バングラデシュ国外国直接投資促進事業(有償資金協力)ドラフトファイナルレポート 当日配布資料

目次

質問	に対する回答事項に係る参考資料	2
	7 に対する回答事項に係る参考資料	
質問	0 に対する回答事項に係る参考資料	.5
質問	2 に対する回答事項に係る参考資料	3.
質問	4 に対する回答事項に係る参考資料	ç
質問	9 に対する回答事項に係る参考資料1	.(
質問	4 に対する回答事項に係る参考資料	. 1

質問5に対する回答事項に係る参考資料1

4.4.3 ダッカ首都圏のインフラ整備計画

1)-1アライハザール関連道路網 (図4.4.3.2参照)

ダッカ中心部 Gulshan から Araihazar へのアクセスは、空港から東へ Purbachar ニュータウン計画区域、Kanchan 橋・Dhaka バイパス(将来の Middle Ring road)、Bhulta 六叉路、及び国道N2(Dhaka Sylhet Exp. 道路)を経てEZサイトに至る。Shitalakshya 川に架かる Kanchan 橋を図 4.4.3.3 に示した

図 4.4.3.3 Kanchan 橋 (Shitalakshya 川架橋、図の右側が Araihazar EZ 方向)

この内、Dhaka バイパス、N 2 の拡幅、改良は既に RHD の建設計画に含まれている。また、現状で頻繁に渋滞する Bhulta 六叉路のフライオーバー建設計画(図 4.4.3.4 参照)は、バ国予算(RHD)により工事入札手続きが進行中であり 2 年後(2017 年)の完成を目指している。Bhulta フライオーバーは、下図中で左右に伸びる国道 N2 が高架往復各二車線となる。その標準断面図を図 4.4.3.5 に示した。同フライオーバーから Araihazar EZ までは、北東(下図の右上)側 N2 沿い約 4 km である。

-

¹ 「経済特区開発調査及びBEZA能力向上プロジェクト」のFRから抜粋。

図 4.4.3.4 Bhulta Flyover (N2 と Dhaka Bypass の立体交差点)計画

図 4.4.3.5 Bhulta Flyover 計画 断面図

また、Outer Ring Road は、図 4.4.3.2 に示したようにアライハザールEZの直近を通る計画であり、Dhaka バイパスの改良と併せて、当該EZ計画地への道路は Dhaka 市街地の渋滞の影響を受けることなく、国道N1に直結することになる。

質問17に対する回答事項に係る参考資料

代替案比較一覧表 (先行調査「経済特区開発調査及び BEZA 能力向上プロジェクト」より抜粋) 13 候補地の中から、「Location」、「Land information」、「Supporting context」、「Social/environment assessment」、「Infrastructure」、「Natural disaster」、「Government land price」の7項目に対する評価(表中にて本事業は「Araihazar-1」と表記)

