APPENDIX - 2

DRAWINGS

No.	Name of Drawing	Sheet					
1. Irrigation	1. Irrigation Plan						
1-1	Scheme Layout	1					
1-2	Scheme Layout (Command Area)	1					
2.Dam							
2-1	Plain Map of Dam	1					
2-2	Longitudinal Section of Dam	1					
2-3	Typical Cross Section of Dam	1					
2-4 - 2-7	Cross Section of Dam (1/4) - (4/5)	4					
2-8 - 2-11	Spillway (1/4) - (4/4)	4					
2-12	Intake	1					
3.Pump Stati	3.Pump Station						
3-1	Connection Channel	1					
3-2	Pump Station	1					
3-3	Discharge Chamber	1					
4. Main Irrig	ation Canal						
4-1	Profile -Dam Site to Command Area-	1					
4-2	Profile -Command Area-	1					
4-3	Typical Cross Section	1					
4-4 - 4-6	Cross Section (1/3) ~ (3/3)	3					
5. Secondary	Canal & Drainage Canal						
5-1	Typical Cross Section of Secondary Canal and Drainage Canal	1					
5-2	Typical Cross Section of Main Drainage Canal	1					
6. Flood Protection Dike							
6-1	Plan of Flood Protection Dike	1					
6-2	Typical Cross Section of Flood Protection Dike	1					
	Total	27					

List of Drawings: Wau Irrigation Scheme

2-2 Longitudinal Section of Dam

Scale 1:5000

2-7 Cross Section of Dam (4/4)

2-8 Spillway (1/4)

<u> ANN9-1: APP2/W-16</u>

<u>3-3 Discharge Chamber</u>

ANN9-1: APP2/W-18

ANN9-1: APP2/W-19

<u>4-3 Typical Cross Section</u>

PROJECT: I	rrigation De	evelopment Master Plar (IDMP)
UNIT TITLE	: Wau Irriga	ation Scheme
DRAWING TI	TLE: Typical	Cross Section
DRAWING No.:	SCALE:	
	S=1:25	

5-1 Typical Cross Section of Secondary Canal and Drainage Canal

CANAL DISTRIBUTION (S=1:40,000)

TYPICAL CROSS SECTION OF SECONDARY CANAL (S=1:40)

5-2 Typical Cross Section of Main Drainage Canal

Main Drainage Canal (Type-1) Q=1.5m3/s L=3,158m

APPENDIX - 3

PROJECT INVESTMENT COST

3.1 Project Investment Cost

	Project Cost		67	million US	\$
No.	Work Description	Unit	Quantity	Price (1000 US\$)	Total (1000 US\$)
1. Wor	ks				
1-1.	Dam	LS.	1	21,058	21,058
1-2.	Pump Station	LS.	1	1,365	1,365
1-3.	Main Irrigation Canal	LS.	1	6,501	6,501
1-4.	Secondary Canal	LS.	1	2,179	2,552
1-5.	Main Drainage Canal for Command Area	LS.	1	1,186	1,186
1-6.	Drainage Canal	LS.	1	240	302
1-7.	Main Drainage Canal for Catchment Area	LS.	1	900	900
1-8.	Flood Protection Dike	LS.	1	6,524	6,524
				Sub-total	40,388
			~		10.000
	Direct Constru	iction	Cost (A)		40,388
	Indirect Construction Cost	$(\mathbf{B} = A)$	<u>A * 45%)</u>		18,175
			C = A + B		58,563
			<u> </u>		
	Adminiostratio	n (D =	<u>C * 4%)</u>		2,343
	Consultant Fe	e (E =	<u>C * 5%)</u>		2,928
	Physical Contingenc	y (E =	<u>C * 5%)</u>		2,928
	Crond Total Cost				((7()
	Grand Total Cost ($\mathbf{F} = \mathbf{C}$	+ D + E)		00,/02
					0/,000 (*1000 USE)
					(*1000 US\$)
				EC	40.200
				гс. I.C	26 800
				LC.	20,000 (*1000 US\$)
					(1000-050)
		ha	67 million US	S\$ / 500ha =	134,000
					(US\$)

Wau Irrigation Scheme

ANN9-1: APP3/W-1

3.2 Dam Works

Wau Rice Scheme

Dam Works

21.1 million US\$

No.	Item	unit	Quantity	Unit Price (US\$)	Total Price (US\$)
	Dam				
1.	Earth Works				
1-1.	Excavation	m^3	83,407	10.0	\$834,070
1-2.	Embankment	m ³	256,012	36.0	\$9,216,432
1-3.	Filter	m ³	5,722	40.0	\$228,880
1-4.	Drain	m ³	6,990	40.0	\$279,600
1-5.	Slope Protection (Up stream)	m ³	10,500	50.0	\$525,000
1-6.	Slope Protection (Down stream)	m ²	24,757	9.0	\$222,813
				Sub total	\$11,306,795
2.	Spillway				
2-1.	Excavation	m ³	67874.5	10.0	\$678,745
2-2.	Riprap	m ³	600.0	50.0	\$30,000
2-3.	Weir (Concrete C20)	m ³	1529.0	440.0	\$672,751
2-4.	Base plate (Concrete C20)	m^3	6897.9	440.0	\$3,035,074
2-5.	Retaining Wall (Concrete C20)	m ³	7233.3	440.0	\$3,182,644
2-6.	Backfill	m ³	6170.9	11.0	\$67,880
				Sub total	\$7,667,094
3.	Intake				
3-1.	Concrete (C20)	m ³	278.7	440.0	\$122,638
3-2.	Slice gate 1100	nos	1	20,000.0	\$20,000
3-3.	Bar screen 2.5m×2.5m	nos	1	5,000.0	\$5,000
3-4.	Steel Pipe 1100, length 59.4m	m	59.4	1,000.0	\$59,400
3-5.	Slice valve 1100	nos	1	20,000.0	\$20,000
3-6.	Slice valve 700	nos	1	15,000.0	\$15,000
3-7.	Steel pipe 700	m	100	500.0	\$50,000
				Sub total	\$169,400
	Direct Construction Cost			Total	\$10 1/3 280
	Direct Construction Cost			10(a)	\$19,143,269
4.	Temporary works (10% of Above)	%	10		\$1,914,329
				Total	\$21,057,618
	<u> </u>				

Calculation of Quantity

Item	Calculating Formula	Quantity	unit	Note
Dam				
1. Earth Works				
1)Excavation	See Table 1	83,407	m ³	
2) Embankment	See Table 1	256,012	m ³	
3) Filter	See Table 1	5,722	m ³	
4) Drain	See Table 2	6,990	m ³	
5) Slope Protection	See Table 2 (Riprap)	10,500	m ³	
(Up stream)				
6) Slope Protection	See Table 2 (Plant works)	24,757	m^2	
(Down stream)				

Table 1 Calculation of Earth Works										
RD	Distance	Exceivetion	100 S		Embankment	<mark>8</mark>		Filter	S IN	
00000		30.1			75.1			1.3		
04-150	150	64.8	47.45	7117.5	158.0	116.55	17482.5	3.8	2.55	382.5
07-300	150	77.8	71.3	106915	252.3	205.15	30772.5	5.8	4.8	720
04-450	150	94.3	86.05	12907.5	410.1	331.2	49680	9	7.4	1110
04600	150	86.1	90.2	13530	319.7	364.9	54735	7.3	8.15	1222.5
0#750	150	77.8	81.95	12292.5	251.6	285.65	42847.5	5.8	6.55	982.5
00240	150	64.6	71.2	10680	157.2	204.4	30660	4	4.9	735
14050	150	53.8	59.2	8880	92.6	124.9	18735	1.8	2.9	435
1+200	150	21.8	37.8	5670	27.7	60.15	9022.5	0	0.9	135
1+350	150	0	10.9	1635	0	13.85	2077.5		0	0
Total				83407.5			256012.5			5722.5

Table 2 Calculation of Earth Works

RD	Distance	Drain	S Liù		Slope pr atectic	n (US)	m ³	Slope p	rotection (DS)	m ²
06000					5.4			10.5		
04-150	150				9.4	7.4	1110	18	14.25	2137.5
04-300	150	0	0	0	9.8	9.6	1440	23.4	20.7	3105
04-450	150	25.1	12.55	1882.5	9.8	9.8	1470	31.5	27.45	4117.5
04600	150	21.5	23,3	3495	9.8	9.8	1470	27.4	29.45	4417.5
04-750	150	0	10.75	1612.5	9.8	9.8	1470	21.7	24.55	3682.5
04-900	150				9.4	9.6	1440	18	19.85	2977.5
14050	150				6.2	7.8	1170	12.6	15.3	2295
1+200	150				3.1	4.65	697.5	7.2	9.9	1485
1+350	150				0	1.55	232.5	0	3.6	540
Total				6990			10500			24757.5

2.Spillway				
1) Epron (Riprap)	length 20m, width 60m			
Excavation	166 m ² ×20m=	3320.0	m ³	
Riprap	Gravel 0.5m×60m×20m=	600.0	m ³	
Retaining Wall	Concrete 6.925 m ² ×2×20m=	277.0	m ³	
Back fill	Left side 19.7m [*] ×20m=	394.0	m ³	

2) Wing	at bigining point, length 10m×2 (both side)			
Excavation	166 m ² ×20m=	3320.0	m ³	
Retaining Wall	Concrete 6.925m ² ×20m=	138.5	m ³	
Back fill	Left side 19.7 m [*] ×20m=	394.0	m ³	
3) Epron (Concrete)	length 5m, width 60m, base plate: concrete			
Excavation	166m [*] ×5m=	830.0	m ³	
Base plate	Concrete 0.25m×60m×5m=	75.0	m^3	
Retaining Wall	Concrete 6.925m ² ×2×5m=	69.3	m ³	
Back fill	Left side 19.7 m [*] ×5m=	98.5	m ³	
4) Weir	length 10m, width 60m, till Dam center			
Weir	25.483m ² ×60m=	1529.0	m ³	
Excavation	293.4m ² ×10m=	1660.0	m ³	
Base plate	Concrete 0.5m×60m×10m=	300.0	m ³	
Retaining Wall	Left side Concrete 9.948m ² ×10m=	69.3	m ³	
Back fill	Left side 36m [*] ×10m=	360.0	m ³	
Retaining Wall	Right side Concrete 15.57m ² ×10m=	155.7	m ³	
Back fill	dam embankment	-	m^3	
5) Connection Channel	length 30m, width 60m, 10m~dam center~20			
Excavation	293.4m ² ×30m=	4980.0	m ³	
Base plate	Concrete 0.25m×60m×30m=	450.0	m ³	
Retaining Wall	Left side Concrete 9.948m ² ×30m=	207.8	m ³	
Back fill	Left side 36m ² ×30m=	1080.0	m ³	
Retaining Wall	Right side Concrete 15.57 m ² ×30m=	467.1	m ³	
Back fill	dam embankment	-	m^3	
Buck Im				
6) Connection Channel	length 40m, width 60m, Wall Height 5.7m~2m			
Excavation	(293.4m ² +103.2m ²)/2×40m×2=	15864.0	m ³	
Base plate	Concrete 0.25m×60m×40m=	600.0	m ³	
Retaining Wall	Concrete (9.948m ² +4.435m ²)/2×40m=	288.4	m ³	
Back fill	3.8m [*] ×40m=	76.0	m ³	
7) Connection Channel	length 100m, width 60m, Wall Height 2m			
Excavation	103.2m ² ×100m=	10320.0	m ³	
Base plate	Concrete 0.25m×60m×100m=	1500.0	m ³	
Retaining Wall	Concrete 4.435m ² ×100m×2=	887.0	m ³	
Back fill	3.8㎡×100m=	380.0	m^3	
8) Connection Channel	length 50m, width 60m~30m, Wall Height 2m		-	
Excavation	$(103.2\text{m}^2+56.9)/2\times50\text{m}=$	4002.5	m^3	
Base plate	Concrete 0.25m×(60m+30m)/2×50m=	562.5	m ³	
Retaining Wall	Concrete 4.435m ² ×52.2m×2=	463.0	m ³	
Back fill	3.8m ² ×50m=	190.0	m ³	
8) Chute Channel	length 325m, width 30m, Wall Height 2m		2	
Excavation	56.0mī×352m=	18492.5	m	
Base plate	Concrete 0.25m×30m×325m=	2437.5	m	
Retaining Wall	Concrete 4.435m×325m×2=	2882.8	m ³	
Back fill	3.8 m [*] ×325m×2=	2470.0	m ³	

9) Stilling Basin	length 45m, width 30m, Wall Height 3m			
Excavation	56.9m ² ×45m=	2560.5	m^3	
Base plate	Concrete 0.50m×30m×45m=	675.0	m ³	
Retaining Wall	Concrete 5.281m [*] ×45m×2=	475.3	m ³	
Back fill	3.8m ² ×45m×2=	342.0	m ³	
10) Tailrace	length 114.719m, width 30m, Wall Height 2m			
Excavation	56.9 m ² ×114.719m=	6527.5	m ³	
Base plate	Concrete 0.25m×30m×114.719m=	860.4	m^3	
Retaining Wall	Concrete 4.435m ² ×114.719m×2=	1211.7	m ³	
Back fill	3.8m ² ×114.719m×2=	871.9	m ³	
Total				
Excavation	67874.5	67874.5	m^3	
Riprap	600.0	600.0	m ³	
Weir (Concrete)	1529.0			
Base plate (Concrete)	6897.9	Total concrete		
Retaining Wall (Concrete)	7233.3	15660.2	m ³	
Backfill	6170.9	6170.9	m^3	
3. Intake				
1) Drop inlet				
Base plate	3.0m×3.0m×0.5m=	4.5	m	
Box	(3.0m×3.0m-2.0m×2.0m)×5.5m-1.1×3.14 ² /4	24.8	m^3	
	Concrete total	29.3	m ³	
Slice gate	1100	1		
Bar screen	2.5m×2.5m	1		
2) Pen stock	$C_{2} = 20 \times 10^{-1} (1 \times 10^{-1}) (2 \times 10$	2.7	3	
Pipe protection	Concrete area(1.011+2.011)/2×2.0-1.1×3.142/4	2.1	m 3	
	length 24.1+28.75+4+2+0.5=	59.4	m	
	Conctere volume 2.7×59.4=	162.4	m	
Steel Pipe	1100, length 59.4m	59.4	m	
3) Outlat				
3) Outer Base plate	6 0m×6 0m×0 5m-	18.0	3	
Top plate	6 0m × 6 0m × 0.5m-	18.0	³	
		51.1	m 3	
DOX	(6.0m×6.0m-5.0m×5.0m)×5.0m-(1.1+0.5)×3.14 /4	31.1	m 3	
GI: 1	Concrete total	8/.1	m	
Slice valve	500	1		
Slice valve	500 Solution	100	m	
Sicer pipe		100		
Concrete		278.7	m ³	
Slice gate	1100	1	nos	
Bar screen	2.5m×2.5m	1	nos	
Steel Pipe	1100, length 59.4m	59.4	m	
Slice valve	1100	1	nos	
Slice valve	700	1	nos	
Steel pipe	/00	100	m	

