

Quantification and Genetic Analysis of SARS-CoV-2 in Wastewater Reveals the Prevalence and Molecular Epidemiology of COVID-19

Masaaki Kitajima

Division of Environmental Engineering Faculty of Engineering Hokkaido University

Wastewater-based Epidemiology (WBE)

✓ Review paper (Kitajima et al., 2020)

Using wastewater to monitor COVID-19

Research Press Release | May 25, 2020

Wastewater could be used as a surveillance tool to monitor the invasion, spread and eradication of COVID-19 in communities.

Hokkaido University press release (May 25, 2020)

Wastewater-based epidemiology

- · Rapid & cost-effective mass diagnosis
- · Overcome limitations of clinical diagnosis

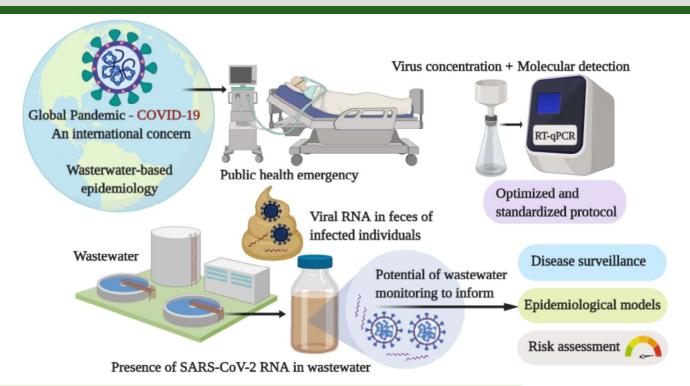
First Review Paper on WBE for COVID-19

Kitajima et al. (2020) Sci. Total Environ. 739:139076.

Contents lists available at Science Direct

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv


Review

SARS-CoV-2 in wastewater: State of the knowledge and research needs

Proposed the importance and potential of WBE to better understand the disease prevalence

- Gastrointestinal symptoms in COVID-19 and shedding of SARS-CoV-2 in excreta
- Evidence for the presence of SARS-CoV-2 and related CoVs in wastewater
- Understanding COVID-19 epidemiology through wastewater surveillance
- Methods for SARS-CoV-2 detection in wastewater
- Survival and inactivation of CoVs and enveloped surrogate viruses in water and wastewater matrices
- Respiratory viruses in wastewater and the occupational risk
- Quantitative microbial risk assessment (QMRA) for respiratory viruses and SARS-CoV-2
- Dose-response of SARS-CoV-2 and relevant respiratory viruses

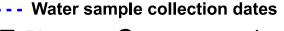
First Detection of SARS-CoV-2 RNA in Wastewater in Japan

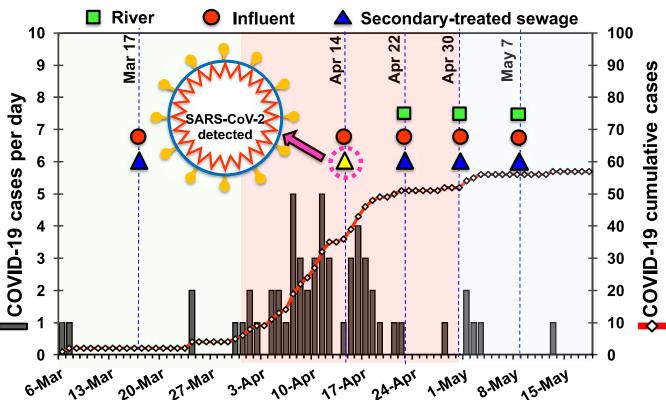
Haramoto et al. (2020) Sci. Total Environ. 737:140405.