Elements of Assessment	RD-1/2 Navanpur	RD-3 Nassingli	RD-4 Tincho	RD-7 Maowa	RD-11 Gazarta	RD-0 Palash	Sing-1 Handar	Site-2 Dohar	Sint-3	Site-4	Site-5 Araihazar-2	Situ-6 Keraniganj	Sixe-7 Kaliakair
CHON	Navanpur 14	Narsingsi 18	1 incho	Maowa 22	Cazarta 16	Patash 17	Handar 19	Donar 10	Sonargaon 17	Araibazar-1 22	Arathazar-2	Keraniganj 20	Kalinkair 16
F0.502		- 1		- 4	1	3	- 3	2	4		3	5	2
ce from Dhaka	50 Jan	30 km	59 km	21 km	42 km	19 km	20 km	31 km	22 km	20 km	20 km	17 km	38 km
to Main Highway	4	63/35/15	5	5	5	970000	4	10200010 1	- 4	163/81/4 57		4	4
	1.2 km	2.5 km	0 km	0 km	0 km	12 km	2 km	25 km	4 km	0 km	4 km	3 km	2 km
to Inland Container Treminal River Port	47 km	16-km	61 km	19 km	40 km	0 km	45 km	52 km	32 km	14 km	27 km	29 km	41.km
to Major Airport	2	*	3.50	5		4	4	200010 2	10000000	3	4	3.000	1
to make realized	55 km	46 km	69 km	24 km	46 km	34 km	39 km	52 km	32 km	10 km	37.km	19 km	46 km
to Major Town	2.5 km	1.1.km	15.5 km	4.4 km	3.4 km	17.4 km	7.3 km	7.7 km	7.5 km	6.4 km	5.6 km	6.2 km	3.5 km
LAND INFORMATION	12	15	10	13	13	10	12	12	15	17	11	12	13
	0.000	70000 4			2	2	2000	source 7		- Normal 5:	00010 13	11100000 1	0000 74
Devalopment Area	233 ha	185 ha	100 hr	100 ha	100 ha	60 ha	100 ha	100 ha	100 lu	230 ha	100 ha	132 ha	190 ha
n Land Use (Crop pattern)	2	3	2		5	4	- 4	4			3	4	4
	C+2	C=1	C-2	C-1	C=0	C=0.5	C=0.5	C=0.5	C=1	C+1	6-1	C-0.5	£2=0.5
Pwnership	100-IN	100-N	100-CN	100-IN	N=1	100-N	100 <n< td=""><td>100-N</td><td>100×N</td><td>100×N</td><td>100-IN</td><td>100-N</td><td>100-N</td></n<>	100-N	100×N	100×N	100-IN	100-N	100-N
dability of Land	3	+	2	5	3787 (4)	F	1	1	. 3		2	1	3
menory on Lana.	208 ha	373 ha	100 ha	0000 ha	0 ha	40 ha	55 ha	13 ha	552 ha	820 ha	123 ha	63 hs	295 ha
Sevelopment Cost	23.3-5/m2	10.7 S/m2	2	1	1	18.0 S/m2	34.2 S/m2	14.2 5 m2	14.2 S/m2	14.8 S/m2	17.4 S/m2	14.2 S/m2	23.5 S/m2
OUNDING CONTEXT	25.5 S/M2	14	10	9	9	13	13	14-2 2-71-2	14	16	16 16	13	16
	4	4	2	- 2	2	3	1	2	4	1	3	3	4
hility of Social Commercial Facilities	Very Good	Vary Good	Pose	Poor	Poor	Good	Good	Poor	Very Good	Good	Good	Good	Very Good
bility of Labor Force (Uparila population)	4	3	4	3	3	1.	4		4	+	4	5	4
	493,000	708,000	350,000	288,000	138,000	213,000	313,000	226,000	400,000	377,000	377,000	794,000	483,000
ng/Future Development Projects in Adjacent Area	Excellent	Good	Poor	Poor	Poor	Very Good	Good	Poor:	Good	Very Good	Very Good	Poor	Very Good
	2	2	2		2	7403 34110	3.	2	3	5	-5	3	4
rial Cluster (Industry % in Economic Structure)	5.2%	6.8%	100		200	13.8%	12.0%	5.6%	13:8%	24,8%	24.8%	14.3%	16.1%
AL & ENVIRONMENT ASSESSMENT	5	6		- 5.		5	1		. 5	5		5	-5
er of Resettlents (Householders)	N=0	N=0	N=0	N=0	N=0	N=0	N=200	26-0	N=0	N/O	N=0	N=0	N=0
ASTRUCTURE	13	14		3-0	16	8	N-200	50-11	12	18	5-0	10	14
F1 P500 = 5454 OU.	3	3	5	5	5	1	- 1	1	3	5	- 2	2	- 3
ce of Access Road	1.2 km	2.5 km	0 m	0 m	0 m	12-km	11 km	30 km	2.5 km	200 m	4 km	4 km	3 km
ce to Water Supply Resources	5	5	5	5:	(3)	5.	.5	5.		5	. 5	5	3
	Inside	Inside	Imeide	Inside	Inside	Inside	Inside	Inside	Imide	Inside	Inside	Inside	Inside
ce to Power Sub-station (132/33kV)	3.4 km	1.3 km	3 km	3 km	3 km	10 km	10 km	-10 km	9 km	2.5 km	5 km	8-km	3 km
ce to Gas Pipiline	3		4	1	3	1	2	1	3	5	- 2	2	. 3
	1.5 km	3 km	T km	10 km	2 km	10 km	10 km	10 km	3 km	200 m	4 km	4 km	3 km
RAL DISASTER (FLOOD MEASURES)	10		7 4	3	2	3	3	3	- 4	7	7	4	- 6
Land Erosion by Flood	Very Low	High	Low	High	Very High	Very High	Very High	Very High	High	Low	Low	High	Low
and the state of t	5	3	3	1	1	2	2	2	2	3	3	2	1
(Flood (Flood level from current ground elevation)	0 m	2 - 3 m	3 m	6 m	5 m	3 - 5 m	3 - 5 m	3-5 m	3 - 5 m	2 - 3 m	2 - 3 m	3 - 5 m	3 + 5 m
ERNMENT LAND PRICE	4	3	1	1	1	1	4	- 4	4	2		3	3
pe.Price of Land (\$/m2)	4	5 105	20.5 - 75	20.5 - 25	20 5 - P	20.5 - 7	4	4	4	2 2	1 4	3	5.108
TOTAL SCORE													73
The second second second			96	67	62	37	0.1	31				67	Pass
pe Price o	fland (S·m2) TOTAL SCORE RESULT	TLand (\$'m2) 1-5 \$ TOTAL SCORE 75	TOTAL SCORE 75 7-4	Total score 75 74 60	Total score 75 74 60 67	Total score 75 74 60 67 62	Total Score 75 74 60 67 62 57 Total Score 75 74 60 67 62 57	TLand (S-m2) 1-5\$ 5-10\$ 205 < P 205 < P 205 < P 205 < P 1-5\$ TOTAL SCORE 75 74 60 67 62 57 61	Total Score 75 74 60 67 62 57 61 51	TOTAL SCORE 73 74 60 67 62 57 61 51 71	TOTAL SCORE 75 74 60 67 62 57 61 51 71 87	T(Land (S/m2)	Total Score 75 74 60 67 62 57 61 51 71 87 72 67