3.3 Pump Station Works

	Pump Statoin Works		1.4	million U	IS\$
No.	Work Description	Unit	Quantity	Unit Price (US\$)	Total (US\$)
1. Conr	nection Channel Work				
1-1.	Gabion Wall				
1-1-1.	Common Excavation	m3	130	10.0	1,299
1-1-2.	Embankment with Compaction (Manual Work)	m3	35	26.0	921
1-1-3.	Gabion Wall	m2	142	250.0	35,438
				Subtotal	37,658
1-2.	Channel Structure				
1-2-1.	Common Excavation	m3	1,045	10.0	10,451
1-2-2.	Leveling Concrete	m3	3	350.0	1,127
1-2-3.	Gravel	m3	10	50.0	482
1-2-4.	Backfill	m3	891	11.0	9,800
1-2-5.	Concrete (C20)	m3	141	440.0	62,198
				Subtotal	84,058
2. Pum	p Station Work				
2-1.	Suction Sump				
2-1-1.	Common Excavation	m3	1,616	10.0	16,156
2-1-2.	Leveling Concrete	m3	2	350.0	641
2-1-3.	Gravel	m3	5	50.0	274
2-1-4.	Backfill	m3	1,481	11.0	16,291
2-1-5.	Concrete (C20)	m3	120	440.0	52,813
				Subtotal	86,175
2-2.	Pump Building				
2-2-1.	Common Excavation	m3	127	10.0	1,269
2-2-2.	Leveling Concrete	m3	6	350.0	1,960
2-2-3.	Gravel	m3	17	50.0	840
2-2-4.	Backfill	m3	29	11.0	322
2-2-5.	Building	m2	107	2,800.0	300,832
				Subtotal	305,223
2-3.	Pump Facilities				
2-3-1.	Pump Facilities (Pump, Engne & Auxiliary equipment)	nos	2	280,000.0	560,000
2-3-2.	Pipe(SP, 400)	m	36	300.0	10,680
2-3-3.	Control Panel	nos	1	86,500.0	86,500
2-3-4.	Overhead Crane	nos	1	22,300.0	22,300
2-3-5.	Butterfly valve	nos	2	17,000.0	34,000
2-3-6.	Check valve	nos	2	15,000.0	30,000
2-3-7.	Flexible tube	nos	4	5.000.0	20.000
2-3-8.	Screen	kg	1,064	1.0	1,064
		0	,	Subtotal	764,544
3.Pineli	ne Work				
3-1.	Pine line				
3-1-1	Common Excavation	m3	368	10.0	3.675
3-1-2.	Sand(under)	m3	31	24.0	739
3-1-3	Sand(around)	m3	98	24.0	2,353
3-1-4	Backfill	m3	185	11.0	2,033
11			105	11.5	2,000

Wau Rice Scheme
Wau Rice Scheme

No	Work Description	Unit	Quantity	Unit Price	Total
110.	work Description	01110	Quantity	(US\$)	(US\$)
3-1-5.	Pipe(SP, 700)	m	140	500.0	70,000
				Subtotal	78,800
4.Disch	arge Chamber Work				
4-1.	Discharge Chamber				
4-1-1.	Common Excavation	m3	137	10.0	1,365
4-1-2.	Leveling Concrete	m3	1	350.0	396
4-1-3.	Gravel	m3	3	50.0	169
4-1-4.	Backfill	m3	97	11.0	1,072
4-1-5.	Concrete	m3	13	440.0	5,707
				Subtotal	8.709
					,
		İ			
			Direct cost	Sub-total	1,365,167

	Item	Calculation		Quantity	Unit	Remark
1.	Connection Channel W	ork				
1-1.	Gabion Wall					
1-1-1.	Common Excavation	$1/2^{*}(3.00+3.00+2^{*}0.50^{*}0.5) = 3.25$				
		$1/2^{(3.00+3.00+2*4.00*0.5)} = 5.00$				
		1/2*(3.25+5.00)*31.50	=	129.94	m3	
1-1-2.	Embankment with Comp	paction (Manual Work)				
		1/2*2*(0.50*0.5)*1=0.25				
		1/2*2*(0.50*0.5)*8=2.00				
		1/2*(0.25+2.00)*31.50	=	35.44	m3	
1-1-3.	Gabio Wall	1/2*(0.50+4.00)*31.50*2	=	141.75	m2	L2,000*B1,000*H500
1-2.	Channel Structure					
1-2-1.	Common Excavation	1/2*(14.00+4.00)*5.00*0.30+0.20*3.20*0.30	=	13.69	m3	
	Section B-B(Cut-on)	<u>B-B</u>				
		ii T				
		<u>14000</u> _				
		7000 1250				
		4000				

Irrigation Scheme : Wau Rig Item of Work : Channel	ce Scheme I Work			Page : 2 / 4
Item	Calculation	Quantity	Unit	Remark
Section B-B to D-D	Section B-B(+) $1/2^{*}(12.40+3.20)^{*}4.60+0.20^{*}2.40 = 36.36$ Section C-C $1/2^{*}(15.113+4.073)^{*}5.52+0.20^{*}3.20 = 53.59$ Section D-D $1/2^{*}(18.20+5.00)^{*}6.60+0.20^{*}4.20 = 77.40$			
B-B(+)				
	$\begin{array}{rcl} 36.36*0.70 & = & 25.45 \\ 1/2*(36.36+53.59)*8.00 & = & 359.80 \\ 1/2*(53.59+77.40)*8.50 & = & 556.71 \\ 77.40*0.70 & = & \underline{54.18} \\ & & 996.14 \end{array}$	996.14	m3	

RSS, MEDIWR, Water Sector, Irrigation Development Master Plan (IDMP)

Irrigatic	on Scheme : Wau Ric Work : Channel	e Scheme Work				Page: 3 / 4
	Item	Calculation		Quantity	Unit	Remark
	 Section D-D(Cut-off)	1/2*(23.00+8.00)*7.50*0.30+0.20*7.20	*0.30 =	35.31	m3	
		D-D(+)	-			
			Total	1,045.14	m3	
1-2-2.	Leveling Concrete Section B-B(Cut-off) Section B-B to C-C SectionC-C to D-D Section D-D(Cut-off)	3.20*0.05*0.30 1/2*(2.40+3.20)*0.05*9.70 1/2*(3.20+4.20)*0.05*9.20 7 20*0 05*0 30	$= 0.05 \\ = 1.36 \\ = 1.70 \\ = 0.11$			18N, t=50
			3.22	3.22	m3	t=150
1-2-3.	Gravel	3 20*0 15*0 30	- 0.14			
	Section B-B to C-C	1/2*(2.40+3.20)*() 15*9.70	= 0.14 = 4.07			
	Section C-C to D-D	1/2*(3.20+4.20)*0.15*9.20	= 5.11			
	Section D-D(Cut-off)	7.20*0.15*0.30	=0.32			
			9.64	9.64	m3	

	It	0.1.1.1				TT .		D 1	
	Item	Calculation			Quantity	Unit		Kemark	
1-2-4.	Backfill	1,045.14-3.22-9.64-141.36			890.92	m3			
1 0 5							2121		
1-2-5.	Concrete			• • • •			21N		
	Section B-B(Cut-off)	1/2*(7.00+3.00)*4.00		20.00					
		3.00*1.00		3.00					
		-1/2*(4.50+1.00)*3.50	=	-9.63					
		-1.00*0.50	= _	-0.50					
				12.87					
		12.87*0.30		=	3.86	m3			
	Section B-B to D-D	Section B-B							
		1/2*(5.70+2.20)*3.50	_	13.83					
		2.20*(0.50+0.60)		2.42					
		-1/2*(4.50+1.00)*3.50		-9.63					
		-1.00*0.50	=	-0.50					
		Section C-C	-	6.12					
		$1/2*(5\ 084+3\ 00)*2\ 011$	=	8.13					
		$3.00*(2.909\pm0.60)$	=	10.53					
		-1/2*(3.884+1.873)*2.011		-5 79					
		-1 873*2 909		-5.45					
		Section D-D	_	7 42					
		4 00*6 60	_	26.40					
		2 80*6 00	_	-16.80					
		-2.80 0.00	_	9.60					
		6 12*0 70	_	4 28					
		$1/2*(6\ 12+7\ 42)*8\ 00$		54 16					
		1/2 (0.12+7.12) 0.00 1/2*(7.42+9.60)*8.50		72 34					
		0.50 0.50 0.50		672					
		2.00 0.70	_	137.50	137.50	m3			
				Total	141.36	m3			

Item	Calculation		Quantity	Unit	Remark
2-1-7. Pipe(SP, φ 400)	2*(6.90-0.40+0.3+2.80+2.00+3.30+2.90) 2*(6.90-0.40+0.3+2.80+2.00+3.30+2.90) 2800 100 2000 1100 3300 2000 2000 2000 200	30	35.60	m	φ400, SP
2-1-8. Control Panel			1.00	nos	
2-1-9. Overnead Crane			1.00	nos	
2-1-10. Butterfly valve			2.00	nos	
2-1-11. Check valve			2.00	nos	
2-1-12. Flexible tube			4.00	nos	
2-1-13. Screen	2.80*3.80*100		1,064.00	kg	W=100 kg/m2

	Item	Calculation		Quantity	Unit	Remark
3. 3-1. 3-1-1.	Pipeline Work Pipeline Common Excavation	1/2*(2.50+1.00)*1.50*140.00	-	367.50	m3	
		Length L=140m 2500 900 700 900 1900 1 1900 6700 (SP) Sand 1000 1200	200 1500			
-1-2.	Sand(under)	1/2*(1.20+1.00)*0.20*140.00	=	30.80	m3	
-1-3.	Sand(around)	$\{1/2*(1.90+1.20)*0.70-0.70^2*\pi/4\}*140.00$	=	98.05	m3	
-1-4.	Backfill	1/2*(2.50+1.90)*0.60*140.00	=	184.80	m3	
-1-5.	Pipe(SP, ϕ 700)		=	140.00	m	

RSS, MEDIWR, Water Sector, Irrigation Development Master Plan (IDMP)

3.4 Irrigation Canal Works

Irrigation Canal Works 8.7 million US\$ Unit Price Total No. Work Description Unit Ouantity (US\$) (US\$) 1. Preparatory Work Site Clearing (Cutting & Clearing of Grass, Bushes) 13.3 11.900.0 158,270 1-1. ha Sub-total 158,270 2. Earth Work 2-1. Excavation of Surface Soil (200mm Depth) m3 21,860 8.0 174,880 2-2. Excavation for Common Soil m3 50,647 10.0 506,470 2-3. Embankment with Compaction m3 104.524 14.0 1.463.336 2-4. 104,524 13.0 1,358,812 Spreading m3 2-5. Soil (Banking Material) m3 75,737 7.6 575,601 681,633 2-6. Hauling by Dump Truck (Banking Material) m3 75,737 9.0 Aggregate, Crushed, 2-4cm (Gravel Pavement) 166,000 2-7. m3 3,320 50.0 3,320 13.0 43,160 2-8. Spreading of Aggregate (Bulldozer) m3 4,969,892 Sub-total 3. Canal Work (Main Canal) 3,903 3-1. Class 18 Concrete (include Form Work) m3 350.0 1,366,050 Sub-total 1,366,050 4. Canal Structure (Main Canal) 220.0 4-1. Turnout (Slide Gate, B=0.3m, H=0.3m) unit 30 6,600 6,600 Sub-total 5. Secondary Canal 5-1. Stripping 33,091 8.0 264,728 m3 18,069 180,690 5-2. Excavation m3 10.0 90,344 14.0 1,264,816 5-3. Embankment m3 328,300 5-4. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 6,566 50.0 5-5. 13.0 85,358 Spreading of Aggregate (Bulldozer) m3 6,566 5-6. PVC Pipe (f100) L=5.0m 876 63.0 55,188 nos Sub-total 2,179,080 8,679,892 Total Main Canal Length Dam Site to Command Area = 6,198.78 m 7,082.95 m Command Area = 13,281.73 m Total Secondary Canal Length 26,263.00 m

Wau Rice Scheme

Item Calculation		Quantity	Unit	Remark
. Preparatory Work				
1. Site Clearing (Cutting & Clearing of Grass, Bushes)				
(6,198.78+7,082.95) * 10.0 =		132,817	-	
		132,817	m2	
	1 of al	6.61	113	
Farth Work				
1. Excavation of Surface Soil (200mm Depth)		21.860	m3	
2. Excavation for Common Soil		50,647	m3	
3. Embankment with Compaction		104,524	m3	
			-	
4. Soil (Banking Material) $104,524 - 50,647 + 21,860 =$		75,737	m3	
5. Hawling by Dupp Truck (Parking Matarial)		75 737	m3	I71mm
5. Hadding by Damp Huck (Banking Material)		124121	1117	
-6. A geregate. Crushed. 2-4cm (Gravel Pavement)		3.320	m3	Maintenance Road
		18.		
7. Spreading of Aggregate (Bulldozer)		3,320	m3	Maintenance Road
. Canal Work (Main Canal)				
1. Class 18 Concrete (include Form Work)		3,903	m3	C anal Lining
Canal Stanstone Main Canal				
1 Tumout (Side Gate D=0 2m H=0 3m)		20	าหารับ	
		U C	CREEK.	

em o	f Work : Seconda	igation ity Can	al	C.												Page: 1 /
	Item	Í					(Calcu	ation					Quantity	Unit	Remark
1.	Earth Works of Seconda	ary Ca	nal	******									ľ	<u>يەر ئۇنۇرىمىيە يەرىمە يەر</u>	- -	
1-1.	Stripping	C	6.5	1 T	6.1	Section) x	0.2	x	0.5	x	Total Length 26,263			33,091	m3	
1-2.	Excavation	20%	ofEn	ıbankr	nent						Embankment 90,344	x 0.2		18,069	m3	
1-3.	Embankment	Seci	tion(1)			Same	as Strip	zping						33,091	m3	
		Sect	tion(2) 3.5	<u></u>	4.5	Section) x	0.5	X.	0.5	X	Total Length 26,263			52,526	m3	
		(-	0.3	÷	0.9	Section) x	1 0.3	x	0.5	X	Total Length 26,263			4,727	m3	
				0		rigine							Total	90,344	m3	
1-4.	Gravel Pavement		2.5	secno x	n 0.1	x	otai Len 26,263	gth						6,566	m3	
1-5.	PVC Pipe (f100) L=5.0m	To	tal Ler 26,263	igth /	30		Bronch		(*1pipe	per 3	30m)			876	nos	

