4 5 3 $24-6 \div 8$ $+5 \frac{9}{c}$

 $-\frac{P}{5}$
 \square
 $\pm 0=$ $=$

 National

 National MATHDMATICS Pextbook

Issued free to schools by the Department of Education

First Edition

Published in 2019 by the Department of Education, Papua New Guinea.
© Copyright 2019, Department of Education, Papua New Guinea.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted by any form or by any means of electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher.

ISBN 978-9980-905-09-3

Acknowledgements

The Grade 3 National Mathematics Textbook was developed by the Curriculum Development Division in partnership with the Mathematics specialists from Japan through the Project for Improving the Quality of Mathematics and Science Education also known as QUIS-ME Project.

The Mathematics curriculum officers, textbook writers, pilot teachers from NCD and Central Provinces and the Subject Curriculum Group (SCG) are acknowledged for their contribution in writing, piloting and validating this textbook.

The Curriculum Panel members, members of the Subject Advisory Committee (SAC) and the Basic Education Board of Studies (BEBOS) are also acknowledged for their advice, recommendation and endorsement of this textbook.

A special acknowledgement is given to the People and the Government of Japan for the partnership and support in funding and expertise through Japan International Cooperation Agency (JICA) - QUIS-ME Project with Curriculum Development Division (CDD).

National Mathematics Textbook

Grade 3

Papua New Guinea
Department of Education

Minister's Message

Dear Grade 3 Students,

I am honoured to give you my message in this National Mathematics Textbook.

The Government of Papua New Guinea has been working to improve students' learning of mathematics. This textbook was developed by our excellent Curriculum Officers, Textbook Writers and Pilot Teachers, who have worked together with Japanese specialists for three years. This is the best textbook for grade 3 students in Papua New Guinea and is comparable to international standards. I would like to thank the Government of Japan for its support in improving the quality of learning for children in Papua New Guinea.

I am excited about this textbook because it covers all topics necessary for learning in grade 3. You will find many photographs, illustrations, charts and diagrams that are interesting and exciting for learning. I hope they will motivate you to explore more about mathematics.

Students, Mathematics is a very important subject. It is also very interesting to learn. Do you know why? Because mathematics is everywhere in our lives. You will use your knowledge and skills of mathematics to calculate cost, to find time, distance, weight, area, and many more. In addition, mathematics will help you to develop your thinking skills, such as how to solve problems using a step-by-step process.

I encourage you to be committed, enjoy and love mathematics, because one day in the future you will be a very important person, participating in developing and looking after this very beautiful country of ours and improving the quality of living.

I wish you a happy and fun learning experience with Mathematics.

Hon. Nick Kuman, B.ApSci.UWSyd, MP Minister of Education

Message from the Ambassador of Japan

Greetings to Grade 3 Students of Papua New Guinea!

It is a great pleasure that the Department of Education of Papua New Guinea and the Government of Japan worked together to publish national textbooks on mathematics for the first time.

The officers of the Curriculum Development Division of the Department of Education made full efforts to publish this textbook with Japanese math experts. To be good at mathematics, you need to keep studying with this textbook. In this textbook, you will learn many things about mathematics with a lot of fun and interest, and you will find it useful in your daily life. This textbook is made not only for you but also for the future students.

You will be able to think much better and smarter if you gain more knowledge on numbers and diagrams through learning mathematics. I hope that this textbook will enable you to enjoy learning mathematics and enrich your life from now on. Papua New Guinea has a big national land with plenty of natural resources, and a great chance for a better life and progress. I hope that each of you will make full use of knowledge you obtained and play an important role in realising such potential.

I am honoured that, through the publication of this textbook, Japan helped your country develop mathematics education and improve your ability, which is essential for the future of Papua New Guinea. I sincerely hope that, through the teamwork between your country and Japan, our friendship will last forever.

Satoshi Nakajima
Ambassador of Japan to Papua New Guinea

Share ideas with your friend!

Let's learn Mathematics, it's fun!

Secretary's Message

Dear students,

This is your Mathematics Textbook that you will use in Grade 3. It contains very interesting and enjoyable activities that you will be learning in your daily Mathematics lessons.

In our everyday lives, we come across many Mathematical related situations such as buying and selling, making and comparing shapes and their sizes, travelling distances with time and cost, and many more. These situations require mathematical thinking processes and strategies to be used.

This textbook provides you with a variety of mathematical activities and ideas that are interactive and allow you to learn with your teacher or on your own as an independent learner. Key concepts for each topic are highlighted in the summary notes at the end of each chapter. The mathematical skills and processes are expected to be used as learning tools to understand the concepts given in each unit or topic and apply these in solving problems.

You are encouraged to be like a young Mathematician who learns and is competent in solving problems and issues that are happening in the world today. You are also encouraged to practice what you learn everyday both in school and at home with your family and friends.

I wish you all the best in studying Mathematics using this textbook.

Friends learning together in this textbook

Mero

Kekeni

Naiko

Ambai

Sare

Vavi

Gawi

Yamo

Kapi (Kapul)

Koko (Kokomo)

Symbols in this textbook

- Discovered Important Ideas
- Important definition or terms.
- What we will do in the next activity.
- When you lose your way, refer to the page number given.
- You can use your calculator here.
- Practice by yourself. Fill in your copy.
- New knowledge to apply in daily life
- Let's do the exercise.

- Let's do mathematical activities by students
- Let's fill numbers in and complete the expression to get the page number

What We Learned In Elementary School

Numbers and Calculations

The numbers of two thousand, three hundred and forty six altogether is "two thousand three hundred and forty six". It is written as 2346 .

Table of Contents

Numbers and Operation

Grade 2

Addition with the vertical form Subtraction with the vertical form
(1) Addition and Subtraction 1
(1) What We Learned in Elementary School 2
(2) Addition and Subtraction 2
(1) Addition of 3-digit Numbers
(2) Subtraction of 3-digit Numbers
(3) Calculating Larger Numbers
(4) Considering How to Calculate More Easily
(5) What Kind of Calculation is This?

Grade 2

Multiplication

(3) Multiplication 1

 42(1) What We Learned in Elementary School 42

(4) Multiplication 2

(1) Rules of Multiplication
(2) Multiplication with 0
(3) Multiplication with 10

(5) Thinking about How to Calculate 60

(12) Length 123
(1) How to Measure

125
(2) Kilometre

127

6) Duration and Time 62

(1) Short Duration

62
(2) Duration and Time 65

Measurement

13 Triangles

(1) Isosceles and Equilateral Triangles
(2) How to Draw Triangles

133
(3) Triangles and Angles

138
(4) Dangles and Angles 140
(4) Designing Patterns

Data and Mathematical Relation

(14) Tables and Graphs 145
(1) Tables
(2) Bar Graphs

147
(3) Combining Tables 152

Geometric Figures

(15) Multiplication of 2-digit Numbers
(1) Multiplication by $20,30, \ldots \ldots . .90$(2) How to Calculate (2-digit numbers) \times (2-digit numbers) 159157(3) How to Calculate (3-digit numbers) \times (2-digit numbers)159

Grade 4

(1) Large Numbers
(7) Division by 2 -digit Numbers
(8) Line Graph
(9) Decimal Numbers 1
(10) Round Numbers
(3) Thinking about How to Calculate
(4) Angles
(5) Division by 1 -digit Numbers
(6) Quadrilaterals
(11) Expressions and Calculate
(12) Area
(13) Decimal Numbers 2
(14) Thinking about How to calculate
(15) Arrangement of Data
(16) Multiplication and Division of Decimal number
(17) Fractions
(18) Rectangular Prisms and Cubes
(19) Quantities Change together
(20) Summary of Grade 4

(7) Multiplication in Vertical Form

(1) Multiplication with Tens and Hundreds
(2) How to Calculate (2-digit numbers) \times (1-digit number)
(3) How to Calculate (3-digit numbers) \times (1-digit number)
(4) Mental Calculation
(8) Division
(1) Division

82

9 Division with Remainders

(2) Division with 1 and $0 \quad 89$
(3) Using Rules of Calculation 90

10 Circles and Spheres

(1) Circles
(2) Spheres

(11) Large Numbers

(1) Ten and Hundred Thousand Place
(2) The Structure of Large Numbers 109
(3) 10 Times, 100 Times and Divided by 10 113
(2) Let's Solve Various Problems 96
[

18 Math Sentences Using the

(1) Math Sentences of Addition 188
(2) Math Sentences of Multiplication
Using Money in Our Life 193
(1) Price and Coins 193
(2) Unit for Currency 199

Addition and Subtraction 1

1. What We Learned in Elementary School

Addition Story

1 Let's make mathematics stories using such words as in total, altogether, more, increase and add.
(1) A mathematics story for $6+4$.

There are a group of \square chickens. \square chickens are added to the group. How many chickens are there in \square
The number of chickens was \square at first. The number of chickens was increased by \square How many chickens are there?
(2) A mathematics story for $5+3$.

There are \square pigs and \square How many pigs are there
2. Let's make various mathematics stories for the following.
(1) $4+5$
(2) $4+3$
(3) $6+3+1$

Addition Cards

(3) Let's play a fun game to master addition using addition cards.
(1) Use addition cards of answers up to 10. In pairs, one student points to a card with a

Enjoying addition cards game. mathematic expression, and the friend says the answer.

(2) Make groups of 4 or 5 . Group leader calls a number.

Other members find the cards with the expression of same answer.

(3) Line up the cards that have the same answer.

Arrange the cards in order and identify the pattern.

(4) Let's play making 10 by adding two numbers.
(1) Look at the teacher's flash card from 1 to 9 and add a number to make 10
(2) Look at the blocks and fill numbers in \square to make 10.

(3) Let's find other cases to make 10 . How do you find all cases?

(4) Let's add and find the same answers.
(1) $3+6$
(2) $6+4$
(3) $6+0$
(4) $2+8$
(5) $7+3$
(6) $4+6$

Let's try T-Math calculation!!
T-Math is a Table-Mathematics. You

Remember!!
$6+2$, we call that 6 is Augends and 2 is Addends
(1) Let's fill in the answer for addition, (augend) + (addend), in the following T-Math.

T-Math Addition		Addends									
		1	2	3	4	5	6	7	8	9	10
Augends	1	2		4		6		8		10	
	2	3	4		6		8		10		
	3			6				10	11		
	4	5	6								
	5					10					
	6	7	8								
	7										
	8	9	10								
	9									18	
	10										

(2) Let's fill in anwers for addition in the following T-Math.

T-Math Addition		Addends									
		1	2	3	9	10	5	6	7	8	4
Augends	7										
	4	5	6								8
	3			6					10	11	
	9				18						
	10										
	5						10				
	6	7	8								
	2	3	4					8		10	6
	8	9	10								
	1	2		4	10		6		8		

(3) Let's compare the tables (1) and (2) and explain how to tell the difference.

Subtraction story

5. Let's make mathematics stories using words such as left, remain, decrease, more, less and difference.
(1) A mathematics story for 8-2.

There are \square flying foxes hanging on the tree.
\square flying foxes flew away.
How many flying foxes are \square ?