質問20に対する回答事項に係る参考資料

排水基準についてはバ国国内基準(ECR'97)をベースに、基準値が不足する項目、または国際基準と乖離が見られる項目においては IFC の EHS ガイドラインを適応します。

		Proposed Effluent	SCHEDULE - 9	SCHEDULE - 10	Table 1.3.1 Indicative Values for	Table 1. Effluent levels for food	Table 6: Effluent Levels for Metal,	Table 2. Effluents Levels for	Table 1. Effluent levels for	Table 2. Effluent levels for the
		Discharge Standards for	Standards for Sewage	Standards for Waste From Industrial	Treated Sanitary Sewage	and beverage processing	Plastic, and Rubber Products	Pharmaceuticals and	Semiconductors and Other	textile industry ^a
		AEZ	Discharge	Units or Projects Waste	Discharges	IFC EHS Guidelines	Manufacturing	Biotechnology Manufacturing	Electronics Manufacturing	IFC EHS Guidelines
			[Rule 1212, ECR'97]	[Rule 13, ECR'97]	IFC EHS Guidelines		IFC HES Guidelines	IFC EHS Guidelines	IFC EHS Guidelines	
Pollutant	Unit			Inland Surface Water	<primary guideline="" values=""></primary>					
pH	S.U.	6 – 9		6-9	6-9	6-9	6-9	6-9	6–9	6 – 9
BOD ₅	mg/L	30	40	50	30	50	0-9	30	160	30
COD	mg/L	125	40	200	125	250	250	150	50	160
Dissolved Oxygen (DO)	mg/L	4.5 - 8		4.5 - 8	120	230	200	100	30	100
Electric-conductivity (EC)	micro mho/cm	1200		1200						
Total Suspended Solids	mg/L	50	100	150	50	50	50 / 25*	10	50	50
(TSS)	9						31, 2			
Total Dissolved Solids	mg/L	2100		2100						
Oil and grease	mg/L	10		10	10	10	10	10	10	10
AOX (adsorbable organic	mg/L	1						1	0.5	1
bound halogens)	-									
Aluminum	mg/L	3					3			
Arsenic	mg/L	0.1		0.2			0.1	0.1	0.1	
Cadmium	mg/L	0.1		0.5			0.1	0.1	0.1	0.02
Chromium (total)	mg/L	0.5		0.5			0.5		0.5	0.5
Chromium (hexavalent)	mg/L	0.1		0.1			0.1	0.1	0.1	0.1
Cobalt	mg/L	0.5								0.5
Copper	mg/L	0.5		0.5			0.5		0.5	0.5
Iron	mg/L	2		2			3			
Lead	mg/L	0.1		0.1			0.2		0.1	
Mercury	mg/L	0.01		0.01			0.01	0.01	0.01	
Manganese (Mn)	mg/L	5		5						
Nickel	mg/L	0.5		1			0.5		0.5	0.5
Selenium	mg/L	0.05		0.05					1	
Silver	mg/L	0.2					0.2		0.1	
Tin	mg/L	2					2		2	
Zinc	mg/L	2		5			2		2	2
Cyanides (total)	mg/L	1					1		1	
Cyanides (free)	mg/L	0.1		0.1			0.2		0.1	
Active ingredient (each)	mg/L	_		_				0.05		
Ammonia	mg/L	5		5			10 / 20*	30	10	10
Ammoniacal Nitrogen (NH ₃ -N)	mg/L	50		50						
Boron	mg/L	2		2						
Fluorides	mg/L	2		2			20		5	
PhenoIs	mg/L	0.5		1			0.5	0.5		0.5
Nitrate	mg/L	10		10						
Total nitrogen	mg/L	15	250	100	10	10	15	10		10
Dissolved Phosphorus	mg/L	8		8						
Total phosphorus	mg/L	5	35		2	2	5	2	2	2
Sulfide	mg/L	1		1			1			1
Volatile Organic Halogens (VOX)	mg/L	0.1					0.1			
Ketones (each) ⁽¹⁾	mg/L	0.2						0.2		
Acetonitrile	mg/L	10.2						10.2		
Acetates (each)(2)	mg/L	0.5						0.5		
Benzene	mg/L	0.02						0.02		
Chloride	mg/L	600		600						