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv


First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan



Eiji Haramoto ^{a,*}, Bikash Malla ^a, Ocean Thakali ^b, Masaaki Kitajima ^c

- ^a Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
- ^b Environmental and Social System Science Course, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
- ^c Division of Environmental Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan

Wastewater treatment plant Final Chlorination sedimentation Return activated Secondary-treated River Influent (sewage sludge sewage **SARS-CoV-2** Samples collected assays Four qPCR Concentration N_Sarbeco NIID 2019-nCOV N **RNA** extraction · CDC-N1 · CDC-N2 **cDNA** Two nested PCR preparation • ORF1a **PCR** · S-protein

Detection of SARS-CoV-2 RNA in a secondary-treated wastewater sample

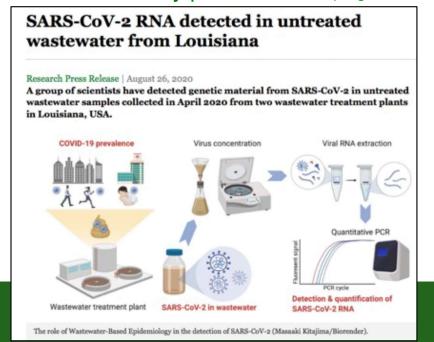
First Detection of SARS-CoV-2 RNA in Wastewater in North America

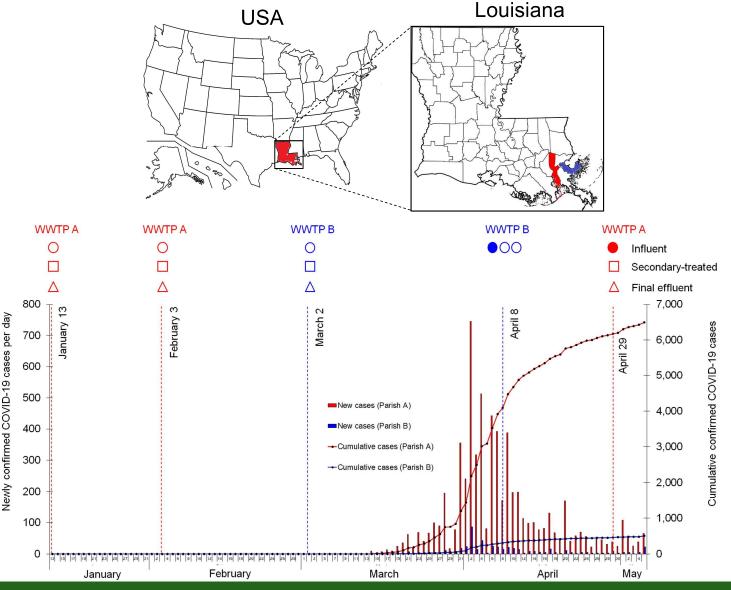
Sherchan et al. (2020) Sci. Total Environ. 743:140621.