There are flying foxes hanging on the tree.
The number of flying foxes decreased by \square How many flying foxes \square ?
(2) A mathematics story for 9-6
There are \square girls and \square boys.

What is the difference between the number of girls and boys?
There are \square pencils and there are \square pens. How many \square pens are there than pencils?

6 Let's make various mathematics stories for the following:
(1) 8-5
(2) 10-7
(3) $3+7-7$
(4) 12-7
(5) 12-5-2

Subtraction Cards

(7) Let's play a fun game to master subtraction using subtraction cards.

(1) Use subtraction cards of which minuends are up to 10. In pairs, one student shows a card and the friend says the answer.

(2) Make groups of 4 or 5 . Group leader calls a number.

Members find the cards with the same answer.

(3) Line up the cards that have the same answer.

Let's explain your arrangement of cards which have the same answer.

Remember!!
7-3, we call that 7 is Minuends and 3 is Subtrahends
(1) Let's fill in the answers for subtraction,
(minuend) - (subtrahend), in the following T-Math.

T-Math Subtraction		Subtrahends									
		1	2	3	4	5	6	7	8	9	10
Minuends	1	0	-	-	-	-	-	-	-	-	-
	2		0	-	-	-	-	-	-	-	-
	3	2		0	-	-	-	-	-	-	-
	4		2		0	-	-	-	-	-	-
	5	4		2		0	-	-	-	-	-
	6										
	7	6									
	8										
	9	8								0	
	10										

2. Let's fill in the answers for subtraction in the following T-Math.

T-Math Subtraction		Subtrahends									
		1	2	3	9	5	6	7	10	8	4
Minuends	7							0		-	
	4									-	0
	3			0						-	
	9				0						
	5					0				-	
	6						0			-	
	2		0							-	
	8									0	
	10								0		
	1	0	-	-	-	-	-	-	-	-	-

(3) Let's compare the tables (1) and (2) and explain how to develop T-Math table for subtraction.

Hundreds, tens and ones

8 How many are there?

\square eggs

(3)

(9) Fill in each \square with a number.
(1) 3 tens and 7 ones make \square .
(2) 25 is made up of \square tens and \square ones.
(3) 4 tens and \square ones makes 46 .
(4) 40 is made up of \square tens.

10 Let's fill in the \square with a number.

11 How many pencils are there?

This is very interesting and important skills for daily life. Let's master mental calculation.

12 Think about how to calculate $8+6$ in your mind. I made 10 from 8, so removed 2 from 6. Finally I added the left 4.

(18) Let's calculate using the ideas above.
(1) $7+6$
(2) $8+9$
(3) $9+6$

14 Find the answers mentally and explain.

(1) $9+4$
(2) $8+3$
(3) $7+5$
(4) $6+5$
(5) $3+9$
(6) $5+6$
(7) $4+7$
(8) $5+8$

15 Let's fill in the addition cards.

$9+9$	$8+9$	$7+9$	$6+9$			$2+9$
$9+8$		$7+8$			$4+8$	
$9+7$	$8+7$	$7+7$			$4+7$	
$9+6$	$8+6$			$5+6$		
	$8+3$	$7+4$	Give the answers for addition cards. Let's fill in the blank cards. Which place do you fill in first? Explain the ways of the arrangements.			
$9+2$						

(1) Let's fill in the addition expression in the following T-Math and say the answer.

T-Math Addition		Addends									
		1	2	3	4	5	6	7	8	9	10
Augends	1	1+1	1+2								
	2	2+1									
	3										
	4										
	5										
	6										
	7										
	8										
	9										
	10										

(2) After filling in the expressions in the following T-Math (1), let's colour yellow when the answers of expressions are 10 and colour green when the answers of expressions are 14.

T-Math Addition		Addends													
		1	2	3	4	5	6	7	8	9	10				
Augends	1	1+1	1+2												
	2	2+1													
	3														
	4														
	5														
	6														
	7														
	8														
	9														
	10														

Mental Subtraction

16 Think about how to calculate 14-6 in your mind.

Sare's idea

Kekeni's idea

I wanted to subtract 4 from 14 , so that I get 10. I subtracted, 2 more from the 10 , so that I have subtracted 6 in total.

17 Let's calculate using the ideas above.
(1) 11-4
(2) 13-9
(3) 17-8

18 Find the answer and explain how to calculate.
(1) 17-9
(2) 15-7
(3) 13-6
(4) 12-7
(5) 11-5
(6) 11-8
(7) 12-8
(8) 16-8

19 Let's fill in the subtraction cards.

11-2	12-2	13-4	14-5	15-6	16-7	17-8
11-3		13-5	14-6	15-7	16-8	17-9
11-4	12-5	13-6	14-7	15-8	16-9	
11-5	12-6	13-7		15-9		
11-6	12-7		14-9			
	12-8	13-9	Give the answers for subtraction cards. Let's fill in the blank cards. Which place do you fill in first? Explain the ways of the arrangements.			
11-8	12-9					
11-9						

(1) Let's fill in the expression for subtraction (minuend) - (subtrahend), in the following table.

T - Math Subtraction		Subtrahend									
		1	2	3	4	5	6	7	8	9	10
Minuend	10	10-1	10-2								
	11	11-1									
	12										
	13										
	14										
	15										
	16										
	17										
	18										
	19										
	20										

(2) Let's fill in answers for the subtractions in the following table.

T - Math Subtraction		Subtrahend									
		1	2	3	4	5	6	7	8	9	10
Minuend	10										
	11										
	12										
	13										
	14										
	15										
	16										
	17										
	18										
	19										
	20										

(3) Let's develop the T-Math for subtraction and ask your friends to fill in each space.

Number up to 1000

20 How many blocks are there?

100 blocks

10 sets of 10 is a hundred $\longrightarrow 100$

(1) How many more does 96 need to become 100?
(2) What number is 10 less than 120 ?
(3) Look at the picture below and fill in the \qquad .

There are \qquad boxes of 10 and \square ones blocks.

10 sets of 10 boxes make 100 .
Then, there are \square sets of 100 .

2 sets of 100 is two hundred. Two hundred, thirty and five is called two hundred and thirty five and it is written as 235.

100 s	10s	1s
Hundreds place	Tens place	Ones place
two hundred	thirty	five
2	3	5

21 How many are there altogether?
(1)

100s	10s	1 s
Hundreds place	Tens place	Ones place
W		

$100 s$	$10 s$	$1 s$
Hund- reds	Tens	Ones

The number when two hundred and thirty are added together.
(2)

100s	10s	1s
Hundreds place	Tens place	Ones place

100s	$10 s$	$1 s$
Hund- reds	Tens	Ones

The number when one hundred and five are added together.

22 Each box contains $100 \square$ each.
(1) How many \square are there altogether in 9 boxes of 100 .
(2) When one more box of 100 is added, there will be 10 boxes. How many
are there altogether?

The sum of 10 sets of 100 is called a thousand and is written as 1000.

28 Let's compare the sizes of the numbers.
(1)

$4>2$

$3=3$

$2<4$

4 is \square than 2. 3 is the \qquad size as 3.2 is \square than 4.
> and < are signs to represent larger than and smaller than for comparing sizes. When the size is the same, = is used.

24 Which number is larger? Please represent it by using either $>$ or $<$.

(1) 495

(2) 769 \square 764

(3) 238 \square 253 | 220 | 230 | 240 | 250 | 260 |
| :--- | :--- | :--- | :--- | :--- |

25. Let's write down the following numbers.

100s	10 s	1 s
Hund- reds	Tens	Ones

(1) The number that is 300 larger than 500.
(2) The number that is 200 smaller than 700 .
(3) The number that is 10 larger than 900.
(4) The number that is 10 smaller than 1000.

Exercise

1 Let's read the following numbers.
(1) 826
(2) 160
(3) 408
(4) 505
(5) 900

2 Let's write the following numbers.
(1) seven hundred and forty
(2) eight hundred and sixty
(3) one hundred and twenty
(4) five hundred and eight
(5) one hundred and one
(6) six hundred

3 Let's fill in each \square with a number.
(1) 1000 is the sum of \square sets of 10 .
(2) 1000 is the sum of \square sets of 100 .
(3) The number when two hundred, fifty and four added together is \square
(4) The number when 3 sets of 100,8 sets of 1 added together is \square
4 Which number is larger? Use $>$ or $<$.
(1) 312 \square 321
(2) 602 \square 598
(3) 880 \square 808

5 Let's fill in each \square with a number.

6 Let's look at 480 and fill each \square with a number.
(1) 4 in the hundreds place means that 4 is the value of \qquad
(2) 480 is the sum of \qquad sets of 10.
(3) The number that is 20 more than 480 is \square

Addition or Subtraction

Write a mathematical expression and solve it based on each tape diagram. There are 9 blue papers and 14 red papers.
(1) How many papers are there in total?

Remember. This is a tape diagram

(2) Which colour is more and by how many?

(3) 4 red papers are used. How many red papers are left?

Homework

(1) Which type of tape diagram can tell the story well? Choose a diagram above (1), (2) and (3).
(1) There are 12 red marbles and 14 blue marbles. How many marbles are there in total?
(2) Jane picked 18 beautiful stones. Teacher picked up 4 more than Jane. How many stones did the teacher have?
(3) Hilda had 21 stickers. She gave some to her friend and she is left with 16 for herself. How many stickers did she give to her friend?

Addition in Vertical Form 1

Find the answers ' $13+24$ ' using vertical form.

How to Add 13+24 using Vertical Form	
$\begin{array}{r} 13 \\ +\quad 24 \\ \hline \end{array}$	$\begin{array}{r} 13 \\ +\quad 24 \\ \hline 37 \end{array}$
Line up numbers according to their place value.	$1+2=3 \quad 3+4=7$ Add numbers in the ones place, then numbers in the tens place.

(1) Find the answers using vertical form.
(1) $31+57$
(2) $18+40$
(3) $50+36$
(4) $20+70$

28 Find the answers ' $38+27$ ' using vertical form.

(1) Find the answers using vertical form.
(1) $14+29$
(2) $28+16$
(3) $59+36$
(4) $72+18$
(5) $56+4$
(6) $8+44$

29 Find the mistake and explain the reason.
(1)

$$
\begin{array}{r}
27 \\
+65 \\
\hline 82
\end{array}
$$

(2) 56
$\begin{array}{r}+3 \\ \hline 8\end{array}$
(1) Let's add in vertical form. Before addition, please see the numbers if the addition has carrying over or not.
(1) 26
(2) 47
(3) 7
(4) 15
(5) 43
$\begin{array}{r}+43 \\ \hline\end{array}$
$+27$
$+82$
$\begin{array}{r}+56 \\ \hline\end{array}$
$\begin{array}{r}+38 \\ \hline\end{array}$
(6) $\begin{array}{r}91 \\ +43 \\ \hline\end{array}$
(7) 77
(8) 82
(9) 15
(10) 35
(11) 31
(12) 28
(13) 20
(14) 19
(15) 18
$\begin{array}{r}+60 \\ \hline\end{array}$
$+63$
$+17$

+18

$$
+19
$$

(2) Mary has 27 flowers. James gave 65 flowers to Mary. How many flowers does Mary have?
(3) Let's make an addition story for $56+3$.
(4) Before adding in vertical form, please predict which answer will be larger? Confirm your prediction if it is appropriate or not by using vertical form.
(1) $18+19,21+9$
(2) $39+27,40+30$
(3) $25+48,30+40$

Let's develop T-Math for addition of two-digit numbers as follows.