		Г									
			Proposed Effluent	SCHEDULE - 9	SCHEDULE – 10	Table 1.3.1 Indicative Values for		Table 6: Effluent Levels for Metal,	Table 2. Effluents Levels for		Table 2. Effluent levels for the
			Discharge Standards for	Standards for Sewage	Standards for Waste From Industrial	Treated Sanitary Sewage	and beverage processing	Plastic, and Rubber Products	Pharmaceuticals and Biotechnology Manufacturing	Semiconductors and Other	textile industrya
			AEZ	Discharge [Rule 1212, ECR'97]	Units or Projects Waste [Rule 13, ECR'97]	Discharges IFC EHS Guidelines	IFC EHS Guidelines	Manufacturing IFC HES Guidelines	IFC EHS Guidelines	Electronics Manufacturing IFC EHS Guidelines	IFC EHS Guidelines
				[INUIC 1212, LOIN 37]	Inland Surface Water	Primary Guideline Values>		II CTILO Odidelliles	II O LI IO Odidelli les	II O LI IO Guidelli les	
	lutant	Unit									
Chlorobenzer	ne	mg/L	0.06						0.06		
Chloroform		mg/L	0.013						0.013		
o-Dichlorobe		mg/L	0.06						0.06		
1,2-Dichloroe		mg/L	0.1						0.1		
Amines (each		mg/L	102						102		
Dimethyl sulf		mg/L	37.5						37.5		
Methanol / eti	nanoi (each)	mg/L	4.1 0.02						4.1 0.02		
n-Heptane n-Hexane		mg/L	0.02						0.02		
Isobutyraldeh	avde	mg/L mg/L	0.02						0.02		
Isopropanol	iyue	mg/L	1.6						1.6		
Isopropyl eth	or	mg/L	2.6						2.6		
Methyl cellos		mg/L	2.0						40.6		
Methylene ch		mg/L							0.3		
Tetrahydrofu		mg/L							2.6		
Toluene		mg/L							0.02		
Xylenes		mg/L							0.01		
Coliform bact	teria	MPN /100ml	400	1000		400a	400				400
	Toxicity to								2 ^d		2°
Bioassays	fish Toxicity	T.U.							8 ^d		
	to Daphnia								16 ^d		
	Toxicity to								8 d		
	algae										
	Toxicity to										
	bacteria			(1) This limit shall be	(1) These standards shall be	a Not applicable to centralized,	a MPN = Most Probable	* electroplating	a. Including Acetone, Methyl		a. At the edge of a
DEM	IARKS			applicable to	applicable to all industries or projects	municipal, wastewater treatment	Number	electropiating	Isobutyl Ketone (MIBK).		scientifically established
KEIV	IARNO			discharges into surface	other than those specified under the	systems which are included in	b At the edge of a scientifically		b. n-Amyl Acetate, n-Butyl		mixing zone which takes
				and inland waters	heading "Standards for sector- wise	EHS Guidelines for Water and	established mixing zone which		Acetate, Ethyl acetate,		into account ambient
				bodies.	industrial effluent or emission."	Sanitation.	takes into account ambient		Isopropyl Acetate, Methyl		water quality, receiving
				(2) Sewage shall be	(2) Compliance with these standards	b MPN = Most Probable Number	water quality, receiving water		Formate.		water use, potential
				chlorinated before final	shall be ensured from the moment an		use, potential receptors and		c. Including Diethylamine and		receptors and
				discharge.	industrial unit starts trial production, and in other cases, from the moment		assimilative capacity		Triethylamine. d. TU = 100 / no effects		assimilative capacity b. 0.05 mg/L for total
					a project starts operation.				dilution rate (%) of waste		pesticides
					(3) These standards shall be				water. The "no effect		(organophosphorous
					inviolable even in case of any sample				dilution rate" should be		pesticides excluded);
					collected instantly at any point of time.				monitored with standard		0.10 mg/l for
					These standards may be enforced in				toxicity tests (e.g. CEN,		organophosphorous
					a more stringent manner if considered				ISO or OECD acute toxicity		pesticides.
					a more stringent manner if considered necessary in view of the						pesticides. c. Toxicity to Fish Eggs 96h
					a more stringent manner if considered necessary in view of the environmental conditions of a				ISO or OECD acute toxicity		
					a more stringent manner if considered necessary in view of the environmental conditions of a particular situation.				ISO or OECD acute toxicity		