	Station Ma	Distance	Surfa	ce Soil	Exca	vation	Embar	ikment	Gravel (I	Pavement)	Concret	e Lining
Location	(m)	(m)	Area (m2)	V olume (m3)	A rea (m2)	Volume (m3)	Area (m2)	Volume (m3)	Area (m2)	Volume (m3)	Area (m2)	Volume (m3)
	0 + 0.00		0.00		29.01		0.00		0.25		0.27	
	A & 046.76	946.26	0.00	0.0	17 23	21,924.8	0.00	0.0	0.05	236.6	0.27	255.5
	U T >40.20	785.04	0.00	655.5	1.1.33	6,900.5	0.00	1,012.7	0.4.2	196.3	0.27	212.0
	1 + 731.30	470.47	1.67	1.016.2	0.25	50.0	2.58	5 256 2	0.25	117.6	0.27	127.0
	2 + 201.77	770.777	2.65	1,010-2	0.00		20.19	नी कुल्ली भी में केले 	0.25	+17.0	0.27	1. da 1 - NJ
	2 + 41411	212.34	0.00	281.4	16.38	1,739.1	0.00	2,143.6	0.25	53.1	0.27	57.3
		315.89	0.00	0.0	10.20	4,661.0	0.00	0.0	V-w/	79.0	V cán l	85.3
Main Canal	2 + 730.00	0.00	0.00	0.0	13.13	0.0	0.00	0.0	0.25	0.0	0.27	0.0
(Dam Sae	2 + 730.00		0.00	÷	13.58		0.00	w	0.25		0.30	
Command Area)	3 + 41523	685.23	0.00	0.0	12.96	9,093.0	0.00	0.0	0.25	171.3	0.30	205.6
3°		602.99	· • •	533.6		3,958.6		1,528.6	,528.6	150.7		180.9
	4 + 18.22	1.000.01	1.77	2.590.0	0.17	85.0	5.07	21.590.2	0.25	250.0	0.30	300.0
	5 + 18.23		3.41		0.00	~ ^	38.11	17 222 4	0.25		0.30	
	5 + 565.04	546.81	2.86	1,/14.2	0.00	0.0	24.07	17,000.5	0.25	1.30.7	0.30	104.0
	z . 007.00	422.18	0.00	603.7		743.0	0.00	5,080.9		105.5	0.20	126.7
	3 + 987.22	211.56	0.00	235.9	3.32	372.3	0.00	1,104.3	0.25	52.9	0.30	63.5
	6 + 198.78		2.23		0.00		10.44		0.25		0.30	
	Sub-total		-	7,630.5	*	49,536.1	swi.	54,816.9	-	1,549.7	sanç.	1,777.8

Quantity Calculation of Main Canal (Wau Irrigation Scheme) 1/2

		***************************************	Surfac	e Soil	Exca	vation	Embar	ıkment	Gravel (F	'avement)	Concret	e Lining
Location	Station No.(m)	Distance(m)	Area (m2)	V olume (m3)	Area (m2)	Volume (m3)	Área (m2)	Volume (m3)	Area (m2)	V olume (m3)	Area (m2)	Volume (m3)
	0 + 0.00		2.23		0.00		10.44		0.25		0.30	
	0 + 898.08	898.08	1.67	1,/51.3	0.43	195.1	2.22	5,084.8	0.25	224.5	0.30	209.4
	1 - 04121	1,043.13	1.62	1,715.9	0.61	542.4	1 5 4	1,961.1	0.25	260.8	0.30	312.9
		1,027.27	1.02	1,977.5	0.01	313.3	1.07	6,153.3	Ventral Acceleration	256.8	0.00	308.2
Main Canal	2 + 908.48	1,028.67	4.23	2,309.4	0.00	0.0	10.44	10,775.3	0.20	257.2	0.30	308.6
(Command Area)	3 + 997.15	1028.41	2.26	22728	0.00	0.0	10.51	10 145 3	0.25	2571	0.30	3/18 5
	5 + 25.56	1,000.00	2.16	a	0.00	0.0	9.22	10,140.0	0.25	1	0.30	
	6 + 54.09	1,028.53	2.04	2,159.9	0.00	0.0	7.25	8,469.9	0.25	257.1	0.30	308.6
	7 + 82.05	1,028.86	1 03	2,042.3	0.12	61.7	5.42	6,517.8	0.25	257.2	0.30	308.7
/ 7 04.93			1.77 V.		0.14		20 ⁻¹⁵ 24		19. aas 21		0.00	
	Sub-total	7,082.95	une-	14,229.1		1,110.5		49,707.5		1,770.7	an.	2,124.9
	T otal	13,281.73	-	21,859.6		50,646.6	*	104,524.4	*	3,320.4		3,902.7