T-Math Addition		Addends												
		34	35	36	37	38	39	54	55	56	57	58	59	66
Augends	43													
	44													
	45													
	46													

(5) Let's work together with friends and fill in each space.

Addition in Vertical Form 2

30 Explain the way of calculating this vertical addition using the block diagram.

74
+65
139

31 Add in vertical form.
(1) $93+86$
(2) $63+71$
(3) $67+80$
(4) $20+90$
32. Explain each vertical form using block diagram.

100s	10s	1s
Hundreds place	Tens place	Ones place
+		B
		B

88 Let's add in vertical form.
(1) $35+96$
(2) $58+62$
(3) $27+78$
(4) $15+85$
(3) $6+97$
(c) $100+400$
(7) $100+900$
(3) $345+7$
(0) 463+29
(D) $616+66$
(1) $748+43$
(1) Let's add in vertical form. Before addition, please think how many times carrying over will happen in the process of addition.
(1) 88
(2) 36
(3) 32
(4) 200
(5) 600
$+44$
$+89$
$+69$
$+600$
$+400$
(6) $\begin{array}{r}286 \\ +\quad 4 \\ \hline\end{array}$
(7) 121
$\begin{array}{r}8 \\ 36 \\ +\quad 32 \\ \hline\end{array}$
(9) 500
(10) $\begin{array}{r}325 \\ +\quad 35 \\ \hline\end{array}$
(2) Let's find easier ways of calculation.
(1) $56+22+8$
(2) $54+32+26$
(3) Let's add in vertical form and confirm the answer using calculator.
(1) 23
(2) 27
(3)
$\begin{array}{r}30 \\ 20 \\ 10 \\ +\quad 7 \\ \hline\end{array}$
(4) When do you prefer to use calculator for adding and when not?
(3) Let's develop T-Math for addition of two-digit numbers as follows.

T-Math Addition		Addends												
		34	35	36	37	38	39	54	55	56	57	58	59	66
Augends	63													
	64													
	65													
	66													

(6) Let's work together with friends and fill in each space.

Subtraction in Vertical Form 1

34 Let's find the answers in vertical form.
(1) 76-32
(2) 56-40
(3) 58-5
(4) 98-18
(5) 43-42
(6) 30-20

35 Let's explain subtraction in vertical form using block diagram.

(1) Borrow 1 ten \downarrow as 10 ones.

How to Subtract 45-27 Using Vertical Form

Line up numbers Borrow 1 ten as 10 in each column. ones, so $15-7=8$ The ones place of the answer becomes

1 ten has been borrowed by the ones place.
So $3-2=$ \qquad

36 Let's find the answers in vertical form.
(1) 41-19
(2) 70-56
(3) 26-18
(4) $90-88$
(5) 92-8
(6) 40-7
(1) Let's subtract in vertical form. Before subtraction, please check the necessity of borrowing.
(1) 59
(2) 70
(3) 53
-45
-23
-26
(4) $\begin{array}{r}45 \\ -\quad 5 \\ \hline\end{array}$
(5) $\begin{array}{r}72 \\ -33 \\ \hline\end{array}$
(6) 81
(7) 66
(8) 40
(9) 50
(10) 58
-16
-28
-24
-33
-32
(11) $\begin{array}{r}51 \\ -\quad 9 \\ \hline\end{array}$
(12) $\begin{array}{r}54 \\ -45 \\ \hline\end{array}$
(13) $\begin{array}{r}40 \\ -24 \\ \hline\end{array}$
(14) $\begin{array}{r}39 \\ -23 \\ \hline\end{array}$
(15) $\begin{array}{r}38 \\ -22 \\ \hline\end{array}$

2 There are 32 children in Michelle's class.
3 of them are absent today. How many are present?
(3) Let's make subtraction stories for 42-39.

Before subtracting in vertical form, please predict which answer will be larger? Confirm your prediction if it is correct or not by using vertical form.
(1) 74-31, 40-30
(2) $30-17,33-14$
(3) $87-59,90-60$
(4) Let's develop T-Math for subtraction of two-digit numbers.

T-Math Subtraction		Subtrahends												
		34	35	36	37	38	39	54	55	56	57	58	59	62
Minuends	63													
	64													
	65													
	66													

(5) Let's work together with friends and fill in each space.

Subtraction in Vertical Form 2

37 Explain subtraction in vertical form with borrowing.

38 Find the answers in vertical form.
(1) 132-41
(2) 109-53
(3) 146-60
(4) 132-47
(5) 120-61
(6) 106-59
(7) 105-58
(8) 100-39
(c) 102-17
(1) 102-7
(11) $900-500$
(12) $1000-200$
(13) 536-5

39 Find the appropriate number in each box.

0

$$
\begin{array}{r}
8 \\
-28 \\
64
\end{array}
$$

(2)

$$
\begin{array}{r}
8 \square \\
-\quad 9 \\
\hline 58
\end{array}
$$

Addition and Subtraction 2

Addition of 3-digit Numbers

1 For the party decoration, we made 215 paper rings
yesterday and 143 rings today.
How many paper rings
did we make altogether?

(1) Write a mathematical expression.
(2) Approximately how many paper rings is the answer?

Let's remember the additions in 2nd grade to think of how to do this.
(3) Let's think about how to add three-digit numbers.

100s	10s	1s
Hundreds place	Tens place	Ones place

$+$| 100 s | 10 s | 1 s |
| :---: | :---: | :---: |
| Hundreds place | Tens place | Ones place |
| | | |

Let's think about how to add.

Yamo's idea

Calculate the addition vertically like the addition of 2-digit numbers.

215
+143
358

Addition Algorithm for 215+143 in Vertical Form

$$
\begin{array}{r}
215 \\
+143 \\
\hline
\end{array}+\begin{array}{r}
215 \\
1458
\end{array}
$$

Vertically line up the numbers

$$
2+1=3 \quad 1+4=5 \quad 5+3=8
$$ according to their place values.

For adding large numbers vertically, we line up the numbers according to their place values.

Exercise

(1) $153+425$
(2) $261+637$
(3) $437+302$
(4) $502+205$
2. Let's think about how to add $238+546$ in vertical form.

(3) Let's think about the students' vertical additions below.
(1) Whose problems do you have to carry over once?
(2) Whose problems do you have to carry over twice?

addition problems for 3-digit numbers.

5. Let's think about how to add $174+265$
in vertical form.

6. Let's explain how to add $248+187$ in vertical form.

When adding large numbers in a vertical form, the best way is to start adding from the ones place value to the most superior which means higher place value.

7 Let's think about how to add $537+167$ in vertical form. Also, try calculating after switching the addend and augends, and check whether the answer is correct.

Remember

For addition, we calculate in vertical form as follows.
(1) Calculate the numbers in the same place value.
(2) When the sum is 10 and greater you carry up the number in the place to the next superior place and calculate.
(8) Let's make the addition problems of 3-digit numbers which have answer of 653 with the following condition;

(1) Carry over once

(2) Carry over twice

Using this method, we can add any large numbers!

8 (1) When the ones place carries up
First, to calculate the ones place: find 2 numbers which add up to 13 .

4 and 9,5 and 8,6 and 7
Next, to calculate the tens place, due to the round up from the ones place, find two numbers which add up to 4.
0 and 4, 1 and 3,2 and 2
Then, to calculate the hundreds place, find two numbers which add to 6 .
1 and 5,2 and 4,3 and 3

If you use words like 'first', 'next', and 'then', it is smart.

Subtraction of 3-digit Numbers

1 There were 328 sheets of coloured papers. For the party decoration, 215 sheets of coloured papers were used. How many sheets of coloured papers are left?

(1) Write a mathematical expression.
(2) Approximately how many sheets of coloured papers is the answer?
(3) Let's think about how to calculate.

100s	10s	1s	
Hundreds place	Tens place	Ones place	

Kekeni’s idea

$$
328-215
$$

I used paper blocks and removed the numbers on same place values.

Gawi's idea

I subtracted using vertical form as we did subtraction of 2-digit numbers.

$$
\begin{array}{r}
328 \\
-215 \\
\hline 1113
\end{array}
$$

Subtraction Algorithm for 328-215 in Vertical Form
328
-215

Vertically line up the numbers according to their place values.

$$
3-2=1 \quad 2-1=1 \quad 8-5=3
$$

For subtracting large numbers in vertical form, we line up the numbers according to their place values.

Exercise

(1) 768-534
(2) 879-412
(3) $647-317$
(4) $965-864$
2. Let's think about how to subtract in vertical form.
(1) 692-458

5	9	2
-4	5	8
-		

(2) 329-173

3	2	9
-1	7	3

3 Let's think about the students' vertical subtractions below.
(1) Whose problem do you have to borrow once?
(2) Whose problem do you have to borrow twice?
(3) Whose problem do you have to borrow from the hundreds?

(4) Let's write numbers in the \square to make subtraction problems for 3-digit numbers.
5. Let's think about how to subtract 425-286 in vertical form.

(1) Borrow 1 ten from
(2) 15-6 the tens place.
2. Removing 80

(3) Borrow1 hundreds from the hundreds place.
(4) 11-8

3. Removing 200

(5) 3-2

2 hundreds (200)

When we subtract large numbers in vertical form, the best way is to start subtracting from the ones place value to the superior.

Exercise

(1) $363-114$
(2) 540-513
(3) $825-451$
(4) $526-483$
(5) $424-185$
(6) $821-373$
(7) 510-176
(8) 242-64

6 Let's explain how to subtract $305-178$ in vertical form.

100s	10s	1s
Hundreds place	Tens place	Ones place

1. Removing 8

99
2910
$-\quad 305$
-178

Remove 1 set of 100 s .

Remove 1 set of 10 s .
2. Removing 100 and 70

(4) 2-1

1
(5) $9-7$

7

7 Let's explain how to subtract $500-163$ in vertical form.

For subtraction, we calculate using vertical form as follows.
(1) Calculate the numbers on the same place value.
(2) When you cannot subtract, borrow from the superior places and calculate.

If you use these methods, you can subtract any larger number!

8 Let's make the subtraction of 3-digit numbers with the answers as 356 using the following conditions.

(1) Borrowing once
(2) Borrowing twice

8 (1) When we cannot subtract from ones place.
First, to calculate the ones place borrow from the tens place, so there will be 2 numbers on ones place which becomes 6 after subtraction. 5 and 9,4 and 8,3 and 7,2 and 6 , or 1 and 5 . Next, to calculate the tens place, remember the number 1 which was borrowed for the ones place. It means finding 2 numbers on the tens place which become 6 after subtraction. 6 and 0,7 and 1, 8 and 2, or 9 and 3. Then, to calculate the hundreds place, find 2

Just think in order, just like addition! numbers which become 3 after subtraction.

