INMO Ortho

N N N ORTHO

Powered by AI and Parametric Design

Feet rotating during walk

J

Problems with traditional orthoses

\mathbf{Q}

Less effective/comfort

NOT designed to patient specific needs and body type

Wasteful

12 steps of substrative manufacturing

Expensive

Labor-intensive, costs \$500-800

Long production

Patients take several trips for a month to receive a product

Custom orthosis based on 3D scan of the patient

Custom fit

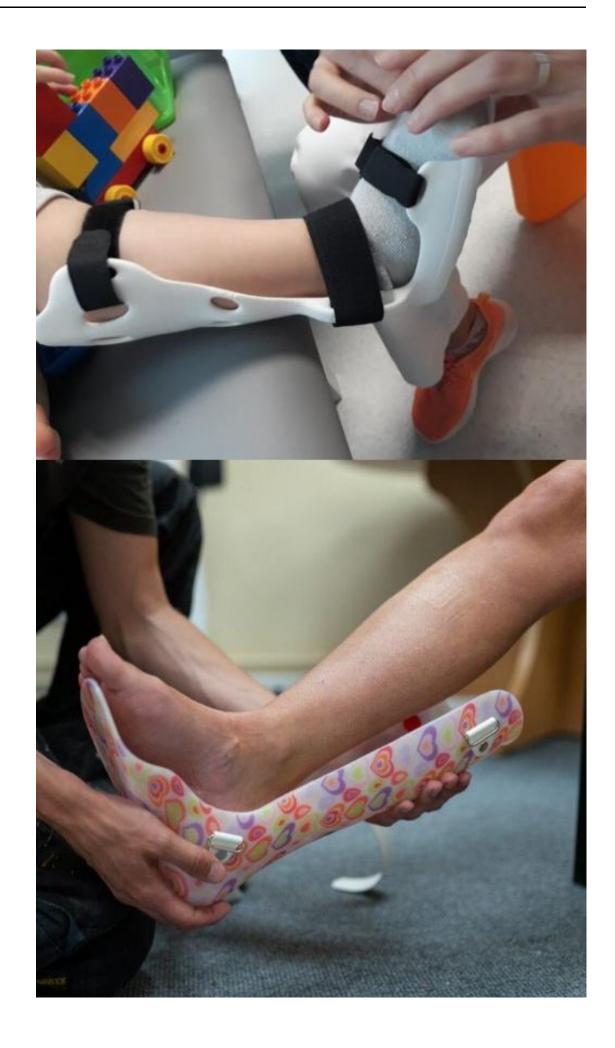
Patient and prescription specific parametric design

Environmentally friendly

We use bio-plastic in additive manufacturing

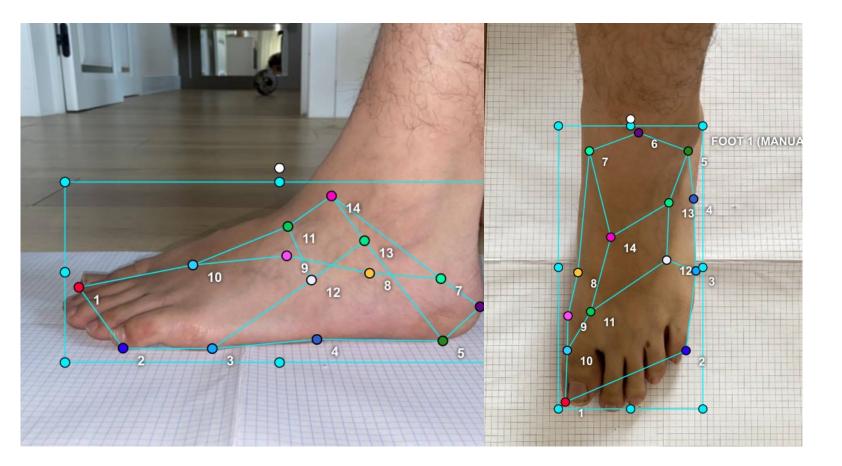
Affordable and accessible

Automated workflow decreases price by 90%



Rapid production

Algorithmic code enables fast 3D modelling, and production


1. Custom fit to every patient

- Design specifically for patients' needs
- Based on 3D model of the patients
- Enhanced comfort allows long wear

Al: Object and Point detection

- Object (feet) detection from picture
- Pressure Point detection and annotation

5

2. Based on clinical trial

The effect of 3D Printed Ankle Foot Orthoses (AFO) on walking ability in stroke patients in Mongolia

Authors: Kherlen Oyunbaatar, Tergel Bayarsaikhan

Principal Investigator: Dr. Baljinnyam Avirmed MD, PhD, Chair of Department of Rehabilitation, MNUMS

Partner Organizations: JICA Mongolia, KITE Mongolia, Rehabilitation Clinic, Songinokhairkhan District Hospital, Mongolia-Japan Teaching Hospital

Key Partner: JICA volunteer Physical and Occupational Therapists

Pilot Study Result

Walking Speed (m/s)	0.27	0.42	faster
Timed Up-and-Go Test (s)	29.1	23.4	Easier and faster to get up and go
Body Sway (number)	15.7	12.5	More balanced, less risk of falling

Post-stroke Hemiplegia Patient

3. Sustainable

- Additive manufacturing 3D Printing
- Manufacturing waste ~ 0
- Made with recyclable bio-plastic PLA

Competitive Landscape and Advantage

Affordable

Not affordable

August 2024

Al enhanced

9

Business model B2C Local/ Mongolian Market

Phase 1 - 2024-2026

3D printing orthosis in house (D2C)

- 60'000 people AF0
- Our 3D printed orthosis \$50-80
- Compared with \$300-800 traditional custom

First year sales 1500 customers – 2.5% of SAM \$100K in revenue

Business model B2C Global Market

Phase 2 - 2026 - Future

Orthosis modelling platform for hospitals (B2B)

 Number of clinics in Mongolia 15, in Japan 13'614

Central Asia

1000 hospitals - 5% of TAM

\$500K in revenue

Expertise

- AI/ML trainer
- Software developer

About INMO

Kherlen O. CEO Biomedical Engineer

Tergel B. Founder Parametric Designer

Grant Award "Best Co-Creation Project"

Dr. Baljinnyam **Orthosis Specialist** Rehabilitation Doctor

Ariundalai D. Accountant ACCA, CPA

Angel Investment

Mindfit Logo Redesign

Creating effective and sustainable solutions for all

RESPONSIBLE Consumption And Production