Quantity Calculation of Main Canal (Wau Irrigation Scheme) 2/2

3.5 Drainage Works

No. Work Description Unit Quantity Unit Price (USS) Total (USS) Earth Works		Drainage Works		2.3	milloin U	S\$
Earth WorksImage CanalImage CanalImage CanalImage Canal1.1Strippingm308.0012.Excavationm35.93910.059.39013.Embankmentm312.89514.0180.53014.Variange Canal in Command AreaTotal239.9202. Main Drainage Canal in Command AreaTotal239.9202. Main Drainage Canal in Command AreaTotal239.9202. Main Drainage Canal in Command AreaTotal239.9202.1.1.Springing Canalito Command AreaTotal239.9202.1.2.Strippingm33.2848.026.2722.1.1.Springing Gauldozer)m310.43611.30113.56862.1.2.Excavationm310.43614.0146.1042.1.3.Spreading Gauge age (Buldozer)m310.43614.0146.1042.1.4.Enbankmentm310.43614.013.6682.1.5.Spreading of Aggregate (Buldozer)m32.0828.016.6562.2.2.Spreading Gauge age (Buldozer)m36.01614.092.6242.2.3.Spreading Gauge age (Buldozer)m35.013.0025.0502.2.4.Enbankmentm35.0313.00.0002.2.5.Aggregate (Buldozer)m35.0313.00.0002.2.4.Enbankmentm35.0313.00.0002.2.5.Aggregate (Buldozer)m3	No.	Work Description	Unit	Quantity	Unit Price (US\$)	Total (US\$)
I. Drainage Canal Image of the second	Earth V	Vorks				
1.1. Stripping m3 0 8.00 0 1-2. Excavation m3 5.9390 10.00 59390 1-3. Embankment m3 12,895 11.40 180530 2Main Drainage Canal in Command Area Image Canal in Command A	1. Draiı	nage Canal				
1.2. Excavation m3 5.959 10.0 55.950 1.3. Embankment m3 12.895 14.0 180.530 2.1. Type-1 (Q=1.5 m3/s, L=3,158m) Image: Canal in Command Area Image: Canal in Command Are	1-1.	Stripping	m3	0	8.0	0
1.3. Embankment m3 12.895 14.0 180530 2. Main Drainage Canal in Command Area Total 239,920 2. Main Drainage Canal in Command Area 2.1. Type-1 (Q=1.5 m3/s, L=3,158m) m3 3,284 8.0 26,272 2.1-1. Stripping m3 9,900 10.0 99000 2.1-3. Spreading (Bulldozer) m3 10,436 14.0 144,6104 2.1-4. Embankment m3 10,436 14.0 144,6104 2.1-4. Spreading of Aggregate (Rulklozer) m3 790 9.3 7,347 2.1-4. Embankment m3 10,436 14.0 1445,104 2.1-4. Enbankment m3 700 9.3 7,347 2.1-4. Stripping m3 2.082 8.0 16.656 2.2-1. Stripping m3 2.082 8.0 16.656 2.2-2. Exervation m3 501 50.0 25.050 2.2-3. Spreading (Muldozer) m3 501	1-2.	Excavation	m3	5,939	10.0	59,390
Image Canal in Command Area 2.1. Type-1 (Q-1.5 m3/s, L=3,158m) m3 3,284 8.0 26,272 2.1-1. Stripping m3 3,284 8.0 26,272 2.1-2. Excavation m3 10,435 13.0 135,668 2.1-4. Embankment m3 10,436 14.0 146,104 2.1-5. Spreading O Mildozer) m3 790 9.0 3,7347 - - Sub-Total 453,891 2.2-1. Spreading of Aggregate (Bulklozer) m3 2,082 8.0 16,656 2.2-1. Spreading (Bulklozer) m3 2,082 8.0 16,656 2.2-2. Excavation m3 6,616 13.0 86,008 2.2-3. Spreading (Bulklozer) m3 6,616 13.0 26,802 2.2-4. Embankment m3 6,616 14.0 92,624 2.2-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 501 50.0 25,80	1-3.	Embankment	m3	12,895	14.0	180,530
2. Main Drainage Canal in Command Area Image Canal in Command Area 21. Type-1 (Q=1.5 m3/s, L=3,158m) Image Canal in Command Area 2.1-1. Stripping m3 3.284 8.0 26,272 2.1-2. Excavation m3 10,436 13.0 19900 2.1-3. Spreading (Bulldozer) m3 10,436 14.0 146,104 2.1-4. Embankment m3 10,436 14.0 146,104 2.1-5. Aggregate, Crushed, 2.4cm (Gravel Pavement) m3 790 50.0 39,500 2.1-6. Spreading of Aggregate (Bulklozer) m3 20,82 8.0 16,656 2.2-1. Stripping m3 20,82 8.0 16,656 2.2-2. Excavation m3 6,616 13.0 86,008 2.2-3. Spreading (Bulldozer) m3 6,616 13.0 6,513 2.2-4. Embankment m3 501 13.0 6,513 2.2-5. Aggregate, Crushed, 2.4cm (Gravel Pavement) m3 501					Total	239,920
2-1. Type-1 (Q=1.5 m3/s, L=3,158m) m3 3.284 8.0 26272 2.1-1. Stripping m3 9.900 10.0 99.000 99.00 2.1-2. Excavation m3 10.436 13.0 195.668 2.1-4. Embankment m3 10.436 14.0 146.104 2.1-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 790 50.0 39.500 2.1-6. Spreading of Aggregate (Bulkdozer) m3 770 9.3 7.347 2.2-1. Stripping m3 2.082 8.0 16.656 2.2-2. Excavation m3 10.958 10.0 109580 2.2-2. Excavation m3 6.616 13.0 86.008 2.2-2. Excavation m3 501 50.0 25.05 2.2-3. Spreading of Aggregate (Bulkdozer) m3 501 50.0 25.05 2.2-4. Embankment m3 501 50.0 25.05 2.2-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 501 13.0 6.513	2. Main	Drainage Canal in Command Area				
2-1-1. Stripping m3 3.284 8.0 26.222 2-1-2. Excavation m3 9,900 10.0 99,000 2-1-3. Spreading (Buldozer) m3 10,436 13.0 135,668 2-1-4. Embankment m3 10,436 14.0 146,104 2-1-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 790 9.0 39,500 2-1-6. Spreading of Aggregate (Buldozer) m3 790 9.3 7,347 2-2. Excavation m3 2,082 8.0 16,655 2-2.1. Stripping m3 2,082 8.0 16,656 2-2.2. Excavation m3 6,616 13.0 86,008 2-2.4. Embankment m3 6,616 14.0 92,624 2-2.5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 501 13.0 6,513 2-2.4. Embankment m3 501 13.0 6,513 2-2.5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 513 13.0 6,513 <td>2-1. Ty</td> <td>pe-1 (Q=1.5 m3/s, L=3,158m)</td> <td></td> <td></td> <td></td> <td></td>	2-1. Ty	pe-1 (Q=1.5 m3/s, L=3,158m)				
2-1-2. Excavation m3 9,000 10.0 99,000 2-1-3. Spreading (Bulklozer) m3 10,436 11.4.0 114.0 2-1-4. Embankment m3 10,436 11.4.0 146.104 2-1-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 790 50.0 39,500 2-1-6. Spreading of Aggregate (Bulklozer) m3 790 9.3 7,347 2-2.1. Stripping m3 2.082 8.00 166.56 2-2.2. Excavation m3 10.058 100,580 2-2.3. Spreading (Bulklozer) m3 6.616 14.0 92.624 2-2.4. Embankment m3 6.616 14.0 92.624 2-2.5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 501 13.0 6.513 2-2.4. Embankment m3 501 13.0 6.513 2-3. Stripping m3 2.181 8.0 17.448 2-3.1 Stripping m3 2.181 8.0 17.448 2-3.2	2-1-1.	Stripping	m3	3,284	8.0	26,272
2-1-3. Spreading (Bulklozer) m3 10,436 13.0 135,668 2-1-4. Embankment m3 10,436 14.0 146,104 2-1-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 700 9.0 9.3 7,347 2-1-6. Spreading of Aggregate (Bulklozer) m3 700 9.3 7,347 2-2. Syre-Q (Q=3.0 m3/s, L=2,002m) m3 2,082 8.0 16,656 2-2.1. Stripping m3 2,082 8.0 16,656 2-2.2. Excavation m3 10,958 10.0 109,580 2-2.4. Embankment m3 6,616 13.0 86,008 2-2.4. Embankment m3 6,616 14.0 92,624 2-2.5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 501 13.0 6,511 2-2.6. Spreading of Aggregate (Bulklozer) m3 2,181 8.0 17,448 2-3.1. Stripping m3 2,181 8.0 17,448 2-3.2. Excavation m3 15,864 1	2-1-2.	Excavation	m3	9,900	10.0	99,000
2-1-4. Embankment m3 10,436 14.0 146,104 2-1-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 790 50.0 39,500 2-1-6. Spreading of Aggregate (Bulklozer) m3 790 9.3 7,347 2-2. Sype-72 Q=3.0 m3/s, L=2,002m) m3 2,082 8.0 16,656 2-2.1. Stripping m3 10,958 10.0 109,580 2-2.2. Excavation m3 10,958 10.0 109,580 2-2.4. Embankment m3 6,616 13.0 86,008 2-2.4. Embankment m3 6,616 14.0 92,624 2-2.5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 501 13.0 6,513 2-2.5. Spreading of Aggregate (Bulklozer) m3 501 13.0 6,513 2-3.5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 2,181 8.0 17,448 2-3.4. Stripping m3 2,181 8.0 17,448 2-3.4. Stripping m3	2-1-3.	Spreading (Bulldozer)	m3	10,436	13.0	135,668
2-1-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 790 50.0 39,500 2-1-6. Spreading of Aggregate (Bulklozer) m3 790 9.3 7,347 2-1. Stripping m3 208 8ub-Total 453,891 2-2-1. Stripping m3 2082 8.0 16656 2-2-2. Excavation m3 10.958 10.0 109,580 2-2-3. Spreading (Bulklozer) m3 6.616 13.0 86.008 2-2-4. Embankment m3 6.616 14.0 92,624 2-2-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 501 50.0 25.050 2-2-6. Spreading of Aggregate (Bulklozer) m3 501 13.0 6.513 2-3.1. Stripping m3 2.181 8.0 17.448 2-3.3. Spreading (Bulklozer) m3 15.864 10.0 158,640 2-3.3. Spreading (Bulklozer) m3 5.24 50.0 26,200 2-3.4. Embankment m3 5.24 50.0 <td< td=""><td>2-1-4.</td><td>Embankment</td><td>m3</td><td>10,436</td><td>14.0</td><td>146,104</td></td<>	2-1-4.	Embankment	m3	10,436	14.0	146,104
2-1-6. Spreading of Aggregate (Bulklozer) m3 790 9.3 7,347 L2. Type-2 (Q=3.0 m3/s, L=2,002m) Sub-Total 453,891 2-2.1. Stripping m3 2,082 8.0 16.656 2-2.2. Excavation m3 10,958 10.0 109,580 2-2.3. Spreading (Bulklozer) m3 6,616 13.0 86,008 2-2.4. Embankment m3 6,616 13.0 86,008 2-2.4. Embankment m3 501 50.0 25,050 2-2.6. Spreading of Aggregate (Bulklozer) m3 501 13.0 6,513 2-3.1. Stripping m3 2,181 8.0 17,448 2-3.2. Excavation m3 15,864 10.0 158,640 2-3.3. Spreading (Bulklozer) m3 6,931 13.0 90,103 2-3.4. Embankment m3 6,931 14.0 97,034 2-3.4. Spreading of Aggregate (Bulklozer)	2-1-5.	Aggregate, Crushed, 2-4cm (Gravel Pavement)	m3	790	50.0	39,500
Image: state in the	2-1-6.	Spreading of Aggregate (Bulldozer)	m3	790	9.3	7,347
2-2. Type-2 (Q=3.0 m3/s, L=2,002m) m3 2.082 8.0 16.656 2-2-1. Stripping m3 10.958 10.0 109,580 2-2-3. Spreading (Bulklozer) m3 6.616 13.0 86,008 2-2-4. Embankment m3 6.616 14.0 92,624 2-2-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 501 50.0 25,050 2-2-6. Spreading of Aggregate (Bulklozer) m3 501 13.0 6,513 2-3-1. Stripping m3 2,181 8.0 17,448 2-3-2. Excavation m3 15,864 10.0 158,640 2-3-3. Stripping m3 2,181 8.0 17,448 2-3-4. Embankment m3 15,864 10.0 158,640 2-3-5. Spreading (Bulklozer) m3 6,931 13.0 90,103 2-3-4. Spreading (Bulklozer) m3 524 50.0 26,200 2-3-4. Spreading of Aggregate (Bulklozer) m3 524 50.0 26,200 2-3-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 50.0 26,200 <td< td=""><td></td><td></td><td></td><td></td><td>Sub-Total</td><td>453,891</td></td<>					Sub-Total	453,891
2-2-1. Stripping m3 2.082 8.0 16.656 2-2-2. Excavation m3 10.958 10.0 109,580 2-2-3. Spreading (Bulldozer) m3 6.616 13.0 86,008 2-2-4. Embankment m3 6.616 14.0 92,624 2-2-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 501 50.0 25,050 2-2-6. Spreading of Aggregate (Bulldozer) m3 501 13.0 6,613 2-3. Strpping m3 501 13.0 6,513 2-3. Strpping m3 2,181 8.0 17,448 2-3.1. Stripping m3 2,181 8.0 17,448 2-3.2. Excavation m3 15,864 10.0 158,640 2-3.3. Spreading (Bulldozer) m3 6,931 14.0 97,034 2-3.4. Embankment m3 6,931 14.0 97,034 2-3.5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 50.0 26,200 <	2-2. Ty	pe-2 (Q=3.0 m3/s, L=2,002m)				
2-2-2. Excavation m3 10958 10.0 109580 2-2-3. Spreading (Bulldozer) m3 6.616 13.0 86.008 2-2-4. Embankment m3 6.616 14.0 92.624 2-2-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 501 50.0 25.050 2-2-6. Spreading of Aggregate (Bulklozer) m3 501 13.0 6.513 2-3-1. Stripping m3 2.181 8.00 17.448 2-3-2. Excavation m3 15.864 10.0 158.640 2-3-3. Spreading (Bulklozer) m3 6.931 13.0 90.103 2-3-4. Embankment m3 6.931 13.0 90.103 2-3-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 50.0 26.200 2-3-6. Spreading of Aggregate (Bulklozer) m3 524 13.0 6.812 2-3-6. Spreading of Aggregate (Bulklozer) m3 524 13.0 6.812 3-4. Cuberotal Aggregate (Bulklozer) m3 524 <td>2-2-1.</td> <td>Stripping</td> <td>m3</td> <td>2,082</td> <td>8.0</td> <td>16,656</td>	2-2-1.	Stripping	m3	2,082	8.0	16,656
2-2-3. Spreading (Bulldozer) m3 6,616 13.0 86,008 2-2-4. Embankment m3 6,616 14.0 92,624 2-2-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 501 50.0 25,050 2-2-6. Spreading of Aggregate (Bulldozer) m3 501 13.0 6,513 2-2-6. Spreading of Aggregate (Bulldozer) m3 501 13.0 6,513 2-3-1. Stripping m3 2,181 8.0 17,448 2-3-2. Excavation m3 15,864 10.0 158,640 2-3-3. Spreading (Bulldozer) m3 6,931 13.0 90,103 2-3-4. Embankment m3 6,931 14.0 97,034 2-3-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 13.0 6,812 2-3-6. Spreading of Aggregate (Bulldozer) m3 524 13.0 6,812 2-3-6. Spreading of Aggregate (Bulldozer) m3 524 13.0 6,812 2-3-7. Imaninge Canal for Catchment Area	2-2-2.	Excavation	m3	10,958	10.0	109,580
2-2-4. Embankment m3 6,616 14.0 92,624 2-2-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 500 50.0 25,050 2-2-6. Spreading of Aggregate (Bulklozer) m3 500 13.0 6,513 2-2-6. Spreading of Aggregate (Bulklozer) m3 500 13.0 6,513 2-3-1. Stripping m3 2,181 8.0 17,448 2-3-2. Excavation m3 15,864 10.0 158,640 2-3-3. Spreading (Bulklozer) m3 6,931 13.0 90,103 2-3-4. Embankment m3 6,931 14.0 97,034 2-3-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 50.0 26,200 2-3-6. Spreading of Aggregate (Bulklozer) m3 524 13.0 6,812 3.0 Main Drainage Canal for Catchment Area L.S. 1 900,000 3.0 Main Catchment Area L.S. 1 2,326,479 3.0 Main Main Main Ma	2-2-3.	Spreading (Bulldozer)	m3	6,616	13.0	86,008
2-2-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 501 50.0 25.050 2-2-6. Spreading of Aggregate (Bulklozer) m3 501 13.0 6,513 2-3.1. Stripping m3 2,181 8.0 17,448 2-3-2. Excavation m3 15,864 10.0 158,640 2-3.3. Spreading (Bulklozer) m3 6,931 13.0 90,103 2-3.4. Enbankment m3 6,931 14.0 97,034 2-3.5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 50.0 26,200 2-3-6. Spreading of Aggregate (Bulklozer) m3 524 13.0 6,812 2-3-6. Spreading of Aggregate (Bulklozer) m3 524 13.0 6,812 2-3-6. Spreading of Aggregate (Bulklozer) m3 524 13.0 6,812 3-3.0 Main Drainage Canal for Catchment Area L.S. 1 900,000 1 Image: Canal for Catchment Area Image: Canal for Catchment Grave and for Catchment Grave and for Catchment and for Catc	2-2-4.	Embankment	m3	6,616	14.0	92,624
2-2-6. Spreading of Aggregate (Bulkdozer) m3 501 13.0 6,513 2-3-1. Stripping m3 2,181 8.0 17,448 2-3-2. Excavation m3 15,864 10.0 158,640 2-3-3. Spreading (Bulkdozer) m3 6,931 13.0 90,103 2-3-4. Embankment m3 6,931 14.0 97,034 2-3-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 50.0 26,200 2-3-6. Spreading of Aggregate (Bulkdozer) m3 524 13.0 6,812 3. Main Drainage Canal for Catchment Area L.S. 1 900,000	2-2-5.	Aggregate, Crushed, 2-4cm (Gravel Pavement)	m3	501	50.0	25,050
Image: state of the s	2-2-6.	Spreading of Aggregate (Bulldozer)	m3	501	13.0	6,513
2-3. Type-3 (Q=4.75 m3/s, L=2,097m) m3 2,181 8.0 17,448 2-3-1. Stripping m3 2,181 8.0 17,448 2-3-2. Excavation m3 15,864 10.0 158,640 2-3-3. Spreading (Bulldozer) m3 6,931 13.0 90,103 2-3-4. Embankment m3 6,931 14.0 97,034 2-3-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 50.0 26,200 2-3-6. Spreading of Aggregate (Bulldozer) m3 524 13.0 6,812 3. Main Drainage Canal for Catchment Area L.S. 1 900,000					Sub-Total	336,431
2-3-1. Stripping m3 2,181 8.0 17,448 2-3-2. Excavation m3 15,864 10.0 158,640 2-3-3. Spreading (Bulldozer) m3 6,931 13.0 90,103 2-3-4. Embankment m3 6,931 14.0 97,034 2-3-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 50.0 26,200 2-3-6. Spreading of Aggregate (Bulldozer) m3 524 13.0 6,812 2-3-6. Spreading of Aggregate (Bulldozer) m3 524 13.0 6,812 3. Main Drainage Canal for Catchment Area L.S. 1 900,000 900,000	2-3. Ty	pe-3 (Q=4.75 m3/s, L=2,097m)				
2-3-2. Excavation m3 15,864 10.0 158,640 2-3-3. Spreading (Bulldozer) m3 6,931 13.0 90,103 2-3-4. Embankment m3 6,931 14.0 97,034 2-3-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 50.0 26,200 2-3-6. Spreading of Aggregate (Bulldozer) m3 524 13.0 6,812 3. Main Drainage Canal for Catchment Area L.S. 1 900,000	2-3-1.	Stripping	m3	2,181	8.0	17,448
2-3-3. Spreading (Bulldozer) m3 6,931 13.0 90,103 2-3-4. Embankment m3 6,931 14.0 97,034 2-3-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 50.0 26,200 2-3-6. Spreading of Aggregate (Bulldozer) m3 524 13.0 6,812 2-3-6. Spreading of Aggregate (Bulldozer) m3 524 13.0 6,812 3. Main Drainage Canal for Catchment Area L.S. 1 900,000	2-3-2.	Excavation	m3	15,864	10.0	158,640
2-3-4. Embankment m3 6,931 14.0 97,034 2-3-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 50.0 26,200 2-3-6. Spreading of Aggregate (Bulkdozer) m3 524 13.0 6,812 3. Main Drainage Canal for Catchment Area L.S. 1 900,000	2-3-3.	Spreading (Bulldozer)	m3	6,931	13.0	90,103
2-3-5. Aggregate, Crushed, 2-4cm (Gravel Pavement) m3 524 50.0 26,200 2-3-6. Spreading of Aggregate (Bulkdozer) m3 524 13.0 6,812 Sub-Total 396,237 Image: Canal for Catchment Area L.S. 1 900,000 Image: Canal for Catchment Area L.S. 1 900,000 Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area	2-3-4.	Embankment	m3	6,931	14.0	97,034
2-3-6. Spreading of Aggregate (Bulkdozer) 3. Main Drainage Canal for Catchment Area	2-3-5.	Aggregate, Crushed, 2-4cm (Gravel Pavement)	m3	524	50.0	26,200
Image: Construction of the co	2-3-6.	Spreading of Aggregate (Bulldozer)	m3	524	13.0	6,812
3. Main Drainage Canal for Catchment Area L.S. 1 900,000 Total 2,326,479					Sub-Total	396,237
3. Main Drainage Canal for Catchment Area L.S. 1 900,000 Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Canal for Catchment Area Image: Catchment Area Image: Catchment Area Image: Catchment Area Image: Catchment Area						,
Image: Constraint of the Constr	3. Main	Drainage Canal for Catchment Area	L.S.	1		900,000
Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program Image: Constrained of a program <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td>,</td>	<u> </u>					,
Image: Construction of the co					Total	2.326.479
Image: Construction Image: Construction Image: Construction Image: Construction		Main Derivaga Crant Tars-9				, ,
Main Drange Cara Main Drange Cara (for cathered real) (for cathered real) (bit Signed real) (for cathered real) (for cathered real) (for cathered real) (for cathered real) (for cathered real) (for cathered real) (for cathered real)		Geral 25mbs L+2,007m - 27et Canal Distribution Canal (Green Ling)				
Image: Constraint of the second of the se		Main Drainage Gana (Pert Live) (for command sees) Main Drainage Canal (Bira Live)				
		Go 100-05 L-2,000m Main Drainage Canal (for catchment area)				
Matchingschutzen Matchingschutzen Matchingschutzen			-			
An Drag for the second			+			
	<u> </u>	Men Darlage Care Types O Care State Care State	+			
	<u> </u>		-			

Wau Rice Scheme

Irrigation Sci Item of Wor	theme: W rk: Se	au Irrig dondar	gation 8 y C an	Schema al	e					-						Page: 1 / 3
	Item							1	Calcul	lation				Quantity	Unit	Remark
1. Eart	th Works ofDi	rainaga	a Cana	ıl												
1-1. Strip	oping													0	m3	
							Section	ι				Total Length				
1-2. Exca	avatin		(0.4	r.	1.1) x	0.35	Х.	0.5	х	22,623		5,939	m3	
1-3. Emb	oankment		Sect	ion(1)												
							Section	l				Total Length				
			(1	and the second s	1.6) x	0.3	х	0.5	Х	22,623		8,823	m3	
			Secti	ion(2)												
							Section	ι.				Total Length				
			(0.3	-ş-	0.9) x	0.3	х	0.5	х	22,623		4,072	m3	
													Total	12,895	m3	