					a more stringent manner if considered necessary in view of the environmental conditions of a				ISO or OECD acute toxicity		
					a more stringent manner if considered necessary in view of the environmental conditions of a particular situation. (4) Inland Surface Water means				ISO or OECD acute toxicity		
					a more stringent manner if considered necessary in view of the environmental conditions of a particular situation. (4) Inland Surface Water means drains/ponds/tanks/water bodies/ditches, canals, rivers, springs and estuaries.				ISO or OECD acute toxicity		
					a more stringent manner if considered necessary in view of the environmental conditions of a particular situation. (4) Inland Surface Water means drains/ponds/tanks/water bodies/ditches, canals, rivers, springs and estuaries. (5) Public sewerage system means				ISO or OECD acute toxicity		
					a more stringent manner if considered necessary in view of the environmental conditions of a particular situation. (4) Inland Surface Water means drains/ponds/tanks/water bodies/ditches, canals, rivers, springs and estuaries. (5) Public sewerage system means treatment facilities of the first and				ISO or OECD acute toxicity		
					a more stringent manner if considered necessary in view of the environmental conditions of a particular situation. (4) Inland Surface Water means drains/ponds/tanks/water bodies/ditches, canals, rivers, springs and estuaries. (5) Public sewerage system means treatment facilities of the first and second stage and also the combined				ISO or OECD acute toxicity		
					a more stringent manner if considered necessary in view of the environmental conditions of a particular situation. (4) Inland Surface Water means drains/ponds/tanks/water bodies/ditches, canals, rivers, springs and estuaries. (5) Public sewerage system means treatment facilities of the first and second stage and also the combined and complete treatment facilities.				ISO or OECD acute toxicity		
					a more stringent manner if considered necessary in view of the environmental conditions of a particular situation. (4) Inland Surface Water means drains/ponds/tanks/water bodies/ditches, canals, rivers, springs and estuaries. (5) Public sewerage system means treatment facilities of the first and second stage and also the combined				ISO or OECD acute toxicity		
					a more stringent manner if considered necessary in view of the environmental conditions of a particular situation. (4) Inland Surface Water means drains/ponds/tanks/water bodies/ditches, canals, rivers, springs and estuaries. (5) Public sewerage system means treatment facilities of the first and second stage and also the combined and complete treatment facilities. (6) Irrigable land means such land area which is sufficiently irrigated by waste water taking into consideration				ISO or OECD acute toxicity		
					a more stringent manner if considered necessary in view of the environmental conditions of a particular situation. (4) Inland Surface Water means drains/ponds/tanks/water bodies/ditches, canals, rivers, springs and estuaries. (5) Public sewerage system means treatment facilities of the first and second stage and also the combined and complete treatment facilities. (6) Irrigable land means such land area which is sufficiently irrigated by waste water taking into consideration the quantity and quality of such water				ISO or OECD acute toxicity		
					a more stringent manner if considered necessary in view of the environmental conditions of a particular situation. (4) Inland Surface Water means drains/ponds/tanks/water bodies/ditches, canals, rivers, springs and estuaries. (5) Public sewerage system means treatment facilities of the first and second stage and also the combined and complete treatment facilities. (6) Irrigable land means such land area which is sufficiently irrigated by waste water taking into consideration				ISO or OECD acute toxicity		