Contents lists available at ScienceDirect

Science of the Total Environment

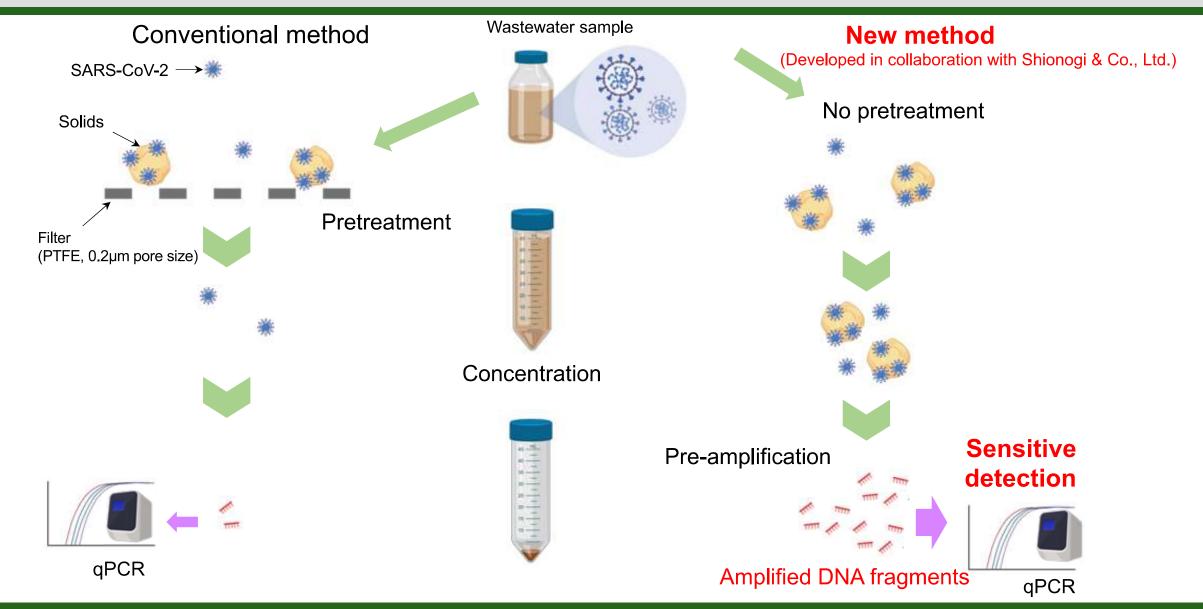
journal homepage: www.elsevier.com/locate/scitotenv