Irrigati	on Scheme :	Wau Irrig	ation	Scheme												
Item o	f Work :	Sedondary	y Ca	nal					12 12 12 12 12 12 12 12 12 12 12 12 12 1							Page: 2 / 3
	Item							(Calcul	ation				Quantity	Unit	Remark
2.	Earth Works	of Main Dra	ainag	ge Canal												
2-1.	Type-1: Q=0.1:	5 m3/s														
							Section					Total Length				
2-1-1.	Stripping		(5.15	nager S	5.25) x	0.2	x	0.5	х	3,158		3,284	m3	
				Section								Total Length				
2-1-2.	Excavation		(4.5	5	1.2) x	1.1	х	0.5	х	3,158		9,900	m3	
2-1-3.	Embankment		Sec	tion(1)			Same	as Strij	ping					3,284	m3	
			Sec	ction(2) Section 3.5	2 	4.75) x	0.5	X	0.5	x	Total Length 3,158		6,513	m3	
			Sec	tion(3) Section 0.3	and Sectors Sectors	1.05) x	0.3	X	0.5	X	Total Length 3,158	Tatal	639	m3	
2.2	Time-7. 0=0.3	0 m3/s											TOR	10,450	mo	
2-2-1.	Stripping	0 112/3	(Section 5.15	No.	5.25) x	0.2	x	0.5	x	Total Length 2,002		2,082	m3	
2-2-2.	Excavation		(Section 5.95	all a	1.6) x	1.45	x	0.5	x	Total Length 2,002		10,958	m3	
2-2-3.	Embankment		Sec	tion(1)			Same	as Strij	ping					2,082	m3	
			Sec	tion(2) Section 3.5	÷	4.75) x	0.5	X	0.5	X	Total Length 2,002		4,129	m3	
			Sec	tion(3) Section 0.3	÷	1.05) x (0.3	X	0.5	X	Total Length 2,002		405	m3	

Irrigation Scheme : Wau Irr	gation Scheme			Dace: 3 / 3
Item	Calculation	Quantity	Unit	Remark
	Total	6,616	m3	
2-3. Type-3: Q=0.475 m3/s				
2-3-1. Stripping	Section Total Length (5.15 + 5.25) x 0.2 x 0.5 x 2,097	2,181	m3	
2-3-2. Excavation	Section Total Length (7 + 1.9) x 1.7 x 0.5 x 2,097	15,864	m3	
2-3-3. Embankment	Section(1) Same as Stripping	2,181	m3	
	Section(2) Total Length (3.5 + 4.75) x 0.5 x 0.5 x 2,097	4,325	m3	
	Section(3) Section Total Length $(0.3 \pm 1.05) \times 0.3 \times 0.5 \times 2007$	425	m3	
3. Total	Total	6,931	m3	
Stripping	$+ \frac{1-1}{0} + \frac{2-1-1}{3,284} + \frac{2-2-1}{2,082} + \frac{2-3-1}{2,181}$	7,547	m3	
Excavation	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	42,661	m3	
Embankment	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36,878	m3	

Irrigation Scheme : Item of Work : Wau Irrigation Scheme Secondary Canal

Length of Se	condary Canal	Length of Se	condary Canal		Command Area		
×7.	7	N	T d. ()	3.7.	Are	a	
NO.	L engin (m)	2NO.	Lengin (m)	INO.	(m2)	(ha)	
SC-1-1	669	DC-1	207	CA-l-1	73,694	7	
SC-1-2	302	DC-2	354	CA-1-2	80,246	8	
SC-1-3	155	DC-3	525	CA-1-3	107,460	11	1
SC-1-4	692	DC-4	585	CA-2	124,403	12	
SC-2	720	DC-5	682	CA-3	139,840	14	
SC-3	768	DC-6	566	CA-4	138,406	14	1
SC-4	778	DC-7	479	CA-5	137,162	14	ĺ
SC-5	706	DC-8	416	CA-6	132,900	13	Ī
SC-6	599	DC-9	709	CA-7	145,027	15	1
SC-7	625	DC-10	809	CA-8	236;128	24	I
SC-8	930	DC-11	796	CA-9	200,386	20	Ī
SC-9	872	DC-12	776	CA-10	168,923	17	T
SC-10	87.2	DC-13	786	CA-11	166,584	17	
SC-11	861	DC-14	774	CA-12	164,244	16	1
SC-12	851	DC-15	757	CA-13	161,905	16	1
SC-13	836	DC-16	740	CA-14	159,565	16	
SC-14	83,7	DC-17	735	CA-15	157,226	16	typical
SC-15	824	DC-18	707	CA-16	154,887	15	1
SC-16	81.7	DC-19	702	CA-17	150,873	15	1
SC-17	806	DC-20	701	CA-18	151,882	15	
SC-18	795	DC-21	682	CA-19	147,868	15	1
SC-19	790	DC-22	680	CA-20	145,939	15	
SC-20	77.7	DC-23	708	CA-21	149,861	15	
SC-21	802	DC-24	742	CA-22	155,689	16	
SC-22	832	DC-25	778	CA-23	161,517	16	
SC-23	862	DC-26	805	CA-24	167,345	17	
SC-24	891	DC-27	831	CA-25	176,143	18	1
SC-25	921	DC-28	874	CA-26	182,934	18	
SC-26	951	DC-29	895	CA-27	186,809	19	
SC-27	984	DC-30	922	CA-28	192,634	19	
SC-28	1,008	DC-31	950	CA-29	181,982	18	
SC-29	1,051	DC-32	949	CA-30	214,400	21	
SC-30	1,077			Total	5,014,859	501	
Total	26,263	Total	22,623				-
(km)	(26)	(km)	(2.3)				

Irriation Water Requ	irement
(IWR) (m3/s)
Unit IWR 0.001	m3∕s∕ha
	0.010
	0.011
	0.015
	0.017
	0.020
	0.019
	0.019
	0.019
	0.020
	0.033
	0.028
	0.024
	0.023
	0.023
	0.023
	0.022
	0.022
	0.022
	0.021
	0.021
	0.021
	0.020
	0.021
	0.022
	0.023
	0.023
	0.025
	0.026
	0.026
	0.027
	0.025
	0.030

Discharge from Co	mmand Area (m3/s)	
Unit discharge	0.00950 m3/s/ha	
From each area	Accumulated	
0.07	0.07	
0.08	0.15	
0.10	0.25	
0.12	0.37	
0.13	0.50	The sec 1
0.13	0.63	13pc+1
0.13	0.76	3137.3493m
0.13	0.89	
0.14	1.03	
0.22	1.25	
0.19	1.44	
0.16	1.60	
0.16	1.76	
0.16	1.91	
0.15	2.07	
0.15	2.22	Type-2
0.15	2:37	2002.1867m
0.15	2.52	
0.14	2.66	
0.14	2.80	
0.14	2.94	
0.14	3.08	
0.14	3.23	
0.15	3.37	
0.15	3.53	
0.16	3.69	Trees 2
0.17	3.85	2.9pe-3
0.17	4.03	2090.7201II
0.18	4.20	
0.18	4.39	
0.17	4.56	
0.20	4.76	

3.6 Flood Protection Works (Dike)

	Flood Protection Dike		6.5	million US\$		
No.	Work Description	Unit	Quantity	Unit Price (US\$)	Total (US\$)	
1. Eart	h Work					
1-1.	Excavation of Surface Soil (200mm Depth)	m3	26,894	8.0	215,152	
1-2.	Embankment with Compaction	m3	134,467	14.0	1,882,538	
1-3.	Spreading	m3	134,467	13.0	1,748,071	
1-4.	Soil (Banking Material)	m3	161,361	7.6	1,226,344	
1-5.	Hauling by Dump Truck (Banking Material)	m3	161,361	9.0	1,452,249	
				Total	6,524,354	
	Direct Co	nstruct	tion Cost		6,524,354	
		Len	gth of Dike =	9,660	m	
-						
L		1				

Wau Rice Scheme

ANN9-1: APP3/W-27

Irrigation Scheme : Wau Irri	gation Scheme			
Item	Calculation	Quantity	Unit	Remark
1. Earth Work 1-1. Excavation of Surface Sol	(200mm Depth)	26,894	m3	
1-2. Embankment with Compac	ction	134,467	m3	
1-3. Soil (Banking Material)	26,894 ÷ 134,467 =	161,361	m3	
1-4. H auling by Dump Truck (I	I Banking Material) I	161,361	m3	L=7km

Earth	Work	of Dike
-------	------	---------

	Distance		Height		Crest	Dike	Section	Tankanlanaat	Excavation of
	Distance	Minimum	Minimum	Average	Width	Width	Area	Embankment	Surface Soil
Section(1)	1,065 m	0.50 m	4.00 m	2.25 m	2.00 m	9.88 m	13.37 m2	14,239 m3	2,848 m3
Section(2)	1,395 m	3.80 m	4.00 m	3.90 m	2.00 m	15.65 m	34.42 m2	48,016 m3	9,603 m3
Section(3)	1,365 m	0.80 m	3.80 m	2.30 m	2.00 m	10.05 m	13.86 m2	18,919 m3	3,784 m3
Section(4)	$700 \mathrm{m}$	0.80 m	1.30 m	1.05 m	2.00 m	5.68 m	4.03 m2	2,821 m3	564 m3
Section(5)	1,000 m	1.30 m	3.60 m	2.45 m	2.00 m	10.58 m	15.41 m2	15,410 m3	3,082 m3
Section(6)	1,010 m	$0.70~{ m m}$	3.60 m	2.15 m	2.00 m	9.53 m	12.39 m2	12,514 m3	2,503 m3
Section(7)	1,000 m	0.70 m	1.35 m	1.03 m	2.00 m	5.61 m	3.92 m2	3,920 m3	784 m3
Section(8)	1,000 m	1.35 m	2.60 m	1.98 m	2.00 m	8.93 m	10.82 m2	10,820 m3	2,164 m3
Section(9)	1,125 m	0.40 m	2.60 m	1.50 m	2.00 m	7.25 m	6.94 m2	7,808 m3	1,562 m3
Total	9,660 m							134,467 m3	26,894 m3

Dike Height

	Distance	Crest l	Height	Crest		Height		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Dike Width	
	Distance	Upper	Lower	Width	Minimum	Minimum	Average	Minimum	Minimum	Average
Section(1)	1,065 m	424.65 m	424.65 m	2.00 m	0.50 m	4.00 m	2.25 m	3.75 m	16.00 m	9.88 m
Section(2)	1,395 m	424.65 m	424.30 m	2.00 m	3.80 m	4.00 m	3.90 m	15.30 m	16.00 m	15.65 m
Section(3)	1,365 m	424.30 m	423.95 m	2.00 m	0.80 m	3.80 m	2.30 m	4.80 m	15.30 m	10.05 m
Section(4)	700 m	423.95 m	423.77 m	2.00 m	0.80 m	1.30 m	1.05 m	4.80 m	6.55 m	5.68 m
Section(5)	1,000 m	423.77 m	423.52 m	2.00 m	1.30 m	3.60 m	2.45 m	6.55 m	14.60 m	10.58 m
Section(6)	1,010 m	423.52 m	423.26 m	2.00 m	0.70 m	3.60 m	2.15 m	4.45 m	14.60 m	9.53 m
Section(7)	1,000 m	423.26 m	423.01 m	2.00 m	0.70 m	1.35 m	1.03 m	4.45 m	6.73 m	5.61 m
Section(8)	1,000 m	423.01 m	422.75 m	2.00 m	1.35 m	2.60 m	1.98 m	6.73 m	11.10 m	8.93 m
Section(9)	1,125 m	422.75 m	422.75 m	2.00 m	0.40 m	2.60 m	1.50 m	3.40 m	11.10 m	7.25 m
Total	9,660 m									

APPENDIX - 4

OPERATION AND MAINTENANCE PLAN COST

4.1 Unit Cost of Personnel Expenses (SSP/month)

Department	Staffing and Specialization	Grade	Basic Pay (SSP per Month)	Average Pay (SSP per Month)	Accom. Allo. (SSP per Month)	Cost of Living Allo. (SSP per Month)	Respon. Allo.	Represen. Allo. (SSP per Month)	Job Specific (SSP per Month)	Gross Pay (SSP per Month)	Pension Contri. (5%of Gross)	Income Tax: 10% of (Gross-300- Pension)	Net Pay
1. Management	Manager (Irrigation/Dam Eng.)	3	1,625/2,00	1,813	1,800	75	88	88	810	4,674	234	414	4,026
staff	Deputy Manager (Electromechanical Eng.)	4	1525/1714	1620	1200	75	75	75	730	3,775	189	329	3258
	Senior Accountant	7	1188/1388	1,288	630	63			650	2,631	132	220	2280
	Assistant Accountant	9	925/1125	1,025	630	50			450	2,155	108	175	1873
	Cooperative/Marketing Officer	8	1075/1200	1,138	630	50			580	2,398	120	198	2080
	Asst. Cooperative/Marketing Officer	9	925/1125	1,025	630	50			450	2,155	108	175	1873
	Tariff Collector (Book-keeper)	12	375/440	408	450	38			400	1,296	65	93	1138
	Messenger/Guard/Driver	13	313/378	346	450	38			390	1,224	61	86	1077
2. Irrigation/Dam	Senior Irri./Dam Eng. (Dam/Pump)	7	1188/1388	1,288	630	63			650	2,631	132	220	2280
Operations and	Electro-mechanical Eng.	8	1075/1200	1,138	630	50			580	2,398	120	198	2080
Maintenance	Planning and Bugeting Officer	8	1075/1200	1,138	630	50			580	2,398	120	198	2080
	Asst. Irrigation/Dam Eng.	9	925/1125	1,025	630	50			450	2,155	108	175	1873
	Asst. Planning and Bugeting Officer	9	925/1125	1,025	630	50			450	2,155	108	175	1873
	Irrigation Technician	10	825/950	888	450	38			440	1,816	91	142	1582
	Pump operator	11	500/565	533	450	38			410	1,431	72	106	1254
	Irrigation Water Control Gate Operator	11	500/565	533	450	38			410	1,431	72	106	1254
	Facilities' Guards	11	500/565	533	450	38			410	1,431	72	106	1254
3. Farm Level	Senior Agronomist	7	1188/1388	1,288	630	63			650	2,631	132	220	2280
Operations	Agronomist	8	1075/1200	1,138	630	50			580	2,398	120	198	2080
	Agricultural Engineer	8	1075/1200	1,138	630	50			580	2,398	120	198	2080
	Asst. Agricultural Engineer	9	925/1125	1,025	630	50			450	2,155	108	175	1873
	Extension Worker	10	825/950	888	450	38			440	1,816	91	142	1582
	Tractor Operator	11	500/565	533	450	38			410	1,431	72	106	1254
	Asst. Tractor Operator	13	313/378	346	450	38			390	1,224	61	86	1077
4. Processing	Rice mill operator	10	825/950	888	450	38			440	1,816	91	142	1582
Operations	Asst. Rice mill operator	11	500/565	533	450	38			410	1,431	72	106	1254
Total per month				24,540	16,140	1,257	163	163	13,190	55,453	2,773	4,488	48,192
Total per year				294,474	193,680	15,084	1,956	1,956	158,280	665,430	33,272	53,856	578,303