		Proposed Effluent	SCHEDULE - 9	SCHEDULE - 10	Table 1.3.1 Indicative Values for	Table 1. Effluent levels for food	Table 6: Effluent Levels for Metal,	Table 2. Effluents Levels for	Table 1. Effluent levels for	Table 2. Effluent levels for the
		Discharge Standards for	Standards for Sewage	Standards for Waste From Industrial	Treated Sanitary Sewage	and beverage processing	Plastic, and Rubber Products	Pharmaceuticals and	Semiconductors and Other	textile industry ^a
		AEZ	Discharge	Units or Projects Waste	Discharges	IFC EHS Guidelines	Manufacturing	Biotechnology Manufacturing	Electronics Manufacturing	IFC EHS Guidelines
			[Rule 1212, ECR'97]	[Rule 13, ECR'97]	IFC EHS Guidelines		IFC HES Guidelines	IFC EHS Guidelines	IFC EHS Guidelines	
				Inland Surface Water	<primary guideline="" values=""></primary>					
Pollutant	Unit									
				(7) Inland Surface Water Standards						
				shall apply to any discharge to a						
				public sewerage system or to land if						
				the discharge does not meet the						
				requirements of the definitions in						
				notes 5 and 6 above.						

質問22に対する回答事項に係る参考資料

本事業候補地(上図)に最も近い ECA は、事業候補地から直線距離 20km 東南東(ダッカ市内)に位置する Ghulshan Baridhara Lake(上図)です。

Protected Areas of Bangladesh SCALE R.F. 1: 100000 INDIA Mymensingh Bhawal National, Park INDIA Project site INDIA BAY OF BENGAL Legend Protected areas Designation Not His Game Reserve Source:Bangladesh Inland Water Transport Authority-Topo survey Prepared by: €QMS Date: 03/04/2016

質問24に対する回答事項に係る参考資料

本事業候補地(上図) に最も近い Protected Area は、事業候補地から直線距離 35km 北 北西に位置する Bhawal National Park(上図) です。