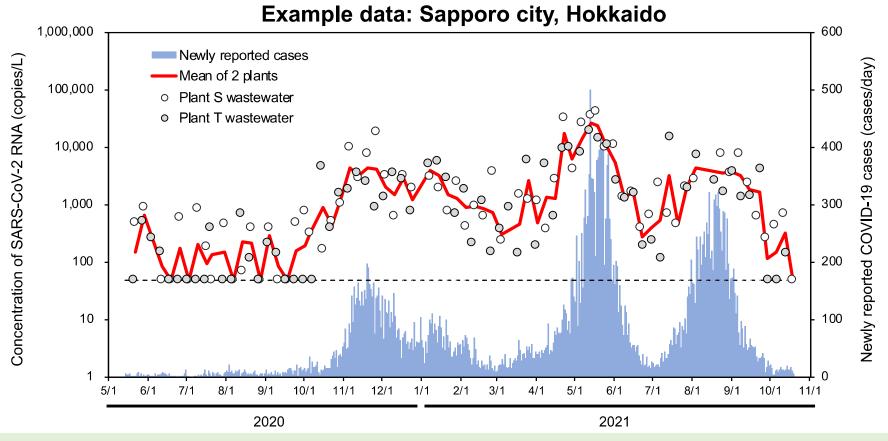

First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA



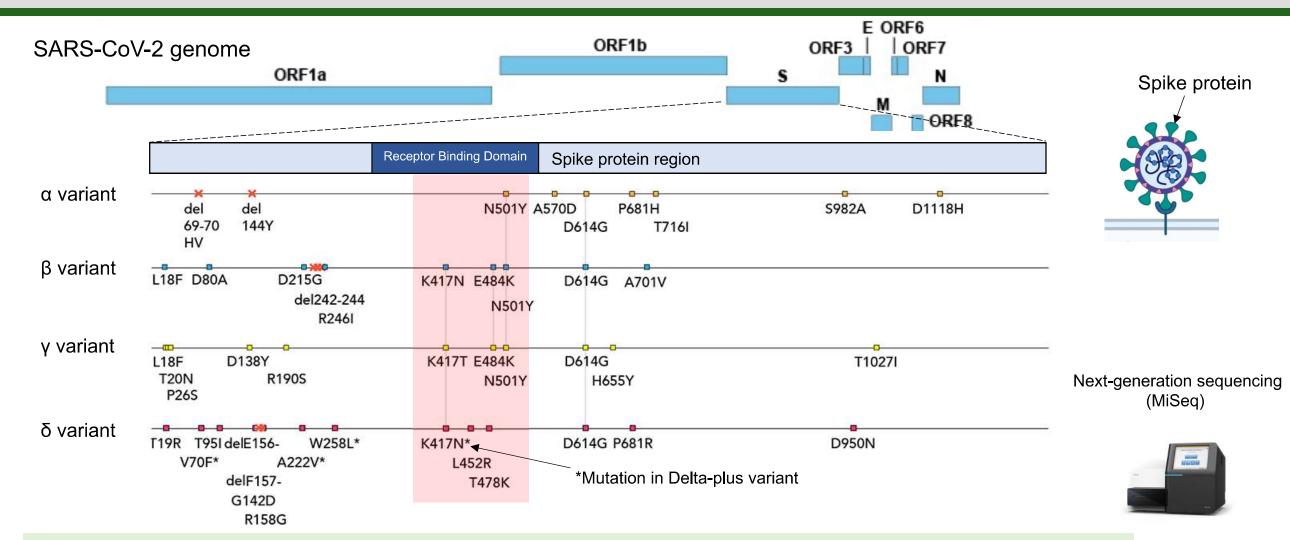
Samendra P. Sherchan ^{a,*}, Shalina Shahin ^a, Lauren M. Ward ^a, Sarmila Tandukar ^b, Tiong G. Aw ^a, Bradley Schmitz ^c, Warish Ahmed ^d, Masaaki Kitajima ^e

- Department of Environmental Health Sciences, Tulane University, 1440 Canal Street, Suite 2100, New Orleans, LA 70112, USA
- b Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
- ^c Loudoun Water, 44865 Loudoun Water Way, Ashburn, VA 20147, USA
- d CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
- ^e Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan


Hokkaido University press release (Aug. 26, 2020)



Technological Innovation in WBE - 1: Development of a Highly Sensitive SARS-CoV-2 RNA Detection Method


Innovative Method Enables Quantification of Low-level SARS-CoV-2 RNA in Wastewater

□ Long-term quantitative monitoring of SARS-CoV-2 at wastewater treatment plants in major cities in Japan using the highly senstive detection method

- Similarity in trends of reported cases and SARS-CoV-2 concentrations in wastewater
- → SARS-CoV-2 RNA quantification in wastewater can track the dynamics of COVID-19 prevalence

Technological Innovation in WBE - 2: Development of Variant Detection Method Based on Genomic Analysis

- Established variant detection protocol based on genomic analysis
 - > Collaboration with Shionogi & Co. Ltd. and the Institute of Medical Science, The University of Tokyo

'21/8/2

α(37.5%) δ(57.2%)

 $\delta(24.6\%)$

γ(39.6%) WT-like

δ(97.6%)

 $\alpha(6.0\%)$

δ(92.2%)

WT-like

"5th wave"

'21/7/30

δ(76.4%)

WT-like

WT-like

δ(100.0%)

δ(100.0%)

δ(100.0%)

Established Protocol Enables City-level Variant Monitoring via WBE

☐ Continuous monitoring of variants at wastewater treatment plants in a city

Reference: Wuhan (NC_045512)

✓ Variant call (VAF > 0.05)

Plant C

Facility

Facility

no.2

no.1

First report of α variant from clinical surveillance in the city
2021 March

First report of **δ variant** from clinical surveillance in the city

2021 June

'21/7/28

δ(99.8%)

δ(89.7%)

 $\alpha(98.7\%)$

 $\alpha(51.5\%)$

 $\delta(30.4\%)$

y(5.5%)

 $\alpha(24.8\%)$

δ(61.8%)

WT-like

WT-like

		"3rd wave"				
Wastewater Treatment Plant		'20/11/19	'20/12/4	'21/1/7		
Plant A						
Plant B	Facility no.1					
	Facility no.2	WT-like ¹		<mark>α(12.4%)</mark> WT-like		