4.2 Annual Personnel Expenses (SSP/year)

			Wau Rice Irrig	ation Scheme
Department	Required Staff and Specialization	Grade	Prposed Number of Staff	Salary Budget (Gross in SSP)
Management staff	Manager (Irrigation/Dam Eng.)	3	1	4,674
	Deputy Manager (Electromechanical Eng.)	4	1	3,775
	Senior Accountant	7	1	2,631
	Cooperative/Marketing Officer	8	1	2,155
	Assistant Accountant	9	1	2,398
	Asst. Cooperative/Marketing Officer	9	1	2,155
	Tariff Collector	12	2	1,296
	Messenger/Guard/Driver	13	6	1,224
Irrigation/Dam	Senior Irri./Dam Eng, (Dam/Pump)	7	1	2,631
Operations and	Electromechanical Eng.	8	1	2,398
Maintenance	Planning and Bugeting Officer	8	1	2,398
	Asst. Irrigation/Dam Eng.	9	1	2,155
	Asst. Planning and Bugeting Officer	9	1	2,155
	Irrigation Technician	10	2	1,816
	Pump operator	11	2	1,431
	Irrigation Water Control Gate Operator	11	2	1,431
	Facilities' Guards	11	4	1,431
Farm Level	Senior Agronomist	7	1	2,631
Operations	Agronomist	8	1	2,398
	Agricultural Engineer	8	1	2,398
	Asst. Agricultural Engineer	9	1	2,155
	Extension Worker	10	2	1,816
	Tractor Operator	11	1	1,431
	Asst. Tractor Operator	13	1	1,224
Processing	Rice mill operator	10	1	1,816
Operations	Asst. Rice mill operator	11	1	1,431
Total per month			39	55,453
Total per year				665,430

Note: W = Wau, JL = Jebel Lado and RE = Rejaf East

4.3 Equipment and Machinery Investment Cost

		Unit Cost	Doprociation	Depresiation	Wau Rice Irrigation		
Cost Item	Grade/Spec	(SSP/unit) /a	Schedule /b	Cost/c	Number	Cost	
			Conocato /b	00001/0	Rambol	(SSP/year)	
Equipment/Machineries							
Motor Grader	220HP (John Deere)	2,141,480	15	128,500	1	128,500	
Backhoe Loader	422F (Caterpillar)	953,304	15	57,200	1	57,200	
Wheel Loaders	938H (Caterpillar)	2,030,952	15	121,900	1	121,900	
Dump Truck	6×4 18CUM (Caterpillar)	863,500	15	51,800	1	51,800	
Motor Bike		10,000	10	900	2	1,800	
Tractor /d	75HP, 4WD (John Deere)	203,786	10	18,300	3	54,900	
Attachment (plough)	3-disc (John Deere)	27,632	10	2,500	3	7,500	
Attachment (harrow)	20-disc manually operated (John	43,175	10	3,900	3	11,700	
Attachment (levellers)		3,600	10	300	3	900	
Attachment (sprayer)	400ml, 8M (John Deere)	46,974	10	4,200	3	12,600	
Attachment (fertilizer distributor)		13,816	10	1,200	3	3,600	
Attachment (trailer)	5 tonne (John Deere)	58,718	10	5,300	3	15,900	
Combine Harvester		81,000	10	7,300	3	21,900	
Working machines (Workshop)							
Pick-pu Track	Single Cabine (4DW)	20,900	10	1,900	2	3,800	
Portable Generator	240V Capacity	112,545	8	12,700	2	25,400	
NatteryCharger	72V Chapacity	500	8	100	2	200	
Generator	Perkins Type 1500RPM 150 kVA (380- 54\\415V)	357,441	8	40,200	1	40,200	
Lathe Machine	Universal High Precision	54,600	8	6,100	1	6,100	
Power Saw		6,400	5	1,200	1	1,200	
Welding Machine	Arc	2,700	5	500	2	1,000	
Welding Machine	Acetylene Gas Welding	1,800	5	300	2	600	
Power Drill	Portable Heavy Duty Hand Drill	500	5	100	1	100	
Rice Mill							
Rice Mill	2.0∜hr	409,500	15	24,600	2	49,200	
Grain Threshing Machine	Vicon Type 1 tonne/hr	7,300	15	400	4	1,600	
Drying Machine		36,400	15	2,200	2	4,400	
Warehouse		41,000	15	2,500	1	2,500	
Total					53	626.500	

Note: a/ Price quotations are obtained from Lonagro South Sudan Ltd. (Jhon Deere), Ezentus (Catepillar), and Aweil Irrigation Rehabilitation Project.

b/ Depreciation schedule is quoted from water supply project in Sounth Asia.

c/10% of residual value is taken into account in estimation of depreciation cost.

4.4 Equipment and Machinery O&M Cost

		Linit Cost	ORM Cost	Wau Rice Irrigation Scheme			
Cost Item	Grade/Spec	(SSP/unit) /a	(1% of Unit Cost)	Number	Cost (SSP/year)		
Equipment/Machineries							
Motor Grader	150-160HP	2,141,480	21,410	1	21,410		
Backhoe Loader	90HP	953,304	9,530	1	9,530		
Wheel Loaders	80HP	2,030,952	20,310	1	20,310		
Dump Truck	160HP	863,500	8,640	1	8,640		
Motor Bike		10,000	100	2	200		
Tractor /d	75HP, 4WD	203,786	2,040	3	6,120		
Attachment (plough)	3-disc	27,632	280	3	840		
Attachment (harrow)	20-disc manually operated	43,175	430	3	1,290		
Attachment (levellers)		3,600	40	3	120		
Attachment (sprayer)	400ml, 8M	46,974	470	3	1,410		
Attachment (fertilizer distributor)		13,816	140	3	420		
Attachment (trailer)	5 tonne	58,718	590	3	1,770		
Combine Harvester		81,000	810	3	2,430		
Working machines (Workshop)							
Pick-pu T rack	Single Cabine (4DW)	20,900	210	2	420		
Portable Generator	240V Capacity	112,545	1,130	2	2,260		
Battery Charger	72V Chapacity	500	10	2	20		
Generator	Perkins Type 1500RPM 150 kVA (380-54\\415V)	357,441	3,570	1	3,570		
Lathe Machine	Universal High Precision	54,600	550	1	550		
Power Saw		6,400	60	1	60		
Welding Machine	Arc	2,700	30	2	60		
Welding Machine	Acetylene Gas Welding	1,800	20	2	40		
Power Drill	Portable Heavy Duty Hand Drill	500	10	1	10		
Rice Mill							
Rice Mill	1.0-2.0t/hr	409,500	4,100	2	8,200		
Grain Threshing Machine	Vicon Type 1 tonne/hr	7,300	70	4	280		
Drying Machine		36,400	360	2	720		
Warehouse		41,000	410	1	410		
Total				53	91,090		

Note: a/ Price quotations are obtained from Lonagro South Sudan Ltd. (Jhon Deere), Ezentus (Catepillar), and Aweil Irrigation Rehabilitation Project.

b/ Depreciation schedule is quoted from water supply project in Sounth Asia.

c/ 10% of residual value is taken into account in estimation of depreciation cost.

4.5 Water Tariff Estimation

	Wau Irrigation Scheme				
	Detail	SSP			
A. Project Cost (SSP)	USD 62,000,000	181,571,429			
B. Depreciation Cost (SSP/year)		7,444,277			
Project Facility	1,922,319	5,629,648			
Equipment and Machinary		626,500			
C. Annual O&M Cost (SSP/year)					
Personnel Expenses		665,430			
Pump Operation	USD 85,379	250,039			
Equipment and Machinary (1% of Procurement Cost)		91,090			
Maintenance Cost (0.1% of Project Cost)		181,571			
Sub-total (Annual Operation Cost)		1,188,130			
D. Irrigable Area (ha)		500			
Annual O&M Cost per Irrigable Area (SSP/ha)		2,376			
Minimum Area for Feeding Family (ha/HH/year) /a		0.42			
Number of Lot for Distribution (1lot = 1feddan = 0.42ha)		1,190			
E. Water Consumption (m ³ /season)	Total	10,108,800			
Crop 1	Rice	5,119,200			
Crop 2	Leaf Vegetable	2,384,640			
Crop 3	Fruits Vegetable	2,604,960			
F. Water Tariff Estimation					
Area-based Pricing (SSP/lot, or SSP/feddan)		SSP 1,000 fd			
Volumetric Pricing 1 (SSP/m ³)	Total	SSP 0.12 m3			
Crop 1	Rice	SSP 0.23 m3			
Crop 2	Leaf Vegetable	SSP 0.50 m3			
Crop 3	Fruits Vegetable	SSP 0.46 m3			
Volumetric Pricing 2 (SSP/season/feddan)					
Crop 1	1,190 ac	SSP 500 fd			
Crop 2	595 ac	SSP 500 fd			
Crop 3	595 ac	SSP 500 fd			
Volumetric Pricing 2 (SSP/season/ha)					
Crop 1	500 ha	SSP 1,200 ha			
Crop 2	250 ha	SSP 1,100 ha			
Crop 3	250 ha	SSP 1,200 ha			
Member's Fee (SSP/lot) /b		SSP 1,074 /ha			
Member's Fee (In Kind = Labor Work in days) /c		27 days/year			

Note: a/ Necessary area for feeding family members (7person/HH) by planting maize is estimated at 0.21ha. Planned yield of maize is 3t/ha.

b/ Members' fee is estimated by dividing number of lot into depreciation cost of equipment/machinary (exclude rice mill).

c/ In kind is equivalent to labor cost of SSP40/ha.

4.6 Affordability to Pay (ATP)

Torm	Crops	Net Income /a	Cropped	Total Net Income	Affordability	ATP	Estimated ISF	ISF Adjustd
1 eilli	Crops	(SSP/ha)	Area (ha)	(SSP/ha)	Rate (%)	(SSP/ha)	(SSP/ha)	(SSP/ha)
	Rice	8,234	500	4,117,000	3%	250	1,190	250
Short torm	Leaf Vegetable	5,393	250	1,348,250	3%	160	1,190	160
Short-term	Fruits Vegetable	62,579	250	15,644,750	3%	1,880	1,190	1,190
	Weighted Average	21,110	1,000	21,110,000	3%	630	1,000	630
	Rice	8,234	500	4,117,000	5%	410	1,190	410
Mid torm	Leaf Vegetable	5,393	150	808,950	5%	270	1,190	270
wiiu-teini	Fruits Vegetable	62,579	350	21,902,650	5%	3,130	1,190	1,190
	Weighted Average	26,829	1,000	26,828,600	5%	1,340	1,000	1,000
	Rice	8,234	500	4,117,000	5%	410	1,190	410
Long-term	Leaf Vegetable	5,393	0	0	5%	270	1,190	270
	Fruits Vegetable	62,579	500	31,289,500	5%	3,130	1,190	1,190
	Weighted Average	35,407	1,000	35,406,500	5%	1,770	1,000	1,000

Note: a/ "Net income" is not cosidered in family labor cost.

