINEER

Prepared and Submitted by:

CRL Calabarquez Corporation

June 17 to 18, 2021

1. INTRODUCTION

POSCO Engineering and Construction Co., Ltd. hired the services of CRL Calabarquez Corporation to conduct ambient air sampling test within the location defined on Table 1.A. The project includes ambient air and noise monitoring for 8 hours and 24 hours in terms of parameters listed on Table 1.A. Summary of sampling results for ambient air and noise monitoring were tabulated and shown in Tables 5-1 to 5-3 including that of the meteorological and operating data referred to as Annex A.

1.A Sampling Location, Compounds and Parameters Tested

Sampling Station Name/Description	Parameters Tested*		
Sampling Station Name/Description	Ambient	Noise	
Station DD AAQ01 Depot Site	TSP, PM ₁₀ , PM _{2.5} , Pb, NO ₂ , SO ₂ , O ₃ , CO	-	
Station DD N1 Depot Site	-	Yes	

Location: CFZ, Pampanga

*TSP = Total Suspended Particulate Matter; PM_{10} = Particulate Matter at 10μ ; $PM_{2.5}$ = Particulate Matter at 2.5 μ ; Pb = Lead; NO₂ = Nitrogen Dioxide; SO₂ = Sulfur Dioxide; O₃ = Ozone; CO = Carbon Monoxide

This environmental sampling report presents the test results gathered by CRL Calabarquez Corporation at the project site of POSCO Engineering and Construction Co., Ltd. located at CFZ, Pampanga on June 17 to 18, 2021. The report will be used to evaluate actual concentrations of air pollutants as baseline data for the North-South Commuter Railway Extension Project. The report will also serve as a pertinent document for the firm's compliance with the Department of Environment and Natural Resources (DENR). The results are then compared with the DENR Standards under National Ambient Air Quality Standards (NAAQS) and National Ambient Air Quality Guideline Values (NAAQGV) of Republic Act 8749 or known as the Philippine Clean Air Act of 1999.

2. METHODOLOGY

2.1 AMBIENT AIR QUALITY MONITORING

2.1.1 SAMPLING EQUIPMENT

There were four (4) types of ambient air sampler used (see Table 2.A).

Equipment Name/Description	Brand/Model	Testing Capabilities*
High Volume Sampler	Tisch Environmental/5170V	TSP, Pb
Low Volume Sampler	Tisch Environmental - Wilbur	PM ₁₀ , PM _{2.5}
Personal Sampler	SKC	NO ₂ , SO ₂ , O ₃
Anemometer	Lutron	Wind Speed

2.A Ambient Air Monitoring Equipment Specifications

*TSP = Total Suspended Particulate Matter; PM_{10} = Particulate Matter at 10µ; $PM_{2.5}$ = Particulate Matter at 2.5µ; Pb = Lead; NO₂ = Nitrogen Dioxide; SO₂ = Sulfur Dioxide; O₃ = Ozone

The high volume sampler is equipped with all weather shelter timer and flowchart meter and is powered by electricity through external power sources. The personal sampler is equipped with flow meter powered by external/internal power sources and a low flow controller. It is attached to parallel tubing with two (2) pieces of midget impingers. For SO₂ and O₃, the bubbler has a straight orifice nozzle while for NO₂, the bubbler has a fritted nozzle. While for the anemometer, it has a range of 0.4 m/s - 30.0 m/s and is calibrated against standards that are traceable to National Institute of Standards and Technology (NIST).

2.1.2 SAMPLING METHODOLOGIES

The ambient air quality monitoring conducted by CRL Calabarquez Corporation was performed at an elevation of at least two (2) meters above the ground level and sampling was strategically stationed within the project site. After sampling was conducted, the gas samples were carefully recovered in the sampling bottles and preserved at low temperature and were immediately submitted to the laboratory for analysis.

2.1.2.1 FILTRATION METHOD BY HIGH VOLUME SAMPLER

TSP, Pb SAMPLING

<u>Principle of Sampling</u> - Ambient air was drawn through a glass fiber filter over a period of time. Particles having a diameter of 20-50 µm were collected ordinarily. The filter paper containing the sample was weighed; hence, the final weight of the sample over that of the standard volume of air sampled gave the concentration of TSP. A fraction of the filter paper was digested and analyzed for Pb using Flame Atomic Absorption Spectrophotometry (AAS).

2.1.2.2 FILTRATION METHOD BY LOW VOLUME SAMPLER

PM₁₀ & PM_{2.5} SAMPLING

<u>Principle of Sampling</u> - Ambient air, with particle size less than $10\mu m \& 2.5\mu m$ was entered in a Tisch Environmental TE-Wilbur PM₁₀ & PM_{2.5} inlet by means of vacuum system. The air passes through an installed selective inlet resulting to a flow rate of approximately 16.67 liters per minute. The particles were collected in a glass fiber filter and determined by measuring gravimetrically. The filter paper containing the sample was weighed hence the final weight of the sample over that of the standard volume of air sampled gave the concentration of PM₁₀ & PM_{2.5}.

2.1.2.3 ABSORPTION IN LIQUIDS FOR GASEOUS POLLUTANTS

NO₂, SO₂, O₃ SAMPLING

<u>Principle of Sampling</u> - A known volume of air was sampled with a wet-chemical system where a constant volume of air sample passes through a suitable reagent (absorbing reagent) that was reactive to the specific pollutant desired. As the air sample passes through the bubbler rack, the air diffuses forming air bubbles and slowly reacts to the chemical reagent forming a complex ion. The personal sampler was calibrated with NIST traceable digital calibrator to assure its accuracy. The samples were then analyzed using prescribed and approved methods.

2.1.2.4 GRAB SAMPLING

CO SAMPLING

<u>Principle of Sampling</u> - A gas sample was extracted from ambient air into a tedlar bag. The content of each tedlar bag was then analyzed using Non-Dispersive Infrared (NDIR) analyzer. The analyzer was flushed with nitrogen and calibrated. The tedlar bag containing the sample was attached to sample input and the gas sample was introduced at a flow rate of about 0.5L/min by applying gentle pressure to the tedlar bag. When the concentration indicated on the display was seen to stabilize it was recorded.

2.2 AMBIENT NOISE QUALITY MONITORING

2.2.1 SAMPLING EQUIPMENT

A digital sound level meter (precision type) was used in the noise monitoring activity conducted by CRL Calabarquez Corporation. The sound level meter used was Lutron that meets the ANSI-SI.4 1983 standard. The equipment has A weighting of 30 dB and maximum of 130 dB and resolution of 0.1 dB. This noise meter has internal oscillation system with 1Khzsquare wave generator for calibration.

2.2.2 SAMPLING METHODOLOGIES

The noise measurement was conducted within the one (1) station. The lowest and highest noise levels monitored were manually recorded. The multiple sounds reading each station was recorded and summarized by getting its logarithmic average. The result of this gave the equivalent noise level (Leq).

3. SAMPLING LOCATION

The two (2) sampling stations were positioned within the project site. These stations were pre-selected and were strategically distributed in order to evaluate the present air quality in the said vicinity. The one (1) location ambient air and one (1) location noise were discussed with customer representative prior to the actual sampling (see sampling location defined on *Table 1.A*).

4. PERSONNEL INVOLVED

4.A Ambient Air and Noise Monitoring Sampler(s)

CRL Calabarquez Corporation

Name	Designation
Devy D. Daro	Field Technician III/Driver
Renato A. Pineda	Field Technician I

4.B Observer(s)

Name	Designation
None	

5. RESULTS AND DISCUSSIONS

Table 5-1

Observed 24-hour Ambient Air Concentrations of parameters listed on Table 1.A in comparison with the

Station No. Location		Date and Time of Sampling	TSP	PM ₁₀	PM _{2.5}	Pb	NO ₂	SO ₂
DD Depot Site		June 17 to 18, 2021	20.1	32.0	12.4	0.01	25	03
AAQ01	Depot one	1300H - 1300H	20.1	02.0	12.7	0.01	2.5	0.0
DENR Standard (NAAQS/NAAQGV)		24-hr Sampling	230	150	50	20*	150	180

NAAQS/NAAQGV (in µg/Ncm)

*Evaluation of this standard is carried out for 30-minute averaging time

Table 5-2

Observed 8-hour Ambient Air Concentrations of parameters listed on Table 1.A in comparison with the

NAAQGV (in µg/Ncm)

Station No.	Location	Date and Time of Sampling	O ₃	CO (ppm)	
DD Dopot Site		June 18, 2021	53	1.46	
AAQ01	Depot Site	0500H - 1300H	0.0	1.40	
DENR Standard (NAAQGV)		8-hr Sampling	60	9	

5

Tables 5-1 and 5-2 present the results of sampling and analysis conducted from the one (1) station in comparison with the NAAQS/NAAQGV prescribed limit under Republic Act 8749 (Clean Air Act) Implementing Rules and Regulations.

5.A Ambient Air Monitoring Result/Conclusion	on
--	----

Parameters	Result/Conclusion
TSP	Passed the DENR Standard
PM10	Passed the DENR Standard
PM _{2.5}	Passed the DENR Standard
Pb	Passed the DENR Standard
NO ₂	Passed the DENR Standard
SO ₂	Passed the DENR Standard
O ₃	Passed the DENR Standard
СО	Passed the DENR Standard

Table 5-3

Observed 24-hour Noise Level Propagation in Decibels dB(A) at Station DD N1

Depot Site				
Sampling Time	Average dB(A)	DENR Standard Maximum Allowable Noise Level, dB(A)***	Remarks	
June 17 to 18, 2021	18.6	70	Within	
1300H - 1500H	40.0	10	VVICIIII	
1500H - 1700H	47.7	70	Within	
1700H - 1900H	47.8	70	Within	
1900H - 2100H	44.1	65	Within	
2100H - 2300H	42.6	65	Within	
2300H - 0100H	40.8	60	Within	
0100H - 0300H	41.8	60	Within	
0300H - 0500H	41.7	60	Within	
0500H - 0700H	42.6	65	Within	
0700H - 0900H	44.9	65	Within	
0900H - 1100H	45.5	70	Within	
1100H - 1300H	49.4	70	Within	

4 014

*Ave_{Leq} = 10*Log{[(10^(Min/10)+10^(Max/10))/2]} (see Annex D for the complete noise level measurements)

***Category "C" 0900 H – 1800 H – 1800 H – 2200 H – 2200 H - 0500 H -0500 H – 0900 H –

A section which is primarily reserved as a light industrial area

70 dB (Daytime)[Maximum allowable limit based on division of 24-hour sampling]

65 dB (Evening)[Maximum allowable limit based on division of 24-hour sampling]

60 dB (Nighttime)[Maximum allowable limit based on division of 24-hour sampling]

65 dB (Morning)[Maximum allowable limit based on division of 24-hour sampling]

Note: Monitoring was conducted on a 2-hour interval. In practice, the start of sampling time is used as the basis for noise divisions.

Table 5-3 presents the results of noise level monitoring recorded in decibels dB(A) [Logarithmic equivalent (Leq) form]. The results are compared with the DENR Ambient Noise Quality Standards Sec. 78 Chapter IV, Article 1 of National Pollution Control Commission (NPCC) Rules and Regulations, 1978 standard limits for class C category.

5.B Noise Monitoring Result/Conclusion

Station Name/Description	Result/Conclusion
Station DD N1 Depot Site	All time divisions Passed the DENR Standard

6. REMARKS

Noise measurement was conducted on a 24-hour monitoring. Measurement was conducted 12 times every 2 hours interval so that a representative reading of noise level propagation will be monitored with respect to the time increment based on a 24-hour monitoring test. Monitoring was conducted on a sunny, fair and cloudy with light rain weather associated with light winds. The prevailing winds at the time of sampling came from Southwest to Northeast (SW-NE) and Northwest to Southeast (NW-SE) directions.

ANNEX A

METEOROLOGICAL AND OPERATING DATA
POSCO Engineering and Construction Co.. Ltd. Ambient Air Quality and Noise Monitoring Report

Division of Twenty-four (24) Hours Sampling	Prevailing Wind Direction	Temperature °C	Barometric Pressure mmHg	Remarks
June 17 to 18, 2021	SW-NF	34.6	746 4	Sunny Partly Cloudy
1300H - 1500H		01.0		
1500H - 1700H	SW-NE	35.2	746.8	Sunny
1700H - 1900H	SW-NE	30.6	747.2	Rains Lightly / Cloudy
1900H - 2100H	SW-NE	25.3	748.3	Fair
2100H - 2300H	SW-NE	25.1	748.5	Fair
2300H - 0100H	SW-NE	23.1	749.0	Fair
0100H - 0300H	NW-SE	22.8	748.6	Fair
0300H - 0500H	NW-SE	22.6	748.1	Fair
0500H - 0700H	NW-SE	22.9	747.8	Fair
0700H - 0900H	SW-NE	25.3	748.1	Sunny
0900H - 1100H	SW-NE	31.3	748.3	Sunny
1100H - 1300H	SW-NE	35.6	747.7	Sunny

Depot Site

Average Station wind velocity :

0.3 – 1.4 m/s

ANNEX E

SAMPLING PHOTOS

POSCO Engineering and Construction Co.. Ltd. Ambient Air Quality and Noise Monitoring Report

15

ANNEX F

SAMPLING COORDINATES

Station DD AAQ01 Depot Site	Station DD N1 Depot Site
15° 13' 2.64" N	15° 13' 2.56" N
120° 33' 58.71" E	120° 33' 56.36" E

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Monitoring Sampling Laboratory Results for CP N-05

Surface Water Quality (DD SW1)

North-South Commuter Railway Extension Project

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

Date Received: 04/08

SN: F00082259.002

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING AND CIVIL WORKS (CP N-05)

Attention: Mr. Jingon Lee / Engr. Jonel E. Elamparo

Test Description	Results	Units	Test Methods	Date Analyzed	Ву	Ref
Sample No.: P00112545-01			DateSampled: 04-08-21 08:52			
Sample ID: DD SW1			Matrix: Surface Water			
-Metals-						
Arsenic**	< 0.008	mg/L	ICP - OES	04/13/21	PPG	
Cadmium**	< 0.001	mg/L	ICP - OES	04/13/21	PPG	
Lead**	< 0.005	mg/L	ICP - OES	04/13/21	PPG	
Mercury**	0.002	mg/L	Manual Cold Vapor AAS	04/13/21	EDC	
Dissolved Copper	0.02	mg/L	ICP - OES	04/19/21	JLJ	
-Microbiology-						
Total Coliforms**	5,400	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	04/08/21	GTY	
Fecal Coliforms**	330	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	04/08/21	GTY	
-Wet Chemistry-						
pH**, onsite	7.6	-	Electrometric Method (SM 4500-H+ B)	04/08/21	-	
Temperature**, onsite	28.4	°C	Laboratory & Field Method (SM2550 B)	04/08/21		
Dissolved Oxygen**	6	mg/L	Winkler/Titrimetric	04/08/21	MDLL	
Biological Oxygen Demand**	4	mg/L	5-Day BOD Test (SM 5210 B)	04/10/21	MDLL	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.3	mg/L	Colorimetry - Chloroform Extraction	04/09/21	AGAS	
Total Suspended Solids**	6.0	mg/L	Gravimetry (SM 2540 D)	04/12/21	ATDR	
Oil & Grease	2.2	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520 B)	04/15/21	WBD	
Chloride**	158	mg/L	Argentometric Method (SM4500 CI-B)	04/12/21	MLJ	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	04/14/21	ANBB	
Cyanide**, Free	< 0.007	mg/L	Ion Selective Electrode (SM 4500 CN-F)	04/12/21	MPY	
Nitrate - N**	0.7	mg/L	Colorimetry - Brucine (EPA 352.1)	04/09/21	AGAS	
Phosphate - P**	1.1	mg/L	Stannous Chloride Method (SM 4500-P D)	04/09/21	MPT	

>>> end of result set for Sample No .: P00112545-01 <<<

>>> end of result set for Lab No.:P00112545; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Page 1 of 2 FN>>>>00380464>>>>

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
Email: erl@erllabs.com • http://www.erllabs.com

04/08/2021

Certified by:

Geraldine T. Yabut PRC License No.: 0027218 Microbiological Testing

Ronald G. Espiritu

PRC License No.: 9248 Chemical Testing

Juliana C. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroyo PRC License No. 6701 Chemical Testing

Date: 04/21/21

apply Date:

Inm Date:

Date:

SN: F00082259.002

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00380464>>>>

■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00082259.003 04/08/2021 Date Received:

Lab No.:P00112545

NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING AND **Project Name:** CIVIL WORKS (CP N-05)

Mr. Jingon Lee / Engr. Jonel E. Elamparo Attention:

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	Ву	Ref*
Sample No.: P00112545-01			DateSampled	: 04-08-21 08:52				
Sample ID: DD SW1			Matrix: Surfac	ce Water				
-Organics-								
PHENOLS								
2 4.6-trichlorophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	04/14/21	IJMF	
2.4-dichlorophenol	ND	mg/L	0.0010	0.0010	USEPA Method 8041A	04/14/21	IJMF	
2 4-dimethylphenol	ND	mg/L	0.0011	0.0011	USEPA Method 8041A	04/14/21	IJMF	
2.4-dinitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	04/14/21	IJMF	
2-chlorophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	04/14/21	IJMF	
2-methyl-4.6-dinitrophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	04/14/21	IJMF	
2-nitrophenol	ND	mg/L	0.0006	0.0006	USEPA Method 8041A	04/14/21	IJMF	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.0019	USEPA Method 8041A	04/14/21	IJMF	
4-nitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	04/14/21	IJMF	
pentachlorophenol	ND	mg/L	0.0018	0.0018	USEPA Method 8041A	04/14/21	IJMF	
phenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	04/14/21	IJMF	

>>> end of result set for Sample No.:P00112545-01 <<<

>>> end of result set for Lab No.:P00112545; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Page 1 of 2 FN>>>>00380465>>>>

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Certified By:

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

Mary Anne G. Rodriguez

PRC License No.: 10281 Chemical Testing

y/m/m Date:

120 24

Date:

SN: F00082259.003

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00380465>>>>

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00082374.001 04/14/2021

Date Received:

NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & Project Name: CIVIL WORKS (CP N - 05)

Attention: Mr. Jingon Lee / Engr. Jonel E. Elamparo

Test Description	Results	Units	Test Methods	Date Analyzed	Ву	Ref
Sample No.: P00112656-01			DateSampled: 04-14-21 09:10	1	1	1
Sample ID: SW1			Matrix: Surface Water			
-Metals-						
Arsenic**	< 0.008	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	04/16/21	PPG	
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	04/16/21	PPG	
Lead**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	04/16/21	PPG	
Mercury**	< 0.0002	mg/L	Manual Cold Vapor AAS	04/20/21	EDC	
Dissolved Copper**	0.04	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	04/16/21	PPG	
-Microbiology-						
Total Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	04/14/21	TNCR	
Fecal Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	04/14/21	TNCR	
-Wet Chemistry-						
pH**, onsite	7.8		Electrometric Method (SM 4500-H+ B)	04/14/21	-	
Temperature**, onsite	29.8	°C	Laboratory & Field Method (SM2550 B)	04/14/21	-	
Dissolved Oxygen	7	mg/L	Winkler/Titrimetric	04/14/21	MDLL	
Biological Oxygen Demand**	1	mg/L	5-Day BOD Test (SM 5210 B)	04/15/21	PSSM	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.3	mg/L	Colorimetry - Chloroform Extraction	04/14/21	AGAS	
Total Suspended Solids**	7.3	mg/L	Gravimetry (SM 2540 D)	04/15/21	ATDR	
Oil & Grease	2.1	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520 B)	04/19/21	WBD	
Chloride**	148	mg/L	Argentometric Method (SM4500 CI-B)	04/14/21	MLJ	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	04/16/21	ANBB	
Cyanide**, Free	< 0.007	mg/L	Ion Selective Electrode (SM 4500 CN-F)	04/14/21	MPY	
Nitrate - N**	1.0	mg/L	Colorimetry - Brucine (EPA 352.1)	04/15/21	AGAS	
Phosphate - P**	1.1	mg/L	Stannous Chloride Method (SM 4500-P D)	04/14/21	MPY	

>>> end of result set for Sample No .: P00112656-01 <<<

>>> end of result set for Lab No.:P00112656; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Lab No.:P00112656

Certified by:

Geraldiné/T. Yabut PRC License No.: 0027218 Microbiological Testing

Ronald 6. Espiritu

PRC License No.: 9248 Chemical Testing

PRC License No.: 8774 Chemical Testing

Chas C. Arroyo PRC License No.: 6701 Chemical Testing

Date: 04/22/21

Date: C4b2h

Date:

Date:

SN: F00082374.001

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00380713>>>>

<u>CRL Environmental</u> Corporation Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
Email: crl@crllabs.com • http://www.crllabs.com

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00082374.002 04/14/2021

Date Received:

Lab No.:P00112656

NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & Project Name: CIVIL WORKS (CP N - 05)

Attention: Mr. Jingon Lee / Engr. Jonel E. Elamparo

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	By	Ref
Sample No.: P00112656-01			DateSampled	04-14-21 09:1	0			1
Sample ID: SW1 -Organics-			Matrix: Surfac	e Water				
PHENOLS								
2,4,6-trichlorophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	04/14/21	LIME	
2,4-dichlorophenol	ND	mg/L	0.0010	0.0010	USEPA Method 8041A	04/14/21	LIME	
2,4-dimethylphenol	ND	mg/L	0.0011	0.0011	USEPA Method 8041A	04/14/21	LIME	
2,4-dinitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	04/14/21	LIME	
2-chlorophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	04/14/21	LIME	
2-methyl-4,6-dinitrophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	04/14/21	LIME	
2-nitrophenol	ND	mg/L	0.0006	0.0006	USEPA Method 8041A	04/14/21	LIME	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.0019	USEPA Method 8041A	04/14/21	IJIVIE	
4-nitrophenol	ND	mg/L	0.0009	0 0009	USEPA Method 8041A	04/14/21	LINAS	
pentachlorophenol	ND	mg/L	0.0018	0.0018	USEPA Method 8041A	04/14/21	IJIVIF	
phenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	04/14/21	IJMF	

>>> end of result set for Sample No.:P00112656-01 <<<

>>> end of result set for Lab No.:P00112656; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

CRL Environmental Corporation

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Certified By:

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

altodu Mary Anne G. Rodriguez

PRC License No.: 10281 Chemical Testing Date: 4/22/2011

4/22/21

Date:

SN: F00082374.002

Disclaimer. This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

CRL Environmental Corporation ■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00082523.001

Date Received:

04/21/2021

Lab No.:P00112806

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Mr. Jingon Lee / Engr. Jonel E. Elamparo

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	By	Ref
Sample No.: P00112806-01			DateSampled	: 04-21-21 09:45				
Sample ID: SW1 -Organics-		Matrix: Surface Water						
PHENOLS								
2,4,6-trichlorophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	04/21/21	IJME	
2,4-dichlorophenol	ND	mg/L	0.0010	0.0010	USEPA Method 8041A	04/21/21	IJME	
2,4-dimethylphenol	ND	mg/L	0.0011	0.0011	USEPA Method 8041A	04/21/21	IJME	
2,4-dinitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	04/21/21	IJME	
2-chlorophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	04/21/21	LIME	
2-methyl-4,6-dinitrophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	04/21/21	UME	
2-nitrophenol	ND	mg/L	0.0006	0.0006	USEPA Method 8041A	04/21/21	LIME	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.0019	USEPA Method 8041A	04/21/21	LIME	
4-nitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	04/21/21	LIME	
pentachlorophenol	ND	mg/L	0.0018	0.0018	USEPA Method 8041A	04/21/21	LIME	
phenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	04/21/21	IJMF	

>>> end of result set for Sample No .: P00112806-01 <<<

>>> end of result set for Lab No.:P00112806; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Page 1 of 2 FN>>>>00381019>>>>

■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: erl@erllabs.com • http://www.crllabs.com

Certified By:

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

altrodu aller Mary Anne G. Rodriguez

PRC License No.: 10281 Chemical Testing

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
Email: crl@crllabs.com • http://www.crllabs.com

ΣZ)

Date: 4 36 21

Date: 4/20/771

SN: F00082523.001

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00381019>>>>

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

Date Received: 04/2

SN: F00082523.002

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Mr. Jingon Lee / Engr. Jonel E. Elamparo

Test Description	Results	Units	Test Methods	Date Analyzed	Ву	Ref
Sample No.: P00112806-01	1		DateSampled: 04-21-21 09:45			
Sample ID: SW1 -Metals-			Matrix: Surface Water			
Arsenic**	< 0.008	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	04/27/21	PPG	
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	04/27/21	PPG	
Lead**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	04/27/21	PPG	
Mercury**	< 0.0002	mg/L	Manual Cold Vapor AAS	04/23/21	EDC	
Dissolved Copper	0.05	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	04/27/21	PPG	
-Microbiology-						
Total Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	04/21/21	HBS	
Fecal Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	04/21/21	HBS	
-Wet Chemistry-						
pH**, onsite	7.7		Electrometric Method (SM 4500-H+ B)	04/21/21		
Temperature**, onsite	31.0	°C	Laboratory & Field Method (SM2550 B)	04/21/21		
Dissolved Oxygen**	10	mg/L	Winkler/Titrimetric	04/21/21	MDLL	
Biological Oxygen Demand**	5	mg/L	5-Day BOD Test (SM 5210 B)	04/22/21	MDLL	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.4	mg/L	Colorimetry - Chloroform Extraction	04/21/21	AGAS	
Total Suspended Solids**	8.0	mg/L	Gravimetry (SM 2540 D)	04/22/21	ATDR	
Oil & Grease	6.2	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520	04/26/21	WBD	
Chloride**	230	mg/L	Argentometric Method (SM4500 CI-B)	04/22/21	MLJ	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	04/22/21	ANBB	
Cyanide**, Free	< 0.007	mg/L	Ion Selective Electrode (SM 4500 CN-F)	04/22/21	MPY	
Nitrate - N**	1.5	mg/L	Colorimetry - Brucine (EPA 352.1)	04/21/21	AGAS	
Phosphate - P**	1.2	mg/L	Stannous Chloride Method (SM 4500-P D)	04/21/21	MPY	

>>> end of result set for Sample No .: P00112806-01 <<<

>>> end of result set for Lab No.:P00112806; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Page 1 of 2 FN>>>>00381129>>>>

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
Tel: (63 45) 599-3943 - (63 2) 8552-5100 - Fux: (63 45) 599-3963
Email: erl@erllabs.com • http://www.crllabs.com

te Received: 04/21/2021

Certified by:

Geraldine Y. Yabut PRC License No.: 0027218 Microbiological Testing

Ronald G

PRC License No.: 9248 Chemical Testing

Juliana C. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroyo PRC License Vo.: 6701 Chemical Testing

Date: 04/30/21

a4130hr Date:

Date:

Date:

SN: F00082523.002

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00381129>>>>

■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: erl@erllabs.com • http://www.erllabs.com

05 May 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Mr. Jingon Lee / Engr. Jonel E. Elamparo
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)
Lab. No.:	P00112953-01

Enclosed are the results for sample received by CRL Environmental Corporation and tested for the parameters in the enclosed chain of custody.

Our DENR Recognition with C. R. No. 023/2018, will expire on September 24, 2021.

Likewise, our DOH Accreditation with Accreditation No. <u>03-001-20-LW-2</u>, is valid from January 01, 2020 until December 31, 2022.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARTACARMELA Q. CAPULE Chief Operating Officer

POSCO Engineering and Construction Co., Ltd.