92.00 €

90'0'0'E

3°00'E

質問39に対する回答事項に係る参考資料

アクセス道路の平面図です。右端(AEZ 入口)より約60mの地点にUnderpass(緑部分)があります。

断面は下図の通り。乾期はほぼ乾いている。雨期に20~30cm 冠水することがあるが、冠水 次用歩行者デッキを設けてあり、デッキは冠水しません。

質問44に対する回答事項に係る参考資料

Table: Details of Key informant interview

Date	Stakeholder Details	Details of participants	Issues discussed/raised	Outcomes of the Brief
26.11.17	Department of Fisheries	 Mohammed Anisuzzaman, Fisheries Officer, Araihazar Upazila Md. Najmul Hossain, Consultant, EQMS Consulting Limited Abu Mohammed Nasiruddin, Assistant Consultant, EQMS Consulting Limited 	 Role and responsibility of the local fisheries departments Where are the primary fishing point located in and around in Araihazar Upazila and respective Union. Details of Fishing production in respective Unions Details on the key species of fishes observed in adjacent Rivers and water bodies, Understanding on the Fishermen community and their practices, Total number of fisherman Critically endangered fish species Type of fishing activity Fish landing site Commercial fish drying activity Possible threats in fisheries as the consequence of proposed Economic Zone. 	 The Department of Fisheries (DoF) is under the administrative control of the Ministry of Fisheries and Livestock. It is headed by a Director General, who is assisted by four Directors (one reserve) and 2 Principal Scientific Officer (equivalent to Director). There are administrative set-ups at division, district and Upazila (sub district) levels headed by Deputy Director, District Fisheries Officer and Senior/Upazila Fisheries Officer respectively. Upazila Fisheries office rendersits services to achieve the mission and vision of theDoF. Total areas of capture and culture fisheries in Araihazar are 2503.44 hectare and 1036.98 hectare respectively. All over production in this upazila is comparatively low than other districts of Bangladesh. In Satgram Union, fish culture and capture practice is comparatively low. About 165.26 hector fish culture and 19.64 hector fishcapture is recorded. No major fishing sanctuary is located in project surrounding area. There is a canal named Dhawrakhali goes through the proposed project site. It goes Northern to Southern West direction. This canal is an important source of indigenous fish for this locality. As this Canal is connected to river, in wet season a large amount of indigenous fish come through this canal. Local fishermen catch fish from this canal and live their livelihood on that time. A total of 50 registered fishermen identified in Satgram (19) and Duptara (31) Union. Approximately 8-12 fishermen do fishing in the project area during wet season.

Date	Stakeholder Details	Details of participants	Issues discussed/raised	Outcomes of the Brief
				 Fishermen use push net for fishing. No major fish landing site is situated adjacent to project site No Commercial fish drying activities are carried out. Heavy metal and chemical may use in the Proposed Economic Zone. Appropriate measures should be taken for not contaminating the open water bodies. Existing Dhawrakhali Canal should be kept as it is. Affected fishermen, who can't continue to fishing activities as the consequence of the project, should be considered for livelihood assistance for alternative income generation.
26.11.17	Department of Agriculture	 Md. Abdul Kadir, Agriculture Officer, AraihazarUpazila, Md. Najmul Hossain, Consultant, EQMS Consulting Limited Abu Mohammed Nasiruddin, Assistant Consultant, EQMS Consulting Limited 	 Understanding and Broad overview of the agricultural sector in AraihazarUpazila and respective Unions, Information on the cropping pattern in the area and agricultural practices, Wage rate in agricultural labor (with food and without food), Agricultural production per acre Price of paddy and Mustard Possible threats in Agriculture as the consequence of proposed Economic Zone. 	 Total agriculture land of the Araihazar Upazila is 18,115.7 hector where in Araihazar union is 1963.97 hector that represents 4.4% of whole Upazila. In Satgram Union about 75.38% land is agricultural land. Single cropped area is 237 ha (16%), Double cropped area is 888 ha (60%) and triple cropped area is 355 ha (24%). Most of the proposed acquired lands are used for single cropped production. But some portion is sometimes used for double cropped production. Mostly paddy is produced in these lands but sometimes mustered is produced also. Common agricultural products are Paddy, Mustard, Dhaincha, Potato, Jute, Pulses and vegetables. Proposed 166.03 acre land of Panchgaog Mouza underlies in Panchgaog Block. This block comprises Low and middle low land. Most of the lands of this Mouza are used for double cropped production namely Buro and RupaAmon. Approximately 400 agricultural land owners and 250 sharecroppers may involve in this proposed land area. Proposed 325.45 acre land of PanchrukhiMouza underlies in Panchrukhi Block. Most of this block land comprises