4.7 Cash Flow Analysis

			Short-term			Mid-term			Long-term											
	1st Year	2nd Year	3rd Year	4th Year	5th Year	6th Year	7th Year	8th Year	9th Year	10th Year	11th Year	12th Year	13th Year	14th Year	15th Year	16th Year	17th Year	18th Year	19th Year	20th Year
Revenue																				
Member Fee /a	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690	536,690
Irrigation Service Fee /b	619,048	619,048	619,048	619,048	619,048	1,333,333	1,333,333	1,333,333	1,333,333	1,333,333	1,761,905	1,761,905	1,761,905	1,761,905	1,761,905	1,761,905	1,761,905	1,761,905	1,761,905	1,761,905
ISF Collection Rate	60%	60%	60%	60%	60%	70%	70%	70%	70%	70%	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%
Amount of ISF Collected	371,429	371,429	371,429	371,429	371,429	933,333	933,333	933,333	933,333	933,333	1,409,524	1,409,524	1,409,524	1,409,524	1,409,524	1,409,524	1,409,524	1,409,524	1,409,524	1,409,524
Tractor Service Fee /c	100,000	103,340	106,792	110,358	114,044	117,853	121,790	125,858	130,061	134,405	138,894	143,533	148,327	153,282	158,401	163,692	169,159	174,809	180,648	186,681
Rice Mill Service Income /d	57,700	58,664	59,643	60,639	61,652	62,682	63,728	64,793	65,875	66,975	68,093	69,230	70,387	71,562	72,757	73,972	75,207	76,463	77,740	79,039
Sub-total	1,065,819	1,070,122	1,074,553	1,079,116	1,083,815	1,650,558	1,655,541	1,660,673	1,665,959	1,671,403	2,153,201	2,158,978	2,164,928	2,171,057	2,177,372	2,183,878	2,190,580	2,197,486	2,204,602	2,211,934
Expemditure																				
Annual O&M Cost (SSP/year)																				
Personnel Expenses	732,800	745,038	757,480	770,130	782,991	796,067	809,361	822,878	836,620	850,591	864,796	879,238	893,921	908,850	924,028	939,459	955,148	971,099	987,316	1,003,804
Pump Operation	250,039	258,390	267,020	275,938	285,155	294,679	304,521	314,692	325,203	336,065	347,289	358,889	370,876	383,263	396,064	409,292	422,963	437,090	451,689	466,775
Equipment and Machinary (1% of Procurement Cost)	91,090	94,132	97,276	100,525	103,883	107,353	110,938	114,644	118,473	122,430	126,519	130,745	135,111	139,624	144,288	149,107	154,087	159,234	164,552	170,048
Maintenance Cost (0.1% of Project Cost)	181,571	184,604	187,687	190,821	194,008	197,248	200,542	203,891	207,296	210,757	214,277	217,856	221,494	225,193	228,953	232,777	236,664	240,617	244,635	248,720
Sub-total	1,255,500	1,282,164	1,309,463	1,337,415	1,366,036	1,395,346	1,425,362	1,456,104	1,487,591	1,519,843	1,552,881	1,586,727	1,621,402	1,656,930	1,693,333	1,730,635	1,768,862	1,808,039	1,848,192	1,889,348
Depreciation Cost (SSP/year)																				
Project Facility	5,629,648	5,723,663	5,819,248	5,916,429	6,015,234	6,115,688	6,217,820	6,321,658	6,427,229	6,534,564	6,643,691	6,754,641	6,867,443	6,982,130	7,098,731	7,217,280	7,337,809	7,460,350	7,584,938	7,711,606
Equipment and Machinary	626,500	636,963	647,600	658,415	669,410	680,589	691,955	703,511	715,260	727,204	739,349	751,696	764,249	777,012	789,988	803,181	816,594	830,231	844,096	858,193
Sub-total	6,256,148	6,360,625	6,466,848	6,574,844	6,684,644	6,796,277	6,909,775	7,025,169	7,142,489	7,261,768	7,383,040	7,506,337	7,631,693	7,759,142	7,888,719	8,020,461	8,154,403	8,290,581	8,429,034	8,569,799
Annual O&M + Depreciation (Equipment)	1,882,000	1,919,126	1,957,063	1,995,829	2,035,447	2,075,936	2,117,318	2,159,615	2,202,851	2,247,047	2,292,230	2,338,423	2,385,651	2,433,942	2,483,321	2,533,816	2,585,456	2,638,270	2,692,288	2,747,540
Annual O&M + Depreciation (Total)	7,511,647	7,642,789	7,776,311	7,912,259	8,050,680	8,191,624	8,335,138	8,481,273	8,630,080	8,781,611	8,935,921	9,093,064	9,253,095	9,416,071	9,582,052	9,751,096	9,923,265	10,098,620	10,277,226	10,459,146
Balance																				
Target 1: Annual O&M Cost	-189,681	-212,041	-234,909	-258,298	-282,222	255,212	230,179	204,569	178,368	151,560	600,320	572,251	543,526	514,128	484,039	453,243	421,718	389,447	356,410	322,586
Subsidy (SSP/year)	189,681	212,041	234,909	258,298	282,222	-	-	-	-	-	-		-		-	-	-	-	-	-
Subsidy(%)	15%	17%	18%	19%	21%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Target 2: Annual O&M Cost + Depreciation (Equipment)	-816,181	-849,004	-882,509	-916,713	-951,632	-425,377	-461,776	-498,942	-536,891	-575,644	-139,029	-179,445	-220,724	-262,884	-305,949	-349,938	-394,876	-440,784	-487,686	-535,606
Subsidy (SSP/year)	816,181	849,004	882,509	916,713	951,632	425,377	461,776	498,942	536,891	575,644	139,029	179,445	220,724	262,884	305,949	349,938	394,876	440,784	487,686	535,606
Subsidy(%)	43%	44%	45%	46%	47%	20%	22%	23%	24%	26%	6%	8%	9%	11%	12%	14%	15%	17%	18%	19%
Target 3: Annual O&M Cost + Depreciation (Total)	-6,445,829	-6,572,667	-6,701,757	-6,833,142	-6,966,865	-6,541,065	-6,679,596	-6,820,599	-6,964,121	-7,110,208	-6,782,720	-6,934,086	-7,088,167	-7,245,014	-7,404,680	-7,567,218	-7,732,684	-7,901,134	-8,072,624	-8,247,213
Subsidy (SSP/year)	6,445,829	6,572,667	6,701,757	6,833,142	6,966,865	6,541,065	6,679,596	6,820,599	6,964,121	7,110,208	6,782,720	6,934,086	7,088,167	7,245,014	7,404,680	7,567,218	7,732,684	7,901,134	8,072,624	8,247,213
Subsidy(%)	86%	86%	86%	86%	87%	80%	80%	80%	81%	81%	76%	76%	77%	77%	77%	78%	78%	78%	79%	79%

Note: a/Member fee (fixed charge per year) is estimated by dividing procurment cost of equipment by number of lot (=1 feddan). In Wau, milling facility is excluded from the procurment cost.

b/Irrigation service fee (ISF) is estimated by dividing total water consumption volume by each crops' water consumption volume in a season.

c/Unit price of tractor service fee is SSP200/feddan, quoted from Socio-economic Survey conducted by IDMP-TT in 2015.

d/Milling fee (SSP0.75/kg) is estimeted to cover depreciation cost of milling equipment, and each household keep 187kg of paddy for home consumption which is target of the service.

ANN9-1: APP4/W-7

APPENDIX - 5

ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

Evaluation Sheet for Alternatives

<u>Project Title: Irrigation Development in Wau</u>

Evaluation Method

Evaluation method	Evaluation criteria: 5: Exceptionally suitable, 4: Suitable, 3: Negligible/ Neutral								
	2: Not suggestible, 1: Suggest avoiding								
	Evaluation items								
	õPollutionö includes:	õAir Pollution ö, õWater Pollution ö, õWasteö, õSoil/Sediment							
		Contamination ö,							
		õNoise and Vibrationö, õOdourö, õGlobal Warmingö							
	õBiodiversityö includes:	õProtected Areasö õEcosystemö							
	õNature, disasters ö includes: õHydrologyö, õTopography and Geology ö, õSubsidence / Erc								
		, õLandscapeö							
	õLand occupies resettlement ö includes:	õResettlementö. õLand Useö							
	õSocial conflictö includes:	õVulnerable Groupsö, õWater Use / Rightsö							
	õLiving conditionö includes:	õLiving and Livelihood ö, õLocal Economy ö, õHistorical / Cultural							
		Heritageö							
		õSocial Infrastructure / Services ö, õInfectious Diseases ö							
	õEconomy, development ö means: contr	ibution to economic improvement in the RSS							
	õConsistencyö means: consistency / ha	monization with the RSS policies							

Project Summary

	Alternative A	Alternative B	Zero option
Project Summary	Combination of dam and pump irrigation	Pump irrigation with whole-year operation No proje	et

Valuation Items		Alternative A	Alternative B	Zero option
Natural	Average of a), b), c) (1)	2.7	2.7	3.0
Environment	a) Pollution 333			
Liiviioiinteitt	b) Ecosystem 2 2 3			
	c) Nature, disasters 3 3 3			
	Reason	Though the project site is not located adjacent protected areas, wildlife are possibly living in the site.	Disturbance on ecosystem will be smaller than alternative A because of no dam site.	
Social	Average of a), b), c) (2)	2.3	2.7	3.0
Environment	a) Land occupies, resettlement	233		
	b) Social conflict	223		
	c) Living condition	333		
	Reason	Since dam site occupies larger land than alternative B, resettlement, e.g. may become more considerable,		
Economy,	Average of a), b), c) (3)	4.0	4.0	2.5
development	a) Economy, development	442		
_	b) Consistency	443		
	Reason	The project can contribute to improvement of agricultural production, and enhance food security in the RSS.	Same as left	

Evaluation

Results

	Alternative A	Alternative B	Zero option
Total score $(1) + (2) + (3)$	9.0 9.4 8.5		
Ranking	213		
Overall	Although land occupation generates considerable impencouraging food security can provide much benefit.	pacts such as resettlement; economic improvement thr Existence of dam site may give disadvantage on land	ough occupation.

Preliminary Scoping Check Sheet

Project Title: Irrigation Development in Wau

Project Activity: Pre-construction

Land preparation

E	Environmental Items	Duration	Extent b)	Intensity	Cumulative	Reversible	Total Score (T) a)+b)+c)+d)+e)
		Short: 1	Limited: 1	Small/Negligible: 1	Non-Cumulative: 1	Reversible: 1	/ /
		Medium: 2 Long: 3	Medium: 2 Wide: 3	Medium: 2 Big: 3	Cumulative: 3	Irreversible: 3	Rank
		Indication:	no: no impac	t, +: positive -: 1	negative	· · ·	
		Rough indi	cation for ra	experiences	is rough value. Y / knowledge will l	our judgement be reflected to the	based on your ne ranking.
		-15 -	12 -11	-7 -6	+6 +7	+11	+12 +15
		-A	-E	B or -C	D or ±C	+B or +C	+A
	Air Pollution	-1	-1	-1	-1	-1	-5/D
	Water Pollution	-1	-1	-1	-1	-1	-5/-C
tion	Waste	-1	-2	-1	-1	-1	-6/-C
Pollu	Soil/Sediment Contamination	no	no	no	no	no	D
	Noise and Vibration	-1	-1	-1	-1	-1	-5/-C
	Odour	no	no	no	no	no	D
	Protected Areas	no	no	no	no	no	D
ent	Ecosystem	-1	-1	-2	-1	-1	-6/-B
onme	Hydrology	-1	-1	-1	-1	-1	-5/-C
l Envir	Topography and Geology	no	no	no	no	no	D
atura	Subsidence / Erosion	-1	-1	-1	-1	-1	-5/-C
ž	Global Warming	no	no	no	no	no	D
	Landscape	no	no	no	no	no	D
	Resettlement	-3	-2	-2	-1	-3	-11/-B
	Living and Livelihood	-3	-1	-2	-1	-1	-8/-B
	Local Economy	+1	+1	+1	+1	+1	+5/D
nment	Historical / Cultural Heritage	no	no	no	no	no	D
iviro	Land Use	-3	-1	-2	-1	-3	-10/-B
al Er	Vulnerable Groups	no	no	no	no	no	D
Soci	Local Conflict	-2	-1	-2	-1	-1	-7/-C
	Water Use / Right	-2	-2	-2	-1	-1	-8/-B
	Social Infrastructure / Services	-1	-1	-1	-1	-1	-5/-C
	Infectious Diseases	no	no	no	no	no	D
Ren	nark	Land prepara	ation / block r	nay affect community	/ wildlife.		
Project Title: Irrigation Development in Wau

Project Activity: Construction

Construction of dam site

F	Environmental Items	Duration	Extent b)	Intensity	Cumulative	Reversible	Total Score (T) a)+b)+c)+d)+e)			
		Short: 1	Limited: 1	Small/Negligible: 1	Non-Cumulative: 1	Reversible: 1	/			
		Medium: 2 Long: 3	Medium: 2 Wide: 3	Medium: 2 Big: 3	Cumulative: 3	Irreversible: 3	Rank			
		Indication:	no: no impac	t, +: positive -: 1	negative					
		Rough ind	ication for r	anking: The score experiences	is rough value. / knowledge will l	Your judgement be reflected to the	t based on your the ranking.			
		-15	-12 -11	-7 -6	+6 +7	+11	+12 +15			
		-A	-	B or -C	D or ±C	+B or +C	+A			
	Air Pollution	-1	-1	-1	-1	-1	-5/D			
	Water Pollution	-1	-2	-1	-1	-1	-6/-C			
ition	Waste	-2	-1	-2	-1	-2	-7/-B			
Pollu	Soil/Sediment Contamination	no	no	No	no	no	/D			
	Noise and Vibration	-2	-2	-1	-1	-1	-7/-B			
	Odour	no	no	no	no	no	D			
	Protected Areas	no	no	no	no	no	D			
ent	Ecosystem	-3	-2	-2	-1	-3	-11/-B			
onme	Hydrology	-3	-2	-2	-1	-3	-11/-B			
l Envir	Topography and Geology	-3	-1	-1	-1	-3	-9/-C			
atura	Subsidence / Erosion	no	no	no	no	no	D			
Z	Global Warming	no	no	no	no	no	D			
	Landscape	-3	-1	-1	-1 -1		-9/-C			
	Resettlement	-1	-1	-1	-1	-1	-5/-C			
	Living and Livelihood	-1	-1	-1	-1	-1	-5/-C			
	Local Economy	+2	+2	+1	+3	+1	+9/+B			
nment	Historical / Cultural Heritage	no	no	no	no	no	D			
iviro	Land Use	no	no	no	no	no	D			
al Er	Vulnerable Groups	no	no	no	no	no	D			
Soci	Local Conflict	-1	-1	-1	-1	-1	-5/-C			
	Water Use / Right	-1	-1	-1	-1	-1	-5/-C			
	Social Infrastructure / Services	no	no	no	no	no	D			
	Infectious Diseases	no	no	no	no	no	D			
Ren	nark	Existence of dam site may disturb habitats and watering/feeding area for wildlife. Construction activities will raise job opportunity.								

Project Title: Irrigation Development in Wau

Project Activity: Construction

Construction of pump station

E	Environmental Items	Duration a)Extent b)Short: 1Limited: 1 Medium: 2		Intensity c) Small/Negligible: 1 Medium: 2	Cumulative d) Non-Cumulative: 1	Reversible e) Reversible: 1	Total Score (T) a)+b)+c)+d)+e) / Rank
		Long: 3	Wide: 3	Big: 3	Cumulative: 3	Irreversible: 3	
		Rough indi	ication for r	anking: The score experiences	is rough value. / knowledge will	Your judgement be reflected to the	based on your he ranking.
		-15 -A	-12 -11	-7 -6	+6 +7	+11 +B or +C	+12 +15 +A
	Air Pollution	-1	-1	-1	-1	-1	-5/-C
	Water Pollution	-1	-1	-1	-1	-1	-5/-C
on	Waste	-1	-1	-1	-1	-1	-5/-C
Polluti	Soil/Sediment Contamination	no	no	no	no	no	D
	Noise and Vibration	-1	-1	-1	-1	-1	-5/-C
	Odour	no	no	no	no	no	D
	Protected Areas	no	no	no	no	no	D
nt	Ecosystem	-1	-1	-1	-1	-1	-5/-C
onme	Hydrology	no	no	no	no	no	D
l Envire	Topography and Geology	no	no	no	no	no	D
atural	Subsidence / Erosion	no	no	no	no	no	D
, Ň	Global Warming	no	no	no	no	no	D
	Landscape	no	no	no	no	no	D
	Resettlement	-1	-1	-1	-1	-1	-5/-C
	Living and Livelihood	no	no	no	no	no	D
	Local Economy	+1	+1	+1	+1	+1	+5/+C
nment	Historical / Cultural Heritage	no	no	no	no	no	D
ıviro	Land Use	no	no	no	no	no	D
al Ei	Vulnerable Groups	no	no	no	no	no	D
Soci	Local Conflict	no	no	no	no	no	D
	Water Use / Right	-1	-1	-1	-1	-1	-5/-C
	Social Infrastructure / Services	-1	-1	-1	-1	-1	-5/-C
Infectious Diseases		no	no	no	no	no	D
Remark							