CIVIL WORKS (CP N - 05)

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00082654.001 Date Received: 04/28/2021

Lab No.:P00112953 NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING &

Attention: Mr. Jingon Lee / Engr. Jonel E. Elamparo

Project Name:

Test Description	Results	Units	Test Methods	Date Analyzed	By	Ref
Sample No.: P00112953-01			DateSampled: 04-28-21 08:47			
Sample ID: DD SW1 -Metals-			Matrix: Surface Water			
Arsenic**	< 0.008	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	05/04/21	PPG	
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	05/04/21	PPG	
Lead**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	05/04/21	PPG	
Mercury**	< 0.0002	mg/L	Manual Cold Vapor AAS	04/29/21	EDC	
Dissolved Copper	0.03	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	05/04/21	PPG	
-Microbiology-						
Total Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	04/28/21	TNCR	
Fecal Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	04/28/21	TNCR	
-Wet Chemistry-						
pH**, onsite	7.5	2	Electrometric Method (SM 4500-H+ B)	04/28/21		
Temperature**, onsite	28.3	°C	Laboratory & Field Method (SM2550 B)	04/28/21	210	
Dissolved Oxygen**	7	mg/L	Winkler/Titrimetric	04/28/21	MDU	
Biological Oxygen Demand**	< 1	mg/L	5-Day BOD Test (SM 5210 B)	04/20/21	DECM	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.4	mg/L	Colorimetry - Chloroform Extraction	04/29/21	AGAS	
Total Suspended Solids**	6.0	mg/L	Gravimetry (SM 2540 D)	05/02/21	MPT	
Oil & Grease	5.6	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520 B)	04/30/21	WBD	
Chloride**	188	mg/L	Argentometric Method (SM4500 CI-B)	04/29/21	ML I	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	04/29/21	ANBB	
#Gyanide**, Free	0.008	mg/L	Ion Selective Electrode (SM 4500 CN-F)	05/04/21	MPY	
Nitrate - N**	1.2	mg/L	Colonmetry - Brucine (EPA 352.1)	04/29/21	AGAS	
Phosphate - P**	1.2	mg/L	Stannous Chloride Method (SM 4500-P D)	04/29/21	MPY	

>>> end of result set for Sample No .: P00112953-01 <<<

>>> end of result set for Lab No.:P00112953; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

#Filtered to remove interference.

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Page 1 of 2 FN>>>>00381401>>>>

CRL Environmental Corporation

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Certified by:

Geraldine T. Yabut

PRC License No.: 0027218 Microbiological Testing

Ronald G

PRC License No.: 9248 Chemical Testing

Juliana ¢. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroyo PRC License No.: 6701 Chemical Testing

Date: 05/05/21

Date: astash

Date:

Date:

SN: F00082654.001

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL

Page 2 of 2 FN>>>>00381401>>>>

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: erl@crllabs.com • http://www.erllabs.com

11 May 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Mr. Jingon Lee / Engr. Jonel E. Elamparo
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)
Lab. No.:	P00112953-01

Enclosed are the result and QC Data for sample received by CRL Environmental Corporation which was subcontracted to ASSET Laboratories, LV, NV, USA for testing of the requested parameter in the enclosed chain of custody.

The above Lab. No. has a corresponding Lab. ID N045228-001A by ASSET Laboratories, LV, NV, USA.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARA QARMELA Q. CAPULE

Chief Operating Officer

ASSET Laboratories

Date: 10-May-21

CLIENT:	CRL Environmental Corporation	
Project:	P00112953	CASE NARRATIVE
Lab Order:	N045228	

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Results were J-Flag. "J" is used to flag those results that are between the PQL (Practical Quantitation Limit) and the calculated MDL (Method Detection Limit). Results that are "J" Flagged are estimated values since it becomes difficult to accurately quantitate the analyte near the MDL.

CALIFORNIA (P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ASSET Laboratories

Date: 10-May-21

CLIENT: Project: Lab Order:	CRL Environmental C P00112953 N045228	orporation	Work (Order Sampl	e Summary
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N045228-001A	P00112953-01	Surface Water	4/28/2021 8:47:00 AM	5/3/2021	5/10/2021

CALIFORNIA|P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ASSET	Laboratories	
-------	--------------	--

ANALYTICAL RESULTS

Print Date: 10-May-21

CLIENT:	CRL Environme	ental Corporation		Cl	ient Samp	le ID: PO	0112953-01				
Lab Order:	N045228		Collection Date: 4/28/2021 8:47:00 AM								
Project:		Matrix: SURFACE WATER									
Lab ID:	N045228-001										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed			
ORGANOPHO	SPHORUS PESTIC	CIDES									
	1	EPA 3510C		EPA	8141A						
RunID: NV009	922-GC11_210504A	QC Batch: 873	385		PrepD	ate:	5/4/2021	Analyst: JJS			
Malathion		ND	0.036	0.19		ug/L	1	5/4/2021 02:06 PM			
Surr: Tributy	yl Phosphate	91.4	0	54-143		%REC	1	5/4/2021 02:06 PM			
Surr: Triphe	nyl Phosphate	99.6	0	46-145		%REC	1	5/4/2021 02:06 PM			

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified
 - ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

E Value above quantitation range

DO Surrogate Diluted Out

J Analyte detected below quantitation limits

S Spike/Surrogate outside of limits due to matrix interference

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

ASSET Laboratories

Date: 10-May-21

CLIENT: CRL Environmental Corporation Work Order: N045228

Project: P00112953

ANALYTICAL QC SUMMARY REPORT

TestCode: 8141_W

Sample ID: LCS-87385	SampType: LCS	TestCode: 8141_W	Units: ug/L		Prep Date:	5/4/2021		RunNo: 152	2504	
Client ID: LCSW	Batch ID: 87385	TestNo: EPA 8141A	EPA 3510C		Analysis Date:	5/4/2021		SeqNo: 419	4422	
Analyte	Result	PQL SPK value S	PK Ref Val	%REC	LowLimit Hi	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Malathion	0.766	0.20 0.7500	0	102	55	141		and a stand of the local data of the stand o		
Surr: Tributyl Phosphate	0.769	0.7500		103	54	143				
Surr: Triphenyl Phosphate	0.838	0.7500		112	46	145				
Sample ID: LCSD-87385	SampType: LCSD	TestCode: 8141_W	Units: ug/L		Prep Date:	5/4/2021		RunNo: 152	2504	
Client ID: LCSS02	Batch ID: 87385	TestNo: EPA 8141A	EPA 3510C		Analysis Date:	5/4/2021		SeqNo: 419	4423	
Analyte	Result	PQL SPK value S	PK Ref Val	%REC	LowLimit Hi	gh Limit	RPD Ref Val	%RPD	RPDLImit	Qual
Malathion	0.768	0.20 0.7500	0	102	55	141	0.7657	0.285	20	
Surr: Tributyl Phosphate	0.785	0.7500		105	54	143		0	20	
Surr: Triphenyl Phosphate	0.848	0.7500		113	46	145		0	20	
Sample ID: MB-87385	SampType: MBLK	TestCode: 8141_W	Units: ug/L		Prep Date:	5/4/2021		RunNo: 152	2504	
Client ID: PBW	Batch ID: 87385	TestNo: EPA 8141A	EPA 3510C		Analysis Date:	5/4/2021		SeqNo: 419	4424	
Analyte	Result	PQL SPK value S	PK Ref Val	%REC	LowLimit Hi	ghLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Malathion	ND	0.20								
Surr: Tributyl Phosphate	0.702	0.7500		93.6	54	143				
Surr: Triphenyl Phosphate	0.801	0.7500		107	46	145				

5 of 5

CHAIN OF CUSTODY RECORD

												FO	R LA	BOR	ATC	RY	USE	ONL	Y:				18440	102	(5° C				
	CR CR	L Environmental		P	oou-	09t3					Meth	od of	Trans	port							Sam	ple C	onditi	on Up	on Re	ceipt				
	A =	Corporation		Lab. No	0011	2130					Walk	-in]	1.	CHIL	LED			YE	N		4. S	EALE	D				Y	- N
Bldg	g. 2, Berthaphil Compound 1,	Berthaphil, Inc. Industrial Park		PO#							Couri	ier] 1	2				201	vГ	1 N	P	5 #			UATC		00	VP	
Jose Tel:	e Abad Santos Ave , Clark Fre (6345) 599-3943 • (6345) 499	eport Zone, Clarkfield, Pampanga, Philip 9-6529 • (632) 552-5100	pines		100	امال		2.27	11		FED.	EXP		,]	2.	HEAL	JSFAC		JA)	ΓĽ	1 14		J. #	UF 3	-LO N	ATC	псс	50	14	
Fax	(6345) 599-3963			Logged By:t	161	Date	VI _{Time:} <u>V</u>	5005	o n		CRL		R	ſ	3.	CON	TAINE	R INT	ACT	ΥZ	Γ N		6. P	RESE	RVE	J			YD	N
Cust	omer: POSCT	E&C					Address:										_							Те	l: ()				
Attn:							City:								State	:				Zip	Code:			Fa	x:()	111.00			
Proje	ect Name:			Project #:							S	Sampl	er:	(Pr	EUC	Name)	E	HE	npio		Jr-			4.	Signat	ture)	h			
Relin	quished by: (Signature ar	Printed Name)	1.7			Date:		Т	lime:			R	eceive	d by: (Signatu	re and	Printed N	lame)		110	ø			Da	te:	A	nk	~1	Time	
Relin	quished by: (Signature Ar	Printed Name)	an.			4-28 Date:	-2	т	09	484	t	D	ocoluo	d bic (Cincat		Delated			140				Do	to	041	281	<i>n</i>	Tim	Ollot
	den en e					Date.			me.			r.e	eceive	u by. (Signatu	re and	Printed P	lame)						Da	te:				THIC	6
Relin	quished by: (Signature an	d Printed Name)				Date:		Т	Time:			Re	eceive	d by: (Signatu	re and	Printed N	lame)						Da	te:				Time	:
SH	IP TO LAB:		I hereby a	authorize CRL to perform	the work	indicated below:		Se	nd Re	eport	To:	. /			10	7	7	2 1.	0.7	S	pecial	Inst	ructio	ons/Co	omme	ents:				
(SUB	CONTRACT)		Proje	act wigr. / Sut	omitte	er:		Att	n:	JI	NE	11	. 814	am-	gre	14	an	e M	10	1041	NAP									
TES	T:		1DA	HEL ANTING	man	Bate: 4/:	28,21	Co		1h	010	2 4	Ft	-C	_ '															
DAT	E:	/		Print Name	T	/				4	0-									-										
cus	TOMER I.D.				+			Ade	dress																					
		k	/		<u> </u>		4	Cit					C1-1				7													
<u> </u>	Unlass athensis	Sample Archive / Disposal			ignature			Chy	y Write		7	77			77	-	Zip: _	17	7	7										
	requested, all	Laboratory Standard		1				Ana	alysis(e	s) /	/ /	1	/ /		/	/ .	/ /	/	/ /	/		LINC	M/	ATRIX	-NIA	I E			z	
ren	naining samples will	Others		•				Re	queste	°/	/ /	/ /	//	1	/ /	'/	/ /	/ /	14	101	11	1	1	11	1				E	
at	fter the release of	Return To:							. 1	/ /	'/	/	//	/ /	/	/ /	//		131	3/8	Ya	/ /	8/	/					SVA	
	report	*\$10.00 FE	E PER H	AZARDOUS SAMPLE D	ISPOSAL	L'			/	/ /	/ /	/ /	//	/ /	/ /	/	//		3/3	13		5/3	1	12/	1	Conta	iner	(s)	SE	
Ť	LAB USE ONLY		Sam	ple Description				1	/ /	'/	/	/		'/	/ /	/ /	'/	13	2	<i>₹</i> ∦§	12	3	1.	1/2/	/				R.	
E M	Lab No.	Sampl	e I.D.			Sampling Date	Sampling Time	/		/ /	/ /	'/	/	/ /	'/	/		3/0	15	$\left \frac{s}{s}\right $	200		100	E/	TAT	#	Туре	2	L	REMARKS
	10-52921100	DD SW 1				4-28-21	09474												17					1	E	11	GF	2		
																		2.0												
• T/	AT starts 8 a.m. the f	ollowing day	Overnigh	nt r	En	mergency Next]	6		Critical	12				Urger	nt		F		Routi	ne 7	7	F	reser	rvativ	/es:				
if sar	mple received beyon	d 12 noon at	≤ 24 hrs	<u>,</u>	,-	Workday]	Ľ.	- V	Vorkda	ays		0=	3	Work	lays		E		Work	days		F	I=HC	I N	=HN/	O_3	S=⊦	l_2SO_4	C=<6°C
	the laboratory	Contair	ner Typ	bes: T=Tube	V=VO/	A L=Liter	P=Pin	nt	J=J	ar	B=	Tedla	ar		(G=Gla	ass	R=P	lastic	N	1=Me	tal	Z	z=Zn(AC)2	(N=C	aOH	T:	Na ₂ S ₂ O ₃

DISTRIBUTION: White with report, Yellow to folder, Pink to submitter

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

Date Received:

04/28/2021

Lab No.:P00112953 NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING &

CIVIL WORKS (CP N - 05) Attention: Mr. Jingon Lee / Engr. Jonel E. Elamparo

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	Ву	Ref
Sample No.: P00112953-01			DateSampled	: 04-28-21 08:47				
Sample ID: DD SW1 -Organics-			Matrix: Surfa	ce Water				
PHENOLS								
2,4,6-trichlorophenol	ND	mg/L	0.0008	0.004	USEPA Method 8041A	04/28/21	IJMF	
2,4-dichlorophenol	ND	mg/L	0.0010	0.005	USEPA Method 8041A	04/28/21	IJMF	
2,4-dimethylphenol	ND	mg/L	0.0011	0.006	USEPA Method 8041A	04/28/21	IJMF	
2,4-dinitrophenol	ND	mg/L	0.0009	0.005	USEPA Method 8041A	04/28/21	IJMF	
2-chlorophenol	ND	mg/L	0.0009	0.005	USEPA Method 8041A	04/28/21	IJMF	
2-methyl-4,6-dinitrophenol	ND	mg/L	0.0008	0.004	USEPA Method 8041A	04/28/21	IJMF	
2-nitrophenol	ND	mg/L	0.0006	0.003	USEPA Method 8041A	04/28/21	IJMF	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.010	USEPA Method 8041A	04/28/21	IJMF	
4-nitrophenol	ND	mg/L	0.0009	0.005	USEPA Method 8041A	04/28/21	IJME	
pentachlorophenol	ND	mg/L	0.0018	0.009	USEPA Method 8041A	04/28/21	IJME	
phenol	ND	mg/L	0.0009	0.005	USEPA Method 8041A	04/28/21	IJMF	

>>> end of result set for Sample No .: P00112953-01 <<<

>>> end of result set for Lab No.:P00112953; Total no. of sample analyzed: 1 <<<

Corporation

MDL = Method Detection Limit/s

Project Name:

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Page 1 of 2 FN>>>>00381711>>>>

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 590-3943 • (63 2) 8552-5100 • Fax: (63 45) 590-3963 Email: crl@crllabs.com • http://www.crllabs.com

Certified By:

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

andrahanen

Mary Anne G. Rodriguez PRC License No.: 10281 Chemical Testing

Date: 5/12/21

Date: Slinkron

SN: F00082654.002

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00381711>>>>

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
Email: erl@crllabs.com • http://www.crllabs.com

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00082946.002 05/06/2021

Date Received:

NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & **Project Name:** CIVIL WORKS (CP N - 05)

Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan Attention:

Test Description	Results	Units	Test Methods	Date Analyzed	By	Ref
Sample No.: P00113232-01			DateSampled: 05-06-21 09:25			L
Sample ID: DD SW1 -Metals-			Matrix: Surface Water			
Arsenic**	< 0.008	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	05/17/21		
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	05/17/21		
Lead**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	05/17/21	11 1	
Mercury**	< 0.0002	mg/L	Manual Cold Vapor AAS	05/12/21	EDC	
Dissolved Copper	0.02	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	05/17/21	JLJ	
-Microbiology-						
Total Coliforms**	540	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	05/06/21	IMBG	
Fecal Coliforms**	33	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	05/06/21	IMBG	
-Wet Chemistry-						
pH**, onsite	7.4		Electrometric Method (SM 4500-H+ B)	05/06/21		
Temperature**, onsite	30.0	°C	Laboratory & Field Method (SM2550 B)	05/06/21		
Dissolved Oxygen**	4	mg/L	Winkler/Titrimetric	05/06/21	-	
Biological Oxygen Demand**	3	mg/L	5-Day BOD Test (SM 5210 B)	05/08/21	PSSM	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.2	mg/L	Colorimetry - Chloroform Extraction	05/06/21	AGAS	
Total Suspended Solids**	4.0	mg/L	Gravimetry (SM 2540 D)	05/10/21	MPT	
Dil & Grease	6.4	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520	05/16/21	WBD	
Chloride**	132	mg/L	Argentometric Method (SM4500 CI-B)	05/12/21	AND 1	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	05/10/21	ANBB	
#Cyanide**, Free	0.02	mg/L	Ion Selective Electrode (SM 4500 CN-E)	05/17/21	MOV	
Nitrate - N**	0.5	mg/L	Colorimetry - Brucine (EPA 352 1)	05/08/21	WIPY	
Phosphate - P**	1.2	mg/L	Stannous Chloride Method (SM 4500 P D)	05/06/21	AGAS	

>>> end of result set for Sample No .: P00113232-01 <<<

>>> end of result set for Lab No.:P00113232; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

#Filtered to remove interference.

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Page 1 of 2 FN>>>>00382230>>>>

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Lab No.:P00113232

Certified by:

FD G

Geraldine T. Yabut PRC License No.: 0027218 Microbiological Testing

Ronald Espiritu

PRC License No.: 9248 Chemical Testing

Juliana C. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroyo PRC License No.: 6701 Chemical Testing

Date: 5/19/3

allah Date:

Date:

Date:

SN: F00082946.002

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00382230>>>>

■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00082946.001 05/06/2021

Date Received:

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan Attention:

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	Ву	Ref
Sample No.: P00113232-01			DateSampled	: 05-06-21 09:25				
Sample ID: DD SW1 -Organics-			Matrix: Surfa	ce Water				
PHENOLS								
2,4,6-trichlorophenol	ND	mg/L	0.0008	0.002	USEPA Method 8041A	05/06/21		
2,4-dichlorophenol	ND	mg/L	0.0010	0.002	USEPA Method 8041A	05/06/21	LIME	
2,4-dimethylphenol	ND	mg/L	0.0011	0.002	USEPA Method 8041A	05/06/21	LIME	
2,4-dinitrophenol	ND	mg/L	0.0009	0.002	USEPA Method 8041A	05/06/21	LIME	
2-chlorophenol	ND	mg/L	0.0009	0.002	USEPA Method 8041A	05/08/21	LIME	
2-methyl-4,6-dinitrophenol	ND	mg/L	0.0008	0.002	USEPA Method 8041A	05/06/21	LIME	
2-nitrophenol	ND	mg/L	0.0006	0.001	USEPA Method 8041A	05/06/21	LINE	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.004	USEPA Method 8041A	05/06/21	UNAT	
4-nitrophenol	ND	mg/L	0.0009	0.002	USEPA Method 80414	05/06/21	IJMF	
pentachlorophenol	ND	mg/L	0.0018	0.004	USEPA Method 8041A	05/06/21	IJIVIF	
phenol	ND	mg/L	0.0009	0.002	USEPA Method 8041A	05/06/21	IJMF	

>>> end of result set for Sample No.:P00113232-01 <<<

>>> end of result set for Lab No.:P00113232; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Page 1 of 2 FN>>>>00382049>>>>

CRL Environmental Corporation

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Lab No.:P00113232

Certified By:

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

Mary Anne G. Rodriguez

PRC License No.: 10281 Chemical Testing

Date: 5/20/21

SN: F00082946.001

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00382049>>>>

• Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Avc., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599 3943 - (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00083726.002

Date Received:

06/04/2021

Lab No.:P00114100

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	Ву	Ref
Sample No.: P00114100-01			DateSampled:	06-04-21 10:01				
Sample ID: DD SW1			Matrix: Surfac	e Water				
-Organics-								
PHENOLS								
2.4.6-trichlorophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	06/08/21	IJMF	
2.4-dichlorophenol	ND	mg/L	0.0010	0.0010	USEPA Method 8041A	06/08/21	IJMF	
2.4-dimethylphenol	ND	mg/L	0.0011	0.0011	USEPA Method 8041A	06/08/21	IJMF	
2,4-dinitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/08/21	IJMF	
2-chlorophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/08/21	IJMF	
2-methyl-4,6-dinitrophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	06/08/21	IJMF	
2-nitrophenol	ND	mg/L	0.0006	0.0006	USEPA Method 8041A	06/08/21	IJMF	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.0019	USEPA Method 8041A	06/08/21	IJMF	
4-nitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/08/21	IJMF	
pentachlorophenol	ND	mg/L	0.0018	0.0018	USEPA Method 8041A	06/08/21	IJMF	
phenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/08/21	IJMF	

>>> end of result set for Sample No.:P00114100-01 <<<

>>> end of result set for Lab No.:P00114100; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

CRL EnvironmentalIndCorporationTelEmEm

■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Certified By:

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

Mary Anne G. Rodriguez

PRC License No.: 10281 Chemical Testing Date: 4/21/21

W/mm Date:

SN: F00083726.002

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00385547>>>>

CRL Environmental Corporation

■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

21 May 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Mr. Jeong Ho Kim / Mr. Sang Yeob Lee
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT
Lab. No.:	P00113232-01

Enclosed are the result and QC Data for sample received by CRL Environmental Corporation which was subcontracted to ASSET Laboratories, LV, NV, USA for testing of the requested parameter in the enclosed chain of custody.

The above Lab. No. has a corresponding Lab. ID N045355-001A by ASSET Laboratories, LV, NV, USA.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

Chief Operating Officer
Date: 17-May-21

CLIENT:	CRL Environmental Corporation
Project:	P00113232
Lab Order:	N045355

CASE NARRATIVE

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Results were J-Flag. "J" is used to flag those results that are between the PQL (Practical Quantitation Limit) and the calculated MDL (Method Detection Limit). Results that are "J" Flagged are estimated values since it becomes difficult to accurately quantitate the analyte near the MDL.

 CALIFORNIA
 [P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

Date: 17-May-21

CLIENT: Project: Lab Order:	CRL Environmental C P00113232 N045355	orporation	Work Order Sample Summar						
Contract No:									
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported				
N045355-001A	P00113232-01	Surface Water	5/6/2021 9:25:00 AM	5/11/2021	5/17/2021				

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 "EPA ID
 CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

ASSET	Laboratories			Print Date: 17-May-21							
CLIENT:	CRL Environm	nental Corporation		Client Sample ID: P00113232-01							
Lab Orde	r: N045355	Collection Date: 5/6/2021 9:25:00 AM									
Project:	P00113232			Matrix: SURFACE WATER							
Lab ID:	N045355-001										
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed			
ORGANO	PHOSPHORUS PEST	ICIDES									
		EPA 3510C		EPA	8141A						
RunID: N	W00922-GC11_210512A	QC Batch: 874	491		PrepDa	ate:	5/12/2021	Analyst: JJS			
Malathion	1	ND	0.037	0.19		ug/L	1	5/12/2021 02:01 PM			
Surr: T	ributyl Phosphate	91.3	0	0 54-143 %REC 1 5/12/2021 0							

46-145

%REC

1

5/12/2021 02:01 PM

95.8

0

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified
 - ------

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

Surr: Triphenyl Phosphate

S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out

E Value above quantitation range

J Analyte detected below quantitation limits

 EALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 EPA ID
 CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

ANALYTICAL RESULTS

Date: 17-May-21

CLIENT: CRL Environmental Corporation Work Order: N045355

Project: P00113232

ANALYTICAL QC SUMMARY REPORT

TestCode: 8141_W

Sample ID: LCS-87491	SampType: LCS	TestCode: 8141_W	Units: ug/L		Prep Da	te: 5/12/20	21	RunNo: 152	693	
Client ID: LCSW	Batch ID: 87491	TestNo: EPA 8141	A EPA 3510C		Analysis Da	te: 5/12/20	21	SeqNo: 420	5157	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Malathion Surr: Tribubl Phoenbate	0.752	0.20 0.7500	0	100	55	141			and the second second	
Surr: Triphenyl Phosphate	0.788	0.7500		105	54	143				
	0.817	0.7500		109	46	145				
Sample ID: LCSD-87491	SampType: LCSD	TestCode: 8141_W	Units: ug/L		Prep Da	te: 5/12/20	21	RunNo: 152	693	
Client ID: LCSS02	Batch ID: 87491	TestNo: EPA 8141.	A EPA 3510C		Analysis Da	te: 5/12/20	21	SeqNo: 420	5158	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Malathion	0.758	0.20 0.7500	0	101	55	141	0.7518	0.860	20	
Surr: Tributyl Phosphate	0.750	0.7500		100	54	143	0.1010	0.000	20	
Surr: Triphenyl Phosphate	0.805	0.7500		107	46	145		0	20	
Sample ID: MB-87491	SampType: MBLK	TestCode: 8141 W	Units: ug/L		Prep Dat	e 5/12/20	21	RunNo: 152	603	
Client ID: PBW	Batch ID: 87491	TestNo: EPA 8141	A EPA 3510C		Analysia Dai	- 5/42/20	94	Cashles 490	2450	
Apolite					Analysia Dal	le. 5/12/20		Sedino: 420	5159	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Malathion	ND	0.20								
Surr: Tributyl Phosphate	0.657	0.7500		87.5	54	143				
Surr: Triphenyl Phosphate	0.759	0.7500		101	46	145				