Date	Stakeholder Details	Details of participants	Issues discussed/raised	Outcomes of the Brief
				 low in nature and are used for single cropped production namely Buro. Maximum production (paddy) 3700kg per ha and (Mustard) 1300 kg per ha; (Paddy) BDT 1200-1250 per 40 kg and (Mustard) BDT 1700-1800 per 40 kg; Wage rate in agricultural labor vary from season to season 350-400 tk. There is a Canal goes through the proposed project site. It works to drain up the excessive water during the rainy season. This Canal should be kept as it is otherwise adjacent agricultural land will be inundated during the rainy season.
26.11.17	Department of Public Health Engineering	 Al Farhad, Assistant U.D., Araihazar Upazila, Md. Najmul Hossain, Consultant, EQMS Consulting Limited Abu Mohammed Nasiruddin, Assistant Consultant, EQMS Consulting Limited 	 Number of deep tube-well and shallow tub-well number in project area, Arsenic and Iron concentration of the project located union and upazila Source of water for drink and agriculture, Testing water quality when installed the tube-well 	 A numbers of deep tube-well and shallow tube-well is installed in the project area, Arsenic and Iron level within the project location is in standard limit. Standard Deep tube-well depth is 650 feet and shallow tube-well depth is 250-300 feet. Tube-well is used for drinking and cooking purpose and deep/shallow tube-well, pond and cannel water are used for agriculture production purposes. Test for Arsenic and Iron contamination has been considered before tube-well installation
26.11.17	Department of Education	 Rabeya Khatun Education officer, Araihazar Upazila Md. Najmul Hossain, Consultant, EQMS Consulting Limited Abu Mohammed Nasiruddin, Assistant 	 General educational institution information; Possible threats in Agriculture as the consequence of proposed Economic Zone; What short of awareness need to highlight during this construction phase; 	 There are 12 primary school are situated within the 2 km radius from the proposed EZ consisting approximately 5100 students. Use less noise generating machines Considering not creating any dust during construction period. Sufficient mask and caution sign will be required for the health and safety of the school going students.

Date	Stakeholder Details	Details of participants	Issues discussed/raised	Outcomes of the Brief
		Consultant, EQMS Consulting Limited	 Sufficient mitigation measures and safe waste management plan should be developed; How may BEZA contribute in primary education development the in project area people? 	 Reduce Air and noise pollution. Industrial solid wastes dump the safe place. Ensure the waste water treatment. BEZA may help by contributing in the improvement of the existing schools' facilities.
26.11.17	Grameen Bank, NGO	 Shanjay Kumar Das, Manager, Purinda Bazar Branch Md. Najmul Hossain, Consultant, EQMS Consulting Limited Abu Mohammed Nasiruddin, Assistant Consultant, EQMS Consulting Limited 	 Perception about the proposed project; Details of NGO activities in the project area Number of Beneficiaries How may NGO help the project organization to engage in community development implementation? 	 This kind of project creates opportunity to enhance economic and social development. Job, business opportunity will be created. Unemployment rate for both male female will be decreased. Economic solvency may contribute to reduce the social/gender based violence. Grameen Bank is working in the project area for giving microfinance facilities to the local people. Currently, seven groups consisting 50-55 people each group are active beneficiaries of Grameen Bank. Most of the people take micro-credit for doing cloth and boutique business. Grammen Bank works for the financial sovereignty of the local people only. Other community development activities are not the major concern of Grameen Bank.