Let's continue your answer in your exercise book.

Exercise

(1) 405-286
(2) 601-198
(3) $402-107$
(4) 702-46
(5) $800-197$
(6) 200-38
(7) 700-403
(8) 600-9

3. Calculating Larger Numbers

1 Let's explain how to calculate using the carrying over and borrowing.
(1) $865+746$
$\begin{array}{r}8 \\ +75 \\ +7 \\ \hline\end{array}$
(2) 1248-936

	1	2	4
		9	3
			6

(3) 1000-895

| | 1 | 0 | 0 |
| ---: | :--- | :--- | :--- | 0

2 Let's think about how to calculate larger numbers using what you already learned.
(1) $4175+3658$

4	1	7	5
+3	6	8	

(2) $6073+3927$

6	0	7	3
+3	9	2	7

(4) 10000-5089

-1	0	0	0	0
-	5	0	8	9

Even in larger numbers, we use the same method.

Exercise

(1) $525+913$
(2) $258+745$
(3) $483+517$
(4) $1237-414$
(5) 1358-567
(6) 1002-946
(7) $4563+3125$
(8) $2606+3198$
(9) $3587+6413$
(10) 6497-2135
(11) $8114-3518$
(12) 10000-6001

Considering How to Calculate More Easily

1 Let's calculate easily.
(1) $298+120$
(2) 500-198

(2) Using the idea in (1), calculate the following problems easily.
(1) $308+197$
(2) 305-99

Exercise

(1) $499+350$
(2) $199+299$
(3) $600-297$
(4) 200-95
(3) Let's think about how to
calculate $875+47+53$.

If you use these

 methods, you can add any large number!When you are adding 3 numbers, the order of calculations does not change the answer.

$$
(875+47)+53=875+(47+53)
$$

The () is a symbol that means you should calculate the numbers inside first.

Mental Calculations

(4) Let's calculate mentally.

(1) $35+46$

Calculate in vertical form,
(1) $5+6=11$
(2) $3+4+1=8$ then 81 .
(2) 81-27

Sare's idea
Calculate in vertical form,
(1) $11-7=4$
(2) $7-2=5$ then 54.

Ambai's idea

(1) Split 46 to 40 and 6.
(2) $35+40=75$
(3) $75+6=81$

Exercise

1 Let's calculate easily.
(1) $492+84+16$
(2) $52+365+48$

2 Let's calculate mentally.
(1) $18+6$
(2) $38+411$
(3) $68+291$
(4) $52+18$
(5) 23-8
(6) $45-24$
(7) 71-46
(8) $90-76$

5
 What Kind of Calculation is This?

1 There are 245 pink frangipanis and 138 white frangipanis that blossomed.
(1) How many frangipanis blossomed?

(2) Which colour
blossomed the most?

2 There are 605 children in Eileen's school. In a sports day, children are divided into red and blue teams. There are 298 children in the red team. How many children are in the blue team? \square number of children altogether

3 The 3A students gathered 118 dry coconuts.
The 3B students gathered 20 more dry coconuts than 3A students. How many dry coconuts did the 3 B students gather?

1 Let's calculate in vertical form.

(1) $324+253$
(2) $146+537$
(3) $473+261$
(4) $246+485$
(5) $354+249$
(6) $464+368$
(7) 658-325
(8) 374-138
(9) 546-369
(10) 432-136
(11) $604-247$
(12) 700-463
(2) Let's calculate in vertical form.

(1) $734+862$
(2) $947+587$
(3) $457+546$
(4) $4137+1425$
(5) $2056+3794$
(6) $2361+7639$
(7) 1529-716
(8) 1153-645
(9) 1000-437
(10) $3947-1925$
(11) 3142-1734
(12) 10000-4005
(3) Let's calculate.

(1) $5387+57+43$
(2) $26+3285+74$
4. You read 165 pages of a book with 240 pages in total. How many pages are left?
(5) There are 2368 boys and 2356 girls in
 Elementary schools in Manus Province. How many elementary school children are there in total? Also, which gender is more and by how many?

Let's calculate.
(1) 3×6
(2) 8×4
(3) 6×9
(4) 4×7
(5) 9×1
(6) 1×8
(7) 5×3
(8) 2×2
(1) Let's calculate in vertical form.

Understanding how to calculate in vertical form.
(1) $451+137$
(2) $274+508$
(3) $662+150$
(4) $186+357$
(5) $109+698$
(6) $558+745$
(7) $3096+5518$
(8) $2048+1952$
(9) $6272+3728$
(10) 797-246
(11) 258-139
(12) $966-288$
(13) 653-399
(14) 703-316
(15) 1032-634
(16) 2356-1848
(17) 5126-2835
(18) 10000-1781
(2) In 2 years Cathy saved 3596 kina and her sister saved 4487 kina.
Distinguish the situation for addition or subtraction and find the answer.
(1) Who has more savings and by
 how much?
(2) What is the total of their savings?
(3) Let's find mistakes in the calculations done in vertical form and find the correct answers.
Identifying the mistakes in calculations in vertical form and correcting.

Multiplication 1

1 What We Learned in Elementary School

Meaning of Multiplication

1 Let's represent the situation by making a multiplication
sentence.

5 boxes of 2 cakes each make 10 cakes.

This is written as $5 \times 2=10$ and read as " 5 multiplied by 2 equals 10 "

This kind of calculation is called multiplication.

2 There are 2 oranges in each bag. How many oranges altogether in 1 bag, 2 bags and 3 bags?

1 bag	$1 \times 2=2$
2 bags	$\square \times 2=\square$

2 oranges
\square oranges
3 bags \square $2=$ \square

3 Group the stars (\star) to get 4×3.

\star		\star
\star	\star	
\star	\star	\star
	\star	
	\star	\star

Naiko and Yamo found a sheet which has 42 stamps. They expressed the number of stamps in different ways by multiplication.

In this situation, which expression do you have in mind?

Naiko's idea

The expression is 6×5

6 groups of 5
6 groups
$5+5+5+5+5+5=30$

30

The number given by " 6 times of 5 " is the same as the number given by " 5 times of 6 ". In other words, 6 groups of 5 and 5 groups of 6 give the same answer. In multiplication, "Multiplying 6 by 5 " and "Multiplying 5 by 6 " gives the same answer. In short, 6×5 is equal to 5×6.

The Multiplication of 5

5. Let's make a mathematical expression of multiplication for the number of Iollies.

6. Let's draw a picture of 3×5.

7 There are 5 peanuts on each leaf. Let's find the total number of peanuts as the number of leaves increases from 1 to 5 and read
 the sentence.

$$
1 \times 5=5
$$

1 multiplied by 5 equals 5
$2 \times 5=\square$
2 multiplied by 5 equals 10

(1) Complete the mathematical sentences from 6 leaves to 9 leaves.
(2) Explain what you found.

8 Let's consider the following pictures.

$$
\square \times \square=\square
$$

(1) Complete the mathematical sentences from 4 peanuts to

9 peanuts.

(2) Think about the difference compared to (3).

$5 \times 1=5 \quad$ Five ones are $5 \quad 5 \times 6=30$ Five sixes are 30
$5 \times 2=10 \quad$ Five twos are $10 \quad 5 \times 7=35$ Five sevens are 35
$5 \times 3=15$ Five threes are $15 \quad 5 \times 8=40$ Five eights are 40
$5 \times 4=20 \quad$ Five fours are $20 \quad 5 \times 9=45$ Five nines are 45
$5 \times 5=25 \quad$ Five fives are 25

The Multiplication Table 1 to 9

e Let's explain the pattern and memorise it !

Multiplication table is necessary for our life. Say the multiplication table again and again until you can recall correctly without looking!

| The Multiplication Table of 1 |
| :--- | :--- |
| $1 \times 1=1 \ldots$ One one is 1
 $1 \times 2=2 \ldots$ One two is 2
 $1 \times 3=3 \ldots$ One three is 3
 $1 \times 4=4 \ldots$ One four is 4
 $1 \times 5=5 \ldots$ One five is 5
 $1 \times 6=6 \ldots$ One six is 6
 $1 \times 7=7 \ldots$ One seven is 7
 $1 \times 8=8 \ldots$ One eight is 8
 $1 \times 9=9 \ldots$ One nine is 9 |

The Multiplication Table of 2
$2 \times 1=2 \ldots$ Two ones are 2
$2 \times 2=4 \ldots$ Two twos are 4
$2 \times 3=6 \ldots$ Two threes are 6
$2 \times 4=8 \ldots$ Two fours are 8
$2 \times 5=10 \ldots$ Two fives are 10
$2 \times 6=12 \ldots$ Two sixes are 12
$2 \times 7=14 \ldots$ Two sevens are 14
$2 \times 8=16 \ldots$ Two eights are 16
$2 \times 9=18 \ldots$ Two nines are 18

The Multiplication Table of 4

$4 \times 1=4 \ldots$ Four ones are	4
$4 \times 2=8 \ldots$ Four twos are	8
$4 \times 3=12 \ldots$ Four threes are	12
$4 \times 4=16 \ldots$ Four fours are	16
$4 \times 5=20 \ldots$ Four fives are	20
$4 \times 6=24 \ldots$ Four sixes are	24
$4 \times 7=28 \ldots$ Four sevens are	28
$4 \times 8=32 \ldots$ Four eights are	32
$4 \times 9=\mathbf{3 6} \ldots$ Four nines are	36

$4 \times 2=8 \ldots$ Four twos are 8
$4 \times 3=12 \ldots$ Four threes are 12
$4 \times 4=16 \ldots$ Four fours are 16
$4 \times 5=\mathbf{2 0} \ldots$ Four fives are 20
$4 \times 6=24 \ldots$ Four sixes are 24
$4 \times 7=28 \ldots$ Four sevens are 28
$4 \times 8=32 \ldots$ Four eights are 32
$4 \times 9=\mathbf{3 6} \ldots$ Four nines are 36

10 Let's discuss about the patterns you have found!

Mero's idea

If each number at the back increases by 1 in the table of 2 , the answer increases by \square !

Vavi's idea

In the table of 3, the answers increase by \square as the numbers at the back increases by \square.