5 of 5

CRL-FM-SC-001 Rev. 3.0 01/04/18

CHAIN OF CUSTODY RECORD

-				ton a success of the second				FC	RLA	BOR	ATOR	Y USE (ONLY	:	P	10°2) (
	CPI	Environmental	Po	0117777			M	lethod o	f Tran	sport					Sam	ple Co	ndition	Upon R	eceipt	t			
		Corporation	Lab. No.	-112250			_	/alk-in		7	1.CH	ILLED		Y,	2	1	4. SE/	ALED				YL	NЦ
PH	2 Bothaphi Commund 1	arthaphil Inc. Industrial Devic	BO#				C C	ourier		Ľ	2 45		E (VOA			MT I	5.#0	F SPI S	MATO	CHICC	C	Y	NΠ
Jose Tel:	Abad Santos Ave., Clark Free (6345) 599-3943 • (6345) 499	eport Zone, Clarkfield, Pampanga, Philippines -6529 • (632) 552-5100	F.U.#	1.1	1		- 0 FI	ED. EX	P. [2.00	ADOFAG	- (10)	, i			5. # 0				5	/	
Fax	(6345) 599-3963		Logged By:HGV	Date.0506		514	c	RL	F	2	3.00	NTAINER	R INTA	ст у		١D	6. PRI	SERVE	D			Yロ	N
Cust	omer:				Address:		phil	exa	/	Bus	iness	pa	rk,	pr.	Rox	as		Tel: ()	_			
Attn:		POSCO Engine	ring 3 Constr	uction Go	City: CF	Z	, Pai	mrai	200		State:			Zj	p Code	:		Fax:()	2			
Proje	ect Name:	279	Project #:					Sam	oler:	(Pi	inted Nan	ne)		1				(Sign	ature)				
Relin	quished by: (Signature and	d Drinted Name)	/	Date:	/ ,	Tim	e.		Receiv	ed by:	Signature a	PER-	ame	X	2			Date:	1	1	14	Time:	
i tomi	quarted by. (agnature and	A A	reperso A	7 5	10/21		1123	SH		ou 0).	orginala o o			\ H	ev				60	06	J		11304
Relin	quished by: (Signature and	d Printed Name)	40	Date: /		Tim	e:	I	Receiv	ed by:	Signature a	nd Printed N	ame)					Date:				Time:	
Relin	quished by: (Signature and	d Printed Name)		Date:		Tim	e:	1	Receiv	ed by:	Signature a	nd Printed N	ame)					Date:				Time:	
SH	IP TO LAB:	I hereby Proi	authorize CRL to perform the wo	rk indicated below:		Send Attn:	Report T	0: 瓦太	D.	κmρ,	theo B	AIME	14. P	ERFIL	Specia	pH	uction	s/Comm	nents 39	:			
(SUB	CONTRACT)			/		/			0.0		/					Temp	0	2.		ີ່	°C		
TES	T:		NEL FLANF	24Date: <u>DK_/(</u>	04/21	Co:	Po.	500	I	1	~					. h		20	2.0		0		
CUS		1	Print Name	<		Addre	Nee.									idth	、 ·	<7.	30	r1			
				20		Addre		(7011	, 	0.	, ,	0			
			Signatu	ire		City:		-	Sta	ate:		Zip:			<i>t</i> /	own	nte,		1. 4			-	
1	Unless otherwise	Sample Archive / Disposal:	/			Wri Analys	te iis(es)	///	//	//	///	///	//	//		CIRCI	E APF	PROPRI.	ATE			z	
ren	naining samples will	Laboratory Standard	/			Reque	ested /		//	//	//	///	//	In Is	11	1	11	77	1			2	
be	disposed of 15 days	Beturn To:					//	11	'/	//	//	///	11	3/3	Rel a	//	5/	//					
	report	*\$10.00 FEE PER	HAZARDOUS SAMPLE DISPOS	AL		/	///			1	///	///			13	2/3	1 /	§/ /	Con	tainer	(s) [
l T	LAB USE ONLY	Sa	mple Description			/	//	//	/ /		//	//	13/	3/8	3/2		15	3			ġ	ž	
E M	Lab No.	Sample I.D.		Sampling Date	Sampling Time		11			11	11	///	8/8	5/3	13/	8/8	100		#	Туре		F	REMARKS
	P60113232-01	DDSW 1		5/6/21	09231	1												E	8	P	6		
																		1					
. T	AT starts 8 a.m. the	following day	ght D -	Emergency Next]	C -	Critical	2	-	_	Urgent		E -	Ro	outine 7		Pi	reserva	tives:				
if sa	mple received beyon	ad 12 noon at $AI: A = \leq 24 h$	rsB =	Workday		0=	Workda	iys	Ľ		8 Workda	ys	E -	W	orkdays		H	=HCI	N=HI	NO ₃	S=H	₂ SO ₄	C=<6°C
	the laboratory	y Container T	vpes: T=Tube V=V	OA L=Liter	P=Pint	J	l=Jar	B=Te	dlar	0	G=	Glass	P=PI	astic	M=M	letal	Z	=Zn(AC)2	O=N	laOH	T=	=Na ₂ S ₂ O ₃

DISTRIBUTION: White with report, Yellow to folder, Pink to submitter

Results of Analyses

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

Lab No.:P00113429

SN: F00083113.001

05/14/2021

Date Received:

NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & **Project Name:** CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	Test Methods	Date Analyzed	By	Ref
Sample No.: P00113429-01			DateSampled: 05-14-21 09:39		1	
Sample ID: DD SW1			Matrix: Surface Water			
-Metals-						
Arsenic**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	05/22/21	JLJ	
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	05/22/21	JLJ	
Lead**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	05/22/21	JLJ	
Mercury**	< 0.0002	mg/L	Manual Cold Vapor AAS	05/19/21	EDC	
Dissolved Copper	0.03	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	05/22/21	JLJ	
-Microbiology-						
Total Coliforms**	1,600	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	05/14/21	HBS	
Fecal Coliforms**	130	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	05/14/21	HBS	
-Wet Chemistry-						
pH**, onsite	7.4	-	Electrometric Method (SM 4500-H+ B)	05/14/21	-	
Temperature**, onsite	31.2	°C	Laboratory & Field Method (SM2550 B)	05/14/21	-	
Dissolved Oxygen**	9	mg/L	Winkler/Titrimetric	05/14/21	PSSM	
Biological Oxygen Demand**	4	mg/L	5-Day BOD Test (SM 5210 B)	05/16/21	PSSM	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.5	mg/L	Colorimetry - Chloroform Extraction	05/14/21	AGAS	
Total Suspended Solids**	21	mg/L	Gravimetry (SM 2540 D)	05/17/21	MPT	
Oil & Grease	5.0	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520 B)	05/20/21	WBD	
Chloride**	167	mg/L	Argentometric Method (SM4500 CI-B)	05/18/21	MLJ	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	05/20/21	ANBB	
Cyanide**, Free	0.04	mg/L	Ion Selective Electrode (SM 4500 CN-F)	05/14/21	MPY	
Nitrate - N**	0.5	mg/L	Colorimetry - Brucine (EPA 352.1)	05/14/21	AGAS	
Phosphate - P**	1.2	mg/L	Stannous Chloride Method (SM 4500-P D)	05/14/21	MPY	

>>> end of result set for Sample No .: P00113429-01 <<<

>>> end of result set for Lab No.:P00113429; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Corporation

Page 1 of 2 FN>>>>00382688>>>>

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Certified by:

Geraldine T. Yabut PRC License No.: 0027218 Microbiological Testing

Ronald spiritu

PRC License No.: 9248 Chemical Testing

Juliána C. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroyo PRC License No.: 6701 Chemical Testing

Date: 15/210/24

Date: behn

Date:

1 Date:

SN: F00083113.001

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: erl@erllabs.com • http://www.crllabs.com

14 June 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT
Lab. No.:	P00113429-01

Enclosed are the result and QC Data for sample received by CRL Environmental Corporation which was subcontracted to ASSET Laboratories, LV, NV, USA for testing of the requested parameter in the enclosed chain of custody.

The above Lab. No. has a corresponding Lab. ID N045475-001A by ASSET Laboratories, LV, NV, USA.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARIA CARMELA Q. CAPULE Chief Operating Officer

Date: 26-May-21

CLIENT:	CRL Environmental Corporation	
Project:	P00113429	CASE NARRATIVE
Lab Order:	N045475	

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Results were J-Flag. "J" is used to flag those results that are between the PQL (Practical Quantitation Limit) and the calculated MDL (Method Detection Limit). Results that are "J" Flagged are estimated values since it becomes difficult to accurately quantitate the analyte near the MDL.

Analytical comments for EPA 8141A:

RPD for Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) is outside criteria on analyte Malathion. Analyte recovery on both met acceptance criteria.

CALIFORNIA (P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Date: 26-May-21

CLIENT: Project: Lab Order:	CRL Environmental Co P00113429 N045475	orporation	Work C	Order Sampl	e Summary
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N045475-001A	P00113429-01	Surface Water	5/14/2021 9:39:00 AM	5/19/2021	5/26/2021

ASSET Lab	oratories	ANALYTICAL RESULTS Print Date: 26-May-21
CLIENT:	CRL Environmental Corporation	Client Sample ID: P00113429-01
Lab Order:	N045475	Collection Date: 5/14/2021 9:39:00 AM
Project:	P00113429	Matrix: SURFACE WATER

Lab ID:	N045475-001							
Analyse	S	Result	MDL	PQL	Qual	Units	DF	Date Analyzed
ORGAN	OPHOSPHORUS PESTIC	CIDES	the second s					
	1	EPA 3510C		EPA	8141A			
RunID:	NV00922-GC11_210520A	QC Batch: 870	625		PrepD	ate:	5/20/2021	Analyst: JJS
Malath	ion	ND	0.036	0.19		ug/L	1	5/20/2021 05:07 PM
Sun	r: Tributyl Phosphate	85.3	0	54-143		%REC	1	5/20/2021 05:07 PM
Sun	r: Triphenyl Phosphate	127	0	46-145		%REC	1	5/20/2021 05:07 PM

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

ASSET LABORATORIES

- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

"Serving Clients with Passion and Professionalism"

CALIFORNIA [P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

Date: 26-May-21

CLIENT: CRL Environmental Corporation

Work Order: N045475

Project: P00113429

-

ANALYTICAL QC SUMMARY REPORT

TestCode: 8141_W

Sample ID: LCS-87625	SampType: LCS	TestCode: 8141_W Units: ug/	/L Prep Date: 5/20/2021	RunNo: 152902
Client ID: LCSW	Batch ID: 87625	TestNo: EPA 8141A EPA 35100	C Analysis Date: 5/20/2021	SeqNo: 4213559
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	0.714	0.20 0.7500 0	95.2 55 141	
Surr: Tributyl Phosphate	0.528	0.7500	70.4 54 143	
Surr: Triphenyl Phosphate	0.694	0.7500	92.5 46 145	
Sample ID: LCSD-87625	SampType: LCSD	TestCode: 8141_W Units: ug/	/L Prep Date: 5/20/2021	RunNo: 152902
Client ID: LCSS02	Batch ID: 87625	TestNo: EPA 8141A EPA 35100	C Analysis Date: 5/20/2021	SeqNo: 4213560
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	0.877	0.20 0.7500 0	117 55 141 0.7137	20.6 20 R
Surr: Tributyl Phosphate	0.579	0.7500	77.2 54 143	0 20
Surr: Triphenyl Phosphate	0.827	0.7500	110 46 145	0 20
Sample ID: MB-87625	SampType: MBLK	TestCode: 8141_W Units: ug/	/L Prep Date: 5/20/2021	RunNo: 152902
Client ID: PBW	Batch ID: 87625	TestNo: EPA 8141A EPA 35100	C Analysis Date: 5/20/2021	SeqNo: 4213561
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	ND	0.20		
Surr: Tributyl Phosphate	0.567	0.7500	75.6 54 143	
Surr: Triphenyl Phosphate	0.888	0.7500	118 46 145	

 Qualifiers:
 B
 Analyte detected in the associated Method Blank
 E
 Value above quantitation range
 H

 J
 Analyte detected below quantitation limits
 ND
 Not Detected at the Reporting Limit
 R

 S
 Spike/Surrogate outside of limits due to matrix interference
 DO
 Surrogate Diluted Out
 R

 ASSET LABORATORIES
 CALIFORNIA[P:562.219.7435
 F:562.219.7435
 Not Detected at the Reporting Limit
 R

 "Sorving Clionts with Passion and Professionalism"
 ELAP Cert 2021
 Surrogate Diluted Out
 3151 W. Post Rd., Las Yegas, NV 89118
 212.427 (2017)

- H Holding times for preparation or analysis exceeded
- R RPD outside accepted recovery limits Calculations are based on raw values

5 of 5

CHAIN OF CUSTODY RECORD

					and the second		the second second			FC	RIA	BOR	ATOP	2Y US	E ON	1 .	-		-	-		_	-			
A. CF	R Environmental			D (2112/126	2			Method of Transport								Sample	Cond	Condition Upon Receipt							
	Corporation		Lab. No	Ŷ	20113929	1			w c	/alk-in ourier	Γ]	1.C	HILLEC	100	, C	۲Ø	N [] 4.	SEALE	ED	Jeipt		YE	1	N []
Bldg 2. Berthaphil Compound 1, Jose Abad Santos Ave., Clark Fro Tol: (6345) 599 3013 - (5345) 49	Berthaphil, Inc. Industrial Park eeport Zone, Clarkfield, Pampanga, Phili	ppines	P.O.#			. 1			U	PS		j	2.H	EADSP	ACE (\	/OA)	۲D	NC	j 5.	# OF S	PLS M	ATCH	coc	YE	j ·	N []
Fax (6345) 599-3963	9-6529 • (632) 552-5100		Logged By: _	thew	Date: 🔞	14 21	1310	₽	FE C	ED. EXF RL	•. [P	\mathbf{r}	30	ONTAI		TACT	vИ		16	DDESI	ERVED			VE	í	
Customer: POSCO	0					Addre	ss:						10.0	onna	121311	17101	- 12		1 0.1	Te	el: ()			<u>ا</u>	
Attn:						City:							State				Zin C	ode:		E.		, \				
Project Name:			Proje	ct #:						Samp	ler:	(Pri	nted Na	me) USh	kn	di	<u>a</u>	Joue.		ra	(Signat	Ire	_			
Relinquished by: (Signature	1 B				Date:	'z/	1	Time:	N	R	eceive	ed by: (s	Signature	and Printe	d Name)	-1/00	VC	Z		De	ato.	5-14-	-71	Tin	ne: 17	2014
Relinquished by: (Signature and	nd Printed Name)				Date:		/_	'ime:		R	eceive	ed by: (s	Signature	and Printe	d Name)					De	ate:			Tin	ne:	
Relinquished by: (Signature an	d Printed Name)				Date:		1	ime:		R	eceive	ed by: (s	Signature	and Printe	d Name)					Da	ate:			Tin	ne:	
SHIP TO LAB:		I hereby a	authorize CRL to p	erform the v	work indicated be	low:	Se	nd Rej	port To		E	A 1/2	nen	2			Sp	ecial/n	structi	ions/C	ommer	nts:				
(SUB CONTRACT)		-91	N			7		7	Janz	-V /1		1001	r Jr				- /	FM	lii	2.0	0,					
TEST:		JUN	A A. EL	SMPAI	R Date: 05	5,14, "	2/ 00	:	10	500	E	40					1	NIU	Ph	q.	4.					
			Print Nan	ie)				-		01		15	/					-leps	th	1	.H					
COSTOMER I.D.			5	t	حتي		Ad	dress:	:	PHI	l ti	XEL	_				C	, yr		, <i>F</i>]]	1		. /	21	2
				Signa	ture		- City	y:			Stat	te:		_ Zip:			0	plt	7	.30	9	H	eng	Ð	2'	.2
Unless otherwise	Sample Archive / Disposal:			/			An	Write	. /	77	7	77	T	TT	77	7	T	CIR	CLE A	PPRO	PRIAT	E				
remaining samples will	Laboratory Standard			/			Re	quested	ä/ ,	//	/ /	1	/ /	11	//		· , ,	,	, M	ATRIX				S		
be disposed of 15 days	C Others							1	//	11	//	/ /	//	//	/ /	14	13/	//	1	/ /	/		1	AT		
report	*\$10.00 FE	E PER HA	AZARDOUS SAN)SAI			. /	11			//	//	//	1		3/2/	\$/2	12/	101	110	ontain	oris	N N		
T LAB USE ONLY		Sam	ple Description					/ /	//.		//	//		///	//			E Man	š/ /	A A		Jindin	(5)	RESE		
E Lab No.	Samp	e I.D.			Sampling Date	Sampli Time	ng /	11	//	//	1		//			3/3	E/S		an an		TAT #	t Tv	pe		REM	ARKS
P00113429-01	DDSW!	4			5142	19:	39				T		\prod			1		F T	ÍÍ	Ť	T	T		\vdash		
							1												\square	T		1	\square			
								\square																		
															a.											
								\square																		
								\square																		
								\square																		
						\square		\square																\Box		
																			ΙT							
TAT starts 8 a.m. the fo	ollowing day TAT: A =	Overnight	t	в =	Emergency No	ext	C =	Cr	ritical 2		D =	1	Jrgent		F	=	Routine	7	F	Preser	vative	s:				
the laboratory	12 noon at	- 24 1113.			workday			Wo	orkdays		Ľ	3 W	Vorkday	s	Ľ	· L	Workda	ys 🛛	ŀ	H=HCI	N=F	-INO3	S=	H_2SO_4	C=<	:6°C
in and they	Contair	ner Type	es: T=Tube	, V=\	/OA L=L	ter P=	Pint	J=Ja	ir E	B=Tedla	ar		G=0	Glass	P=F	lastic	M=	Metal	72	Z=Zn(/	AC)2	O=1	NaOl	H T	=Na ₂ S	5 ₂ O ₃

DISTRIBUTION: White with report, Yellow to folder, Pink to submitter

17 June 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)
Lab. No.:	P00113429-01

Enclosed are the results for sample received by CRL Environmental Corporation and tested for the parameters in the enclosed chain of custody.

Our DENR Recognition with C. R. No. 023/2018, will expire on September 24, 2021.

Likewise, our DOH Accreditation with Accreditation No. <u>03-001-20-LW-2</u>, is valid from January 01, 2020 until December 31, 2022.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MABPA CARMELA Q. CAPULE Chief Operating Officer

Results of Analyses

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00083113.002 05/14/2021

Date Received:

NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & **Project Name:** CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	Ву	Ref
Sample No.: P00113429-01			DateSampled:	05-14-21 09:39)			
Sample ID: DD SW1			Matrix: Surfac	e Water				
-Organics-								
PHENOLS								
2.4.6-trichlorophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	05/21/21	IJMF	
2.4-dichlorophenol	ND	mg/L	0.0010	0.0010	USEPA Method 8041A	05/21/21	IJMF	
2.4-dimethylphenol	ND	mg/L	0.0011	0.0011	USEPA Method 8041A	05/21/21	IJMF	
2.4-dinitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	05/21/21	IJMF	
2-chlorophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	05/21/21	IJMF	
2-methyl-4.6-dinitrophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	05/21/21	IJMF	
2-nitrophenol	ND	mg/L	0.0006	0.0006	USEPA Method 8041A	05/21/21	IJMF	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.0019	USEPA Method 8041A	05/21/21	IJMF	
4-nitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	05/21/21	IJMF	
pentachlorophenol	ND	mg/L	0.0018	0.0018	USEPA Method 8041A	05/21/21	IJMF	
phenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	05/21/21	IJMF	

>>> end of result set for Sample No.:P00113429-01 <<<

>>> end of result set for Lab No.:P00113429; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Page 1 of 2 FN>>>>00384395>>>>

CRL Environmental Corporation

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 - (63 2) 8552-5100 - Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

altrodu Mary Anne G. Rodriguez

PRC License No.: 10281 Chemical Testing

• Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Page 2 of 2 FN>>>>00384395>>>>

<u>CRL Environmental</u> Corporation

6/18/200 Date:

6/18/21

Date:

SN: F00083113.002

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Certified By:

08 June 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)
Lab. No.:	P00113635-01

Enclosed are the results for sample received by CRL Environmental Corporation and tested for the parameters in the enclosed chain of custody.

Our DENR Recognition with C. R. No. 023/2018, will expire on September 24, 2021.

Likewise, our DOH Accreditation with Accreditation No. <u>03-001-20-LW-2</u>, is valid from January 01, 2020 until December 31, 2022.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARIA CARMELA O. CAPULE

Chief Operating Officer

Results of Analyses

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

Lab No.:P00113635

05/21/2021

SN: F00083457.0

Date Received:

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	Test Methods	Date Analyzed	By	Ref*						
Sample No.: P00113635-01			DateSampled: 05-21-21 08:57	DateSampled: 05-21-21 08:57								
Sample ID: DD SW1			Matrix: Surface Water									
-Metals-												
Arsenic**	< 0.008	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/01/21	PPG							
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/01/21	PPG							
Lead**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/01/21	PPG							
Mercury**	< 0.0002	mg/L	Cold Vapor AAS	05/31/21	EDC							
Dissolved Copper	0.03	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/01/21	PPG							
-Microbiology-												
Total Coliforms**	23	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	05/21/21	HBS							
Fecal Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	05/21/21	HBS							
-Wet Chemistry-												
pH**, onsite	8.1	-	Electrometric Method (SM 4500-H+ B)	05/21/21	-							
Temperature**, onsite	30.1	°C	Laboratory & Field Method (SM2550 B)	05/21/21	-							
Dissolved Oxygen**	10	mg/L	Winkler/Titrimetric	05/21/21	PSSM							
Biological Oxygen Demand**	< 1	mg/L	5-Day BOD Test (SM 5210 B)	05/21/21	PSSM							
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.3	mg/L	Colorimetry - Chloroform Extraction	05/22/21	AGAS							
Total Suspended Solids**	18	mg/L	Gravimetry (SM 2540 D)	05/26/21	MDLL							
Oil & Grease	1.2	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520 B)	05/28/21	WBD							
Chloride**	288	mg/L	Argentometric Method (SM4500 CI-B)	05/25/21	MLJ							
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	05/24/21	ANBB							
Cyanide**, Free	vanide**, Free 0.02 mg/L los		Ion Selective Electrode (SM 4500 CN-F)	05/21/21	MPY							
Nitrate - N**	0.9	mg/L	Colorimetry - Brucine (EPA 352.1)	05/22/21	AGAS							
Phosphate - P** 1.4 mg/L		Stannous Chloride Method (SM 4500-P D)	05/21/21	MPY								

>>> end of result set for Sample No.:P00113635-01 <<<

>>> end of result set for Lab No.:P00113635; Total no. of sample analyzed; 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Page 1 of 2 FN>>>>00383582>>>>

CRL Environmental Corporation Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

Certified by:

Geraldi T. Yabut

PRC License No.: 0027218 Microbiological Testing

Ronald G

PRC License No.: 9248 Chemical Testing

Juliana C. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroyo PRC License No.: 6701 Chemical Testing

Date: 06/08/2/

Date: allow M

8 Date:

1 lochon Date:

SN: F00083457.001

Disclaimer. This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00383582>>>>

CRL Environmental Corporation Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

14 June 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)
Lab. No.:	P00113635-01

Enclosed are the result and QC Data for sample received by CRL Environmental Corporation which was subcontracted to ASSET Laboratories, LV, NV, USA for testing of the requested parameter in the enclosed chain of custody.

The above Lab. No. has a corresponding Lab. ID N045573-001A by ASSET Laboratories, LV, NV, USA.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARIA CARMELA Q. CAPULE Chief Operating Officer

Date: 03-Jun-21

CLIENT:	CRL Environmental Corporation	
Project:	P00113635	CASE NARRATIVE
Lab Order:	N045573	

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Results were J-Flag. "J" is used to flag those results that are between the PQL (Practical Quantitation Limit) and the calculated MDL (Method Detection Limit). Results that are "J" Flagged are estimated values since it becomes difficult to accurately quantitate the analyte near the MDL.

CALIFORNIA (P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Date: 03-Jun-21

CLIENT: Project: Lab Order: Contract No:	CRL Environmental Co P00113635 N045573	orporation	Work C	order Sample	e Summary
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N045573-001A	P00113635-01	Surface Water	5/21/2021 8:57:00 AM	5/25/2021	6/3/2021

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110
 Artesia
 Blvd., Ste B, Cerritos, CA 90703

 ELAP
 Cert 2921

 *
 EPA ID CA01638

ANALYTICAL R	ESULTS
--------------	--------

Print Date: 03-Jun-21

OF IENT	CDI Encircon	untal Componition		CI	iont Comple ID	P00113635_01										
CLIENI:	CKL Environme	ental Corporation		Chem Sample ID. 100115055-01												
Lab Order:	N045573				Collection Date:	: 5/21/2021 8:57	:00 AM									
Project:	P00113635				Matrix	SURFACE WA	ATER									
Lab ID: N045573-001																
Analyses		Result	MDL	PQL	Qual Un	its DF	Date Analyzed									
ORGANOPHO	SPHORUS PESTI	CIDES														
		EPA 3510C		EPA	8141A											
RunID: NV00	922-GC11_210526A	QC Batch: 877	732		PrepDate:	5/26/2021	Analyst: JJS									
Malathion		ND	0.035	0.18	ug/L	1	5/26/2021 05:56 PM									
Surr: Tribut	yl Phosphate	70.4	0	54-143	%RE	C 1	5/26/2021 05:56 PM									
Surr: Triphe	enyl Phosphate	77.0	0	46-145	%RE	C 1	5/26/2021 05:56 PM									

Qualifiers:

ASSET Laboratories

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified

ASSET LABORATORIES

- E Value above quantitation range
 - J Analyte detected below quantitation limits
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046 CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

"Serving Clients with Passion and Professionalism"

-

Date: 03-Jun-21

CLIENT: CRL Environmental Corporation Work Order: N045573 P00113635 Project:

ANALYTICAL QC SUMMARY REPORT

TestCode: 8141_W

Sample ID: LCS-87732	SampType: LCS	TestCode: 8141_W Units: ug/L	Prep Date: 5/26/2021	RunNo: 153063
Client ID: LCSW	Batch ID: 87732	TestNo: EPA 8141A EPA 3510C	Analysis Date: 5/26/2021	SeqNo: 4220650
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimIt RPD Ref Val	%RPD RPDLimit Qual
Malathion	0.773	0.20 0.7500 0	103 55 141	
Surr: Tributyl Phosphate	0.642	0.7500	85.6 54 143	
Surr: Triphenyl Phosphate	0.685	0.7500	91.3 46 145	
Sample ID: LCSD-87732	SampType: LCSD	TestCode: 8141_W Units: ug/L	Prep Date: 5/26/2021	RunNo: 153063
Client ID: LCSS02	Batch ID: 87732	TestNo: EPA 8141A EPA 3510C	Analysis Date: 5/26/2021	SeqNo: 4220651
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	0.770	0.20 0.7500 0	103 55 141 0.7730	0.339 20
Surr: Tributyl Phosphate	0.631	0.7500	84.1 54 143	0 20
Surr: Triphenyl Phosphate	0.687	0.7500	91.5 46 145	0 20
Sample ID: MB-87732	SampType: MBLK	TestCode: 8141_W Units: ug/L	Prep Date: 5/26/2021	RunNo: 153063
Client ID: PBW	Batch ID: 87732	TestNo: EPA 8141A EPA 3510C	Analysis Date: 5/26/2021	SeqNo: 4220652
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	ND	0.20		
	ND	0.20		
Surr: Tributyl Phosphate	0.575	0.7500	76.6 54 143	

Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Bivd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 NEVADA (P:702.307.2659 F:702.307.2691 ASSET LABORATORIES t

EPA ID CA01638

"Serving Clients with Passion and Professionalism"

ALCADA P. JOL 301 2007 P. JOL 301 2007 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

Н Holding times for preparation or analysis exceeded R RPD outside accepted recovery limits