 $\alpha(5.9\%)$

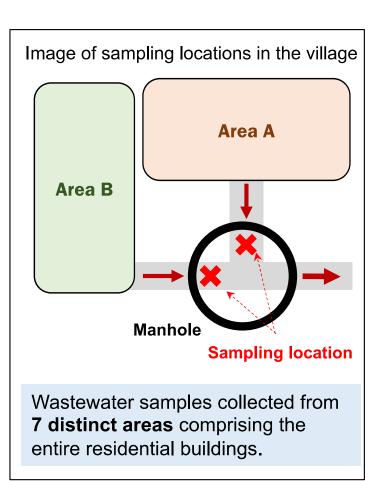
WT-like

'21/5/14	'21/5/17	'21/5/19	'21/5/21	'21/5/28	'21/5/31	
WT-like	<mark>α(10.6%)</mark> WT-like			α(99.8%)		
		α(6.1%) δ(6.6%) WT-like			WT-like	
<mark>α(92.8%)</mark> WT-like		<mark>α(12.0%)</mark> WT-like	α(100.0%)			
α(9.1%) WT-like	α(98.1%)					
		<mark>α(6.0%)</mark> WT-like				

"4th wave"

Not analyzed

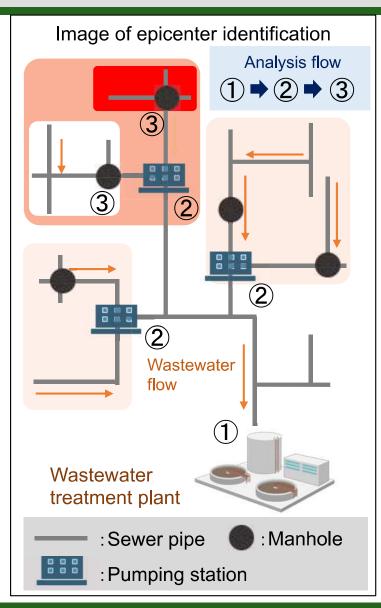
(※ Results of amplicon NGS analysis; Percentage indicates relative abundance of the variant in total numbers of SARS-CoV-2 reads.)


(¹WT-like: wild-type-like sequences)

■ Possibilities of (1) early detection of variants and (2) tracking molecular epidemiological dynamics.

Applicability of WBE to Facility-level COVID-19 Monitoring

- ☐ Wastewater surveillance implemented in the Tokyo 2020 Olympic and Paralympic Village
 - ✓ To better understand COVID-19 incidence
- 1. SARS-CoV-2 RNA was **detected in a number of wastewater samples** (even in the areas where no positive case was identified via mandatory daily clinical testing among residents).
 - ✓ The "Hokudai-Shionogi method" is so sensitive that viral RNA excreted from noninfectious postquarantine patients and asymptomatic patients with low viral shedding was detected.
- 2. When SARS-CoV-2 RNA was not detected via passive sampling of wastewater in a given area for 3 consecutive days, clinical tests almost never identified positive cases in that area.
 - ✓ Wastewater testing provides information beneficial for optimizing clinical testing schemes (e.g., prioritizing and determining the need for exhaustive tests)
- 3. Genomic analysis confirmed the presence of the SARS-CoV-2 genome and **identified variants** in the wastewater samples.



Summary and Potential of WBE

- ☐ Summary usefulness of WBE
 - ✓ Cost-effective frequent monitoring of community-level prevalence
 - Wastewater contains viruses shed from a number of infected individuals
 - ✓ Viruses shed from asymptomatic patients can also be detected
 - Monitoring of actual prevalence including asymptomatic infections
 - ✓ Virus discharge into sewer preceds symptom, diagnosis, and reporting
 - Early estimation of newly reported cases leading indicator
- ☐ Potential of WBE identification of epicenters
 - ① Wastewater treatment plant
 - 2 Pumping station
 - 3 Manhole

Population size

Proof of concept and social implementation of WBE became possible owing to the innovation in SARS-CoV-2 detection method