The Multiplication Table of 5
$5 \times 1=5 \ldots$ Five ones are 5
$5 \times 2=10 \ldots$ Five twos are $\quad 10$
$5 \times 3=15 \ldots$ Five threes are $\quad 15$
$5 \times 4=20 \ldots$ Fiver fours are 20
$5 \times 5=25 \ldots$ Five fives are 25
$5 \times 6=30 \ldots$. Five sixes are $\quad 30$
$5 \times 7=35 \ldots$ Five sevens are 35
$5 \times 8=40 \ldots$ Five eights are 40
$5 \times 9=45 \ldots$ Five nines are $\quad 45$

The Multiplication Table of 6
$6 \times 1=6 \ldots$ Six ones are 6
$6 \times 2=12 \ldots$ Six twos are $\quad 12$
$6 \times 3=18 \ldots$ Six threes are 18
$6 \times 4=\mathbf{2 4} \ldots$ Six fours are $\quad 24$
$6 \times 5=30 \ldots$ Six fives are $\quad 30$
$6 \times 6=36 \ldots$ Six sixes are $\quad 36$
$6 \times 7=42 \ldots$ Six sevens are 42
$6 \times 8=48 \ldots$ Six eights are 48
$6 \times 9=54 \ldots$ Six nines are $\quad 54$

The Multiplication Table of 7
$7 \times 1=7 \ldots$ Seven ones are 7
$7 \times 2=14 \ldots$ Seven twos are 14
$7 \times 3=21 \ldots$ Seven threes are 21
$7 \times 4=\mathbf{2 8} \ldots$ Seven fours are 28
$7 \times 5=35 \ldots$ Seven fives are 35
$7 \times 6=42 \ldots$ Seven sixes are 42
$7 \times 7=49 \ldots$ Seven sevens are 49
$7 \times 8=56 \ldots$ Seven eights are 56
$7 \times 9=63 \ldots$ Seven nines are 63
The Multiplication Table of 8
$8 \times 1=8 \ldots$ Eight ones are 8
$8 \times 2=16 \ldots$ Eight twos are $\quad 16$
$8 \times 3=24 \ldots$. Eight threes are 24
$8 \times 4=32 \ldots$ Eight fours are 32
$8 \times 5=40 \ldots$ Eight fives are 40
$8 \times 6=48 \ldots$ Eight sixes are 48
$8 \times 7=56 \ldots$ Eight sevens are 56
$8 \times 8=64 \ldots$ Eight eights are 64
$8 \times 9=72 \ldots$ Eight nines are 72

The Multiplication Table of 9
$9 \times 1=9 \ldots$ Nine ones are 9
$9 \times 2=18 \ldots$ Nine twos are 18
$9 \times 3=27 \ldots$ Nine threes are 27
$9 \times 4=36 \ldots$ Nine fours are 36
$9 \times 5=45 \ldots$ Nine fives are 45
$9 \times 6=54 \ldots$ Nine sixes are 54
$9 \times 7=63 \ldots$ Nine sevens are 63
$9 \times 8=72 \ldots$ Nine eights are 72
$9 \times 9=81 \ldots$ Nine nines are 81

Multiplication 2

Rules of Multiplication

1 Let's think about the multiplication table.
(1) What are the multiplications to get 14 in the table ?
(2) Write all the answers in the blanks.
(3) Look for the answers 27 and 48 in the multiplication table.

4. Let's find any patterns in the table and share with your friends.

The number we multiply is called the multiplier.
The number to be multiplied is called
 the multiplicand.

2 Let's find various rules from the expression that has the
same answer for 7×3.
(1) What number goes in the \square below.

$$
7 \times 3=\square
$$

Let's remember what you studied on multiplication in 2nd grade.

$$
3 \times \square=\square
$$

When you express this in a mathematical sentence, it can be written as follows; $7 \times 3=3 \times$ \square
"=" is called equal sign. This symbol is not only used for writing the answer of the calculation, but also used for showing that the expressions or numbers on the left side and the right side are equal.

In multiplication, the answer is the same even if the order of the multiplicand and multiplier are changed.
(2) How much larger is the answers for 7×6 than answer for $7 \times 5 ?$

Increase by \square Decrease by \qquad
When you express this in a mathematical sentence, it can be written as follows; $7 \times 6=7 \times 5+$ \square
(3) How much smaller is it from the answer of 7×6 to the answer of 7×7 ?

Also, express this in a mathematical sentence.
$7 \times 6=7 \times 7-\square$

In multiplication, if the multiplicand increases by 1 , the answer increases by the number of the multiplier. Also, if the multiplicand is reduced by 1 , the answer is reduced by the number of the multiplier.
(4) Let's think about what will happen to the answer if you split the 1 st or 2 nd number of 7×3.
(1) Splitting the multiplier.

(2) Splitting the multiplicand.

Even, if we calculate a multiplication by splitting the multiplier or multiplicand, the answers are the same.

3 Samuel has difficulties in calculating the answer for 6×8.
Let's give him good hints.

4 Represent the following by using mathematical sentences and diagrams.
(1) If you exchange the order of the 1st and 2nd number in the expression 9×4,
the answers will be

9 sets of $4 \quad 4$ sets of 9

(2) The answer for 8×5 will be the same to the answer for 8×4 by adding 8 .

$$
8 \times 5=\square \times \square+\square
$$

Exercise

Let's find the number which applies to the \square
(1) $8 \times 7=$ \square (2) $9 \times \square=3 \times 9$
(3) 4×6 is \square bigger than 4×5.
(4) 5×8 is \square smaller than 5×9.
(5) $7 \times 7=7 \times \square+7$
(6) $3 \times \square=3 \times 7-3$

5 Each child receives two sets of 3 pencils. How many pencils are needed for 4 students?

Let's explain Naiko and Kekeni's ideas.

Naiko's idea

4 children with 2 sets each
$4 \times 2=8$
$8 \times 3=$ \square
8 sets of 3 pencils
How many sets for 4 children?

Kekeni's idea
2 sets of 3 pencils $2 \times 3=6$
$4 \times 6=\square$
4 children with 6 pencils each At first, how many pencils are there for each child?

Let's make one expression.

6 Let's change the order of multiplication using brackets to check
if the answers are the same. See example (1) $2 \times 3 \times 3$.
(1) $2 \times 3 \times 3$ or $2 \times 3 \times 3$
$=(2 \times 3) \times 3=2 \times(3 \times 3)$
$=6 \times 3=2 \times 9$
$=18=18$

Multiplication with 0

1 Let's see how many points Tom has.

Tom's points table

Points on card	5	3	1	Total
Number of cards obtained	1	2	7	10
Total points				

1 card of 5 points	$1 \times \square=\square$
2 cards of 3 points	$2 \times \square=\square$
7 cards of 1 point	$7 \times \square$

(2) Let's see how many points Henao has.

Henao's points table

Points on card	5	3	1	0	Total
Number of cards obtained	2	0	4	4	10
Total points					

(1) Write the mathematical expressions for finding the total points.

2 cards of 5 points

0 card of 3 points

4 cards of 1 point
4 cards of 0 point

Let's think about how to find the answer for the multiplication with 0 later.
(2) How can we find the total points for 0 cards of 3-point card?

$$
0 \times 3=\square
$$

(3) How can we find the total points for 4 cards of 0-point card?

$$
4 \times 0=\square
$$

(2) (3) The score for the 4 point card.

In the multiplication, the answer
will be reduced by 4 every time the multiplier is reduced by 1.
$4 \times 1=4$, so if the multiplicand is reduced
by 1 , the answer is reduced by 4 , which makes $4 \times 0=0$.
$4 \times 5=20$
$4 \times 4=16$
$4 \times 3=12$
$4 \times 2=8$
$4 \times 1=4$
$4 \times 0=?$$\left\{\begin{array}{l}\text { Reduced by } 4 \\ \text { Reduced by } 4\end{array}\right.$

Answer 0 points

What is the total points for Henao? In the point scoring game, what does the expression 0×0 mean?

Whenever the multiplier is 0 , the answer will be 0 . Also, multiplying 0 to any number, the answer will be 0 .

(1) 6×0
(2) 4×0
(3) 0×7
(4) 0×5
(5) 0×0

Multiplication with 10

1 How many stickers are there altogether?
(1) Write two mathematical

Kumuls Kumuls Kumuls Kumuls Kumuls Kumuls Kumuls Kumuls Kumuls Kumuls:
 Kumuls Kumuls Kumuls Kumuls Kumuls Kumuls Kumuls Kumuls Kumuls Kumuls:

expressions to calculate the total number of stickers.

Using the rules of multiplication, think about how to multiply using 10.
(2) Let's think about how to find the answer for 5×10.

(3) Let's think about how to find the answer for 10×5.

Exercise

1 Let's calculate.
(1) 6×10
(2) 8×10
(3) 10×4
(4) 10×9

2 Find the answer for 10×10.

1 Let's calculate.
(1) 9×0
(2) 7×0
(3) 0×8
(4) 0×2
(5) 4×10
(6) 7×10
(7) 10×8
(8) 10×7
(9) $3 \times 2 \times 4$
(10) $4 \times 2 \times 5$
(11) $3 \times 3 \times 10$
(2) Let's find the number which goes in \square Pages 48~51
(1) $3 \times 8=8 \times$ \square (2) $4 \times \square=6 \times 4$
(3) $7 \times 5=7 \times 4+$ \square (4) $6 \times \square=6 \times 5-6$
(5) $(3 \times 3) \times 2=3 \times$ \square $\times 2$)
(6) $7 \times(2 \times 4)=7 \times$ \qquad
(3) Let's find the number which goes in \square

(1)

(2)

Draw triangles and squares by connecting dots with straight lines.

(1) Let's find the number which goes in the \square.
(1) $0 \times 6=\square$
(2) $1 \times 0=$ \square
(3) $5 \times 6=$ \square $\times 5$
(4) 3×9 is larger than 3×8 by \square
(5) 4×3 is smaller than 4×4 by \square
(2) Let's calculate the following.
(1) 0×9
(2) 8×0
(3) 0×0
(4) 2×10
(5) 10×6
(6) $(2 \times 2) \times 5$
(7) $4 \times(2 \times 3)$
(8) $(2 \times 5) \times 9$
(3) A point scoring game was played using bottle caps.

Let's find the total points gained by Mea.

- Mutipifation with oand 10 .

Mea's Score

Points on card	0	2	5	10	Total
Number of cards obtained	3	0	4	3	
Total points					

4. There are 3 boxes of 10 capsules of medicine and 10 boxes of 6 capsules each. How many capsules are there altogether?

Express as one expression only and calculate it.

[^0]
Thinking about How to Calculate

Let's write an expression to calculate the total number of lollies
by filling in the blanks with various numbers and find the answers.
There are 4 packets of lollies. There are \square Iollies in each packet. How many lollies are there altogether?

There are 4 packets of Iollies, each packet with12 lollies inside. How many Iollies are there altogether?

Write down the multiplication expression for the total number of Iollies.

Let's reflect on what you have learned, and think about ideas for calculating by using multiplication table.

Let's think about how to calculate it, and explain using diagrams and expressions.

Yamo's idea

12 can be split into 6 and 6 , so there

Gawi's idea

12 can be split into 9 and 3 ,

Multiplying 10s are easy, so splitting 12 into 2 and 10 will make,

2 Let's find the answer for 4×18 in the various methods.

Duration and Time

Let's challenge standing on one foot while closing one eye.
How long can you stand? Ready to go!

1 Let's stand on one foot with closing an eye.
Who stands the longest ?

Seconds are time units shorter than 1 minute.
1 minute $=60$ seconds

Using a stopwatch, let's record the duration of how long you can stand on one foot?

2 The table on the right shows the time that Bethel and other students who stood on one foot.

Name	Time
Bethel	1 minute 38 seconds
Fred	1 minute 47 seconds
Jeff	104 seconds

(1) Let's represent the time using only seconds, then fill in the blanks.