Calculations are based on raw values

5 of 5

CHAIN OF CUSTODY RECORD

								1	FOR	LABO	ORAT	ORY	USE (ONLY	<i>'</i> :							Pair land and an annual sectors.		
	CR CR	L Environmental	00,000					Metho	d of Tra	anspor	t					S	ample	Conditio	n Upon R	Receip	t			
		Corporation	Lab. NoP00]]36	35			_	Walk-i	n r			1.CHILI	ED		Y		N 🗌	4. SE	EALED			Y		N
Bk	dg. 2, Berthaphil Compound 1,	Berthaphil, Inc. Industrial Park	P.O.#					UPS		Н		2.HEAD	SPAC	E (VOA	A) Y	Π	NП	5.#(OF SPLS	MATO	сн сос	y y	Π	NET
Te Fa	se Abad Santos Ave., Clark Fre I: (6345) 599-3943 • (6345) 49 x (6345) 599-3963	eeport Zone, Clarkfield, Pampanga, Philippines 9-6529 • (632) 552-5100	ENA	a. this	1 I	0t71		FED. E	EXP.							_							_	
Cus	stomer: DOC Co	5.00	Logged By:	Date: 01212	<u></u> 	0.00		CRL				3.CON	AINER	RINTA	CT Y		NL	6. PF	RESERVE	ED		Y		NL
	rusu	EAC			Address:														Tel: ()			<u>.</u>	
Attr	i:				City:						Sta	ate:			Z	lip Co	de:		Fax:()				
L	eu name.		Project #:					Sa	mpler:		(Printe EU	d Name) GENF	N	EKPI	0 、	ir.			Z	ature)				
Reli	inquished by: (signature ar	Nd Printed Name)	x	Date:	21	Tin	ne:	1	Rece	ived b	Y: (Signa	ature and I	Printed Na	ime)		0.1	pilla book		Date:	1.	1.1	T	'ime:	
Reli	nquished by: (Signature a	d Printed Name)		Date:	21	D	9291	1	Rece	ived b	V. /Sion	atura and I	printed Ma	(ma)		IB	1		Date	0.65	Init	<u>/</u>	ime:	935-1
		· · · · · · · · · · · · · · · · · · ·		Date.			10.		11000	Neu D	y. (Signa	ature anu r	TAKEU TAG	ane)					Dute.				inte.	
Reli	nquished by: (Signature ar	nd Printed Name)		Date:		Tim	ne:		Rece	ived b	y: (Signa	ature and f	rinted Na	ime)					Date:			T	'ime:	
SH	IIP TO LAB:	I hereby	authorize CRL to perform the w	ork indicated below:	1.110.10.0.0	Send	Report	To:		-11	,	0100	4	14.00		Spe	cial Ins	tructio	ns/Comn	nents	:			
(9110	CONTRACT	Proj	ect Mgr. / Submi	tter:		Attn:	J	ZNRI	JA.	Elle	smp,	RIKO	ΔH	IME	per	FIA	YA							
TES	ST:	VID.	NET ETEMPON	Doto: 5,	21,21	Cor	PC	sco	E	SC		/												
DAT	ſE:		Print Name	Date/_		C0.																		
CUS	STOMER I.D.			~		Address:																		
		/																						
			/ Signati	ure		City:			S	state:	-		Zip:	- 7								-		
	Unless otherwise	Sample Archive / Disposal:	/			Analys	ite sis(es)	//	11	'/	11		//	11	//		CIR	CLE AP	PROPRIA	ATE		2		
rei	maining samples will	Others	/		Reque	ested /	ted / / / /			//	/////			I.T.	10///						10	1		
be	disposed of 15 days						//	//	//	//	//	///	//	//	000	hal	2/	1/2/	11			N		
	report	*\$10.00 FEE PER H	AZARDOUS SAMPLE DISPO	SAL			//	//	1		1	//	//	10	15/		12/	\$/	2/	Cont	ainer(s	E E		
I T	LAB USE ONLY	San	nple Description			/	11	1	//	/ /		//	1	13	2 3	2	No No	/ /	1/2/			RE		
E M	Latillo	Sample I.D.		Sampling Date	Sampling Time	1		//		//			/ /8	3/3/				100	5 TAT	#	Туре		RE	MARKS
	10011/635-01	DD SW1		5-21-21	08574										1								8.0g	30.10
_									\square		\square													
						\square	\square	_	\square	-	\square			\downarrow			_			$\left \right $				
_						\square	+	_	\square	_		$ \rightarrow $		++	_	\square		\square		\vdash		+		
_						\vdash	++	_		+	\vdash	+	_	++		\square	_		+	++		+		
_						\vdash	++		++	+	+			++		$\left \right $		$\left + \right $		$\left \right $		+		
-						\vdash	++	+	++	+	++	++		++		$\left \right $		$\left + \right $		+		+		
-						\vdash	++	+	++	+	++	++		++		\vdash	+-	$\left \right $	+	+		+	-	
-							+		\square	+	++	+	-	+	-	H		\vdash		\square		+		
n T	AT starts 8 a.m. the f	ollowing day	ht P-	Emergency Next		C -	Critica	al 2	-) - [Urg	gent		6	Ro	outine	7	P	reservat	ives:	I		L	
if sa	mple received beyon	d 12 noon at	s D =	Workday]	C -	Workd	lays	Ľ	,-L	3 Wo	rkdays		F	W	orkda	ys	н	=HCI	N=HN	1O3 S	=H ₂ S	O ₄ (C=<6°C
	the laboratory	Container Ty	pes: T=Tube V=\	/OA L=Liter	r P=Pin	t J	=Jar	B=T	edlar			G=Gla	ISS	P=Pla	astid	M=	Metal	Z	=Zn(AC))2	O=Na	ЭН	T=N	$a_2S_2O_3$

DISTRIBUTION: White with report, Yellow to folder, Pink to submitter

17 June 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan				
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT				
Lab. No.:	DEPOT BUILDING & CIVIL WORKS (CP N - 05) P00113635-01				

Enclosed are the results for sample received by CRL Environmental Corporation and tested for the parameters in the enclosed chain of custody.

Our DENR Recognition with C. R. No. 023/2018, will expire on September 24, 2021.

Likewise, our DOH Accreditation with Accreditation No. <u>03-001-20-LW-2</u>, is valid from January 01, 2020 until December 31, 2022.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARTACARVIELA Q. CAPULE Chief Operating Officer

Results of Analyses

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00083457.002

Lab No.:P00113635

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	Ву	Ref*
Sample No.: P00113635-01			DateSampled:	05-21-21 08:5	7			
Sample ID: DD SW1	Matrix: Surface Water							
-Organics-								
PHENOLS								
2,4,6-trichlorophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	05/27/21	IJMF	
2,4-dichlorophenol	ND	mg/L	0.0010	0.0010	USEPA Method 8041A	05/27/21	IJMF	
2,4-dimethylphenol	ND	mg/L	0.0011	0.0011	USEPA Method 8041A	05/27/21	IJMF	
2,4-dinitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	05/27/21	IJMF	
2-chlorophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	05/27/21	IJMF	
2-methyl-4,6-dinitrophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	05/27/21	IJMF	
2-nitrophenol	ND	mg/L	0.0006	0.0006	USEPA Method 8041A	05/27/21	IJMF	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.0019	USEPA Method 8041A	05/27/21	IJMF	
4-nitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	05/27/21	IJMF	
pentachlorophenol	ND	mg/L	0.0018	0.0018	USEPA Method 8041A	05/27/21	IJMF	
phenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	05/27/21	IJMF	

>>> end of result set for Sample No .: P00113635-01 <<<

>>> end of result set for Lab No.:P00113635; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Page 1 of 2 FN>>>>00384393>>>>

CRL Environmental Corporation Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

Certified By:

Rosé Ann W. Veloria PRC License No.: 11238 Chemical Testing

dutraduraien

Mary Anne G. Rodriguez PRC License No.: 10281 Chemical Testing Date: 4/18/21

Date: 10/18/75/

SN: F00083457.002

Disclaimer. This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00384393>>>>

CRL Environmental Corporation ■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

07 June 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT
Lab. No.:	P00113810-01

Enclosed are the results for sample received by CRL Environmental Corporation and tested for the parameters in the enclosed chain of custody.

Our DENR Recognition with C. R. No. 023/2018, will expire on September 24, 2021.

Likewise, our DOH Accreditation with Accreditation No. <u>03-001-20-LW-2</u>, is valid from January 01, 2020 until December 31, 2022.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARIA CARMELA Q. CAPULE Chief Operating Officer

Results of Analyses

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00083504.001 05/27/2021 Date Received:

Lab No.:P00113810

NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & Project Name: CIVIL WORKS (CP N - 05)

Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan Attention:

Test Description	Results	Units	Test Methods	Date Analyzed	Ву	Ref*
Sample No.: P00113810-01			DateSampled: 05-27-21 16:28			
Sample ID: DD SW1			Matrix: Surface Water			
-Metals-						
Arsenic**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/03/21	MLSA	
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/03/21	MLSA	
Lead**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/03/21	MLSA	
Mercury**	< 0.0002	mg/L	Cold Vapor AAS	06/01/21	EDC	
Dissolved Copper	0.08	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/03/21	MLSA	
-Microbiology-						
Total Coliforms**	350	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	05/28/21	TNCR	
Fecal Coliforms**	240	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	05/28/21	TNCR	
-Wet Chemistry-						
pH**, onsite	7.8	-	Electrometric Method (SM 4500-H+ B)	05/27/21	-	
Temperature**, onsite	33.1	°C	Laboratory & Field Method (SM2550 B)	05/27/21	17.1	
Dissolved Oxygen**	6	mg/L	Winkler/Titrimetric	05/27/21	PSSM	
Biological Oxygen Demand**	15	mg/L	5-Day BOD Test (SM 5210 B)	05/28/21	PSSM	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.1	mg/L	Colorimetry - Chloroform Extraction	05/28/21	AGAS	
Total Suspended Solids**	13	mg/L	Gravimetry (SM 2540 D)	06/02/21	MPT	
Oil & Grease	3.5	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520 B)	06/01/21	WBD	
Chloride**	178	mg/L	Argentometric Method (SM4500 CI-B)	06/01/21	MLJ	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	05/28/21	ANBB	
Cyanide**, Free	0.02	mg/L	Ion Selective Electrode (SM 4500 CN-F)	05/28/21	MPY	
Nitrate - N**	0.4	mg/L	Colorimetry - Brucine (EPA 352.1)	05/28/21	AGAS	
Phosphate - P**	1.4	mg/L	Stannous Chloride Method (SM 4500-P D)	05/28/21	MPY	

>>> end of result set for Sample No .: P00113810-01 <<<

>>> end of result set for Lab No.:P00113810; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Page 1 of 2 FN>>>>00383494>>>>

- Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Certified by:

Synhol

Gerald T. Yabut PRC License No.: 0027218 Microbiological Testing

Ronald

PRC License No.: 9248 Chemical Testing

Jana C. Oriña

PRC License No.: 8774 Chemical Testing

and

Chas C. Arroyo PRC License No: 6701 Chemical Testing

Date: 06/07/21

alah Date:

(eloghny Date:

6logh Date:

SN: F00083504.001

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00383494>>>>

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

Results of Analyses

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00083504.002

Lab No.:P00113810

Date Received:

05/27/2021

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	Ву	Ref*
Sample No.: P00113810-01			DateSampled:	05-27-21 16:28	3			
Sample ID: DD SW1	Matrix: Surface Water							
-Organics-								
PHENOLS								
2,4,6-trichlorophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	06/02/21	IJMF	
2,4-dichlorophenol	ND	mg/L	0.0010	0.0010	USEPA Method 8041A	06/02/21	IJMF	
2,4-dimethylphenol	ND	mg/L	0.0011	0.0011	USEPA Method 8041A	06/02/21	IJMF	
2,4-dinitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/02/21	IJMF	
2-chlorophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/02/21	IJMF	
2-methyl-4,6-dinitrophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	06/02/21	IJMF	
2-nitrophenol	ND	mg/L	0.0006	0.0006	USEPA Method 8041A	06/02/21	IJMF	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.0019	USEPA Method 8041A	06/02/21	IJMF	
4-nitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/02/21	IJMF	
pentachlorophenol	ND	mg/L	0.0018	0.0018	USEPA Method 8041A	06/02/21	IJME	
phenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/02/21	IJMF	

>>> end of result set for Sample No.:P00113810-01 <<<

>>> end of result set for Lab No.:P00113810; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Page 1 of 2

CRL Environmental Corporation Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Avc., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552 5100 - Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

Certified By:

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

altres Ingres Mary Anne G. Rodriguez

PRC License No.: 10281 Chemical Testing

Date: 6/2/21

Date: UMMM

SN: F00083504.002

Disclaimer. This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00385550>>>>

CRL Environmental Corporation ■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

22 June 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan			
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT			
	DEPOT BUILDING & CIVIL WORKS (CP N - 05)			
Lab. No.:	P00114100-01			

Enclosed are the result and QC Data for sample received by CRL Environmental Corporation which was subcontracted to ASSET Laboratories, LV, NV, USA for testing of the requested parameter in the enclosed chain of custody.

The above Lab. No. has a corresponding Lab. ID N045800-001A by ASSET Laboratories, LV, NV, USA.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARIA CARMELA Q. CAPULE

Chief Operating Officer

Date: 17-Jun-21

CLIENT:	CRL Environmental Corporation	
Project:	P00114100	CASE NARRATIVE
Lab Order:	N045800	

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Results were J-Flag. "J" is used to flag those results that are between the PQL (Practical Quantitation Limit) and the calculated MDL (Method Detection Limit). Results that are "J" Flagged are estimated values since it becomes difficult to accurately quantitate the analyte near the MDL.

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638 NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

Date: 17-Jun-21

CLIENT: CRL Environmental Corporation Project: P00114100 Lab Order: N045800 Contract No: Contract No:			Work (Work Order Sample Summ				
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported			
N045800-001A	P00114100-01	Surface Water	6/4/2021 10:01:00 AM	6/9/2021	6/17/2021			

ASSET LABORATORIES "Serving Clients with Passion and Professionalism"

CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638 NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046
AIVALI IICALI MUSSIII	AN	AL	YT	ICAL	RES	UL	TS
-----------------------	----	----	----	------	-----	----	----

Print Date: 17-Jun-21

CLIENT:	CRL Environme	ental Corporation		Cl	ient Sample ID:	P00114100-01		
Lab Order:	N045800			Collection Date: 6/4/2021 10:01:00 AM				
Project:	P00114100		Matrix: SURFACE WATER					
Lab ID:	N045800-001							
Analyses		Result	MDL	PQL	Qual Un	its DF	Date Analyzed	
ORGANOPHO	SPHORUS PESTIC	CIDES			2005-02016			
		EPA 3510C		EPA	8141A			
RunID: NV00	922-GC11_210609B	QC Batch: 87	956		PrepDate:	6/9/2021	Analyst: JJS	
Malathion		ND	0.035	0.18	ug/L	1	6/9/2021 06:36 PM	
Surr: Tribut	yl Phosphate	102	0	54-143	%RE	C 1	6/9/2021 06:36 PM	
Surr: Triphe	envi Phosphate	116	0	46-145	%RE	C 1	6/9/2021 06:36 PM	

Qualifiers:

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638 NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

Project:

Date: 17-Jun-21

CLIENT: CRL Environmental Corporation Work Order: N045800 P00114100

ANALYTICAL QC SUMMARY REPORT

TestCode: 8141_W

Sample ID: LCS-87956	SampType: LCS	TestCode: 8141_W Units: ug/L	Prep Date: 6/9/2021	RunNo: 153432
Client ID: LCSW	Batch ID: 87956	TestNo: EPA 8141A EPA 3510C	Analysis Date: 6/9/2021	SeqNo: 4238177
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	0.966	0.20 0.7500 0	129 55 141	
Surr: Tributyl Phosphate	0.759	0.7500	101 54 143	
Surr: Triphenyl Phosphate	0.897	0.7500	120 46 145	
Sample ID: LCSD-87956	SampType: LCSD	TestCode: 8141_W Units: ug/L	Prep Date: 6/9/2021	RunNo: 153432
Client ID: LCSS02	Batch ID: 87956	TestNo: EPA 8141A EPA 3510C	Analysis Date: 6/9/2021	SeqNo: 4238178
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	0.985	0.20 0.7500 0	131 55 141 0.9657	1.98 20
Surr: Tributyl Phosphate	0.773	0.7500	103 54 143	0 20
Surr: Triphenyl Phosphate	0.925	0.7500	123 46 145	0 20
Sample ID: MB-87956	SampType: MBLK	TestCode: 8141_W Units: ug/L	Prep Date: 6/9/2021	RunNo: 153432
Client ID: PBW	Batch ID: 87956	TestNo: EPA 8141A EPA 3510C	Analysis Date: 6/9/2021	SeqNo: 4238179
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	ND	0.20		
Surr: Tributyl Phosphate	0.691	0.7500	92.2 54 143	
Surr: Triphenyl Phosphate	0.834	0.7500	111 46 145	

Qualifiers: B Analyte detected in the associated Method Blank E Value above quantitation range J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 ASSET LABORATORIES

EPA ID CA01638

CON "Serving Clients with Passion and Professionalism"

NEVADA | P:702.307.2659 F:702.307.2691 2151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

H Holding times for preparation or analysis exceeded

R RPD outside accepted recovery limits Calculations are based on raw values

CRL-FM-SC-001	
Rev. 3.0	
01/04/18	

CHAIN OF CUSTODY RECORD

			FO	R LABORATORY USE	EONLY: 2		
CRL Environmental	and the		Method of	Transport	IR # Sam	ple Condition Upon Receipt	
Corporation	Lab. No 100 114100		Walk-in	1.CHILLED	26 ICY N	4. SEALED	YO NO
Bidg. 2, Berthaphi Compound 1, Berthaphi, Inc. Industrial Park	P.O.#		Courier			đ	
Jose Abad Santos Ave., Clark Freeport Zone, Clarkfield, Pampanga, Philippines Tel: (6345) 599-3943 + (6345) 499-6529 + (632) 552-5100	F.U.#				ACE (VOA) Y 🗌 N	5. # OF SPLS MATCH COC	Y N
Fax (6345) 599-3963	Logged By: ETRA Date: -4-:	21 Time: 1120-#	CRI				
Customer:		Address:	de	Wor MA		0. PRESERVED	
Alto: TOSCO		r indi oddi	Cla	appa pe	you	Tel: ()	
Project Name:	Project #:	City:	Samo	State:	Zip Code:	Fax:()	
N			Samp	and and	Acres	(signable)	
Relinquished by: (Signature and Printed Name)	Date:	Tir Tir	me: R	eceived by (Signature and Printed	(Name)	2 Date:	Time:
	() SP	21	D-520m	0.0	/ E	14 5 1 6/4/21	10024
Relinquished by: (Signature and Printed Namo)	Date	1 Tir	me: R	eceived by: (Signature and Printed	Name)	Date!	Time:
Bellevichedt	l						
Relinquished by: (Signature and Printed Name)	Date:	Tir	me: R	eceived by: (Signature and Printed	Name)	Date:	Time:
		0	10. IT				
Shir TO LAD: Proj	ect Mar. / Submitter	r: Send	TAT A	FLAMPARD 1. TA	IME DEST	Instructions/Comments:	
(SUB CONTRACT)	eet mgr. / oublinitier.	Aun:	JUNPU M	(1) (1) (1) (1) (1)	THE FREIN	2)5	
TEST:	JEL A. TRAMPAR Date: O	19 71 Co:	DOS	WEFT			
DATE:	Print Name						
CUSTOMER I.D.	(A CONTRACTOR OF A CONTRACTOR	Addr	ress:				
l	Signature	City:		State: Zip:			
Unless otherwise Sample Archive / Disposal:	1	Analy	rite rsis(es)			CIRCLE APPROPRIATE	
remaining samples will		Requ	rested	///////	11/11	MATRIX	NO NO
be disposed of 15 days			////	//////			/AT
report *\$10.00 FEE PER H	AZARDOUS SAMPLE DISPOSAL	1	////	///////	1 3 2 4 4	g / g / Container(s)	ER
LAB USE ONLY San	nole Description	/	/////	//////			8 mm
E contra	Sampling	Sampling	/////	///////	19/8/8/5/5/	\$ 12/5/	ELNIP
M Lab No. Sample I.D.	pare /	Time	1111	111111	8 8 8 8 8 8	S S TAT # Type	REMARKS
PO0114100-01 111 5201	UKM	10:01					7.424 30.51
40							1,0,0
		+++		+++++			
		+		+++++		┍╌╂╌╂╌┼╌╌╂	
		++		┼┼┼┼┼┼			
= TAT starts 9 a m the following day	ht]						
if sample received beyond 12 noon at TAT: A =	s. B = Workday	C =	Workdays	D = Urgent 3 Workdays	E = Routine 7 Workdays	Preservatives:	
the laboratory Container Tw		P=Dint	In los D-7-	0-01	D-Di-ri-	H=HCI N=HNO ₃ S=1	H ₂ SU ₄ C=<6°C
Container Ty	v=vOA L=Lite	a P=Pint J	J=Jar B=Tedla	ar G=Glass	P=Plastic M=Met	al Z=Zn(AC) ₂ O=NaOF	1 T=Na ₂ S ₂ O ₃

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00083726.002

Date Received:

06/04/2021

Lab No.:P00114100

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	Ву	Ref
Sample No.: P00114100-01			DateSampled:	06-04-21 10:01				
Sample ID: DD SW1			Matrix: Surfac	e Water				
-Organics-								
PHENOLS								
2.4.6-trichlorophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	06/08/21	IJMF	
2.4-dichlorophenol	ND	mg/L	0.0010	0.0010	USEPA Method 8041A	06/08/21	IJMF	
2.4-dimethylphenol	ND	mg/L	0.0011	0.0011	USEPA Method 8041A	06/08/21	IJMF	
2,4-dinitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/08/21	IJMF	
2-chlorophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/08/21	IJMF	
2-methyl-4,6-dinitrophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	06/08/21	IJMF	
2-nitrophenol	ND	mg/L	0.0006	0.0006	USEPA Method 8041A	06/08/21	IJMF	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.0019	USEPA Method 8041A	06/08/21	IJMF	
4-nitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/08/21	IJMF	
pentachlorophenol	ND	mg/L	0.0018	0.0018	USEPA Method 8041A	06/08/21	IJMF	
phenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/08/21	IJMF	

>>> end of result set for Sample No.:P00114100-01 <<<

>>> end of result set for Lab No.:P00114100; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

CRL Environmental Corporation

■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Certified By:

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

Mary Anne G. Rodriguez

PRC License No.: 10281 Chemical Testing Date: 4/21/21

W/mm Date:

SN: F00083726.002

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00385547>>>>

CRL Environmental Corporation

■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00083726.001 06/04/2021

Lab No.:P00114100

Date Received:

NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & **Project Name:** CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	Test Methods	Date Analyzed	Ву	Ref
Sample No.: P00114100-01	1		DateSampled: 06-04-21 10:01	1	1	
Sample ID: DD SW1 -Metals-			Matrix: Surface Water			
Arsenic**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/09/21	JLJ	
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/09/21	JLJ	
Lead**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/09/21	JLJ	
Mercury**	< 0.0002	mg/L	Cold Vapor AAS	06/11/21	EDC	
Dissolved Copper	0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/09/21	JLJ	
-Microbiology-						
Total Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	06/04/21	IMBG	
Fecal Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	06/04/21	IMBG	
-Wet Chemistry-						
pH**, onsite	7.4		Electrometric Method (SM 4500-H+ B)	06/04/21	-	
Temperature**, onsite	30.5	°C	Laboratory & Field Method (SM2550 B)	06/04/21		
Dissolved Oxygen**	7	mg/L	Winkler/Titrimetric	06/04/21	PSSM	
Biological Oxygen Demand**	11	mg/L	5-Day BOD Test (SM 5210 B)	06/06/21	PSSM	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.4	mg/L	Colorimetry - Chloroform Extraction	06/06/21	AGAS	
Total Suspended Solids**	26	mg/L	Gravimetry (SM 2540 D)	06/10/21	MPT	
Oil & Grease	1.4	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520 B)	06/10/21	WBD	
Chloride**	200	mg/L	Argentometric Method (SM4500 CI-B)	06/09/21	MLJ	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	06/07/21	ANBB	
Cyanide**, Free	0.02	mg/L	Ion Selective Electrode (SM 4500 CN-F)	06/07/21	MPY	
Nitrate - N**	0.7	mg/L	Colorimetry - Brucine (EPA 352.1)	06/08/21	NGCM	
Phosphate - P**	1.5	mg/L	Stannous Chloride Method (SM 4500-P D)	06/05/21	MPT	

>>> end of result set for Sample No .: P00114100-01 <<<

>>> end of result set for Lab No.:P00114100; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Certified by:

Geraluine T. Yabut PRC License No.: 0027218 Microbiological Testing

Ronald GVEspiritu PRC License No.: 9248 Chemical Testing

Juliana C. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroyo PRC License No.: 6701 Chemical Testing

Date: 06/15/2/

Date: aliem

Wm Date:

1 Jul Date:

SN: F00083726.001

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

FN>>>>00384133>>>>

Page 2 of 2

CRL Environmental Corporation Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Avc., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

29 June 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)
Lab. No.:	P00114418-01

Enclosed are the results for sample received by CRL Environmental Corporation and tested for the parameters in the enclosed chain of custody.

Our DENR Recognition with C. R. No. 023/2018, will expire on September 24, 2021.

Likewise, our DOH Accreditation with Accreditation No. <u>03-001-20-LW-2</u>, is valid from January 01, 2020 until December 31, 2022.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARIA CARMELA Q. CAPULE Chief Operating Officer

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00084100.002

Lab No.:P00114418

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	Test Methods	Date Analyzed	Ву	Ref*
Sample No.: P00114418-01			DateSampled: 06-16-21 09:32			
Sample ID: DD SW1 -Metals-			Matrix: Surface Water			
Arsenic**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/22/21	PPG	
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/22/21	PPG	
Lead**	< 0.005	mg/l.	ICP - OES (SMEWW 3120B / EPA 6010B)	06/22/21	PPG	
Mercury**	< 0.0002	mg/L	Cold Vapor AAS	06/22/21	EDC	
Dissolved Copper	0.02	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/22/21	PPG	
-Microbiology-						
Total Coliforms**	3,500	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	06/16/21	IMBG	
Fecal Coliforms**	3,500	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	06/16/21	IMBG	
-Wet Chemistry-						
pH**, onsite	7.4	-	Electrometric Method (SM 4500-H+ B)	06/16/21		
Temperature**, onsite	30.0	°C	Laboratory & Field Method (SM2550 B)	06/16/21		
Dissolved Oxygen**	6	mg/L	Winkler/Titrimetric	06/16/21	PSSM	
Biological Oxygen Demand**	1	mg/L	5-Day BOD Test (SM 5210 B)	06/17/21	PSSM	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.1	mg/L	Colorimetry - Chloroform Extraction	06/16/21	AGAS	
Total Suspended Solids**	4.0	mg/L	Gravimetry (SM 2540 D)	06/19/21	MPT	
Oil & Grease	1.1	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520 B)	06/20/21	WBD	
Chloride**	132	mg/L	Argentometric Method (SM4500 CI-B)	06/17/21	MLJ	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	06/16/21	ANBB	
Cyanide**, Free	0.02	mg/L	Ion Selective Electrode (SM 4500 CN-F)	06/17/21	MPY	
Nitrate - N**	0.2	mg/L	Colorimetry - Brucine (EPA 352.1)	06/17/21	NGCM	
Phosphate - P**	1.1	mg/L	Stannous Chloride Method (SM 4500-P D)	06/16/21	MPY	

>>> end of result set for Sample No .: P00114418-01 <<<

>>> end of result set for Lab No.:P00114418; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Page 1 of 2 FN>>>>00386285>>>>

CRL Environmental Corporation Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599 3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@erllabs.com • http://www.crllabs.com

Analyzed by:

Ina Micaela B. Gonzales PRC License No.: 0087105 Microbiological Testing

Prescilla C. Gatbonton PRC License No.: 679 Chemical Testing

ma

Nathaniel Glenn C. Martin PRC License No.: 14175 Chemical Testing

Certified by:

Geraldine T. Yabut PRC License No.: 0027218 Microbiological Testing

Ronald **G**. Espiritu PRC License No.: 9248 Chemical Testing

Juliana C. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroyo

PRC License No.: 6701 Chemical Testing

Date: 06/29/2021

06/29/2021

Date:

Date: 06/29/2021

Date: 06/30/2

Date: alem

Date:

Date:

SN: F00084100.002

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official doy seal of CRL

Page 2 of 2 FN>>>>00386285>>>>

CRL Environmental Corporation

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Avc., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00084100.003

Date Received:

06/16/2021

Lab No.:P00114418

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	By	Ref
Sample No.: P00114418-01			DateSampled	: 06-16-21 09:32	2			-
Sample ID: DD SW1			Matrix: Surfa	ce Water				
-Organics-								
PHENOLS								
2,4,6-trichlorophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	06/17/21	CNCP	
2,4-dichlorophenol	ND	mg/L	0.0010	0.0010	USEPA Method 8041A	06/17/21	CNCP	
2,4-dimethylphenol	ND	mg/L	0.0011	0.0011	USEPA Method 8041A	06/17/21	CNCP	
2,4-dinitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/17/21	CNCP	
2-chlorophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/17/21	CNCP	
2-methyl-4,6-dinitrophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	06/17/21	CNCP	
2-nitrophenol	ND	mg/L	0.0006	0.0006	USEPA Method 8041A	06/17/21	CNCP	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.0019	USEPA Method 8041A	06/17/21	CNCP	
4-nitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/17/21	CNCP	
pentachlorophenol	ND	mg/L	0.0018	0.0018	USEPA Method 8041A	06/17/21	CNCP	
phenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/17/21	CNCP	

>>> end of result set for Sample No .: P00114418-01 <<<

>>> end of result set for Lab No.:P00114418; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Page 1 of 2 FN>>>>00386286>>>>

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

Analyzed by:

Nardo

Chastee Neill C. Prado PRC License No.: 12769 Chemical Testing

Certified by:

KADANI

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

distudriques

Mary Anne G. Rodriguez PRC License No.: 10281 Chemical Testing Date: 06/29/2021

06/29/2021

Date: 06/29/2021

Date:

SN: F00084100.003

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authonization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00386286>>>>

■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

25 June 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT
Lab No :	DEPOT BUILDING & CIVIL WORKS (CP N - 05)
Lab. 190	100114218-01

Enclosed are the result and QC Data for sample received by CRL Environmental Corporation which was subcontracted to ASSET Laboratories, LV, NV, USA for testing of the requested parameter in the enclosed chain of custody.

