12－1

Expressing the Size of Divided Parts（I）

Instruction When 1 m is divided into 3 equal parts，one of the parts is called one－third of 1 m ．

Numerator： the length of 2 parts
$\frac{2}{3} \mathrm{~m}$
Denominator： Dividing 1 m into 3 parts

The length one third of $I \mathrm{~m}$ is written as $\frac{1}{3} \mathrm{~m}$ ．
Two of the parts together is called two－thirds of 1 m ． The length two thirds of $I \mathrm{~m}$ is written as $\frac{2}{3} \mathrm{~m}$ ．

Example 1 How many \square is the length of the coloured part？ How many metres is the coloured part？

The length of the coloured parts is
I m is divided into 5 parts equally．This is the size of I measurement mark．

1 How many \square is the length of the coloured part？How many metres is the coloured part？

1

2

3

4

The length of the coloured part is

The length of the coloured part is

The length of the coloured part is

The length of the coloured part is

（5）

The length of the coloured part is

2 Colour the parts expressing the lengths shown below．
（1）$\frac{4}{7} \mathrm{~m}$

（2）$\frac{5}{8} \mathrm{~m}$

Example 2 The following shows a problem and Student A＇s answer．Is his answer correct？

Question：How many metres is the coloured part？
Student A＇s answer：$\frac{1}{4} \mathrm{~m}$

Student A＇s answer is incorrect．
The coloured part is a $\frac{1}{4}$ of the whole．Now the whole is 2 m ， not I m ．Therefore，the coloured part is $\frac{1}{4}$ of 2 m ，which equals to $\frac{1}{2} \mathrm{~m}$ ．The correct answer is $\frac{1}{2} \mathrm{~m}$ ．

We must think about how many parts are there in a $\mid \mathrm{m}$ long tape．
 In the above example，there are 2 parts in a 1 m long tape．

3 How many metres is the coloured part？

\section*{	$7-2$ Eractions
Expressing the Size of Divided Parts（2）	}

Example 1 How many litres of water is shown in the picture？

Think about how many equally divided parts of I L of water there are．This is the size of 1 measurement mark．

1 How many measurement marks are shown in the picture？ Then answer how many litres of water there are．

2 Colour in the following amounts of water．

（3）$\frac{3}{4} \mathrm{~L}$
（4）$\frac{3}{8} L$

－Example 2 How many litres of water is shown in the picture？

The coloured part（ \square ）is a $\frac{1}{4}$ of the whole．
However，the whole is 2 L ，not I L ．
Therefore，the colored part is $\frac{\mathrm{l}}{4}$ of 2 L ，which equals to $\frac{1}{2} L$ ．

Answer

As learnt in the previous section，we must think
 about how many parts are there in a $\mid \mathrm{L}$ ．In the above example，there are 2 parts in a $\mid \mathrm{L}$ ．

3 How many litres of water is there in the following containers？
2 L
$\square{ }^{2} \mathrm{~L}$

12－3 Fractions
 Expressing the Size of Fractions（।）

Example Look at the following number line．How many meters are two，three，four，five and six $\frac{1}{5} \mathrm{~m}$ ？
Two $\frac{1}{5} \mathrm{~m}$ is $\frac{2}{5}$
m ．Three $\frac{1}{5} \mathrm{~m}$ is $\frac{3}{5} \mathrm{~m}$ ．
Four $\frac{1}{5} m$ is $\frac{4}{5}$ m．Five $\frac{1}{5} \mathrm{~m}$ is $\frac{5}{5}$ m．

Six $\frac{1}{5} \mathrm{~m}$ is
 m．$\quad \frac{5}{5} \mathrm{~m}=1 \mathrm{~m}$

What are the lengths represented by tick marks（a）to（i）．

12－4 Fractions
 Expressing the Size of Fractions（2）

－Example 1 Which is greater？Write the appropriate sign

1 Which is greater？Write the appropriate sign（ \langle or \rangle ）in the \square
（1）$\frac{5}{6} \mathrm{~m}$ \square $\frac{3}{6} \mathrm{~m}$
（2）$\frac{2}{4} \mathrm{~m} \square \frac{1}{4} \mathrm{~m}$

（3）$\frac{1}{3} \mathrm{~m} \square \frac{2}{3} \mathrm{~m}$
（4）$\frac{1}{8} \mathrm{~m} \square \frac{5}{8} \mathrm{~m}$
（5）$\frac{3}{10} \mathrm{~m} \square \frac{7}{10} \mathrm{~m}$
（6）$\frac{5}{6} \mathrm{~m} \square \frac{4}{6} \mathrm{~m}$
（7） $1 \mathrm{~m} \square \frac{1}{9} \mathrm{~m}$
（8）$\frac{2}{7} \mathrm{~m} \square \frac{5}{7} \mathrm{~m}$
－Exemple 2 Write the fraction in the \square ．
$\frac{4}{5} \mathrm{~m}$ is $\frac{1}{5} \mathrm{~m}$ smaller than 1 m ．

2 Write the fractions in the \square ．
（1）$\frac{7}{8} \mathrm{~m}$ is $\square \mathrm{m}$ smaller than 1 m ．
（2）$\frac{5}{8} \mathrm{~m}$ is $\square \mathrm{m}$ larger than $\frac{2}{8} \mathrm{~m}$ ．

$12-5$
 Addition

Example There is $\frac{1}{5} L$ of juice in a carton and $\frac{2}{5} L$ in another carton. How much juice is there altogether?

