

"o" means \bigcirc , "t" means \times , "h" means \bigcirc .

"o" means \bigcirc , "t" means \times , "h" means \bigcirc . T27_S01

"o" means \bigcirc , "t" means \times , "h" means \bigcirc . T27_S01

9÷4

3

4

[check]

"o" means \bigcirc , "t" means \times , "h" means \bigcirc .

"o" means \bigcirc , "t" means \times , "h" means \bigcirc . T27_S02

"o" means \bigcirc , "t" means \times , "h" means \bigcirc .

"o" means ●, "t" means ×, "h" means ○. □

28 ×

"o" means \bigcirc , "t" means \times , "h" means \bigcirc .

Exercise Divide.

Exercise Divide.

Exercise Divide.

"o" means \bigcirc , "t" means \times , "h" means \bigcirc , "th" means \Box . T27_S14

"o" means \bigcirc , "t" means \times , "h" means \bigcirc , "th" means \Box . T2

"o" means \bigcirc , "t" means \times , "h" means \bigcirc , "th" means \square . T27_S14

"o" means ●, "t" means ×, "h" means ○, "th" means □.

"o" means \bigcirc , "t" means \times , "h" means \bigcirc , "th" means \square .

 $3 \div 1 = 3$ 4 = 3 4 = 3 4 = 3 4 = 3 4 = 3 4 = 3 4 = 3 4 = 3 4 = 3 4 = 3 4 = 3 $5 \div 1 \text{ if you multiply 4 to both 3 and 1. 120 \div 4 \text{ is the same number as the 12 \div 4 \text{ if you multiply 10 to both 12 and 4.}}$

"o" means \bigcirc , "t" means \times , "h" means \bigcirc , "th" means \square . T27_S15

"o" means \bigcirc , "t" means \times , "h" means \bigcirc , "th" means \Box . T27_S15

"o" means \bigcirc , "t" means \times , "h" means \bigcirc , "th" means \square . T27_S15

"o" means \bigcirc , "t" means \times , "h" means \bigcirc .

Exercise Divide. Check the answer.

Exercise Divide and write "-".

We can find it by adding the number of onions given to and and subtract from 50. When we write this in a number sentence, we use ().

50-(23+15)

This number sentence shows that we add 23 and 15 which we gave them first and subtract it from 50 onions.

_

We can combine the two number sentences into one. $13+36\div 2$

Exercise Evaluate.

T28_S04

Good!

T28_S04

Exercise Write the answer in the

T28_S04

We get the same answer with any **a**, **b** and **c**.

Let's calculate this using the rules we've learnt. **68+54+46** We get the same answer even if we change the order of multiplication.

$$14 \times 8 + 26 \times 8 = (14 + 26) \times 8$$
$$= 40 \times 8$$
$$= 320 \qquad \textcircled{Good!}$$
We get 40 by using (). It is easy to calculate.