The above Lab. No. has a corresponding Lab. ID N045874-001A by ASSET Laboratories, LV, NV, USA.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

ARMELA O. CAPULE Chief Operating Officer

Date: 22-Jun-21

CLIENT:	CRL Environmental Corporation	
Project:	P00114218	CASE NARRATIVE
Lab Order:	N045874	

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Results were J-Flag. "J" is used to flag those results that are between the PQL (Practical Quantitation Limit) and the calculated MDL (Method Detection Limit). Results that are "J" Flagged are estimated values since it becomes difficult to accurately quantitate the analyte near the MDL.

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Date: 22-Jun-21

CLIENT: Project:	CRL Environmental C P00114218	orporation	Work (Work Order Sample Summary				
Contract No:	1043874							
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported			
N045874-001A	P00114218-01	Surface Water	6/9/2021 12:05:00 PM	6/15/2021	6/22/2021			

CALIFORNIA (P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

Print Date: 22-Jun-21

CLIENT:	CRL Environme	ntal Corporation		Client Sample ID: P00114218-01							
Lab Order:	N045874		Collection Date: 6/9/2021 12:05:00 PM								
Project:	P00114218				Matrix	: SURFACE WA	TER				
Lab ID:	N045874-001										
Analyses		Result	MDL	PQL	Qual U	nits DF	Date Analyzed				
ORGANOPHO	SPHORUS PESTIC	IDES									
	1	EPA 3510C		EPA	8141A						
RunID: NV00	922-GC11_210616A	QC Batch: 88	050		PrepDate:	6/16/2021	Analyst: JJS				
Malathion		ND	0.036	0.19	ug/L	. 1	6/16/2021 03:41 PM				
Surr: Tribuly	yl Phosphate	102	0	54-143	%RI	EC 1	6/16/2021 03:41 PM				
Surr: Triphe	envil Phosphate	104	0	46-145	%R	EC 1	6/16/2021 03:41 PM				

ASSET Laboratories

Qualifiers: B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified
- E Value above quantitation range

J Analyte detected below quantitation limits

S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

ASSET LABORATORIES

CALIFORNIA (P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 "EPA ID CA01638 "Serving Clients with Passion and Professionalism"

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

In case of the local division of the local d

Date: 22-Jun-21

CLIENT: CRL Environmental Corporation

Work Order: N045874 Project: P00114218

ANALYTICAL QC SUMMARY REPORT

TestCode: 8141_W

Sample ID: LCS-88050	SampType: LCS	TestCode: 8141_W Units: ug/L	Prep Date: 6/16/2021	RunNo: 153606
Client ID: LCSW	Batch ID: 88050	TestNo: EPA 8141A EPA 3510C	Analysis Date: 6/16/2021	SeqNo: 4246797
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	0.730	0.20 0.7500 0	97.3 55 141	
Surr: Tributyl Phosphate	0.607	0.7500	80.9 54 143	
Surr: Triphenyl Phosphate	0.777	0.7500	104 46 145	
Sample ID: LCSD-88050	SampType: LCSD	TestCode: 8141_W Units: ug/L	Prep Date: 6/16/2021	RunNo: 153606
Client ID: LCSS02	Batch ID: 88050	TestNo: EPA 8141A EPA 3510C	Analysis Date: 6/16/2021	SeqNo: 4246798
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	0.728	0.20 0.7500 0	97.1 55 141 0.7297	0.220 20
Surr: Tributyl Phosphate	0.565	0.7500	75.4 54 143	0 20
Surr: Triphenyl Phosphate	0.699	0.7500	93.2 46 145	0 20
Sample ID: MB-88050	SampType: MBLK	TestCode: 8141_W Units: ug/L	Prep Date: 6/16/2021	RunNo: 153606
Client ID: PBW	Batch ID: 88050	TestNo: EPA 8141A EPA 3510C	Analysis Date: 6/16/2021	SeqNo: 4246799
Analyte	Result	PQL SPK value SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Malathion	ND	0.20		
Surr: Tributyl Phosphate	0.704	0.7500	93.8 54 143	
Surr: Triphenyl Phosphate	0.803	0.7500	107 46 145	

CHAIN OF CUSTODY RECORD

Page___ of ____

	the second s	the second s	and the local data and the second second	State of Lot of	-	-	-			- 1 4 m												
								FOR	LAB	ORATO	DRY US	E ONL	.Y:		and the first the same	And in contrasts	That	10 -	av 7			٦
	CRL Environmental	Lob N-	ØL MA COM				Metho	d of Tr	ranspo	rt					Sample	Condi	tion Upon	Receipt	0			-
	Corporation	Lab. No	Kron4218		-	_	Walk-	in		1.	CHILLED			YE	NC	4.	SEALED			YT		
Bldg. 2, Berthaphil Compoun	d 1, Berthaphil, Inc. Industrial Park	BO#	,				Courie	ər							-					_		
Jose Abad Santos Ave., Clar Tel: (6345) 599-3943 • (6345)	k Freeport Zone, Clarkfield, Pampanga, Phi) 499-6529 • (632) 552-5100	lippines				_	UPS			2.	HEADSP	ACE (V	OA)	Υ□	N	5.	# OF SPL	S MATC	нсос	۲Ľ	N D	
Fax (6345) 599-3963	Contraction on	Logged By: Spn	Dates	121 Times of	ULENA		FED.	EXP.													/	1
Customer: Do	- A - L		Datepation	<u></u> i mie: <u>{*</u>	4-71-1		CRL		Z	3.	CONTAIN	IER INT	ACT	YD	N	6.	PRESER	/ED		YE		
F05	s w Engineeri	ng & Constru	ation	Address:													Tel: ()				
Attn: Project Name:	0	0 CO. 1	d	City:						State		0000000		Zin C	odo:		Eand					-
rioject Name:		Project #:	1				Sa	ampler:	:	(Printed I	Name)			Zip C	oue.) inature)				-
Relinquiched but to:		Δ						A	n	(In	Per	100		18) -	TOLE	Zafr	,				
Signatur	re and Printed Name)	Yan I	Date:	17	Tin	ne:		Rece	eived b	Y: (Signatu	re and Printer	d Name)		01		1	Date:		(Tin		-
Relinquished by an	/ .	PERIO	Ģ	19/2)		12	200 N						((Q 14			crate.	NI	aba			
reanduished by. (Signatur	e and Printed Name)	V	Date: /	/ /	Tin	ne:		Rece	eived b	Y: (Signatur	re and Printed	d Name)		NR			Date:	0660	410.	Tin	Int H	-
Relinquished by:		,																			10.	
Signatur	e and Printed Name)		Date:		Tin	ne:		Rece	eived b	Y: (Signatur	e and Printed	i Name)					Date:			Tin	ne:	-
																	2410.					
SHIP TO LAB:		I hereby authorize CRL to perform the	work indicated below	:	Send	Repor	t To:							Sne	cial Ind	tructi	ons/Com	mente				-
(SLD CONTRACT)	1	Project Mgr. / Subn	nitter:		Attn:	JON	FL TL	9mp/	Apri	1JA1	MB	ARF	1260		lau	00-		nems.	'n	. 1		
TEST.		TRIEL ELGANDA	2				~		1	-10		1.	110.3	47	1000	0 -1-		- 2.	e	m/s		
DATE		JUNEL ELAMPAI	20 Date: 06 /	09,1	Co:	27 <u>112</u>	po	500	t	+C	-			IX	lidt	h		21	FI	P.		
CUSTOMERID		Print Name	/			0.000	,							-			(0.0	11			
					Addre	ess:		- 10-0747 S						D	cpt	\sim		かす	cm			
														1				11				
Italaa at a	Samela Archive (Di	Signa	iture		City:			S	State: _		Zip:				lo	vd	4					
requested, all	Sample Archive / Disposal:	/1			Analys	ite sistes)	11	11	//	11	11	TT	11	_	CIR	CLE A	PROPRI	ATE				٦
remaining samples will		/			Reque	ested /		//	/ /	///	///	1/				M	ATRIX			Z		
be disposed of 15 days	Others					/	11	//	/ /	11	11	//	141	2/	11	/	111	1		E		
after the release of	Return To:					11	//	/ /	/	///	///	1/	[§]§	lal	0/	181	11			A		
		EE PER HAZARDOUS SAMPLE DISPO	DSAL		1	//	//	//	/ /	11	11	11	Ĩ[\$]	3/3	15/	ŝ/	15/1	Contai	iner(s)	Ш.		
T LAB USE ONLY		Sample Description			1/	11	///	//	1	///	///	18	2/3	Isl	3 2	1 /	Z/ /				4/1000	
M Lab No.	Samp	le I.D.	Sampling	Sampling	1/1	//	//	11	/ /	11	11	121	2/2/	3/2	5/3/	14	121			E F	FI/semp	4
R. W.D. E-AI	DOSIN -	1	La La La	loha 14	FF		4	\leftarrow		\leftarrow	+++	5/0	15/0	$\frac{3}{2}$	0/2	131	6/ TAT	T # T	ype	Ê	REMARKS '	
- rwith ris of	1 2030		06/09/11	NOWH									1							7	75m	2
_																	1			- ·	10	7
						++		\vdash	+			++		+		\vdash		++		_		-
					\vdash	+	-	\vdash	-													
																		IT				1
												++		++	-			++				-
						++					-++	+	_	+	_		-					
						T								\square								1
						++	+		+	-+-+	-+-+-	++		++				\vdash		-+		_
						+																
										IT	T	IT										1
						++		+	++			++		++				\vdash	+			-
TAT starts 8 a m the	following dow	Dummight		1				-														
if sample received hevo	nd 12 noon at	≤ 24 hrs. B =	Emergency Next		C =	Critica	12	D	=	Urgent		E -	Ro	utine 7	7	P	reservati	ves:				1
the laborato	ry O L		workuay	1	L	Workd	ays	Ľ		3 Workda	γs	E -	W	orkday	s	н	HCI N	HNO	3 S=ł	l₂SO₄	C=<6°C	
	Contain	er Types: T=Tube V=\	/OA L=Liter	P=Pint	J=	Jar	B=Te	dlar		G=	Glass	P=Pla	astic	M=N	Aetal	7	=Zn(AC)	. 0	=NaOF	. – – 4 Т:	Na S.O.	
			And the second se	the second s	101010-000			_	-							1-		2 0.	INDUL		11020203	

DISTRIBUTION: White with report, Yellow to folder, Pink to submitter

29 June 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)
Lab. No.:	P00114418-01

Enclosed are the results for sample received by CRL Environmental Corporation and tested for the parameters in the enclosed chain of custody.

Our DENR Recognition with C. R. No. 023/2018, will expire on September 24, 2021.

Likewise, our DOH Accreditation with Accreditation No. <u>03-001-20-LW-2</u>, is valid from January 01, 2020 until December 31, 2022.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARIA CARMELA Q. CAPULE Chief Operating Officer

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00084100.002

Lab No.:P00114418

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	Test Methods	Date Analyzed	Ву	Ref*
Sample No.: P00114418-01			DateSampled: 06-16-21 09:32			
Sample ID: DD SW1 -Metals-			Matrix: Surface Water			
Arsenic**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/22/21	PPG	
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/22/21	PPG	
Lead**	< 0.005	mg/l.	ICP - OES (SMEWW 3120B / EPA 6010B)	06/22/21	PPG	
Mercury**	< 0.0002	mg/L	Cold Vapor AAS	06/22/21	EDC	
Dissolved Copper	0.02	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	06/22/21	PPG	
-Microbiology-						
Total Coliforms**	3,500	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	06/16/21	IMBG	
Fecal Coliforms**	3,500	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	06/16/21	IMBG	
-Wet Chemistry-						
pH**, onsite	7.4	-	Electrometric Method (SM 4500-H+ B)	06/16/21		
Temperature**, onsite	30.0	°C	Laboratory & Field Method (SM2550 B)	06/16/21		
Dissolved Oxygen**	6	mg/L	Winkler/Titrimetric	06/16/21	PSSM	
Biological Oxygen Demand**	1	mg/L	5-Day BOD Test (SM 5210 B)	06/17/21	PSSM	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.1	mg/L	Colorimetry - Chloroform Extraction	06/16/21	AGAS	
Total Suspended Solids**	4.0	mg/L	Gravimetry (SM 2540 D)	06/19/21	MPT	
Oil & Grease	1.1	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520 B)	06/20/21	WBD	
Chloride**	132	mg/L	Argentometric Method (SM4500 CI-B)	06/17/21	MLJ	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	06/16/21	ANBB	
Cyanide**, Free	0.02	mg/L	Ion Selective Electrode (SM 4500 CN-F)	06/17/21	MPY	
Nitrate - N**	0.2	mg/L	Colorimetry - Brucine (EPA 352.1)	06/17/21	NGCM	
Phosphate - P**	1.1	mg/L	Stannous Chloride Method (SM 4500-P D)	06/16/21	MPY	

>>> end of result set for Sample No .: P00114418-01 <<<

>>> end of result set for Lab No.:P00114418; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Page 1 of 2 FN>>>>00386285>>>>

CRL Environmental Corporation Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599 3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@erllabs.com • http://www.crllabs.com

Analyzed by:

Ina Micaela B. Gonzales PRC License No.: 0087105 Microbiological Testing

Prescilla C. Gatbonton PRC License No.: 679 Chemical Testing

ma

Nathaniel Glenn C. Martin PRC License No.: 14175 Chemical Testing

Certified by:

Geraldine T. Yabut PRC License No.: 0027218 Microbiological Testing

Ronald **G**. Espiritu PRC License No.: 9248 Chemical Testing

Juliana C. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroyo

PRC License No.: 6701 Chemical Testing

Date: 06/29/2021

06/29/2021

Date:

Date: 06/29/2021

Date: 06/30/2

Date: alem

Date:

Date:

SN: F00084100.002

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official doy seal of CRL

Page 2 of 2 FN>>>>00386285>>>>

CRL Environmental Corporation

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Avc., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00084100.003

Date Received:

06/16/2021

Lab No.:P00114418

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	By	Ref
Sample No.: P00114418-01			DateSampled	: 06-16-21 09:32	2			-
Sample ID: DD SW1			Matrix: Surfa	ce Water				
-Organics-								
PHENOLS								
2,4,6-trichlorophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	06/17/21	CNCP	
2,4-dichlorophenol	ND	mg/L	0.0010	0.0010	USEPA Method 8041A	06/17/21	CNCP	
2,4-dimethylphenol	ND	mg/L	0.0011	0.0011	USEPA Method 8041A	06/17/21	CNCP	
2,4-dinitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/17/21	CNCP	
2-chlorophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/17/21	CNCP	
2-methyl-4,6-dinitrophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	06/17/21	CNCP	
2-nitrophenol	ND	mg/L	0.0006	0.0006	USEPA Method 8041A	06/17/21	CNCP	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.0019	USEPA Method 8041A	06/17/21	CNCP	
4-nitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/17/21	CNCP	
pentachlorophenol	ND	mg/L	0.0018	0.0018	USEPA Method 8041A	06/17/21	CNCP	
phenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	06/17/21	CNCP	

>>> end of result set for Sample No .: P00114418-01 <<<

>>> end of result set for Lab No.:P00114418; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Page 1 of 2 FN>>>>00386286>>>>

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

Analyzed by:

Nardo

Chastee Neill C. Prado PRC License No.: 12769 Chemical Testing

Certified by:

KADANI

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

distudriques

Mary Anne G. Rodriguez PRC License No.: 10281 Chemical Testing Date: 06/29/2021

06/29/2021

Date: 06/29/2021

Date:

SN: F00084100.003

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authonization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00386286>>>>

■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00084317.001

Lab No.:P00114653

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan

Test Description	Results	Units	Test Methods	Date Analyzed	Ву	Ref
Sample No.: P00114653-01			DateSampled: 06-23-21 09:34	1		
Sample ID: UPSTREAM -Metals-			Matrix: Surface Water			
Arsenic**	0.006	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	07/03/21	PPG	
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	07/03/21	PPG	
Lead**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	07/03/21	PPG	
Mercury**	< 0.0002	mg/L	Cold Vapor AAS	07/04/21	JLJ	
Dissolved Copper	0.07	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	07/03/21	PPG	
-Microbiology-						
Total Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	06/23/21	TNCR	
Fecal Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	06/23/21	TNCR	
-Wet Chemistry-						
pH**, Laboratory	7.3	-	Electrometric Method (SM 4500-H+ B)	06/23/21	PSSM	
Temperature**, Laboratory	25.0	°C	Laboratory & Field Method (SM2550 B)	06/23/21	PSSM	
Dissolved Oxygen**	7	mg/L	Winkler/Titrimetric	06/23/21	PSSM	
Biological Oxygen Demand**	1	mg/L	5-Day BOD Test (SM 5210 B)	06/24/21	PSSM	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.4	mg/L	Colorimetry - Chloroform Extraction	06/23/21	AGAS	
Total Suspended Solids**	7.5	mg/L	Gravimetry (SM 2540 D)	06/28/21	MGEP	
Oil & Grease	1.2	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520 B)	06/28/21	WBD	
Chloride**	160	mg/L	Argentometric Method (SM4500 CI-B)	06/24/21	MLJ	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	06/24/21	ANBB	
Cyanide**, Free	0.01	mg/L	Ion Selective Electrode (SM 4500 CN-F)	06/23/21	MPY	
Nitrate - N**	0.8	mg/L	Colorimetry - Brucine (EPA 352.1)	06/24/21	NGCM	
Phosphate - P**	1.1	mg/L	Stannous Chloride Method (SM 4500-P D)	06/23/21	MPY	

>>> end of result set for Sample No .: P00114653-01 <<<

>>> end of result set for Lab No.:P00114653; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Page 1 of 2 FN>>>>00387745>>>>

CRL Environmental Corporation Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

Analyzed by:

gh are

Therese Nicole C. Radam PRC License No.: 0098322 Microbiological Testing

Prescilla C. Gatbonton PRC License No.: 679 Chemical Testing

mo

Nathaniel Glenn C. Martin PRC License No.: 14175 Chemical Testing

Certified by:

Geraldine T. Yabut

Geraldine T. Yabut PRC License No.: 0027218 Microbiological Testing

Ronald G. Espiritu PRC License No.: 9248 Chemical Testing

Juliana C. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroyo PRC License No.: 6701 Chemical Testing

Date: _____07/06/2021

07/06/2021

Date:

Date: 07/06/2021

07/07 Date:

Date:

Date:

Julley Date:

SN: F00084317.001

Disclaimer. This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00387745>>>>

CRL Environmental Corporation Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

07 July 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT
Lab. No.:	P00114653-01

Enclosed are the result and QC Data for sample received by CRL Environmental Corporation which was subcontracted to ASSET Laboratories, LV, NV, USA for testing of the requested parameter in the enclosed chain of custody.

The above Lab. No. has a corresponding Lab. ID N046029-001A by ASSET Laboratories, LV, NV, USA.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARIA CARMELA Q. CAPULE

Chief Operating Officer

Date: 02-Jul-21

CLIENT:	CRL Environmental Corporation	
Project:	P00114653	CASE NARRATIVE
Lab Order:	N046029	

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed within method holding time.

Results were J-Flag. "J" is used to flag those results that are between the PQL (Practical Quantitation Limit) and the calculated MDL (Method Detection Limit). Results that are "J" Flagged are estimated values since it becomes difficult to accurately quantitate the analyte near the MDL.

CALIFORNIA P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

Date: 02-Jul-21

CLIENT: Project: Lab Order:	CRL Environmental C P00114653 N046029	Work (Order Sampl	e Summary	
Contract No:	1910 - Sacaratro				
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported
N046029-001A	P00114653-01	Surface Water	6/23/2021 9:34:00 AM	6/25/2021	7/2/2021

 CALIFORNIA
 P:562.219.7435
 F:562.219.7436

 11110 Artesia Blvd., Ste B, Cerritos, CA 90703
 ELAP Cert 2921

 "EPA ID CA01638

ASSET	Labora	tories
-------	--------	--------

ANALYTICAL RESULTS

Print Date: 02-Jul-21

CLIENT:	CRL Environme	ental Corporation		Clie	ent Sample ID:	P00114653-01	
Lab Order:	N046029			C	ollection Date:	6/23/2021 9:34	:00 AM
Project:	P00114653				Matrix:	SURFACE WA	TER
Lab ID:	N046029-001						
Analyses		Result	MDL	PQL	Qual Un	its DF	Date Analyzed
ORGANOPHOS	PHORUS PESTIC	CIDES					
		EPA 3510C		EPA	8141A		
RunID: NV0092	2-GC11_210625A	QC Batch: 88	177		PrepDate:	6/25/2021	Analyst: JJS
Azinphos-methyl		ND	0.064	0.19	ug/L	1	6/25/2021 07:01 PM
Bolstar		ND	0.020	0.19	ug/L	1	6/25/2021 07:01 PM
Chlorpyritos		ND	0.028	0.19	ug/L	1	6/25/2021 07:01 PM
Coumaphos		ND	0.036	0.19	ug/L	1	6/25/2021 07:01 PM
Demeton-O		ND	0.042	0.19	ug/L	1	6/25/2021 07:01 PM
Demeton-S		ND	0.056	0.19	ug/L	1	6/25/2021 07:01 PM
Diazinon		ND	0.031	0.19	ug/L	1	6/25/2021 07:01 PM
Dichlorvos		ND	0.039	0.19	ug/L	1	6/25/2021 07:01 PM
Disulfoton		ND	0.050	0.19	ug/L	1	6/25/2021 07:01 PM
Ethoprop		ND	0.030	0.19	ug/L	1	6/25/2021 07:01 PM
Fensulfothion		ND	0.036	0.19	ug/L	1	6/25/2021 07:01 PM
Fenthion		ND	0.014	0.19	ug/L	1	6/25/2021 07:01 PM
Malathion		ND	0.036	0.19	ug/L	1	6/25/2021 07:01 PM
Merphos		ND	0.085	0.19	ug/L	1	6/25/2021 07:01 PM
Methyl parathion		ND	0.029	0.19	ug/L	1	6/25/2021 07:01 PM
Mevinphos		ND	0.030	0.19	ug/L	1	6/25/2021 07:01 PM
Naled		ND	0.027	0.19	ug/L	1	6/25/2021 07:01 PM
Phorate		ND	0.015	0.19	ug/L	1	6/25/2021 07:01 PM
Ronnel		ND	0.028	0.19	ug/L	1	6/25/2021 07:01 PM
Stirofos		ND	0.040	0.19	ug/L	1	6/25/2021 07:01 PM
Tokuthion		ND	0.032	0.19	ug/L	1	6/25/2021 07:01 PM
Trichloronate		ND	0.033	0.19	ug/L	1	6/25/2021 07:01 PM
Surr: Tributyl F	Phosphate	86.2	0	54-143	%RE	C 1	6/25/2021 07:01 PM
Surr: Triphenyl	Phosphate	87.8	0	46-145	%RE	C 1	6/25/2021 07:01 PM

Qualifiers:

1

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Results are wet unless otherwise specified
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike/Surrogate outside of limits due to matrix interference
- DO Surrogate Diluted Out

ASSET LABORATORIES

"Serving Clients with Passion and Professionalism"

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos. CA 90703 ELAP Cert 2921 EPA ID CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

Date: 02-Jul-21

CLIENT: CRL Environmental Corporation

Work Order: N046029

Project: P00114653

ANALYTICAL QC SUMMARY REPORT

TestCode: 8141_W

Sample ID: LCS-88177	SampType: LCS	TestCod	ie: 8141_W	Units: ug/L		Prep Da	te: 6/25/20	21	RunNo: 153	857	
Client ID: LCSW	Batch ID: 88177	Test	lo: EPA 8141/	EPA 3510C		Analysis Da	te: 6/25/20	21	SeqNo: 425	6509	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Azinphos-methyl	0.903	0.20	0.7500	0	120	57	150				of second se
Boistar	0.715	0.20	0.7500	0	95.4	52	137				
Chlorpyrifos	0.762	0.20	0.7500	0	102	58	130				
Coumaphos	0.830	0.20	0.7500	0	111	48	150				
Demeton-O	0.683	0.20	0.7500	0	91.1	39	143				
Demeton-S	0.776	0.20	0.7500	0	103	48	129				
Diazinon	0.744	0.20	0.7500	0	99.3	49	139				
Dichlorvos	0.707	0.20	0.7500	0	94.2	42	131				
Disulfoton	0.692	0.20	0.7500	0	92.3	48	127				
Ethoprop	0.727	0.20	0.7500	0	97.0	41	144				
Fensulfothion	0.824	0.20	0.7500	о	110	53	150				
Fenthion	0.666	0.20	0,7500	0	88.7	47	150				
Malathion	0.820	0.20	0.7500	0	109	55	141				
Merphos	1.596	0.20	1.500	0	106	71	150				
Methyl parathion	0.849	0.20	0.7500	0	113	61	139				
Mevinphos	0.777	0.20	0.7500	0	104	59	133				
Naled	0.749	0.20	0.7500	0	99.8	16	150				
Phorate	0.624	0.20	0.7500	0	83.2	46	123				
Ronnel	0.655	0.20	0.7500	0	87.3	53	131				
Stirofos	0.774	0.20	0.7500	0	103	68	149				
Tokuthion	0.784	0,20	0.7500	0	105	61	135				
Trichloronate	0.834	0.20	0.7500	0	111	58	130				
Surr: Tributyl Phosphate	0.683		0.7500		91.1	54	143				
Surr: Triphenyl Phosphate	0.713		0.7500		95.1	46	145				

Qualifiers:

10

- B Analyte detected in the associated Method Blank
- J Analyte detected below quantitation limits

ASSET LABORATORIES

S Spike/Surrogate outside of limits due to matrix interference

CALIFORNIA (P:562,219,7435 F:562,219,7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921

"Serving Clients with Passion and Professionalism"

- E Value above quantitation range
- ND Not Detected at the Reporting Limit
- DO Surrogate Diluted Out

EPA ID CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

- Н Holding times for preparation or analysis exceeded
- R RPD outside accepted recovery limits Calculations are based on raw values

CLIENT: CRL Environmental Corporation Work Order: N046029 **Project:** P00114653

ASSET LABORATORIES "Serving Clients with Passion and Professionalism"