Bethel: 1 minute 38 seconds $=\square$ second
Fred: 1 minute 47 seconds $=\square$ seconds
(2) Let's represent the duration of time using minutes and seconds.

38
+60(1 minute)

$$
\begin{array}{r}
104 \\
-\quad 60 \text { (1 minute) } \\
\hline
\end{array}
$$ Jeff: 104 seconds = \square minutes \square seconds

3 Let's record the time taken for a paper airplane flight, and record many other time represented by different situation.

Let's look at how flight timetables are written. The table above shows a flight schedule. The words "p.m." and "a.m." are not used. Why?

Morning (a.m.) Afternoon (p.m.)
01234567891011 12(o'clock)
0123456789101112131415161718192021222324 (o'clock) (1) Read the following times
(1) $5: 00$
(2) 9:30 p.m.
(3) $6: 23$
(4) $8: 50$
(5) $4: 15 \mathrm{p} . \mathrm{m}$.
(2) Read time in two ways using "a.m." or "p.m." and without using them.

Morning

Afternoon

Morning

Afternoon
(3) Write the time that your teacher says.

2) Duration and Time

1 Asa wants to travel the highlands highway from Lae to Mt. Hagen. He thought about the duration which will take him to reach there.

(1) If he leaves Lae at 8:30 a.m. and arrives in Goroka at 1:00 p.m., how long will it take him from Lae to Goroka? Lae

(2) If he will board another bus from Goroka to Mt. Hagen and the bus departs Goroka at 13:40, he will arrive in Mt. Hagen at 16:50. How many hours and minutes will it take him to reach Mt. Hagen from Goroka?

Mathematical expression: 16:50-13:40

(3) If you board both buses at (1) and (2), how long will it take you in total by bus? Answer in hours and minutes?
(4) The bus "Tulait Tulait" leaves Lae city at 7o'clock, it will take the duration of 5 hours and 15 minutes to reach Goroka town. At what time will it reach Goroka town?

The time is shown as O'clock \triangle minute but the duration is expressd by \bigcirc hours and \square minutes

(5) The bus will arrive in Mt. Hagen at 16:10 from Goroka. It will take the duration of 3 hours to reach Mt.Hagen from Goroka. What time will it leave Goroka town?

Mathematical expression: 16:10-3:00

Exercise

1 Ray was reading from 4:40 in the afternoon to 5:25 in the afternoon of the same day. How many minutes did he spend reading?

2 If you leave your house at 40 past 9 in the morning, and it took you the duration of 1 hour and 30 minutes to reach the garden. At what time in the morning will you reach the garden?

(1) Let's write the correct number in the following \qquad
(1) 1 minute $=\square$ seconds
(2) 1 minute 20 seconds $=\square$ seconds
(3) 180 seconds $=\square$ minutes
(2) Vali and Utu participated in the town running. Vali finished the marathon in 5 minutes and 43 seconds.

Utu finished the marathon 25 seconds later than Vali's time. What was Utu's record?

(3) One Sunday morning, Tim read a book for 1 hour and 10 minutes, and later read for 45 minutes in the afternoon. In total, how long did Tim read that Sunday?
4. Sandy attended soccer practice from 9:30 to 11:10 in the morning. How many hours and minutes did she practice?
(5) It takes 25 minutes from Rui's home to the bus stop.

To board the bus leaving at 10 minutes past 10 hours in the morning, at what time would she have to leave her home?

(1) 4×0
(2) 1×0
(3) 0×3
(4) 0×9
(5) 7×10
(6) 5×10
(7) 10×3
(8) 10×6

1) Arrange the duration of time in order from the longest.

Understanding units and duration of time.
15 hours
1 day
3 hours 45 minutes
75 seconds 60 minutes
(2) Let's write numbers in the \qquad .
Understanding the relationship between units.
(1) 3 minutes $=\square$ seconds
(2) 1 minute 40 seconds $=\square$ seconds
(3) 125 seconds $=\square$ minutes \square seconds
(4) 2000 seconds $=\square$ minutes \square seconds
(3) Let's write the units of time which fits in the \qquad . - Using units of time correctly.
(1) The duration you took to eat breakfast:

20 \qquad
(2) The duration you took to run 50 m :

13 \qquad
(3) The duration you took for a school trip: \square
4 A class period is 30 minutes long. If the class starts at 10 minutes after 10 o'clock, when does the class end?

How Long Is the Duration of 3 Minutes?

How long is the duration of 3 minutes? Please guess the time with your eyes closed. Close your eyes, count in your mind after the start sign. Then raise your hand when you counted 3 minutes.
Please measure your time using stopwatch. Let's find out something in the duration of 3 minutes.

Multiplication in Vertical form

Multiplication with Tens and Hundreds

1 A mother bought 3 rice bags for 40 kina each. How much is the total cost altogether?
(1) Write the mathematical expression.

Number of rice bags Cost of one rice bag

Yumi Rice
K10
K10
K10
K10

Yumi Rice
K10
K10
K10
K10

Yumi Rice
K10
K10
K10
K10

Let's think about how to calculate 40×3.

(2) Twelve 10 kina notes equals \square .

2 There are 3 bicycles for 200 kina each.
How much is the total cost altogether?

(1) Six 100 kina notes equals \square

Exercise

Let's calculate.
(1) 20×3
(2) 30×5
(3) 80×2
(4) 50×6
(5) 300×2
(6) 400×3
(7) 600×4
(8) 800×5

2. How to Calculate (2-digit numbers) \times (1-digit number)

1 Teacher bought 21 chocolates which cost 3 kina each for a class party. How much is the total cost of chocolates altogether?
(1) Write an expression to find the total cost.

(2) Let's think about how to calculate 21×3.

Let's think about how to calculate (2-digit numbers) \times (1-digit number).

21×3

(3) For calculating multiplication, we can use vertical form. Let's explain how to multiply $\begin{array}{r}21 \\ \times \quad 3 \\ \hline\end{array}$ 21×3 in vertical form.

Multiplication Algorithm for 21×3 in Vertical Form

Line up the ones and tens places vertically.

Exercise

Let's multiply in vertical form.
(1) 34×2
(2) 23×3
(3) 42×2
(4) 11×4

2 Let's think about how to multiply in vertical form.
(1) 71×4

$$
\begin{array}{r}
71 \\
\times \quad+\quad \times \quad 4 \\
\hline \square \square 4
\end{array}
$$

4 multiplied by 1 equals 4 . 4 multiplied by 7 equals 28 . \square is in the ones place. 8 is in the tens place. is in the hundreds place.
(2) 13×7

$$
\begin{array}{r}
13 \\
\times \quad 7 \\
\hline 21
\end{array}
$$

7 multiplied by 3 equals 21. 1 is in the ones place. 2 of 10 is carried to the tens place.
(3) 95×3

$$
\begin{array}{r}
95 \\
\times 3 \\
\hline 15
\end{array} \quad \times \quad \begin{array}{r}
95 \\
\hline 15
\end{array}
$$

3 multiplied by 5 equals 15.1 \square is in the ones place. 1 is carried to the tens place.

3 multiplied by 9 equals 27.
$27+1=$ \square . The number in the tens place is \square. The number in the hundreds place is \qquad
(3) Let's think about how to multiply 46×7 in vertical form.

$$
\begin{array}{r}
46 \\
\times \quad 7 \\
\hline 42
\end{array}
$$

$$
\rightarrow \quad \begin{array}{r}
46 \\
\times \quad 7 \\
\hline 42
\end{array}
$$

$$
\begin{array}{r}
46 \\
\times \quad 7 \\
\hline \square \square \square
\end{array}
$$

7 multiplied by 4 equals 28 .
\square is in the tens place.
is in the
hundreds place.

Exercise

Let's multiply in vertical form.
(1) 93×3
(2) 41×5
(3) 63×2
(4) 30×8
(5) 14×7
(6) 13×5
(7) 24×3
(8) 49×2
(9) 64×3
(10) 85×9
(11) 18×6
(12) 26×4
(13) 59×7
(14) 35×9
(15) 65×8
(16) 84×6

(1) Let's multiply in vertical form.

(1) 15×3
(2) 24×4
(3) 47×2
(4) 12×6
(5) 42×6
(6) 63×7
(7) 58×4
(8) 74×9
(9) 38×8
(10) 35×6
(11) 80×4
(12) 500×6
(2) Kazu bought 4 piglets. 1 piglet costs 55 kina.
 How much is the total cost altogether?
(3) Make a phrase by arranging in order of
 putting the following letters from the lowest to the largest answer.

Pages 72

| (T) 73×8 | S 87×9 | (H) 93×8 | (V) 68×4 | (30×9 |
| :--- | :--- | :--- | :--- | :--- | :--- |

| (A) 57×8 | M 42×9 | (I) 12×8 | (E) 46×6 | (L) 31×5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \bigcirc | | | | |

3
 How to Calculate (3-digit numbers) \times (1-digit number)

1 There are 213 children in a school.
Each child visited the fish pond 3 times in a week. How many times in a week did the children visit in total?
(1) Write an expression.

\square

Let's change the order of multiplication, $3 \times 213=213 \times 3$
(2) Let's think about how to calculate 213×3.

Considering How to Calculate 213×3

Can we use the same method we used for 21×3 ?
(3) Let's explain how to multiply in vertical form.

Exercise

Let's multiply in vertical form.
(1) 142×2
(2) 423×2
(3) 312×3
(4) 121×4
2. Let's explain how to multiply by carrying numbers to the superior place values.
(1)

$$
\begin{array}{r}
421 \\
\times \begin{array}{r}
421 \\
3
\end{array} \\
\times 63
\end{array} \rightarrow \begin{array}{r}
421 \\
\hline 1263
\end{array}
$$

(2)

$$
\begin{array}{r}
461 \\
\times \begin{array}{r}
461 \\
\hline 3
\end{array} \rightarrow \frac{x^{421} 3}{183} \rightarrow \frac{461}{43} \\
\hline 1383
\end{array}
$$

(3)

(4) $\begin{array}{r}334 \\ \times 2\end{array} \rightarrow \frac{x^{33} 4}{12}+\frac{x^{334}}{102} \rightarrow \frac{\times 33}{1002}$

3 Let's explain how to multiply with ' 0 ' in vertical form.
(1) $\begin{array}{r}320 \\ \times \quad 4 \\ \hline 1280\end{array}$
(2) $\begin{array}{r}405 \\ \times \quad 8 \\ \hline 3240\end{array}$
(3) 700
$\times \quad 6$
$\times 4200$

Exercise

1 Let's multiply in vertical form.
(1) 321×4
(2) 413×3
(3) 341×5
(4) 731×9
(5) 654×3
(6) 235×6
(7) 364×8
(8) 749×7
(9) 128×8
(10) 429×7
(11) 556×9
(12) 667×6
(13) 420×7
(14) 302×9
(15) 706×3
(16) 600×2

2 Uncle James bought 8 airplane tickets for holidays that cost 525 kina each.

How much is the total cost?

Mental Calculation

1 A torch costs 24 kina. How much is the cost of 3 torches? Let's try to calculate the answer without

To calculate 24×3 mentally, you do as shown on the right.