Math sentence is $\frac{1}{5}+\frac{2}{5}$. How can you calculate this?

So, $\quad \frac{1}{5}+\frac{2}{5}=\frac{3}{5}$

1 There is $\frac{1}{7} L$ of milk in a carton and $\frac{2}{7} L$ in another carton. How much milk is there altogether?

Math
Sentence

Since the denominators are the same, we can calculate only the numerators.

2 Calculate the following addition problems.
(1) $\frac{1}{5}+\frac{3}{5}=\square$
(2) $\frac{3}{7}+\frac{2}{7}=\square$
(3) $\frac{3}{9}+\frac{4}{9}=\square$
(4) $\frac{1}{8}+\frac{2}{8}=\square$
(5) $\frac{2}{6}+\frac{3}{6}=\square$
(6) $\frac{2}{3}+\frac{1}{3}=\square$

12－6
 Subtraction（I）

Exemple There is $\frac{3}{5} \mathrm{~L}$ of juice in a carton．If a boy drinks $\frac{1}{5} \mathrm{~L}$ of juice，how much juice will be left？

Math sentence is $\frac{3}{5}-\frac{1}{5}$ ．How can you calculate this？

So, $\frac{3}{5}-\frac{1}{5}=\frac{2}{5}$

1 There is $\frac{4}{7} \mathrm{~L}$ of milk in a carton．When a girl drinks $\frac{1}{7} \mathrm{~L}$ of milk， how much milk will be left？

Since the denominators are the same，we can calculate only the numerators．
2 Calculate the following addition problems．
（1）$\frac{8}{9}-\frac{4}{9}=\square$ （2）$\frac{2}{3}-\frac{1}{3}=\square$
（3）$\frac{7}{8}-\frac{6}{8}=\square$
（4）$\frac{4}{5}-\frac{2}{5}=\square$
（5）$\frac{5}{6}-\frac{4}{6}=\square$
（6）$\frac{6}{7}-\frac{3}{7}=\square$

Subtraction（2）

Example There is I L of juice in a carton．If a girl drinks $\frac{1}{5} L$ of juice，how much juice will be left？

Math sentence is $1-\frac{1}{5}$ ．How can you calculate this？

Amount of juice drunk

Five $\frac{1}{5} L \quad$ One $\frac{1}{5} L$

$$
\text { So, } \quad 1-\frac{1}{5}=\frac{5}{5}-\frac{1}{5}=\frac{4}{5}
$$

Four $\frac{1}{5} L$

1 There is I L of milk in a carton．When a child drinks $\frac{1}{5} L$ of milk how much milk will be left？

I Lis seven $\frac{1}{7} \mathrm{~L}$ ．
Therefore，$I L$ is the same as $\frac{7}{7} L$ ．

Math
Sentence
\square

2 Calculate the following addition problems．
（1）
$1-\frac{3}{4}=\square$
（2） $1-\frac{1}{3}=\square$
（3） $1-\frac{5}{8}=\square$

（5） $1-\frac{3}{7}=\square$
（6） $1-\frac{3}{5}=\square$
In this case，｜L is nine $\frac{1}{9} L$ ．Therefore， $\mid L$ is the same as $\frac{9}{9} L$ ．

Review

1 Use fractions to express different lengths and different amounts of water as shown by the coloured parts．

1

3

4

2

2 Write fractions in the \square ．

3 Which is greater？Write the appropriate sign（ $<$ or $>$ ）in the \qquad ．
（1）$\frac{2}{5} \mathrm{~m} \square$ $\frac{3}{5} m$
（2）$\frac{5}{8} \mathrm{~m} \square \frac{3}{8} \mathrm{~m}$
3
$\frac{6}{7} \mathrm{~m} \square$

4 Calculate the following．
（1）$\frac{1}{5}+\frac{1}{5}=\square$
（2）$\frac{2}{7}+\frac{3}{7}=\square$
（3）$\frac{2}{4}+\frac{1}{4}=\square$
（4）$\frac{4}{8}-\frac{3}{8}=\square$
（5）$\frac{4}{9}-\frac{2}{9}=\square$
（6）$\frac{5}{6}-\frac{2}{6}=\square$
（1） $1-\frac{1}{3}=\square$
（8）$\quad 1-\frac{3}{5}=\square$
（9） $1-\frac{5}{6}=\square$