ANALYTICAL QC SUMMARY REPORT

TestCode: 8141_W

Client ID: LCSS02 Batch ID: 88177 TestNo: EPA 8141A EPA 3510C Analysis Date: 6/25/2021 Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Azinphos-methyl 0.965 0.20 0.7500 0 129 57 150 Bolstar 0.775 0.20 0.7500 0 103 52 137 Chlorpyrifos 0.825 0.20 0.7500 0 110 58 130 Coumaphos 0.897 0.20 0.7500 0 120 48 150 Demeton-O 0.713 0.20 0.7500 0 115 48 129 Diazinon 0.861 0.20 0.7500 0 101 42 131 Disulfoton 0.757 0.20 0.7500 0 101 48 127 Ethoprop 0.772 0.20 0.7500 0	SeqNo: 4256510 D Ref Val %RPD RPDLimit Qua 0.9028 6.72 20 0.7155 7.99 20 0.7617 8.03 20 0.6834 4.18 20 0.7762 10.4 20 0.7667 6.79 20 0.7067 6.79 20 0.7828 8.90 20 0.7762 10.4 20 0.7763 8.93 20 0.6692 8.90 20 0.7275 5.91 20 0.8236 8.93 20 0.6655 8.27 20 0.8199 9.21 20
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD Azinphos-methyl 0.965 0.20 0.7500 0 129 57 150 Bolstar 0.775 0.20 0.7500 0 103 52 137 Chlorpyrifos 0.825 0.20 0.7500 0 110 58 130 Coumaphos 0.826 0.20 0.7500 0 120 48 150 Demeton-O 0.713 0.20 0.7500 0 155 48 129 Diazinon 0.861 0.20 0.7500 0 108 49 139 Dichlorvos 0.756 0.20 0.7500 0 101 48 127 Ethoprop 0.772 0.20 0.7600 0 101 48 127 Ethoprop 0.772 0.20 0.7600 0 103 41 144 Fernsulfothio	D Ref Val % RPD RPDLimit Qua 0.9028 6.72 20 0.7155 7.99 20 0.7617 8.03 20 0.8298 7.73 20 0.6834 4.18 20 0.7762 10.4 20 0.7067 6.79 20 0.6892 8.90 20 0.7275 5.91 20 0.8236 8.93 20 0.6655 8.27 20 0.8199 9.21 20
Azinphos-methyl0.9650.200.7500012957150Bolstar0.7750.200.7500010352137Chlorpyrifos0.8250.200.7500011058130Coumaphos0.8970.200.7500012048150Demeton-O0.7130.200.7500095.039143Demeton-S0.8610.200.7500011548129Diazinon0.8130.200.7500010142131Disulfoton0.7570.200.7600010148127Ethoprop0.7720.200.7600010341144Fensulfothion0.9010.200.7500012053150Fenthlon0.7230.200.7500010047150	0.9028 6.72 20 0.7155 7.99 20 0.7617 8.03 20 0.8298 7.73 20 0.6834 4.18 20 0.7762 10.4 20 0.7445 8.77 20 0.7067 6.79 20 0.6892 8.90 20 0.7275 5.91 20 0.8236 8.93 20 0.6655 8.27 20 0.8199 9.21 20
Bolstar 0.775 0.20 0.7500 0 103 52 137 Chlorpyrifos 0.825 0.20 0.7500 0 110 58 130 Coumaphos 0.897 0.20 0.7500 0 120 48 150 Demeton-O 0.713 0.20 0.7500 0 95.0 39 143 Demeton-O 0.713 0.20 0.7500 0 95.0 39 143 Demeton-S 0.861 0.20 0.7500 0 115 48 129 Diazinon 0.813 0.20 0.7500 0 101 42 131 Disulfoton 0.757 0.20 0.7500 0 101 48 127 Ethoprop 0.772 0.20 0.7600 0 103 41 144 Fersulfothion 0.901 0.20 0.7500 0 96.4 47 150 Malatiblan 0.272 0.20<	0.7155 7.99 20 0.7617 8.03 20 0.8298 7.73 20 0.6834 4.18 20 0.7762 10.4 20 0.7445 8.77 20 0.7067 6.79 20 0.6892 8.90 20 0.7275 5.91 20 0.8236 8.93 20 0.6655 8.27 20 0.8199 9.21 20
Chlorpyrifos 0.825 0.20 0.7500 0 110 58 130 Coumaphos 0.897 0.20 0.7500 0 120 48 150 Demeton-O 0.713 0.20 0.7500 0 95.0 39 143 Demeton-S 0.861 0.20 0.7500 0 116 48 129 Diazinon 0.813 0.20 0.7500 0 101 42 131 Dichlorvos 0.756 0.20 0.7500 0 101 48 129 Disulfoton 0.757 0.20 0.7500 0 101 48 127 Ethoprop 0.772 0.20 0.7600 0 101 48 127 Ethoprop 0.772 0.20 0.7600 0 103 41 144 Fensulfothion 0.901 0.20 0.7500 0 96.4 47 150 Malabloan 0.703 0.20<	0.7617 8.03 20 0.8298 7.73 20 0.6834 4.18 20 0.7762 10.4 20 0.7445 8.77 20 0.7067 6.79 20 0.6922 8.90 20 0.7275 5.91 20 0.8236 8.93 20 0.6655 8.27 20 0.8199 9.21 20
Coumaphos 0.897 0.20 0.7500 0 120 48 150 Demeton-O 0.713 0.20 0.7500 0 95.0 39 143 Demeton-S 0.861 0.20 0.7500 0 115 48 129 Diazinon 0.813 0.20 0.7500 0 108 49 139 Dichlorvos 0.756 0.20 0.7500 0 101 42 131 Disulfoton 0.757 0.20 0.7600 0 101 48 127 Ethoprop 0.772 0.20 0.7600 0 103 41 144 Fensulfothion 0.901 0.20 0.7500 0 120 53 150 Fensulfothion 0.723 0.20 0.7500 0 96.4 47 150	0.8298 7.73 20 0.6834 4.18 20 0.7762 10.4 20 0.7445 8.77 20 0.7067 6.79 20 0.6892 8.90 20 0.7275 5.91 20 0.8236 8.93 20 0.6655 8.27 20 0.8199 9.21 20
Demeton-O 0.713 0.20 0.7500 0 95.0 39 143 Demeton-S 0.861 0.20 0.7500 0 115 48 129 Diazinon 0.813 0.20 0.7500 0 108 49 139 Dichlorvos 0.756 0.20 0.7600 0 101 42 131 Disulfoton 0.757 0.20 0.7600 0 101 48 127 Ethoprop 0.772 0.20 0.7600 0 103 41 144 Fensulfothion 0.901 0.20 0.7500 0 120 53 150 Fensulfothion 0.722 0.20 0.7500 0 96.4 47 150	0.6834 4.18 20 0.7762 10.4 20 0.7445 8.77 20 0.7067 6.79 20 0.6822 8.90 20 0.7275 5.91 20 0.6655 8.27 20 0.6655 9.21 20
Demeton-S 0.861 0.20 0.7500 0 115 48 129 Diazinon 0.813 0.20 0.7500 0 108 49 139 Dichlorvos 0.756 0.20 0.7500 0 101 42 131 Disulfoton 0.757 0.20 0.7600 0 101 48 127 Ethoprop 0.772 0.20 0.7600 0 103 41 144 Fensulfothion 0.901 0.20 0.7500 0 120 53 150 Fensulfothion 0.722 0.20 0.7500 0 96.4 47 150	0.7762 10.4 20 0.7445 8.77 20 0.7067 6.79 20 0.6922 8.90 20 0.7275 5.91 20 0.8236 8.93 20 0.6655 8.27 20 0.8199 9.21 20
Diazinon 0.813 0.20 0.7500 0 108 49 139 Dichlorvos 0.756 0.20 0.7500 0 101 42 131 Disulfoton 0.757 0.20 0.7600 0 101 48 127 Ethoprop 0.772 0.20 0.7600 0 103 41 144 Fensulfothion 0.901 0.20 0.7500 0 120 53 150 Fensulfothion 0.723 0.20 0.7500 0 96.4 47 150	0.7445 8.77 20 0.7067 6.79 20 0.6922 8.90 20 0.7275 5.91 20 0.8236 8.93 20 0.6655 8.27 20 0.8199 9.21 20
Dichlorvos 0.756 0.20 0.7500 0 101 42 131 Disulfoton 0.757 0.20 0.7500 0 101 48 127 Ethoprop 0.772 0.20 0.7600 0 103 41 144 Fensulfothion 0.901 0.20 0.7500 0 120 53 150 Fenthion 0.723 0.20 0.7500 0 96.4 47 150	0.7067 6.79 20 0.6922 8.90 20 0.7275 5.91 20 0.8236 8.93 20 0.6655 8.27 20 0.8199 9.21 20
Disulfoton 0.757 0.20 0.7500 0 101 48 127 Ethoprop 0.772 0.20 0.7600 0 103 41 144 Fensulfothion 0.901 0.20 0.7500 0 120 53 150 Fenthion 0.723 0.20 0.7500 0 96.4 47 150	0.6922 8.90 20 0.7275 5.91 20 0.8236 8.93 20 0.6655 8.27 20 0.8199 9.21 20
Ethoprop 0.772 0.20 0.7500 0 103 41 144 Fensulfothion 0.901 0.20 0.7500 0 120 53 150 Fenthion 0.723 0.20 0.7500 0 96.4 47 150	0.7275 5.91 20 0.8236 8.93 20 0.6655 8.27 20 0.8199 9.21 20
Fensulfothion 0.901 0.20 0.7500 0 120 53 150 Fenthion 0.723 0.20 0.7500 0 96.4 47 150	0.8236 8.93 20 0.6655 8.27 20 0.8199 9.21 20
Fenthion 0.723 0.20 0.7500 0 96.4 47 150	0.6655 8.27 20 0.8199 9.21 20
Malathian 0.000 0.00 0.000 0.000	0.8199 9.21 20
Meleunon 0.899 0.20 0.7500 0 120 55 141	1 800 40.0 00
Merphos 1.817 0.20 1.500 0 121 71 150	1.596 13.0 20
Methyl parathion 0.881 0.20 0.7500 0 117 61 139	0.8490 3.71 20
Mevinphos 0.822 0.20 0.7500 0 110 59 133	0.7775 5.52 20
Naled 0.780 0.20 0.7500 0 104 16 150	0.7488 4.09 20
Phorate 0.665 0.20 0.7500 0 88.7 46 123	0.6239 6.45 20
Ronnel 0.720 0.20 0.7500 0 96.0 53 131	0.6547 9.52 20
Stirofos 0.833 0.20 0.7500 0 111 68 149	0.7743 7.34 20
Tokuthion 0.845 0.20 0.7500 0 113 61 135	0.7841 7.45 20
Trichloronate 0.897 0.20 0.7500 0 120 58 130	0.8343 7.19 20
Surr: Tributyl Phosphate 0.710 0.7500 94.7 54 143	0 20
Surr: Triphenyl Phosphate 0.761 0.7500 101 46 145	0 20
Sample ID: MB-88177 SampType: MBLK TestCode: 8141_W Units: ug/L Prep Date: 6/25/2021	RunNo: 153857
Client ID: PBW Batch ID: 88177 TestNo: EPA 8141A EPA 3510C Analysis Date: 6/25/2021	SeqNo: 4256511
Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit RPD	D Ref Val %RPD RPDLimit Qua
Azinphos-methyl ND 0.20	
Qualifiers:	
B Analyte detected in the associated Method Blank E Value above quantitation range H Holding tir	imes for preparation or analysis exceeded
J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit R RPD outsic	ide accepted recovery limits
S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out Calculation	ns are based on raw values
ASSET LABORATORIES CLIFORNIA (P:562.219.7435 F:562.219.7435 F:562.219.7436 HILL ADDRESS ELAP Cert 2921 ELAP Cert 2921 ELAP Cert 2676 NV Cert NV00922 CLIPTE With Baseline and Professionalize II CLIPTE WITH Baseline AND II CLIPTE WITH	

CLIENT: CRL Environmental Corporation Work Order: N046029

Project: P00114653

ANALYTICAL QC SUMMARY REPORT

TestCode: 8141_W

Sample ID: MB-88177	SampType: MBLK	TestCode: 8141_W	Units: ug/L		Prep Date:	6/25/202	21	RunNo: 153	857	
Client ID: PBW	Batch ID: 88177	TestNo: EPA 8141A	EPA 3510C		Analysis Date:	6/25/202	21	SeqNo: 425	6511	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	ighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Bolstar	ND	0.20								
Chlorpyrifos	ND	0.20								
Coumaphos	ND	0.20								
Demeton-O	ND	0.20								
Demeton-S	ND	0.20								
Diazinon	ND	0.20								
Dichlorvos	ND	0.20								
Disulfoton	ND	0.20								
Ethoprop	ND	0.20								
Fensulfothion	ND	0.20								
Fenthion	ND	0.20								
Malathion	ND	0.20								
Merphos	ND	0.20								
Methyl parathion	ND	0.20								
Mevinphos	ND	0.20								
Naled	ND	0.20								
Phorate	ND	0.20								
Ronnel	ND	0.20								
Stirofos	ND	0.20								
Tokuthion	ND	0.20								
Trichloronate	ND	0.20								
Surr: Tributyl Phosphate	0.667	0.7500		88.9	54	143				
Surr: Triphenyl Phosphate	0.698	0.7500		93.0	46	145				

۲.,

CHAIN OF CUSTODY RECORD

Page___ of ____

								FOF	R LAB	ORA	TORY	Y USE	ON	Y:							Referenced of the last of			
C/	RL Environmental						Meth	od of	Transpo	ort				FR	C	Samp	le Cor	dition	Upon F	Receip	t		_	
	Corporation	Lab. No P0011	41153			_	Walk	-in			1.CH	ILLED	LE	5v	Y	N	4	I. SEA	LED			¥	D	N 🗌
Bilg. 2, Berthaphil Compound 1	, Berthaphil, Inc. Industrial Park	PO#					Couri	ier			0.115		41					-						
Jose Abad Santos Ave., Clark F Tel: (6345) 599-3943 • (6345) 4	reeport Zone, Clarkfield, Pampanga, Philippines 99-6529 • (632) 552-5100					-	FED	FXP		/	Z.HE	ADSPA	CE (V	UA)	ΥĽ	N). # OF	- SPLS	MAIC	CH CO	CY	4	N
Fax (6345) 599-3963		Logged By: DOHL ER	A_ Date:0(0-13.	2) Time:	105	574	CRL	L/4 .			3.CO	NTAIN	ER INT	ГАСТ	Υ	N		3. PRE	SERV	ED		Y		NI
Customer: PDS	0			Address:															Tel: ()				
Attn:				Citv						St	ate:				Zin (Code:		-	Favil					
Project Name:		Project #:		10.172			S	ample	er:	(Arinte	ed Nam	ne)	16	-	7	ouue.			(Sigr	nature)				
Polinguished hur er										Ad	10	r.	por	-04	oc			<	=1			-		
Reinquished by: (signature a	and Printed Name)		Date:		Tir	me:	u	Re	ceived	By: Sign	\mathcal{V} nature ar	d Printed	Name)				×	2	Date:			Ir	ime:	
Relinquished by: (Signature a	ind Printed Name		Data	2/	<u> </u>	070	5	Po	coived	hurun								9	9:15 Data:	1.1.		19	.75	
			Date.			ne.		Re	ceiveu	Dy. (Sign	hature an	id Printed	Name)				5e -		Date:				ime:	
Relinquished by: (Signature a	nd Printed Name)		Date:		Tir	ne:		Re	ceived	by: (Sign	nature an	d Printed	Name)						Date:				Time:	
SHIP TO LAB:	I hereb	wauthorize CRL to perform the w	ork indicated below:		Sene	Repo	rt To:		1	a .0	NA)	<u>`</u>			Sp	cial	Instru	ctions	/Comr	nents:				
(SUB CONTRACT)	PTO	ject wigr. / Subm	itter:		Áttn:	1	1010121	~	tl	SM	An	/			`									
TEST:	JDN	ITL A. TAMPAD	Data: D6	13,21	Coi		Dos	W	Z	1														
DATE:		Print Name	Date. Dv	00101	00.	-	-			1					-									
CUSTOMER I.D.	(K			Addr	ess:																		
		-																						
		Signat	ure		City:				State:			Zip:	, ,				/					-		
Unless otherwise requested, all	Sample Archive / Disposal:	/			Anaty	rsis(es)	//	//	//	' / ,		//	/ /	/	/	R	TRCLE	APPF	ROPRI	ATE		-		
remaining samples will	Others				Requ	lested /			//		/ /	/ /	//	1 /	1.1	1	11			/		- Q		
be disposed of 15 days after the release of	Return To:					/	//	/	/ /	11	/ /	//	//	18	3/6	1.1	///	./ ,	/ /			VAT		
report	*\$10.00 FEE PER	HAZARDOUS SAMPLE DISPO	SAL			/ /	///	/ /	//	/ /	//	//	11	5/5	13/	2/3	18	1/4	3/1	Cont	ainer(s	3) H		
T LAB USE ONLY	Sa	mple Description			1/	1	//	/ /	//	11	//	//	13	12	3/3	13/	2	121	//			L SH		
E M Lab No.	Sample I.D.		Sampting	Sampling	1/		//	//	11	//	/ /	1/.	13/	3/3	12/	52/2	1/2/	a la	TAT		Tupo	ā	DEM	ARKS
Photo 11/1 52 01	11h (tram		1 2321	WA:24	f f	1	f f	1	f f	ff		ff	5/0	17	6/3	701	4/3	101	1 141	11	Type I	+	NLIVI	ANNS
10014012 -01	VI Stan		porch	01.94	++		+++	+		++		++	-	ŕ		+		+		\vdash	_	+		
	V				++	_				+		+		\square	_		_			\square				
																TT				Π				
							$\uparrow \uparrow$			++			-	+	-	++		+		++	-	+		
					++		++	+	\vdash	++	+	++	+-	+	+-	++	-	+		++	+	+		
					++		++			++	_	++		+		++	_	+		++				
																TT								
					++			-		++		++	+	++	-	++		++		++	+	+		
= TAT starts 9 a m tha	following day	aht	Ferrare the i			1		_					-					+						
if sample received beyon	d 12 noon at TAT: A = S24 h	B =	Workday		C =	Criti Worl	cal 2 kdays	3	D =	Urį 3 Wo	gent orkdavs		E	=	Routin	ne 7 lavs		Pres	servati	ives:	~ <i>,</i>	2-11-01	-	-600
the laborator	Container T	vpes: T=Tube V=V	/OA L=Liter	P=Din	+	l= lar	R-1	Todia			G-0	laes		lactio		-Mat-	-			V-PIN	03 5	0-H250	J ₄ C=	0.0
	oundifier 1	poo. 1-1006 V-V	Ch L-Liter		ι J	-Jal	D-	regial	1		6-6	Idss	P=P	lastic	IVI	-Meta	21	12=2	IN(AC)	12 '	J=Na	OH	1=Na2	3203

DISTRIBUTION: White with report, Yellow to folder, Pink to submitter

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

Date Received:

Lab No.:P00114653

NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & Project Name: CIVIL WORKS (CP N - 05)

Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan Attention:

Test Description	Results	Units	MDL	DLR	Test Methods	Date Analyzed	By	Ref
Sample No.: P00114653-01			DateSampled:	06-23-21 09:34	1			
Sample ID: UPSTREAM			Matrix: Surfac	e Water				
-Organics-								
PHENOLS								
2.4.6-trichlorophenol	ND	mg/L	0.0008	0.002	USEPA Method 8041A	06/29/21	IJMF	
2.4-dichlorophenol	ND	mg/L	0.0010	0.002	USEPA Method 8041A	06/29/21	IJMF	
2.4-dimethylphenol	ND	mg/L	0.0011	0.002	USEPA Method 8041A	06/29/21	IJMF	
2.4-dinitrophenol	ND	mg/L	0.0009	0.002	USEPA Method 8041A	06/29/21	IJMF	
2-chlorophenol	ND	mg/L	0.0009	0.002	USEPA Method 8041A	06/29/21	IJMF	
2-methyl-4.6-dinitrophenol	ND	mg/L	0.0008	0.002	USEPA Method 8041A	06/29/21	IJMF	
2-nitrophenol	ND	mg/L	0.0006	0.001	USEPA Method 8041A	06/29/21	IJMF	
4-chloro-3-methylphenol	ND	mg/L	0.0019	0.004	USEPA Method 8041A	06/29/21	IJMF	
4-nitrophenol	ND	mg/L	0.0009	0.002	USEPA Method 8041A	06/29/21	IJMF	
pentachlorophenol	ND	mg/L	0.0018	0.004	USEPA Method 8041A	06/29/21	IJMF	
phenol	ND	mg/L	0 0009	0.002	USEPA Method 8041A	06/29/21	IJMF	

>>> end of result set for Sample No.:P00114653-01 <<<

>>> end of result set for Lab No.:P00114653; Total no. of sample analyzed: 1 <<<

MDL = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Page 1 of 2 FN>>>>00389012>>>>

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Analyzed by:

Ivy Joy M. Fabros PRC License No.: 2341 Chemical Testing

Certified by:

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

diAudrique

Mary Anne G. Rodriguez PRC License No.: 10281 Chemical Testing

SN: F00084317.002

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00389012>>>>

■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

Lab No.:P00114951

SN: F00084721.002

06/30/2021

NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & Project Name: CIVIL WORKS (CP N - 05)

Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan Attention:

Test Description	Results	Units	Test Methods	Date Analyzed	Ву	Ref*
Sample No.: P00114951-01			DateSampled: 06-30-21 09:38			
Sample ID: DD SW1 -Metals-			Matrix: Surface Water			
Arsenic**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	07/09/21	PPG	
Cadmium**	< 0.001	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	07/09/21	PPG	
Lead**	< 0.005	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	07/09/21	PPG	
Mercury**	< 0.0002	mg/L	Cold Vapor AAS	07/08/21	JLJ	
Dissolved Copper	0.05	mg/L	ICP - OES (SMEWW 3120B / EPA 6010B)	07/09/21	PPG	
-Microbiology-						
Total Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	06/30/21	CBS	
Fecal Coliforms**	<1.8	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	06/30/21	CBS	
-Wet Chemistry-						
pH**, onsite	7.2	-	Electrometric Method (SM 4500-H+ B)	06/30/21	2	
Temperature**, onsite	30.2	°C	Laboratory & Field Method (SM2550 B)	06/30/21		
Dissolved Oxygen**	8	mg/L	Winkler/Titrimetric	06/30/21	PSSM	
Biological Oxygen Demand**	2	mg/L	5-Day BOD Test (SM 5210 B)	07/02/21	PSSM	
Surfactants (MBAS as LAS, MW = 348.48 g/mole)	0.5	mg/L	Colonmetry - Chloroform Extraction	07/01/21	AGAS	
Total Suspended Solids**	7.5	mg/L	Gravimetry (SM 2540 D)	07/06/21	MGEP	
Oil & Grease	1.3	mg/L	Gravimetry (n-Hexane Extraction) (SM 5520 B)	07/06/21	WBD	
Chloride**	167	mg/L	Argentometric Method (SM4500 CI-B)	07/02/21	MLJ	
Hexavalent Chromium**	< 0.004	mg/L	Diphenylcarbazide, Colorimetric Method (SM3500-Cr B)	07/02/21	ANBB	
Cyanide, Free**	0.01	mg/L	Ion Selective Electrode (SM 4500 CN-F)	07/01/21	MPY	
Nitrate - N**	1.0	mg/L	Colorimetry - Brucine (EPA 352.1)	07/01/21	NGCM	
Phosphate - P**	1.2	mg/L	Stannous Chloride Method (SM 4500-P D)	07/01/21	MPY	

>>> end of result set for Sample No .: P00114951-01 <<<

>>> end of result set for Lab No.:P00114951; Total no. of sample analyzed; 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Methods for Chemical Analysis of Water and Wastes, EPA-600/4-79-020

Page 1 of 2 FN>>>>00388940>>>>

CRL Environmental Corporation

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Date Received:
Analyzed by:

Ng.

Chaira B. Sales Microbiological Testing

Mg

Prescilla C. Gatbonton PRC License No.: 679 Chemical Testing

m

Nathaniel Glenn C. Martin PRC License No.: 14175 Chemical Testing

Certified by:

Geraldine T. Yabut

PRC License No.: 0027218 Microbiological Testing

Ronald G.JEspiritu PRC License No.: 9248 Chemical Testing

Juliana C. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroy PRC License No.: 6701 Chemical Testing

Date: 07/19/2021

Date: 07/19/2021

Date: 07/19/2021

07/9/21 Date:

Date: Aligh

Date: Mam

Date:

Disclaimer. This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL

Page 2 of 2 FN>>>>00388940>>>>

 Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 - (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: erl@erllabs.com • http://www.crllabs.com

Results of Analyses

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00084721.003 Date Received: 06/30/2021

Lab No.:P00114951

NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & Project Name: CIVIL WORKS (CP N - 05)

Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan Attention:

Test Description	Results	Units	MDL.	DLR	Test Methods	Date Analyzed	By	Ref
Sample No.: P00114951-01			DateSampled:	06-30-21 09:38				
Sample ID: DD SW1								
-Organics-								
PHENOLS								
2.4.6-trichlorophenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	07/21/21	IJMF	
2.4-dichlorophenol	ND	mg/L	0.0010	0.0010	USEPA Method 8041A	07/21/21	IJMF	
2.4-dimethylohenol	ND	mg/L	0.0011	0.0011	USEPA Method 8041A	07/21/21	IJMF	
2.4-dinitrophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	07/21/21	IJMF	
2 chlorophenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	07/21/21	IJMF	
2 methyl-4 6-dinitronhenol	ND	mg/L	0.0008	0.0008	USEPA Method 8041A	07/21/21	IJMF	
2 nitronhenol	ND	ma/L	0.0006	0.0006	USEPA Method 8041A	07/21/21	IJMF	
A shlere 2 methylphanol	ND	ma/L	0.0019	0.0019	USEPA Method 8041A	07/21/21	IJMF	
4-chioro-s-meuryphenoi	ND	ma/l	0.0009	0.0009	USEPA Method 8041A	07/21/21	IJMF	
4-mitrophenol	ND	mg/L	0.0018	0.0018	USEPA Method 8041A	07/21/21	IJMF	
phenol	ND	mg/L	0.0009	0.0009	USEPA Method 8041A	07/21/21	IJMF	

>>> end of result set for Sample No.:P00114951-01 <<<

>>> end of result set for Lab No.:P00114951; Total no. of sample analyzed: 1 <<<

MDI = Method Detection Limit/s

ND = Not Detected (Below MDL / DLR)

DLR = Detection Limits for Reporting (MDL x Dilution Factor)

Test Methods for Evaluating Solid Wastes, Vol 1B, USEPA, Third Edition, November 2000

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Page 1 of 2 FN>>>>00389674>>>>

Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Analyzed by:

Ivy Joy M. Fabros PRC License No.: 2341 Chemical Testing

Certified by:

RAW

Rose Ann W. Veloria PRC License No.: 11238 Chemical Testing

Mary Anne G. Rodriguez

PRC License No.: 10281 Chemical Testing Date: 07/26/2021

Date: 7/27/21

7/27/2011 Date:

SN: F00084721.003

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the customer to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL. Environmental Corporation.

Page 2 of 2 FN>>>>00389674>>>>

CRL Environmental Corporation Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines
 Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963
 Email: crl@crllabs.com • http://www.crllabs.com

30 July 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Engr. Jonel E. Elamparo / Mr. Jaime M. Perfiñan
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT
	DEPOT BUILDING & CIVIL WORKS (CP N - 05)
Lab. No.:	P00114951-01

Enclosed are the result and QC Data for sample received by CRL Environmental Corporation which was subcontracted to ASSET Laboratories, LV, NV, USA for testing of the requested parameter in the enclosed chain of custody.