2 Let's calculate 76×4 mentally.

3 Aunty Marie bought 6 bags of kaukau for 65 kina each and 6 live chicken for 35 kina each.

For getting the answer easily, how should I calculate? How much is the total cost?

Exercise

Let's calculate mentally.
(1) 34×2
(2) 17×3
(3) 25×6
(4) 58×9

:e 0 e x e e r c c i s e e |ra|n

1 Let's calculate mentally.
(1) 33×3
(2) 76×8
(3) 43×7
(4) 56×4
(5) 29×5
(6) 94×6
(7) 324×2
(8) 254×6
(9) 483×5
(10) 112×9
(11) 527×7
(12) 638×8
(2) Let's fill in the \square with an appropriate number. For calculating 84×7, we split it into $4 \times \square$ and $80 \times \square$
and then add the answers for the total.
(3) Father purchased 6 boat tickets each costing 125 kina. How much is the total cost?
(4) There is a park which is 340 metres in perimeter near Roni's house. Roni ran around the park 4 times. How many metres did he run in total?

Let's find the number which applies in the \qquad .
(1) $5 \times 8=$ \qquad $\times 5$
(2) $7 \times \square=3 \times 7$
(3) $3 \times 6=3 \times 5+\square$
(4) $9 \times 4=9 \times \square-9$
(5) $(3 \times 3) \times 2=3 \times(\square \times 2)$
(6) $7 \times 2 \times 4=7 \times$ \qquad
(1) Let's fill in the \square with an appropriate number.

- Understanding how to calculate (3-digit number) \times (1-digit number).

For calculating 384×7, split the calculation into $7 \times$ \square ,
\square and $7 \times$ \square and then add the answers for the total.

2 Let's calculate in vertical form.
Understanding how to calculate in vertical form.
(1) 50×3
(2) 300×3
(3) 600×7
(4) 22×4
(5) 45×6
(6) 64×8
(7) 223×3
(8) 379×7
(9) 584×5
(3) Let's find the mistakes in the vertical calculations below and calculate the correct answer.
(1) $\begin{array}{r}85 \\ \times \quad 3 \\ \hline 2415\end{array}$
(2)

(3)

4. If you buy 8 sets of sports shoes and socks when one pair of shoe costs 125 kina and socks which costs 10 kina, how much is the total cost?

[^1](1) 3 adults and 3 children went to Mailu from Alotau by boat. The fare costs 60 kina for a child and 120 kina for an adult.

What was the total cost?

- Distinguishing the situations for the multiplication and calculating the answer.
(2) There is a set of number cards from 0 to 9 , one card for each number. Using these cards, make calculation problems for a (2-digit number) \times (1-digit number).

(1) Find a calculation with the largest answer.
(2) Find a calculation with the largest answer with 2-digits numbers. Also, explain why that is the largest answer.
(3) There is a 3-digit number. If you multiply 3 to that number, the answer is shown below. In the same letter, the same number fits in. Think about a 3-digit number A B C.

Explain how you found the 3-digit number in order.

- Thinking about the vertical form.

Division

There are 12 lollies. Let's share the lollies amongst 4 children.

D There are 12 lollies. Share 4 lollies to each child.

D Let's Discuss about the differences between the two stories.$\times \square$

1 Division

1 There are 12 lollies. If 4 children share

How many for each child?
 to each child?

Let's think about a calculation for distributing things equally.

They divided 12 lollies equally amongst 4 children as follows.

If you divide 12 lollies amongst 4 children equally, each child gets 3 . In a mathematical sentence, it can be written as $12 \div 4=3$ and read as; 12 divided by 4 equals 3 .

12	$\div 4$	$=3$	
Total number	Number of children	Number of lollies for each child	Answer 3 lollies

2 Let's write mathematical sentences for the following story problems below, and find the number of blocks given to each person.

Share 6 blocks equally

$$
\square \div \square=\square
$$

amongst 3 children.

Share 15 blocks evenly
 amongst 5 children.

Let's do this problem while putting other numbers for blocks and children.

Calculations such as $12 \div 4=3$ and $6 \div 3=2$ are called division.

The divisions used in (1) and © are calculations to find how many lollies for each child when the total number of lollies are equally distributed to the number of children.

3 Divide 15 blocks equally amongst 3 children.
How many blocks does each one receive?

Number of children	Blocks per child	Blocks in total

The answer to $15 \div 3$ is in the box in $3 \times \square=15$.
The answer is found by using the the multiplication table of 3 .

4 Divide 10 dL of juice equally

\square $\div \square$ $=\square$
Answer: \square dL

Exercise

1 Divide a 18 m skipping rope equally amongst 6 children. How many metre (m) does each child receive?

2 Which column or row of the multiplication table should you use to do these division problems? Mention the column or row and find the answer.
(1) $8 \div 2$
(2) $21 \div 7$
(3) $72 \div 9$
(4) $28 \div 4$
(5) $20 \div 5$
(6) $56 \div 8$
(7) $21 \div 3$
(8) $54 \div 6$

5 Make a problem of equal sharing that is solved by division and by looking at the picture.

1

The problem developed by Asa

\square children. How many chocolates are given to each child?
(2)

6 Let's divide.
(1) $14 \div 2$
(2) $4 \div 2$
(3) $27 \div 9$
(4) $40 \div 5$
(5) $32 \div 8$
(6) $12 \div 2$
(7) $18 \div 3$
(8) $45 \div 9$
(2) $42 \div 7$
(10) $16 \div 8$
(11) $24 \div 4$
(12) $25 \div 5$
(13) $12 \div 6$
(14) $49 \div 7$
(15) $24 \div 3$

How many children can share?

7 There are 12 cookies. If one child receives 4 cookies only, how many children can receive cookies?

If you share 12 cookies to each child by 4 cookies each, it can be shared by 3 children. In a mathematical sentence, it can also be represented by the division and written as $12 \div 4=3$.

| 12 | $\div 4$ | 4 |
| :---: | :---: | :---: | :---: |
| Total
 number
 of cookies | Number of
 cookies to
 ceach child | Number to
 children |
| Answer: 3 children | | |

The division used in 7 is a calculation to find how many children can receive when the total number of things are distributed by the same number to each child.
8 There are 8 marbles. If you give 2 marbles
to each child, how many children can share them?

9 You share 15 blocks to each child by 3 each．How many children can share the blocks？

日回 日

日田日田日
 $15 \div 3$

The answer for $15 \div 3$ is the number that fits in the box for $\square \times 3=15$ ．
The answer for $15 \div 3$ can be obtained by using the multiplication table of 3 ．

10 There are 30 dL of kerosene． If you use 6 dL for a kerosene stove for cooking in one day， how many days can you use？

$15 \div 3=$ \qquad Three threes are 9． Four threes are 12. Five threes are 15.
\square
Do you know！
Decilitre（ $\mathrm{dL}, \mathrm{DL}, \mathrm{dl}$ ）is a unit of measurement of volume． $10 \mathrm{dL}=1$ litre（L）

Exercise

There are 24 pencils．If you put 6 pencils only to each box， how many boxes do you need？

11 Look at the tomatoes on the right and make a story problem for $10 \div 5$.

Division to find the number of tomatoes in each plastic bag.
(1) Divide 10 tomatoes equally into \square plastic bags.
How many \qquad are in each \qquad ?

Division to find the number of plastic bags.
(2) There are 10 tomatoes. \square tomatoes are distributed into each plastic bag. How many
\square are needed?

$$
10 \div 5=2
$$

, 0 ठठठठ
(2) is a calculation to find the number in the box for $\square \times 5=10$.

\square
(1) is a calculation to find the number in the box for $5 \times \square=10$.

Both answers can be calculated by the multiplication of 5 and 2 giving 10.

The Answer to a division problem can be calculated by using the multiplication table of divisor (In this case, 5)

12 Let's make a story problem for $32 \div 8$.

Exercise

Let's calculate the following divisions. Which column or row of the multiplication table will you use to find the answer?
(1) $9 \div 3$
(2) $24 \div 8$
(3) $10 \div 2$
(4) $32 \div 4$
(5) $35 \div 5$
(6) $6 \div 2$
(7) $36 \div 9$
(8) $45 \div 5$
(9) $14 \div 7$
(10) $48 \div 6$
(11) $20 \div 4$
(12) $56 \div 7$
(13) $48 \div 8$
(14) $40 \div 8$
(15) $81 \div 9$

2. Division with 1 and 0

1 Cookies in a container will be shared by 4 children. Each one gets the same number of cookies. How many cookies will each person receive?

(1) If there are 12 cookies,

$12 \div 4$

(2) If there are 4 cookies,

(3) If there are 0 cookies,

2. There is a bottle of 6 dL juice. If you pour 1 dL per cup, how many cups do you need?

Exercise

(1) $6 \div 6$
(2) $9 \div 9$
(3) $7 \div 7$
(4) $0 \div 5$
(5) $0 \div 8$
(6) $3 \div 1$
(7) $5 \div 1$
(8) $1 \div 1$
(9) $8 \div 1$
(10) $0 \div 1$

3
 Using Rules of Calculation

1 What is the answer for $36 \div 3$?

Vavi's idea

I use the relationship between division and multiplication.

$1 \times 3=3 \rightarrow 3 \div 3=1$	$7 \times 3=21 \rightarrow \mathbf{2 1} \div 3=\mathbf{7}$
$2 \times 3=6 \rightarrow 6 \div 3=2$	$8 \times 3=\mathbf{2 4} \rightarrow \mathbf{2 4} \div 3=8$
$3 \times 3=9 \rightarrow 9 \div 3=3$	$9 \times 3=\mathbf{2 7} \rightarrow \mathbf{2 7} \div 3=9$
$4 \times 3=12 \rightarrow \mathbf{1 2} \div 3=4$	$10 \times 3=\mathbf{3 0} \rightarrow \mathbf{3 0} \div 3=\mathbf{1 0}$
$5 \times 3=15 \rightarrow \mathbf{1 5} \div 3=5$	$11 \times 3=\mathbf{3 3} \rightarrow \mathbf{3 3} \div 3=11$
$6 \times 3=18 \rightarrow \mathbf{1 8} \div 3=6$	$12 \times 3=\mathbf{3 6} \rightarrow \mathbf{3 6} \div 3=\mathbf{1 2}$

From above, $36 \div 3=12 \quad$ Answer 12

Mero's idea

I line up division sentences of divisor 3.

$3 \div 3=1$	$21 \div 3=7$		
$6 \div 3=2$	$24 \div 3=8$		
$9 \div 3=3$	$27 \div 3=9$		If the dividend increases
:---	:---		
by 3, the answer will also			
increase by 1.			