The above Lab. No. has a corresponding Lab. ID N046180-001A by ASSET Laboratories, LV, NV, USA.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARIA CARMELA Q. CAPULE

Chief Operating Officer

ASSET Laboratories

Date: 14-Jul-21

CLIENT:	CRL Environmental Corporation	
Project:	P00114951	CASE NARRATIVE
Lab Order:	N046180	

SAMPLE RECEIVING/GENERAL COMMENTS:

All sample containers were received intact with proper chain of custody documentation.

Information on sample receipt conditions including discrepancies can be found in attached Sample Receipt Checklist Form.

Cooler temperature and sample preservation were verified upon receipt of samples if applicable.

Samples were analyzed past the method holding time.

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ASSET Laboratories

Date: 14-Jul-21

CLIENT: Project: Lab Order: Contract No:	CRL Environmental C P00114951 N046180	orporation	Work Order Sample Summar						
Lab Sample ID	Client Sample ID	Matrix	Collection Date	Date Received	Date Reported				
N046180-001A	P00114951-01	Wastewater	6/30/2021 9:38:00 AM	7/7/2021	7/14/2021				

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

ANALYTICAL RESULTS

Print Date: 14-Jul-21

CLIENT:	CRL Environm	ental Corporation		Client Sample ID: P00114951-01									
Lab Order:	N046180		Collection Date: 6/30/2021 9:38:00 AM										
Project:	P00114951		Matrix: WASTEWATER										
Lab ID:	N046180-001												
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed					
ORGANOPHO	SPHORUS PESTI	CIDES											
		EPA 3510C		EPA	8141A								
RunID: NV009	922-GC11_210708A	QC Batch: 883	306		PrepD)ate:	7/8/2021	Analyst: JJS					
Malathion		ND	0.035	0.18	н	ug/L	1	7/8/2021 03:29 PM					
Surr: Tributy	yl Phosphate	101	0	54-143	н	%REC	1	7/8/2021 03:29 PM					
Surr: Triphe	enyl Phosphate	98.0	0	46-145	н	%REC	1	7/8/2021 03:29 PM					

 Qualifiers:
 B
 Analyte detected in the associated Method Blank

 H
 Holding times for preparation or analysis exceeded

ASSET LABORATORIES

- ND Not Detected at the Reporting Limit
 - Results are wet unless otherwise specified
- E Value above quantitation range
- J Analyte detected below quantitation limits
- S Spike/Surrogate outside of limits due to matrix interference

DO Surrogate Diluted Out

CALIFORNIA | P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

NEVADA | P:702.307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

"Serving Clients with Passion and Professionalism"

ASSET Laboratories

ASSET Laboratories

CLIENT: Work Order: Project:	CRL Enviro N046180 P00114951	nmental Corpor	ation				ANALY	TICAI T	L QC SU	MMARY 8141_W	REPO	RT
Sample ID: LCS-8	88306	SampType: LCS	Test	Code: 8141_W	Units: ug/L		Prep Dat	e: 7/8/202*	1	RunNo: 154	117	
Client ID: LCSW	v	Batch ID: 8830	06 Te	stNo: EPA 8141	A EPA 3510C		Analysis Dat	e: 7/8/202 [.]	1	SeqNo: 426	8024	
Analyte		Res	sult PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Malathion		0.8	326 0.20	0.7500	0	110	55	141				
Surr: Tributyl Ph	nosphate	0.7	22	0.7500		96.3	54	143				
Surr: Triphenyl I	Phosphate	0.7	66	0.7500		102	46	145				
Sample ID: LCSD	-88306	SampType: LCS	D Test	Code: 8141_W	Units: ug/L		Prep Dat	e: 7/8/202	1	RunNo: 154	1117	
Client ID: LCSS	02	Batch ID: 8830)6 Te	stNo: EPA 8141	A EPA 3510C		Analysis Dat	e: 7/8/202	1	SeqNo: 426	8025	
Analyte		Res	sult PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Malathion		0.7	96 0.20	0.7500	0	106	55	141	0.8256	3.65	20	
Surr: Tributyl Ph	nosphate	0.6	77	0.7500		90.2	54	143		0	20	
Surr: Triphenyl I	Phosphate	0.7	27	0.7500		96.9	46	145		0	20	
Sample ID: MB-88	8306	SampType: MBL	.K Test	Code: 8141_W	Units: ug/L		Prep Dat	e: 7/8/202	1	RunNo: 154	1117	
Client ID: PBW		Batch ID: 8830)6 Te	stNo: EPA 8141	A EPA 3510C		Analysis Dat	e: 7/8/202	1	SeqNo: 420	58026	
Analyte		Res	ult PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Malathion		1	ND 0.20									
Surr: Tributyl Ph	nosphate	0.5	97	0.7500		79.5	54	143				
Surr: Triphenyl F	Phosphate	0.6	62	0.7500		88.3	46	145				

Qualifiers:

1 I

- B Analyte detected in the associated Method Blank
- Analyte detected below quantitation limits J

"Serving Clients with Passion and Professionalism"

- E Value above quantitation range ND Not Detected at the Reporting Limit
- S Spike/Surrogate outside of limits due to matrix interference DO Surrogate Diluted Out
- ASSET LABORATORIES
- CALIFORNIA [P:562.219.7435 F:562.219.7436 11110 Artesia Blvd., Ste B, Cerritos, CA 90703 ELAP Cert 2921 EPA ID CA01638

NEVADA [P:702:307.2659 F:702.307.2691 3151 W. Post Rd., Las Vegas, NV 89118 ELAP Cert 2676 | NV Cert NV00922 ORELAP/NELAP Cert 4046

- H Holding times for preparation or analysis exceeded
- R RPD outside accepted recovery limits Calculations are based on raw values

CRL-FM-SC-001 Rev 3.0

Rev. 3.0
01/04/18

10

Page___ of ____

CHAIN OF CUSTODY RECORD

										FO	R LA	BOR	ATOR	IY US	E ON	LY:										
	A CR	L Environmental		201110	151				Met	hod of	Trans	port			. ٢	×C.		Sam	e Co	nditio	n Upon F	Receip	t		~	
	$\Delta -$	Corporation	Lab. No.	100104				_	Wal	lk-in			1.C	HILLED		02	Y٢	1 N		4. SE	ALED			,	1.1	N
Bilda	2. Berthaphil Compound 1	Berthaphil Inc. Industrial Park	PO#						Cou	rier			24		ACE ()		vГ			5 # 0		MAT			VM	ND
Jose Tel: (Abad Santos Ave., Clark Fre 6345) 599-3943 • (6345) 499	eport Zone, Clarkfield, Pampanga, Phi -6529 • (632) 552-5100	lippines	112	0120	21 1	1.	N.	FED). EXF		-	2.0	LADOF	ACE (VUA)				J. # C	JF JFLJ	MAT	1100	C		
Fax (6345) 599-3963		Logged B	by:VCV	Date:		6.1	5	CRL				3.C	ONTAI	NER IN	TACT	ΥĹ] N		6. PR	ESERVI	ED			۲D	N
Custo	omer: POSCO	E&C				Address:					- 1										Tel: ()				
Attn:						City:							State:				Zip	Code:			Fax:()				
Proje	ct Name:		I	Project #:						Samp	ler:	(Pri	nted Na	me)	NF	epic		14° -			(Sign	ature)				
Relind	quished by: (Signature an	d Printed Name)			Date:	<u></u>	Ti	me:		R	eceive	d by: (s	Signature	and Printe	d Name)					Date:	1			Time:	
	Zalp	EUGENE NEHVID	JY-		(c-30	. 2		10.34	H			VC	L								06.3	1012	1		0:3	6
Relind	uished by: (Signature an	d Printed Name)			Date:		Ti	ne:		R	eceive	d by: (s	Signature	and Printe	d Name)					Date:				Time:	
Relind	uished by: (Signature an	d Printed Name)			Date:	n y - 19 anno 1	Ti	ne:		R	eceive	d by: (s	Signature	and Printe	d Name)					Date:				Time:	
SHI	P TO LAB:		I hereby authorize CF	RL to perform the wo	rk indicated below:		Sen	d Repo	rt To:	-1	ΙT	ī. /1		128			s	pecial	Instru	uction	ns/Com	nents				
(SUB (CONTRACT)		Project wig	jr. / Submin	ter:		Attn	A	[PT	2	9 t	AI	IV A	Ro												
TEST	:		JONEL A	I. TAMPAI	Date: 0,	30,21	Co:	1	pose	0	ESC	-														
DATI	E:		Print	t Name																						
CUS	TOMER I.D.		/ 4				Add	ess:																		
1				Signatu	re		Citv				State	e:		Zip	8											
1	Inless otherwise	Sample Archive / Disposal:		P			W	rite	T	77	17	11	17	TT	7	17	7	(CIRCL	E API	PROPRI	ATE			T	
	requested, all	Laboratory Standard		1			Anal	vsis(es) Jested	/ /	//	//	//	11	1	/ /	/ /	1			MA	TRIX			NO		
be o	lisposed of 15 days	Others						/	/	/ /	1	/ /	1		11		131	$\langle \rangle$	/ /	/ /	///	1		ATH		
af	ter the release of	Return To:			A1			//	/ /	/			/ /	11	//	13	3	12/2/	2/2	5/	1/2/	Con	ainer	s) 2		
		\$10.001	Samala Deseri	s SAWIFLE DISPUS	AL			//	/ /		1	/ /	11		/ /	8/4	131	5 3	13		5/ /			ESI		
E			sample Descri	ption	Sampling	Sampling	1	//	'/	/ /	//	/ /	//	//	12	18/	\$ /S	15/	10	1ª	1 and 1			۲, L		51 4 A D W C
м	Lab No.	Sam	ple I.D.		Date	Time	1	4	\mathcal{H}	4	+	4	+	4	18/	50	131	3/8	17	2/0		#	Type	+	PH	+mp
\vdash	100 1999 1.01	DD SW1			6-30-21	09381	\square		\square	\rightarrow	+		++	_		1				+		\square		\rightarrow	7-1	6 30.2%
																										1
						40																				
	e.																									
																						\square	$ \downarrow$	\perp	\perp	
= TA	T starts 8 a.m. the f	ollowing day TAT: A =	Overnight	R =	Emergency Next		C -	Crit	ical 2		D -	-	Urgent		1		Rout	ine 7		P	reserva	tives:				
if san	nple received beyon	d 12 noon at	≤ 24 hrs.		Workday		<u> </u>	Wor	kdays		1	3	Workda	ys	Y.	2	Wor	kdays		н	=HCI	N=HN	103	S=H ₂	SO₄	C=<6°C
	the laboratory	Conta	iner Types: T	=Tube V=V	OA L=Liter	P=Pin	t	J=Jar	В	=Ted	ar		(G=	Glass	R=	Plast	jic I	M=Me	tal	Z	=Zn(AC)2	O=N	aOH	T=T	$Na_2S_2O_3$

DISTRIBUTION: White with report, Yellow to folder, Pink to submitter

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Monitoring Sampling Laboratory Results for CP N-05

Groundwater Quality (DD GW1)

North-South Commuter Railway Extension Project

19 April 2021

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

ATTN:	Mr. Jingon Lee / Engr. Jonel E. Elamparo
Project Name:	NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)
Lab. No.:	P00112546-01

Enclosed are the results for sample received by CRL Environmental Corporation and tested for the parameters in the enclosed chain of custody.

Our DENR Recognition with C. R. No. 023/2018, will expire on September 24, 2021.

Likewise, our DOH Accreditation with Accreditation No. <u>03-001-20-LW-2</u>, is valid from January 01, 2020 until December 31, 2022.

Please note that any unused portion of the sample/s will be discarded 15 days after the date of this report, unless you have requested otherwise.

Thank you for the opportunity to service the needs of your company. Please feel free to call us at (045) 599-3943 or (02) 552-5100 if we can be of further service to you.

Very truly yours,

MARTA CARMELA Q. CAPULE Chief Operating Officer

Results of Analyses

POSCO Engineering and Construction Co., Ltd.

Unit No. 2F - 4A, BC10, Philexcel Business Park, M. Roxas Highway Clark Freeport Zone, Pampanga

SN: F00082257.001

Lab No.:P00112546

Project Name: NORTH - SOUTH COMMUTER RAILWAY EXTENSION PROJECT DEPOT BUILDING & CIVIL WORKS (CP N - 05)

Attention: Mr. Jingon Lee / Engr. Jonel E. Elamparo

Test Description	Results	Units	Test Methods	Date Analyzed	By	Ref*
Sample No.: P00112546-01	1		DateSampled: 04-08-21 09:39			L
Sample ID: GW 1			Matrix: Groundwater			
-Metals-						
Arsenic**	< 0.008	ma/L	ICP - OES	04/13/21	000	
Cadmium**	< 0.001	ma/L	ICP - OES	04/13/21	PPG	
Calcium	18	ma/L	Flame AAS	04/13/21	PPG	
Lead**	< 0.005	mg/L	ICP - OES	04/13/21	MLSA	
Magnesium	8.1	mg/L	Flame AAS	04/13/21	PPG	
Potassium	8.8	ma/L	Flame AAS	04/13/21	MLSA	
Sodium	77	ma/L	Flame AAS	04/13/21	MLSA	
Mercury**	< 0.0002	mg/L	Manual Cold Vapor AAS	04/13/21	MLSA	
-Microbiology-				04010021	LDC	
Total Coliforms**	<1.1	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221B)	04/08/21	TNCR	
Fecal Coliforms**	<1.1	MPN/100mL	Multiple Tube Fermentation Technique (SM 9221 E1)	04/08/21	TNCR	
Wet Chemistry-						
pH**, onsite	6.5		Electrometric Method (SM 4500-H+ R)	04/08/04		
Temperature**, onsite	28.3	°C	Laboratory & Field Method (SM2550 P)	04/08/21		
Color**	8	Apparent CU	Visual Comparison	04/06/21	-	
Conductivity** @ 25.0°C	977	uS/cm	Conductimetry	04/09/21	MPT	
otal Dissolved Solids**	671	ma/L	Gravimetry (SM2540 C)	04/09/21	MLJ	
Nitrate**	22	mo/l	Cadmium Reduction Mothed	04/12/21	MLJ	
Bicarbonate as CaCO3 @ pH = 4.6	179	mo/l	Titrimetor	04/09/21	NGCM	
Chloride**	152	mg/L	Argentometric Method (SM4500 CLD)	04/09/21	NGCM	
Sulfate**	108	mg/L	Turbidimetric Method	04/12/21	MLJ	
dexavalent Chromium**	10001	g/L	Dinhenvicerbezide Colormetrie Mather	04/09/21	AGAS	
	< 0.004	mg/L	(SM3500-Cr B)	04/14/21	ANBB	
Jyanide", Total	< 0.02	mg/L	Distillation - ISE	04/12/21	MPY	

>>> end of result set for Sample No .: P00112546-01 <<<

>>> end of result set for Lab No.:P00112546; Total no. of sample analyzed: 1 <<<

**PAB approved parameter/s

MPN = Most Probable Number

Teledyne, HYDRAIIAA Mercury Analyzer

ICP - OES = Inductively Coupled Plasma - Optical Emission Spectroscopy

Shimadzu Analytical Methods, Atomic Absorption Spectrophotometry (AAS)

Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WEF, 23rd Edition.

Test Methods for Evaluating Solid Wastes, Vol 1A, USEPA, Third Edition

Page 1 of 2 FN>>>>00380409>>>>

<u>CRL Environmental</u> Corporation Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Certified by:

Geraldine T. Yabut PRC License No.: 0027218 Microbiological Testing

Ronald O. Espiritu PRC License No.: 9248 Chemical Testing

nas

Juliana C. Oriña PRC License No.: 8774 Chemical Testing

Chas C. Arroyo

PRC License Vo.: 6701 Chemical Testing

Date: 04/19/21

Date: Ouflight

Date:

Date:

SN: F00082257.001

Disclaimer: This report pertains only to the samples investigated and does not necessarily apply to other apparently identical or similar materials. This report is submitted for the exclusive use of the client to whom it is addressed. Any reproduction of this report or use of this Laboratory's name for advertising or publicity purpose without authorization is prohibited. This analytical report is NOT VALID without the official dry seal of CRL Environmental Corporation.

Page 2 of 2 FN>>>>00380409>>>>

CRL Environmental Corporation ■ Laboratory: Bldg. 2, Berthaphil Compound 1, Berthaphil, Inc. Industrial Park, Jose Abad Santos Ave., Clark Freeport Zone (CFZ) Pampanga, 2023 Philippines Tel: (63 45) 599-3943 • (63 2) 8552-5100 • Fax: (63 45) 599-3963 Email: crl@crllabs.com • http://www.crllabs.com

Environmental Monitoring Report

Quarterly Environmental Monitoring Report No. 7 April–June 2021

Environmental Monitoring Sampling Laboratory Results for CP N-05

Vibration Level (DD V01)

North-South Commuter Railway Extension Project

<u>Measurement and Impact Assessment</u> <u>of Vibration Monitoring</u>

Monitoring results

April 2021

	NEIL JOHANNES BOTOR Survey Supervisor	MARKILINUS RAMOS Technical QA/QC
Date:	April 19, 2021	Date: April 27, 2021

Measurement and Assessment of Baseline Vibration PNR Railway System

A. Overview

A vibration monitoring study was conducted at a site in Clark, Pampanga. Fieldwork was conducted last April 10-11, 2021 during which a seismic recording instrument was deployed to collect 24-hour data of ambient vibration for the site. This vibration study report describes the following:

- a. Methodology used in data collection and analysis;
- b. Measured baseline levels of vibration in the site;
- c. Spatial or temporal patterns in the vibration levels.

B. Inventory of Site

The location of the site and the schedule for the survey were a-priori defined. The field measurement site is located in a sub-urban area near the Clark Freeport Philippines. The survey site is shown in **Table 1**, and its geographic coordinates.

Site	Latitude	Longitude	Survey Date
CP N-05	15°13'4.07''N	120°33'57.22"E	April 10-11, 2021

Table 1. The survey site and its geographic coordinates.

Figure 1. The location of the survey site in Google Earth image

C. Measurement for Vibration Conditions

At the site, 24-hour sampling was undertaken where vibration was recorded using the Vibron Seismometer which is a seismic data recorder connected to geophones. One triaxial sensor was installed at the observation area in an orthogonal arrangement. The triaxial sensor has a natural frequency of 4.5 Hz and a sampling frequency of 200 samples per second.

The seismic sensor was deployed on the concrete pavement or road surface or natural ground/soil if available. The data recording in the site was supervised by a crew of two which alternated on 12-hour shifts to complete the 24 hour sampled recording.

The **CP N-05** observation site (**Figure 1**) is located in a farmland near Clark Freeport, at approximately 600 meters away from Subic-Clark-Tarlac Expressway (SCTEX), and 100 meters away from Gil Puyat Avenue. Traffic condition was light to moderate during the observation period. The sources of spike in vibration levels are predominantly caused by motorcycles, cars, and aircraft.

Figure 3. Chart depicting the maximum acceleration levels in **cm/s**² for the Horizontal, Transverse (X-Axis).

Figure 4. Chart depicting the maximum velocity levels in cm/s for the Horizontal, Transverse (X-Axis)

Figure 5. Chart depicting the maximum vibration levels in VdB in for the Horizontal, Parallel Axis (Y-axis).

Figure 6. Chart depicting the maximum acceleration levels in **cm/s**² for the Horizontal, Parallel (Y-Axis).

Figure 7. Chart depicting the maximum velocity levels in cm/s for the Horizontal, Parallel (Y-Axis)

Figure 8. Chart depicting the maximum vibration levels in VdB in for the Vertical Axis (Z-axis).

Figure 9. Chart depicting the maximum acceleration levels in cm/s² for the Vertical Axis (Z-Axis).

Figure 10. Chart depicting the maximum velocity levels in cm/s for the Vertical Axis (Z-Axis)

D. Vibration Criteria

The approach used in this study follows the prescription of the British Standard 7385 (1993). The Philippines' Environmental Management Bureau has not defined any vibration standards or procedures of investigation in the Philippines.

The vibration level measurements were carried out according to U.S. FTA 2006 guidelines. Regular samples of vibration data over 24-hour observation period for the station were conducted. The figures show the result of the vibration in the site in terms of velocity, acceleration, and maximum vibration levels that vary throughout the day. For the site, some notable features can be distinguished indicating in some instances the human activity that causes the background vibration. Vibration data was processed with reference velocity of 1x10⁻⁶ per second.

FTA G	round-Bor	ne Vibratio	on and Nois	e Impact (Criteria		
Land Vie Catana	Vibra (VdB	ation Impact re 1 micro in	Levels ch/sec)	Noise Impact Levels (dB re 20 micro Pascals)			
Land Use Category	Frequent Events ¹	Occasional Events ²	Infrequent Events ³	Frequent Events ¹	Occasional Events ²	Infrequent Events ³	
Category 1: Buildings where vibration would interfere with interior operations.	65 VdB ⁴	65 VdB ⁴	65 VdB ⁴	n/a ⁵	n/a ⁵	n/a ⁵	
Category 2: Residences and buildings where people normally sleep.	72 VdB	75 VdB	80 VdB	35 dBA	38 dBA	43 dBA	
Category 3: Institutional land uses with primarily daytime use.	75 VdB	78 VdB	83 VdB	40 dBA	43 dBA	48 dBA	
 Notes: "Frequent Events" is defining the into this category. "Occasional Events" is defining have this many ope "Infrequent Events" is defining the commuter rail branch limit. This criterion limit is base microscopes. Vibration. 	ed as more than fined as betwee rations. ined as fewer th ies. ed on levels tha sensitive manu	n 70 vibration ev en 30 and 70 vib nan 30 vibration t are acceptable 1 facturing or rese	ents of the same ration events of events of the sar for most modera	e source per day the same sourc ne kind per day itely sensitive e e detailed evalu	 Most rapid tran e per day. Most This category is equipment such as 	nsit projects fall commuter trunk includes most s optical se accentable	

Table 2. Ground-Borne Vibration and Noise Impact Criteria (FTA, 2006)

microscopes. Vibration-sensitive manufacturing or research will require detailed evaluation to define the acceptable vibration levels. Ensuring lower vibration levels in a building often requires special design of the HVAC systems and stiffened floors.

5. Vibration-sensitive equipment is generally not sensitive to ground-borne noise.

Human/Structural Response		Veloci Level	ty *	Typical Sources (50 ft from source)
Threshold, minor cosmetic damage fragile buildings		100	-	Blasting from construction projects
Difficulty with tasks such as reading a VDT screen	→	90	•	Bulldozers and other heavy tracked construction equipment
			•	Commuter rail, upper range
Residential annoyance, infrequent events (e.g. commuter rail)	-	80	•	Rapid transit, upper range
,			-	Commuter rail, typical
Residential annoyance, frequent events (e.g. rapid transit)	-	70	+	Bus or truck over bump Rapid transit, typical
Limit for vibration sensitive equipment. Approx. threshold for human perception of vibration	-	60	•	Bus or truck, typical
		50	•	Typical background vibration
		\bigcirc		

* RMS Vibration Velocity Level in VdB relative to 10⁻⁶ inches/second

Figure 11. Ground-Borne Vibration and Noise Impact Criteria (FTA, 2006)

E. Summary

It can be observed that during typical busy hours, the vibration level rises significantly which is caused by aircraft landing or taking off. Cars passing through the observation site also contribute to the changes in the background vibration levels. In this area, the range of vibration levels went beyond 50 VdB which is the typical background vibration (see Figure 11).

Vibration data indicated that the site vary in levels of vibration from a low of **49 VdB** to a high of **53 VdB**. Vibration levels during the 4th month observation were nearly identical to previous months and are not considered as annoyance to residential areas.

The summary of observed peak values for vibration is shown below which shows the velocity (cm/s), acceleration(cm/s²), and maximum vibration velocity (VdB) for each of the stations during certain periods of the day.

		Vibration Levels (VdB)						
Survey Sta	itions	Morning	Day	Evening	Night			
		(5am-9am)	(5am-9am) (9am-6pm)		(10pm-5am)			
	X-axis	49 VdB	51 VdB	50 VdB	49 VdB			
CP N-05	Y-axis	52 VdB	53 VdB	52 VdB	52 VdB			
	Z-axis	50 VdB	51 VdB	49 VdB	49 VdB			

Table 3. Maximum levels on the site during certain periods of the day for the 4th monthobservation

		Acceleration Levels (cm/s ²)					
Survey Sta	tions	Morning	Day	Evening	Night		
		(5am-9am)	(9am-6pm)	(6pm-10pm)	(10pm-5am)		
	X-axis	0.19 cm/s ²	0.22 cm/s ²	0.19 cm/s ²	0.13 cm/s ²		
CP N-05	Y-axis	0.15 cm/s ²	0.22 cm/s ²	0.16 cm/s ²	0.15 cm/s ²		
	Z-axis	0.11 cm/s ²	0.15 cm/s ²	0.13 cm/s ²	0.1 cm/s ²		

		Velocity Levels (cm/s)					
Survey Sta	tions	Morning	Day	Evening	Night		
		(5am-9am) (9am-6pm)		(6pm-10pm)	(10pm-5am)		
	X-axis	0.005 cm/s	0.007 cm/s	0.005 cm/s	0.005 cm/s		
CP N-05	Y-axis	0.006 cm/s	0.008 cm/s	0.006 cm/s	0.004 cm/s		
	Z-axis	0.005 cm/s	0.006 cm/s	0.005 cm/s	0.004 cm/s		

Table 4. The recorded peak vibrations for the 4th month observation

Survey Sites Recorded Peak Vib (VdB)		Peak Time
CP N-05	53 VdB, Y-axis	Day (9am-6pm)

Survey Sites	Recorded Peak Acceleration (cm/s²)	Peak Time
CP N-05	0.22 cm/s², X-axis and Y-axis	Day (9am-6pm)

Survey Sites	Recorded Peak Velocity (cm/s)	Peak Time
CP N-05	0.008 cm/s, Y-axis	Day (9am-6pm)

Tables of comparison among the result of the 1st month observation (December 2020), 2nd month observation (January 2021), the 3rd month observation (February 2021), and the 4th month observation (April 2021)

Vibration Levels (VdB) (1 st month, December 2020)						Vibratio (2 nd montł	n Levels (VdB) 1, January 2021)		
Survey S	Station	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	51 VdB	52 VdB	52 VdB	51 VdB	55 VdB	56 VdB	55 VdB	52 VdB
CP N-05	Y-axis	49 VdB	50 VdB	49 VdB	49 VdB	54 VdB	54 VdB	54 VdB	51 VdB
	Z-axis	49 VdB	53 VdB	51 VdB	48 VdB	54 VdB	56 VdB	55 VdB	51 VdB

	Vibration Levels (VdB) (3 rd month, Feb 2021)					Vibration (4 th mont	Levels (VdB) h, April 2021)		
Survey S	Station	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	53 VdB	53 VdB	52 VdB	51 VdB	49 VdB	51 VdB	50 VdB	49 VdB
CP N-05	Y-axis	51 VdB	51 VdB	51 VdB	50 VdB	52 VdB	53 VdB	52 VdB	52 VdB
	Z-axis	51 VdB	51 VdB	51 VdB	50 VdB	50 VdB	51 VdB	49 VdB	49 VdB

Marning	Davi	Evening	Nicht
		Evening	
	/	0	

	CP N-05 (1st month)	CP N-05 (2nd month)	CP N-05 (3rd month)	CP N-05 (4th month)
Morning	51	55	53	49
Day	52	56	53	51
Evening	52	55	52	50
Night	51	52	51	49

Figure 12. Chart depicting the difference in Horizontal, Transverse Axis (X-Axis) **peak vibration levels (VdB)** among the 1st month observation (December 2020), the 2nd month observation (January 2021), the 3rd month observation (February 2021), and the 4th month observation (April 2021) during certain periods of the day.

Morning	Dav	- Evoning -	Might
IVIOLITII	Day =		INIGIIL

	CP N-05 (1st month)	CP N-05 (2nd month)	CP N-05 (3rd month)	CP N-05 (4th month)
Morning	49	54	51	52
Day	50	54	51	53
Evening	49	54	51	52
Night	49	51	50	52

Figure 13. Chart depicting the difference in Horizontal, Parallel Axis (X-Axis) **peak vibration levels (VdB)** among the 1st month observation (December 2020), the 2nd month observation (January 2021), the 3rd month observation (February 2021), and the 4th month observation (April 2021) during certain periods of the day.

— Morning –	Day	- Evening -	Night

	CP N-05 (1st month)	CP N-05 (2nd month)	CP N-05 (3rd month)	CP N-05 (4th month)
Morning	49	54	51	50
Day	53	56	51	51
Evening	51	55	51	49
Night	48	51	50	49

Figure 14. Chart depicting the difference in Vertical Axis (Z-Axis) **peak vibration levels (VdB)** among the 1st month observation (December 2020), 2nd month observation (January 2021), the 3rd month observation (February 2021) and the 4th month observation (April 2021) during certain periods of the day.

A. APPENDIX

Equipment specifications

Power			
	DC Input	12V DC Battery	
	AC Input	100 - 240V 50/60Hz 0.3A	
Micro Comput	ter	•	•
	Processor	Amlogic ARM Cotex-A5 (ARMv7) 1.5Ghz quad core CPUs	
	GPU	Mali-450 MP2	
	RAM	1Gbyte DDR3 SDRAM	
	Storage	32Gbyte Sandisk Ultra Class 10 SD Card	
Analog to Digi	ital Converter	•	•
	Inputs	14 analog Input (16-18+Bits Depending on speed)	
Display			
		7 Inch Touch Screen	
Sensors			
	Туре	Geophone	
	Model	RTC-4.5Hz-395	
	Frequency		
		natural frequency (fn)	4.5Hz
		Tolerance	+-0.5Hz
		Max Tilt Angle for Specified fn	0
		Typical spurious frequency	>160hz
	Damping		
		Typical open circuit damping	0.7
		Tolerance	10.00%
	Distortion		
		Distortion with 0.7 in/s p.p to case velocity	< 0.3%
		Distortion measurement frequency	12Hz
		Max tilt angle for distortion specification	0
	Coil Resistance		
		standard	395 ohm
		Tolerance	5.00%
	Sensitivity		
		sensitivity	23.4 V/m/s
		Tolerance	10.00%
Connections			
	Туре	CAT 6 Ethernet Cable	

Picture taken during the actual survey

14 | Page

<u>Measurement and Impact Assessment</u> <u>of Vibration Monitoring</u>

Monitoring results

May 2021

NEIL JOHANNES BOTOR	MARK LINUS RAMOS
Survey Supervisor	Technical QA/QC
Date: June 21, 2021	Date: June 21, 2021

Measurement and Assessment of Baseline Vibration PNR Railway System

A. Overview

A vibration monitoring study was conducted at a site in Clark, Pampanga. Fieldwork was conducted last April May 28-29, 2021 during which a seismic recording instrument was deployed to collect 24-hour data of ambient vibration for the site. This vibration study report describes the following:

- a. Methodology used in data collection and analysis;
- b. Measured baseline levels of vibration in the site;
- c. Spatial or temporal patterns in the vibration levels.

B. Inventory of Site

The location of the site and the schedule for the survey were a-priori defined. The field measurement site is located in a sub-urban area near the Clark Freeport Philippines. The survey site is shown in **Table 1**, and its geographic coordinates.

Site	Latitude	Longitude	Survey Date
CP N-05	15°13'4.07"N	120°33'57.22"E	May 28-29, 2021

Table 1. The survey site and its geographic coordinates.

Figure 1. The location of the survey site in Google Earth image

C. Measurement for Vibration Conditions

At the site, 24-hour sampling was undertaken where vibration was recorded using the Vibron Seismometer which is a seismic data recorder connected to geophones. One triaxial sensor was installed at the observation area in an orthogonal arrangement. The triaxial sensor has a natural frequency of 4.5 Hz and a sampling frequency of 200 samples per second.

The seismic sensor was deployed on the concrete pavement or road surface or natural ground/soil if available. The data recording in the site was supervised by a crew of two which alternated on 12-hour shifts to complete the 24 hour sampled recording.

The **CP N-05** observation site (**Figure 1**) is located in a farmland near Clark Freeport, at approximately 600 meters away from Subic-Clark-Tarlac Expressway (SCTEX), and 100 meters away from Gil Puyat Avenue. Construction activities for the site had also started during the 5th observation month at approximately 100 meters from the position of the sensor. Traffic condition was light to moderate during the observation period. The sources of spike in vibration levels are predominantly caused by backhoes, graders and aircraft passby.

Figure 2. Chart depicting the maximum vibration levels in **VdB** in for the Horizontal Transverse Axis (X-axis), Horizontal Parallel Axis (Y-Axis) and the Vertical Axis (Z-Axis).

Figure 3. Chart depicting the maximum vibration levels in **VdB** in for the Horizontal Transverse Axis (X-axis), Horizontal Parallel Axis (Y-Axis) and the Vertical Axis (Z-Axis).

Figure 4. Chart depicting the maximum vibration levels in **VdB** in for the Horizontal Transverse Axis (X-axis), Horizontal Parallel Axis (Y-Axis) and the Vertical Axis (Z-Axis).

D. Vibration Criteria

The approach used in this study follows the prescription of the British Standard 7385 (1993). The Philippines' Environmental Management Bureau has not defined any vibration standards or procedures of investigation in the Philippines.

The vibration level measurements were carried out according to U.S. FTA 2006 guidelines. Regular samples of vibration data over 24-hour observation period for the station were conducted. The figures show the result of the vibration in the site in terms of velocity, acceleration, and maximum vibration levels that vary throughout the day. For the site, some notable features can be distinguished indicating in some instances the human activity that causes the background vibration. Vibration data was processed with reference velocity of 1x10⁻⁶ per second.

Land Use Catagory	Vibration Impact Levels (VdB re 1 micro inch/sec)			Noise Impact Levels (dB re 20 micro Pascals)		
Land Use Category	Frequent Events ¹	Occasional Events ²	Infrequent Events ³	Frequent Events ¹	Occasional Events ²	Infrequent Events ³
Category 1: Buildings where vibration would interfere with interior operations.	65 VdB ⁴	65 VdB ⁴	65 VdB ⁴	n/a ⁵	n/a ⁵	n/a ⁵
Category 2: Residences and buildings where people normally sleep.	72 VdB	75 VdB	80 VdB	35 dBA	38 dBA	43 dBA
Category 3: Institutional land uses with primarily daytime use.	75 VdB	78 VdB	83 VdB	40 dBA	43 dBA	48 dBA

 Table 2. Ground-Borne Vibration and Noise Impact Criteria (FTA, 2006)

1. "Frequent Events" is defined as more than 70 vibration events of the same source per day. Most rapid transit projects fall into this category.

"Occasional Events" is defined as between 30 and 70 vibration events of the same source per day. Most commuter trunk lines have this many operations.

3. "Infrequent Events" is defined as fewer than 30 vibration events of the same kind per day. This category includes most commuter rail branch lines.

4. This criterion limit is based on levels that are acceptable for most moderately sensitive equipment such as optical microscopes. Vibration-sensitive manufacturing or research will require detailed evaluation to define the acceptable vibration levels. Ensuring lower vibration levels in a building often requires special design of the HVAC systems and stiffened floors.

5. Vibration-sensitive equipment is generally not sensitive to ground-borne noise.

* RMS Vibration Velocity Level in VdB relative to 10⁻⁶ inches/second Figure 11. Ground-Borne Vibration and Noise Impact Criteria (FTA, 2006)

E. Summary

It can be observed that during the th5 month observation period, the vibration level rose significantly which is caused by construction activities in the area. Cars, excavators and graders executing their functions during operation hours also contribute to the changes in the background vibration levels. In this area, the range of vibration levels went beyond 50 VdB which is the typical background vibration (see Figure 11).

Vibration data indicated that the site vary in levels of vibration from a low of **48 VdB** to a high of **53 VdB**. Vibration levels during the 5^{th} month observation were significantly higher during construction hours and its activities can be seen through the graphs. Vibration patterns during this time are not considered as annoyance to residential areas.

The summary of observed peak values for vibration is shown below which shows the velocity (cm/s), acceleration(cm/s²), and maximum vibration velocity (VdB) for each of the stations during certain periods of the day.

		Vibration Levels (VdB)				
Survey Sta	tions	Morning	Day	Evening	Night	
		(5am-9am)	(9am-6pm)	(6pm-10pm)	(10pm-5am)	
	X-axis	51 VdB	52 VdB	49 VdB	48 VdB	
CP N-05	Y-axis	52 VdB	53 VdB	49 VdB	48 VdB	
	Z-axis	52 VdB	52 VdB	49 VdB	48 VdB	

Table 3. Maximum levels on the site during certain periods of the day for the 5th monthobservation

Cumuru Cha		Acceleration Levels (cm/s ²)				Acceleration Levels (cm/s ²)		
Survey Sta	ations	Morning	Day	Evening	Night			
		(5am-9am)	(9am-6pm)	(6pm-10pm)	(10pm-5am)			
	X-axis	0.29 cm/s ²	0.27 cm/s ²	0.06 cm/s ²	0.03 cm/s ²			
CP N-05	Y-axis	0.26 cm/s ²	0.27 cm/s ²	0.05 cm/s ²	0.03 cm/s ²			
	Z-axis	0.37 cm/s ²	0.26 cm/s ²	0.05 cm/s ²	0.02 cm/s ²			

Cumuru Cha		Velocity Levels (cm/s)			Velocity Levels (cm/s)			
Survey Sta	tions	Morning	Day	Evening	Night			
		(5am-9am) (9am-6pm) (6pm-10pm)			(10pm-5am)			
	X-axis	0.003 cm/s	0.004 cm/s	0.002 cm/s	0.002 cm/s			
CP N-05	Y-axis	0.004 cm/s	0.005 cm/s	0.003 cm/s	0.002 cm/s			
	Z-axis	0.004 cm/s	0.004 cm/s	0.003 cm/s	0.002 cm/s			

Table 4. The recorded peak vibrations for the 5th month observation

Survey Sites	Recorded Peak Vibration (VdB)	Peak Time
CP N-05	53 VdB, Y-axis	Day (9am-6pm)

Survey Sites	Recorded Peak Acceleration (cm/s ²)	Peak Time
CP N-05	0.37 cm/s², Z-axis	Morning (5am-9am)

Survey Sites	Recorded Peak Velocity (cm/s)	Peak Time
CP N-05	0.005 cm/s, Y-axis	Day (9am-6pm)
Tables of comparison among the result of the 1st month observation (December 2020), 2nd month observation (January 2021), the 3rd month observation (February 2021), and the 4th month observation (April 2021)

Survey Station		Vibration Levels (VdB) (1 st month, December 2020)				Vibration Levels (VdB) (2 nd month, January 2021)			
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	51 VdB	52 VdB	52 VdB	51 VdB	55 VdB	56 VdB	55 VdB	52 VdB
CP N-05	Y-axis	49 VdB	50 VdB	49 VdB	49 VdB	54 VdB	54 VdB	54 VdB	51 VdB
	Z-axis	49 VdB	53 VdB	51 VdB	48 VdB	54 VdB	56 VdB	55 VdB	51 VdB

Vibration Levels (VdB) (3 rd month, Feb 2021)			Vibration Levels (VdB) (4 th month, April 2021)						
Survey S	tation	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)	Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
	X-axis	53 VdB	53 VdB	52 VdB	51 VdB	49 VdB	51 VdB	50 VdB	49 VdB
CP N-05	Y-axis	51 VdB	51 VdB	51 VdB	50 VdB	52 VdB	53 VdB	52 VdB	52 VdB
	Z-axis	51 VdB	51 VdB	51 VdB	50 VdB	50 VdB	51 VdB	49 VdB	49 VdB

Survey Station		Vibration Levels (VdB) (5 th month, May 2021)						
		Morning	Day	Evening	Night			
		(5am-9am) (9am-6pm)		(6pm-10pm)	(10pm-5am)			
	X-axis	51 VdB	52 VdB	49 VdB	48 VdB			
CP N-05	Y-axis	52 VdB	53 VdB	49 VdB	48 VdB			
	Z-axis	52 VdB	52 VdB	49 VdB	48 VdB			

Figure 12. Chart depicting the difference in Horizontal, Transverse Axis (X-Axis) **peak vibration levels (VdB)** among the 1st month observation (December 2020), the 2nd month observation (January 2021), the 3rd month observation (February 2021), the 4th month observation (April 2021) and the 5th month observation (May 2021) during certain periods of the day.

Figure 13. Chart depicting the difference in Horizontal, Parallel Axis (Y-Axis) peak vibration levels (VdB) among the 1st month observation (December 2020), the 2nd month observation (January 2021), the 3rd month observation (February 2021), the 4th month observation (April 2021) and the 5th month observation (May 2021) during certain periods of the day.

Figure 14. Chart depicting the difference in Vertical Axis (Z-Axis) **peak vibration levels (VdB)** among the 1st month observation (December 2020), 2nd month observation (January 2021), the 3rd month observation (February 2021) and the 4th month observation (April 2021) during certain periods of the

day.

A. APPENDIX

Equipment specifications

Power			
	DC Input	12V DC Battery	
	AC Input	100 - 240V 50/60Hz 0.3A	
Micro Compute	r	•	•
	Processor	Amlogic ARM Cotex-A5 (ARMv7) 1.5Ghz quad core CPUs	
	GPU	Mali-450 MP2	
	RAM	1Gbyte DDR3 SDRAM	
	Storage	32Gbyte Sandisk Ultra Class 10 SD Card	
Analog to Digita	al Converter	•	•
	Inputs	14 analog Input (16-18+Bits Depending on speed)	
Display			
		7 Inch Touch Screen	
Sensors		·	
	Туре	Geophone	
	Model	RTC-4.5Hz-395	
	Frequency		
		natural frequency (fn)	4.5Hz
		Tolerance	+-0.5Hz
		Max Tilt Angle for Specified fn	0
		Typical spurious frequency	>160hz
	Damping		
		Typical open circuit damping	0.7
		Tolerance	10.00%
	Distortion		
		Distortion with 0.7 in/s p.p to case velocity	< 0.3%
		Distortion measurement frequency	12Hz
		Max tilt angle for distortion specification	0
	Coil Resistance		
		standard	395 ohm
		Tolerance	5.00%
	Sensitivity		
		sensitivity	23.4 V/m/s
		Tolerance	10.00%
Connections	•	·	
	Туре	CAT 6 Ethernet Cable	

Pictures taken during the actual survey

<u>Measurement and Impact Assessment</u> <u>of Vibration Monitoring</u>

Monitoring results

June 2021

NEIL JOHANNES BOTOR Survey Supervisor

MARK LINUS RAMOS Technical QA/QC

Date: June 21, 2021

Date: July 9, 2021

Measurement and Assessment of Baseline Vibration <u>PNR Railway System</u>

A. Overview

A vibration monitoring study was conducted at a site in Clark, Pampanga. Fieldwork was conducted last June 16-17, 2021 during which a seismic recording instrument was deployed to collect 24-hour data of ambient vibration for the site. This vibration study report describes the following:

- a. Methodology used in data collection and analysis;
- b. Measured baseline levels of vibration in the site;
- c. Spatial or temporal patterns in the vibration levels.
- B. Inventory of Site

The location of the site and the schedule for the survey were a-priori defined. The field measurement site is located in a sub-urban area near the Clark Freeport Philippines. The survey site is shown in Table 1, and its geographic coordinates.

Table 1. The survey site and its geographic coordinates.

Site	Latitude	Longitude	Survey Date
CP N-05	15°13'4.07"N	120°33'57.22"E	June 16-17, 2021

Figure 1. The location of the survey site in Google Earth image

C. Measurement for Vibration Conditions

At the site, 24-hour sampling was undertaken where vibration was recorded using the Vibron Seismometer which is a seismic data recorder connected to geophones. One triaxial sensor was installed at the observation area in an orthogonal arrangement. The triaxial sensor has a natural frequency of 4.5 Hz and a sampling frequency of 200 samples per second.

The seismic sensor was deployed on the concrete pavement or road surface or natural ground/soil if available. The data recording in the site was supervised by a crew of two which alternated on 12-hour shifts to complete the 24 hour sampled recording.

The CP N-05 observation site (Figure 1) is located in a farmland near Clark Freeport, at approximately 600 meters away from Subic-Clark-Tarlac Expressway (SCTEX), and 100 meters away from Gil Puyat Avenue. Construction activities for the site had also started during the 6^{th} observation month at approximately 100 meters from the position of the sensor. Traffic condition was light to moderate during the observation period. The sources of spike in vibration levels are predominantly caused by backhoes, graders and aircraft pass-by.

Figure 2. Chart depicting the maximum vibration levels in VdB in for the Horizontal Transverse Axis (Xaxis), Horizontal Parallel Axis (Y-Axis), and the Vertical Axis (Z-Axis).

Figure 3. Chart depicting the maximum acceleration in cm/s² in for the Horizontal Transverse Axis (X-axis), Horizontal Parallel Axis (Y-Axis) and the Vertical Axis (Z-Axis).

Figure 4. Chart depicting the maximum velocity in cm/s in for the Horizontal Transverse Axis (X-axis), Horizontal Parallel Axis (Y-Axis) and the Vertical Axis (Z-Axis).

D. Vibration Criteria

The approach used in this study follows the prescription of the British Standard 7385 (1993). The Philippines' Environmental Management Bureau has not defined any vibration standards or procedures of investigation in the Philippines.

The vibration level measurements were carried out according to U.S. FTA 2006 guidelines. Regular samples of vibration data over 24-hour observation period for the station were conducted. The figures show the result of the vibration in the site in terms of velocity, acceleration, and maximum vibration levels that vary throughout the day. For the site, some notable features can be distinguished indicating in some instances the human activity that causes the background vibration. Vibration data was processed with reference velocity of 1x10⁻⁶ per second.

Land Use Category	Vibra (VdB	ation Impact re 1 micro in	Levels ch/sec)	Noise Impact Levels (dB re 20 micro Pascals)		
Land Use Category	Frequent Events ¹	Occasional Events ²	Infrequent Events ³	Frequent Events ¹	Occasional Events ²	Infrequent Events ³
Category 1: Buildings where vibration would interfere with interior operations.	65 VdB ⁴	65 VdB ⁴	65 VdB ⁴	n/a ⁵	n/a ⁵	n/a ⁵
Category 2: Residences and buildings where people normally sleep.	72 VdB	75 VdB	80 VdB	35 dBA	38 dBA	43 dBA
Category 3: Institutional land uses with primarily daytime use.	75 VdB	78 VdB	83 VdB	40 dBA	43 dBA	48 dBA

Table 2. Ground-Borne Vibration and Noise Impact Criteria (FTA, 2006)

Notes

1. "Frequent Events" is defined as more than 70 vibration events of the same source per day. Most rapid transit projects fall into this category.

2. "Occasional Events" is defined as between 30 and 70 vibration events of the same source per day. Most commuter trunk lines have this many operations.

3. "Infrequent Events" is defined as fewer than 30 vibration events of the same kind per day. This category includes most commuter rail branch lines.

4. This criterion limit is based on levels that are acceptable for most moderately sensitive equipment such as optical microscopes. Vibration-sensitive manufacturing or research will require detailed evaluation to define the acceptable vibration levels. Ensuring lower vibration levels in a building often requires special design of the HVAC systems and stiffened floors.

5. Vibration-sensitive equipment is generally not sensitive to ground-borne noise.

* RMS Vibration Velocity Level in VdB relative to 10⁻⁶ inches/second

Figure 7-3. Typical Levels of Ground-Borne Vibration

)

E. Summary

It can be observed that during the 6th month observation period, the vibration level is higher among the previous months, which is caused by construction and excavation activities in the area. Vehicles, operation of heavy equipment, and rainfall during the 24-hour period also contribute to the changes in the background vibration levels. In this area, the range of vibration levels went beyond 50 VdB which is the typical background vibration (see Figure 11).

Vibration data indicated that the site vary in levels of vibration from as low of 47 VdB to as high of 58 VdB. Vibration levels during the 6th month observation were significantly higher during construction hours and its activities can be seen through the graphs. Vibration patterns during this time are not considered as annoyance to residential areas.

The summary of observed peak values for vibration is shown below which shows the velocity (cm/s), acceleration (cm/s²), and maximum vibration velocity (VdB) for each of the stations during certain periods of the day.

Survey Stations		Vibration Levels (VdB)						
		Morning	Day	Evening	Night			
		(5am-9am)	(9am-6pm)	(6pm-10pm)	(10pm-5am)			
	X-axis	56 VdB	58 VdB	57 VdB	56 VdB			
CP N-05	Y-axis	52 VdB	54 VdB	54 VdB	53 VdB			
	Z-axis	47 VdB	50 VdB	50 VdB	47 VdB			

Table 3. Peak vibration levels on the site during certain periods of the day for the 6th month observation

Survey Stations		Acceleration Levels (cm/s ²)						
		Morning	Day	Evening	Night			
		(5am-9am)	(9am-6pm)	(6pm-10pm)	(10pm-5am)			
	X-axis	0.6 cm/s ²	0.64 cm/s ²	0.78 cm/s ²	0.65 cm/s ²			
CP N-05	Y-axis	0.18 cm/s ²	0.3 cm/s ²	0.25 cm/s ²	0.1 cm/s ²			
	Z-axis	0.2 cm/s ²	0.35 cm/s ²	0.39 cm/s ²	0.13 cm/s ²			

Survey Stations		Velocity Levels (cm/s)						
		Morning	Day	Evening	Night			
		(5am-9am)	(9am-6pm)	(6pm-10pm)	(10pm-5am)			
	X-axis	0.006 cm/s	0.007 cm/s	0.007 cm/s	0.0065 cm/s			
CP N-05	Y-axis	0.004 cm/s	0.0055 cm/s	0.005 cm/s	0.004 cm/s			
	Z-axis	0.0025 cm/s	0.0032 cm/s	0.0032 cm/s	0.0022 cm/s			

Table 4. The recorded peak vibrations for the 5th month observation

Survey Sites	Recorded Peak Vibration (VdB)	Peak Time
CP N-05	58 VdB, X-axis	Day (9am-6pm)

Survey Sites	Recorded Peak Acceleration (cm/s²)	Peak Time		
CP N-05	0.78 cm/s ² , X-axis	Evening (6pm-10pm)		

Survey Sites	Recorded Peak Velocity (cm/s)	Peak Time
CP N-05	0.007 cm/s, X-axis	Day (9am-6pm) & Evening (6pm-10pm)

Tables of comparison among the result of the 1st month observation (December 2020), 2nd month observation (January 2021), the 3rd month observation (February 2021), the 4th month observation (April 2021), the 5th month of observation (May 2021), and the 6th month of observation (June 2021)

Survey Station		Vibration Levels (VdB) (1 st month, December 2020)					Vibration Levels (VdB) (2 nd month, January 2021)			
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
CP N-05	X-axis	51 VdB	52 VdB	52 VdB	51 VdB	-	55 VdB	56 VdB	55 VdB	52 VdB
	Y-axis	49 VdB	50 VdB	49 VdB	49 VdB		54 VdB	54 VdB	54 VdB	51 VdB
	Z-axis	49 VdB	53 VdB	51 VdB	48 VdB		54 VdB	56 VdB	55 VdB	51 VdB
Survey Station		Vibration Levels (VdB) (3 rd month, February 2021)					Vibration Levels (VdB) (4 th month, April 2021)			
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
CP N-05	X-axis	53 VdB	53 VdB	52 VdB	51 VdB		49 VdB	51 VdB	50 VdB	49 VdB
	Y-axis	51 VdB	51 VdB	51 VdB	50 VdB	-	52 VdB	53 VdB	52 VdB	52 VdB
	Z-axis	51 VdB	51 VdB	51 VdB	50 VdB		50 VdB	51 VdB	49 VdB	49 VdB
Survey Station		Vibration Levels (VdB) (5 th month, May 2021)					Vibration Levels (VdB) (6 th month, June 2021)			
		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)		Morning (5am-9am)	Day (9am-6pm)	Evening (6pm-10pm)	Night (10pm-5am)
CP N-05	X-axis	51 VdB	52 VdB	49 VdB	48 VdB		56 VdB	58 VdB	57 VdB	56 VdB
	Y-axis	52 VdB	53 VdB	49 VdB	48 VdB		52 VdB	54 VdB	54 VdB	53 VdB
	Z-axis	52 VdB	52 VdB	49 VdB	48 VdB		47 VdB	50 VdB	50 VdB	47 VdB

Figure 6. Chart depicting the difference in Horizontal, Transverse Axis (X-Axis) peak vibration levels (VdB) among the 1st month observation (December 2020), the 2nd month observation (January 2021), the 3rd month observation (February 2021), the 4th month observation (April 2021), the 5th month observation (May 2021), and 6th month observation (June 2021) during certain periods of the day.

Figure 7. Chart depicting the difference in Horizontal, Parallel Axis (Y-Axis) peak vibration levels (VdB) among the 1st month observation (December 2020), the 2nd month observation (January 2021), the 3rd month observation (February 2021), the 4th month observation (April 2021), the 5th month observation (May 2021), and 6th month observation (June 2021) during certain periods of the day.

Figure 8. Chart depicting the difference in Vertical Axis (Z-Axis) peak vibration levels (VdB) among the 1st month observation (December 2020), the 2nd month observation (January 2021), the 3rd month observation (February 2021), the 4th month observation (April 2021), the 5th month observation (May 2021), and 6th month observation (June 2021) during certain periods of the day.

A. APPENDIX

Equipment specifications

		Vibron Spec Sheet	
Power			
	DC Input	12V DC Battery	
	AC Input	100 - 240V 50/60Hz 0.3A	
Micro Computer			
	Processor	Amlogic ARM Cotex-A5 (ARMv7) 1.5Ghz quad core CPUs	
	GPU	Mali-450 MP2	
	RAM	1Gbyte DDR3 SDRAM	
	Storage	32Gbyte Sandisk Ultra Class 10 SD Card	
Analog to Digital	Converter	•	
	Inputs	14 analog Input (16-18+Bits Depending on speed)	
Display			
		7 Inch Touch Screen	
Sensors		•	
	Туре	Geophone	
	Model	RTC-4.5Hz-395	
	Frequency		
		natural frequency (fn)	4.5Hz
		Tolerance	+-0.5Hz
		Max Tilt Angle for Specified fn	0
		Typical spurious frequency	>160hz
	Damping		
		Typical open circuit damping	0.7
		Tolerance	10.00%
	Distortion		
		Distortion with 0.7 in/s p.p to case velocity	< 0.3%
		Distortion measurement frequency	12Hz
		Max tilt angle for distortion specification	0
	Coil Resistance	· · ·	
		standard	395 ohm
		Tolerance	5.00%
	Sensitivity		
		sensitivity	23.4 V/m/s
		Tolerance	10.00%
Connections	•		
	Туре	CAT 6 Ethernet Cable	

Pictures taken during the actual survey