1 Let's divide.

(1) $35 \div 7$
(2) $72 \div 9$
(3) $18 \div 6$
(4) $28 \div 4$
(5) $12 \div 3$
(6) $21 \div 3$
(7) $20 \div 4$
(8) $30 \div 5$
(9) $64 \div 8$
(10) $36 \div 6$
(11) $8 \div 2$
(12) $16 \div 2$
(13) $81 \div 9$
(14) $63 \div 7$
(15) $42 \div 6$
(16) $4 \div 1$
(17) $8 \div 8$
(18) $0 \div 2$
(19) $69 \div 3$
(20) $84 \div 4$
(2) Let's find the number which applies to the \qquad

(1) $5 \times \square=15$
(2) $7 \times \square=35$
(3) $3 x$ \qquad $=24$
(4) $9 \times \square=36$
(5) $\square \times 6=42$
(6) $\square \times 3=9$
(7) $\square \times 4=32$
(8) \square $\times 8=48$
(3) There are 28 cookies.
(1) If you distribute 4 cookies to each friend, how many can each friend receive?
(2) If you distribute the same number of cookies to 4 friends, how many cookies can each friend receive?

Let's calculate.
(1) 24×6
(2) 72×7
(3) 56×8
(4) 62×5
(5) 284×3
(6) 643×7
(7) 206×9
(8) 999×9

1) Distribute 36 sheets of coloured papers. Finding out how many to each person and how many persons.
(1) If you distribute the same number to 9 children, how many does one child get?

(2) If you distribute 9 papers to each child, how many children can receive?
(2) Let's calculate the following divisions.
(1) $27 \div 3$
(2) $30 \div 6$
(3) $18 \div 2$
(4) $56 \div 8$
(5) $36 \div 4$
(6) $20 \div 5$
(7) $21 \div 7$
(8) $63 \div 9$
(9) $15 \div 5$
(10) $42 \div 6$
(11) $16 \div 4$
(12) $49 \div 7$
(13) $28 \div 7$
(44) $54 \div 9$
(15) $72 \div 8$
(16) $7 \div 1$
(17) $3 \div 3$
(18) $0 \div 6$
(19) $2 \div 1$
(20) $5 \div 5$
(3) Let's make a story problem for $32 \div 4$. Write a number or word which applies to the \qquad .

- Making a story problem from expression.

(1)
(2)

Division to Find the
Number for Each
There are \qquad pencils distributed to \qquad friends equally. How many pencils can \square receive?

Division to Find the
Number of Times
There are \square pencils. \square pencils are distributed to each friend. How many \square can receive?

Division with Remainders

There are 20 apples and 23 oranges.
Put 4 of each type of fruits into separate bags. There will be some
 bags of apples will be filled?

Division with Remainders

1 There are 23 oranges. If you put 4 oranges into each bag, how many bags can you use?
(1) Write an expression.

(2) Let's think about how to calculate.

Let's think about how to calculate divisions with remainders.

I circled groups of 4 oranges.

000 0000 0000 0000 0000 0000

Ambai's idea

I used the column of 4 in the multiplication table.
For 4 bags, $4 \times 4=16,7$ oranges remainder.
For 5 bags, $5 \times 4=20$, 3 oranges remainder.
Total 23
For 6 bags, $6 \times 4=24$, 1 orange short.

There are 5 bags and 3 remainders.

We will write this as follows: $23 \div 4=5$ remainder 3

Answer: 5 bags and a remainder of 3 oranges

As in $23 \div 4$, if we have a remainder, it is called "not divisible". In other words, the dividend 23 is not divisible by divisor 4 . In $20 \div 4$, if we have no remainder, it is called "divisible". In other words, the dividend 20 is divisible by divisor 4.

2 There are 42 shells distributed to 5 children equally. How many will each child receive and what will be the remainder?
(4) (4) (4) (4) (4)
(4) (2) (4) (4)
(13) (4) (4) (4)

Exercise

There are 34 cards. If they give 6 cards to each child, how many children can receive cards and what is the remainder?

Divisor and the Size of Remainder

3 Division problems in which the Dividend Divisor Answer Remainder divisor is 4 are lined up on the right. Let's write the correct numbers in the \qquad .

The remainder in division should always be less than the divisor.

12	\div	4	=	3	
11	\div	4	=	2	remainder 3
10	\div	4	$=$	2	remainder 2
9	\div	4	=	2	remainder 1
8	\div	4	=	2	
7	\div	4	=	1	remainder
6	\div	4	=	1	remainder
5	\div	4	=	1	remainder
4	\div	4	$=$	1	
3	\div	4			remainder
2	\div	4			remainder
1	\div	4			remainder

How to Check Answers

4 You must fill 8 candies to each bag from 26 candies.
(1) How many bags will be filled and
what is the remainder?
$26 \div 8=\square \quad$ remainder \square
(2) Let's consider how to calculate for confirming the answer for the above division.

Exercise

1 Fix the mistakes in the divisions below.

$$
45 \div 6=6 \text { remainder } 9 \quad 55 \div 7=8 \text { remainder } 1
$$

2 Solve the calculation below and check the answers.
(1) $7 \div 4$
(2) $22 \div 3$
(3) $47 \div 9$
(4) $50 \div 7$
(5) $33 \div 5$

2
 Let's Solve Various Problems

1 There are 28 children in Saura's class.
If the class is divided into
groups of 5 children, how many groups are made and what is the remainder?

2 There are 40 balls.
Bill wants to put 6 balls in each box. How many boxes will he need?

3 Let's make the division problems with remainders.

There are \square bananas and \square plates. Put an equal number of bananas on each plate. How many bananas will be on each plate and what will be the remainder?

(1) Let's calculate and check the answers.

(1) $29 \div 3$
(2) $36 \div 5$
(3) $17 \div 6$
(4) $43 \div 9$
(5) $34 \div 7$
(6) $55 \div 8$
(2) There are 48 pencils. The same amount will be distributed to 7 children. How many pencils can be distributed to each child and what will be the remainder?

(3) There are 66 cards.

If the same amount is distributed to 9 children, how many cards will each child get and what will be the remainder? If 9 cards are distributed to each child, how many children can receive and what will be the remainder?
4. There are 30 oranges. You will put these oranges in each plastic bag. In each bag, 4 oranges can fit. In order to put all the oranges in the plastic bag, how many plastic bags do you need?

Solve the calculations below.
(1) 595-288
(2) 460-132
(3) 906-742
(4) 892-625
(5) 1234-695
(6) 1006-759
(7) 5613-3424
(8) 7411-5079
(9) 9000-8021

1) Let's find the mistakes in the following calculations?

Write the correct answer in the \qquad .
Understanding the meaning of the division with remainder.
$28 \div 3=8$ remainder $4 \quad 37 \div 5=8$ remainder 3
\square
\square
(2) There are 46 tomatoes. They will be divided equally amongst 6 people.
Considering the remainder depending on the story.
(1) How many tomatoes can be distributed to each person and what will be the remainder?
(2) How many more tomatoes do you
 need to distribute 8 to each person?
(3) Let's calculate.

- Perform divisions with remainders.
(1) $33 \div 8$
(2) $48 \div 5$
(3) $17 \div 4$
(4) $26 \div 7$
(5) $56 \div 9$
(6) $41 \div 6$
(7) $11 \div 2$
(8) $39 \div 7$
(9) $74 \div 9$

4 There are 11 plastic bottles of juice in total. 4 plastic bottles of 2 L and 7 plastic bottles of 1 L . If you distribute equally amongst 3 people, what are the possible methods?

Circles and Spheres

D We will play ring game. How should we line up for a fair game?

A, B and C are various formations. In each, which formation is fair for everybody?

Explain why you chose your answer.

A

B

C

1 Circles

1 Let's think about how to draw a round shape.
(1) Draw many points that are all 3 cm from point A .
(2) Using an instrument below, draw a round shape.

The circle you drew in has a radius of 3 cm . Point A and the pin is the centre of the circle.
2. Let's draw a circle with a 2 m radius in the school ground using a rope.

3 A compass is a tool used for drawing circles.
(1) Draw a circle with a 4 cm radius using a compass.
(1) Open the compass to the length of the radius.

(2) Rotate the compass to draw a circle.

(2) Draw another circle with a different radius and the same centre.

Radius and Diameter

4 Draw a circle with A as the centre.
(1) Draw a circle with radius of 3 cm .
(2) Draw a straight line from one side of the circle to the other through the centre.
A.

A straight line drawn from one point on the circle passing through the centre of the circle to the other point on the circle is called the diameter.
The lenght of the diameter is twice the length of the radius.

5 Let's fill in the blanks with correct words and numbers.
(1) A diameter is \square times the radius.
(2) If you fold a circle along its \square there are two equal sections.
(3) There are many diameters in a circle and all diameters have the \square length.

\square is the longest straight line between two points in the circle.

Exercise

Draw circles with the following diameters.
(1) 8 cm
(2) 12 cm
(3) 14 cm

6 Draw a circle that is the same size as the circle on the right using a compass.
(1) What do you need to have for drawing the circle?
(2) How can you find the centre of the

Designing Patterns

7 Let's draw different patterns and pictures using a compass.

(2)

0

Let's Make Spinning Tops

Functions of a Compass

A compass can be used for other purposes other than drawing a circle.
(1) You can divide a straight line into sections of the same length. Try making 3 cm

sections on the line below.
(2) You can compare the lengths of $(\mathbb{A}),(B)$ and (C). Which of these straight lines is the longest?
(B)

(3) You can transfer lengths. Transfer line (A) to line (B). How long is line (A) compared with line (B).
(A)

(B)

Spheres

1 Explore the shape of a ball.
(1) What is the shape of the ball when viewed from the above and the side?
(2) Roll a ball.

From above

From the side

From the side

An object that looks like a circle from any direction is called a sphere.
(3) Look for things shaped like a sphere.

(4) What is the shape of the cross-section of a sphere?

Where should we cut to make the largest cross-section from a sphere?

When a sphere is cut in half, the centre, the radius, and the diameter of the cross-sections are called the centre, radius and diameter
 of the sphere.
(3 How can we find the diameter of a sphere?

(1) Answer these questions about the circle shown on the right.
(1) What is point (a) called?
(2) What is the name given to the straight lines (b) and (c)?

Page 100

2 Write the correct words or numbers in the \qquad Page 102
(1) A straight line through the centre between 2 points on a circle is called \square
(2) The length of a diameter is \square times the radius.
(3) Draw the following circles.

(1) A circle with a diameter of 4 cm .
(2) A circle with a radius of 4 cm .

4 Compare the lengths of the following straight lines.
(A)

(B)
(C)

Let's fill in the boxes.
(1) $10 \mathrm{~mm}=$ \square cm
(2) \square $\mathrm{cm}=1 \mathrm{~m}$
(3) $1 \mathrm{dL}=\square \mathrm{mL}$
(4) $2000 \mathrm{~mL}=\square$ L

1) Draw the following circles.

- Drawing circles with a given radius or diameter.
(1) A circle with a 6 cm radius.
(2) A circle with a 10 cm diameter.
(2) A circle is put in a square of the same size as shown on the right.

Find its radius and draw another circle of the same size.

3 Which is longer around its edges, the rectangle or the square? Find the answer by using a compass.

- Understanding how to compare the lengths of lines by using a compass.

4 There are 3 circles of the same size below. Find the diameter of one of these circles.

- Understanding the radius and diameter of combined circles.

[^0]: Solving a story problem by developing the expression.

[^1]: - Distinguishing the situations for the multiplication and calculate the answer.