Project Title: Irrigation Development in Wau

Project Activity: Construction

Installation of canal

Environmental Items		Duration	Extent	Intensity	Cumulative	Reversible	Total Score (T) a)+b)+c)+d)+e)
		Short: 1	Limited: 1	Small/Negligible: 1	Non-Cumulative: 1	Reversible: 1	/
		Medium: 2 Long: 3	Medium: 2 Wide: 3	Medium: 2 Big: 3	Cumulative: 3	Irreversible: 3	Rank
		Indication:	no: no impac	+: positive $-:$	negative	interensione. 5	
		Rough ind	ication for r	anking: The score experiences	is rough value. Y / knowledge will l	our judgement be reflected to the	based on your ne ranking.
		-15 -	-12 -11	-7 -6	+6 +7	+11	+12 +15
		-A	-E	B or -C I	O or ±C	+B or +C	+A
	Air Pollution	-1	-1	-1	-1	-1	-5/-C
	Water Pollution	no	no	no	no	no	D
tion	Waste	-1	-1	-1	-1	-1	-5/-C
Pollu	Soil/Sediment Contamination	no	no	no	no	no	D
	Noise and Vibration	-1	-1	-1	-1	-1	-5/-C
	Odour	no	no	no	no	no	D
	Protected Areas	no	no	no	no	no	D
nt	Ecosystem	-1	-1	-2	-1	-3	-8/-B
onme	Hydrology	no	no	no	no	no	D
Enviro	Topography and Geology	no	no	no	no	no	D
tural	Subsidence / Erosion	no	no	no	no	no	D
Na	Global Warming	no	no	no	no	no	D
	Landscape	-1	-1	-1	-1	-1	-5/-C
	Resettlement	-1	-1	-1	-1	-1	-5/-C
	Living and Livelihood	+3	+1	+2	+1	+3	+10/+B
	Local Economy	+1	+1	+1	+1	+1	+5/+C
nment	Historical / Cultural Heritage	no	no	no	no	no	D
iviro	Land Use	no	no	no	no	no	D
al Er	Vulnerable Groups	no	no	no	no	no	D
Soci	Local Conflict	no	no	no	no	no	D
	Water Use / Right	+1	+1	+1	+1	+1	+5/+C
	Social Infrastructure / Services	-1	-1	-1	-1	-1	-5/-C
Infectious Diseases		no	no	no	no	no	D
Ren	nark	Canal align While, it is a	nent may cut v expected to rai	wildlife corridors. se job opportunity.			

Project Title: Irrigation Development in Wau

Project Activity: Construction

Land clearance and leveling in command area

E	Environmental Items	Duration	Extent	Intensity	Cumulative	Reversible	Total Score (T)		
		a) Short: 1	Limited: 1	C) Small/Negligible: 1	0) Non-Cumulative: 1	e) Reversible: 1	a)+b)+c)+d)+e) /		
		Medium: 2	Medium: 2	Medium: 2	~		Rank		
		Long: 3 Indication:	Wide: 3	Big: 3	Cumulative: 3	Irreversible: 3			
		Rough ind	ication for ra	anking: The score i	s rough value. Yo	our judgement	based on your		
		e		experiences	/ knowledge will l	be reflected to	the ranking.		
		-15 -	12 -11	-7 -6	+6 +7	+11	+12 +15		
		-A	-B	or -C D	or ±C	+B or +C	+A		
	Air Pollution	-1	-1	-1	-1	-1	-5/D		
	Water Pollution	-1	-1	-2	-1	-1	-6/-C		
ution	Waste	-1	-1	-2	-1	-1	-6/-C		
Pollu	Soil/Sediment Contamination	-1	-1	-1	-1	-1	-5/-C		
	Noise and Vibration	-1	-1	-1	-1	-1	-5/D		
	Odour	no	no	no	no	no	D		
	Protected Areas	no	no	no	no	no	D		
ent	Ecosystem	-3	-1	-2	-1	-3	-10/-B		
onme	Hydrology	-1	-1	-1	-1	-1	-5/-C		
Envir	Topography and Geology	no	no	no	no	no	D		
atural	Subsidence / Erosion	-3	-2	-2	-1	-3	-11/-B		
Ž	Global Warming	no	no	no	no	no	D		
	Landscape	-1	-1	-1	-1	-1	-5/-C		
	Resettlement	-3	-1	-1	-1	-1	-7/-C		
	Living and Livelihood	+1	+1	+1	+1	+1	+5/+C		
	Local Economy	+2	+1	+1	+1	+1	+6/+B		
nment	Historical / Cultural Heritage	no	no	no	no	no	D		
iviro	Land Use	-1	-1	-1	-1	-3	-7/-C		
al Ei	Vulnerable Groups	no	no	no	no	no	D		
Soci	Local Conflict	-2	-1	-1	-1	-1	-6/-B		
	Water Use / Right	-3	-1	-2	-1	-1	-8/-C		
	Social Infrastructure / Services	no	no	no	no	no	D		
	Infectious Diseases	no	no	no	no	no	D		
Ren	nark	Land occupation in the dry river bed may disturb watering/feeding. Change of corridor may change river flow.							

Project Title: Irrigation Development in Wau

Project Activity: Operation and Maintenance

Operation of dam

Environmental Items		Duration	Extent	Intensity	Cumulative	Reversible	Total Score (T)		
		a) Short: 1	Limited: 1	C) Small/Negligible: 1	Non-Cumulative: 1	Reversible: 1	a)+b)+c)+d)+e) /		
		Medium: 2 Long: 3	Medium: 2 Wide: 3	Medium: 2 Big: 3	Cumulative: 3	Irreversible: 3	Rank		
		Indication:	no: no impac	t, +: positive -:	negative	ineversiole. 5			
		Rough indi	cation for ra	inking: The score i	s rough value. Yo	our judgement	based on your		
		15 1	0 11	experiences	/ knowledge will		the ranking.		
		-15 -1 -A	2 -11 -B	- / -6 or -C D	+6 +7 or $\pm C$	+11 +B or +C	+12 +15 +A		
	Air Pollution	no	no	no no no		no	D		
	Water Pollution	no	no	no	no	no	D		
ion	Waste	no	no	no	no	no	D		
Polluti	Soil/Sediment Contamination	no	no	no	no	no	D		
	Noise and Vibration	no	no	no	no	no	D		
	Odour	no	no	no	no	no	D		
	Protected Areas	no	no	no	no	no	D		
ant	Ecosystem	+3	+1	+1	+1	+3	+7/+B		
onme	Hydrology	+3	+2	+2	+1	+3	+11/+B		
l Envir	Topography and Geology	+3	+2	+2	+1	+3	+11/+B		
atura	Subsidence / Erosion	no	no	no	no	no	D		
ž	Global Warming	no	no	no	no	no	D		
	Landscape	+3	+2	+2	+2 +1 +3		+11/+B		
	Resettlement	no	no	no	no	no	D		
	Living and Livelihood	+3	+1	+2	+3	+3	+12/+B		
	Local Economy	no	no	no	no	no	D		
nment	Historical / Cultural Heritage	no	no	no	no	no	D		
iviro	Land Use	no	no	no	no	no	D		
al Er	Vulnerable Groups	no	no	no	no	no	D		
Soci	Local Conflict	no	no	no	no	no	D		
	Water Use / Right	-1	-1	-1	-1	-1	-5/-C		
	Social Infrastructure / Services	no	no	no	no no no		D		
	Infectious Diseases	no	no	no	no	no	D		
Ren	nark	Existing of new water area can create new aquatic ecosystem. Water body and fishery condition can improve local living condition.							

Project Title: Irrigation Development in Wau

Project Activity: Operation and Maintenance

Operation of pump

Environmental Items		Duration	Extent	Intensity	Cumulative	Reversible	Total Score (T)
		a) Short: 1	b) Limited: 1	C) Small/Negligible: 1	d) Non-Cumulative: 1	e) Reversible: 1	a)+b)+c)+d)+e) /
		Medium: 2	Medium: 2	Medium: 2	Non-Cumulative. 1	Reversible. 1	Rank
		Long: 3	Wide: 3	Big: 3	Cumulative: 3	Irreversible: 3	
		Indication:	no: no impac	t, +: positive -: i	negative		
		Rough indi	cation for ra	inking: The score is	s rough value. Yo / knowledge will l	be reflected to	based on your the ranking
		17 1	0 11	experiences	Rilowiedge will		
		-15 -1 -A	2 -11 -B	-/ -6	+6 +/	+11 +B or +C	+12 +15 + 4
	[123
	Air Pollution	-1	-1	-2	-1	-1	-6/-C
	Water Pollution	-1	-1	-2	-1	-1	-5/-C
tion	Waste	no	no	no	no	no	D
Pollu	Soil/Sediment Contamination	-1	-1	-2	-1	-1	-5/C
	Noise and Vibration	-1	-1	-2	-1	-1	-6/-C
	Odour	no	no	no	no	no	D
	Protected Areas	no	no	no	no	no	D
ant	Ecosystem	no	no	no	no	no	D
onme	Hydrology	-2	-2	-1	-1	-3	-9/-C
l Envin	Topography and Geology	-1	-1	-1	-1	-1	-5/-C
atura	Subsidence / Erosion	no	no	no	no	no	D
Ž	Global Warming	-1	-1	-1	-1	-1	-5/-C
	Landscape	no	no	no	no	no	D
	Resettlement	no	no	no	no	no	D
	Living and Livelihood	no	no	no	no	no	D
	Local Economy	no	no	no	no	no	D
nment	Historical / Cultural Heritage	no	no	no	no	no	D
nviro	Land Use	no	no	no	no	no	D
al E	Vulnerable Groups	no	no	no	no	no	D
Soci	Local Conflict	no	no	no	no	no	D
	Water Use / Right	no	no	no	no	no	D
	Social Infrastructure / Services	no	no	no	no	no	D
	Infectious Diseases	no	no	no	no	no	D
Ren	nark						

Project Title: Irrigation Development in Wau

Project Activity: Operation and Maintenance

Farming

E	Environmental Items	Duration Extent		Intensity	Cumulative	Reversible	Total Score (T) a)+b)+c)+d)+e)
		Short: 1	Limited: 1	Small/Negligible: 1	Non-Cumulative: 1	Reversible: 1	/ /
		Medium: 2 Long: 3	Medium: 2 Wide: 3	Medium: 2 Big: 3	Cumulative: 3	Irreversible: 3	Rank
		Indication:	no: no impac	t, +: positive -: i	negative	our indoomont	based on your
		Kougii illu		experiences	/ knowledge will b	be reflected to the	e ranking.
		-15 -	12 -11	-7 -6	+6 +7	+11	+12 +15
		-A	<u></u>	or -C L	O or ±C	+B or +C	+A
	Air Pollution	no	no	no	no	no	D
	Water Pollution	-2	-2	-2	-1	-1	-8/-B
ation	Waste	-1	-1	-1	-1	-1	-5/-C
Pollı	Soil/Sediment Contamination	-1	-1	-1	-1	-1	-5/-C
	Noise and Vibration	no	no	no	no	no	D
	Odour	no	no	no	no	no	D
	Protected Areas	no	no	no	no	no	D
ant	Ecosystem	+2	+1	+1	+1	+3	+8/+C
onme	Hydrology	no	no	no	no	no	D
Envir	Topography and Geology	no	no	no	no	no	D
utural	Subsidence / Erosion	no	no	no	no	no	D
Nŝ	Global Warming	no	no	no	no	no	D
	Landscape	no	no	no	no	no	D
	Resettlement	no	no	no	no	no	D
	Living and Livelihood	+3	+1	+2	+1	+3	+10/+B
	Local Economy	+3	+2	+3	+3	+3	+14/+A
nment	Historical / Cultural Heritage	no	no	no	no	no	D
iviro	Land Use	-3	-2	-1	-1	-1	-8/-B
al Er	Vulnerable Groups	-1	-1	-1	-1	-1	-5/-C
Soci	Local Conflict	-2	-1	-2	-3	-1	-9/-B
	Water Use / Right	-2	-1	-2	-1	-1	-7/-C
	Social Infrastructure / Services	no	no	no	no	no	D
	Infectious Diseases	-1	-1	-1	-1	-1	-5/-C
Ren	nark	Agricultural Water / soil	production ca pollution may	n contribute to econo occur if pesticide, fer	mic improvement. tilize is not properly	y used.	

Scoping Matrix

Project Title: Irrigation Development in Wau

Enviror	Environmental Parameters		nstructio	Construction			Operation & Maintenance										
		Land preparation	-	Construction of dam site	Construction of pump station	Installation of canals	Land clearance and levelling, in command area						Operation of dam including pump station	Operation of pump	Farming		Overa 11
	Remark	positive A: Sign	e: +, ne nificant i	gative: - mpact is	s expecte	d, B: N	Aoderate	impact	is expect	ed, C:	Level of	impact	unknow	n, D: N	lo / negl	igible im	pact is
	Air Pollution	D	•	D	-C	-C	D						D	-C	D		-C
	Water Pollution	-C		-C	-C	D	-C						D	-C	-B		-C
tion	Waste	-C		-B	-C	-C	-C						D	D	-C		-C
Pollu	Soil/Sediment Contamination	D		D	D	D	-C						D	-C	-C		-C
	Noise and Vibration	-C		-B	-C	-C	D						D	-C	D		-C
	Odour	D		D	D	D	D						D	D	D		D
nt	Protected Areas	D		D	D	D	D						D	D	D		D
Natural Environment	Ecosystem	-B		-B	-C	-B	-B						+B	D	+C		-B
	Hydrology	-C		-B	D	D	-C						+B	-C	D		-C
	Topography and Geology	D		-C	D	D	D						+B	-C	D		+C

Enviror	Environmental Parameters Pre-construction				Construction							Operation & Maintenance					
		and preparation	1	onstruction of dam site	onstruction of pump station	sstallation of canals	and clearance and levelling, in ommand area						peration of dam including pump ation	peration of pump	arming		Overa 11
	Remark	positive A: Sign	e: +, ne nificant i	gative: - mpact is	expecte	d, B: N	/Ioderate	impact	is expect	ed, C:	Level of	f impact	unknow	n, D: N	lo / negl	igible im	pact is
	Subsidence / Erosion	-C		D	D	D	-B						D	D	D		-C
	Global Warming	D		D	D	D	D						D	-C	D		D
	Landscape	D		-C	D	-C	-C						+B	D	D		-C

Envir	onmental Parameters	Pre-con	structio				С	onstructio	on				Ope	eration &	Mainten	ance	
		Land preparation	1	Construction of dam site	Construction of pump station	Installation of canals	Land clearance and levelling, in command area						Operation of dam including pump station	Operation of pump	Farming		Overa 11
	Remark	positive A: Sign	e: +, ne nificant i	gative: - mpact is	expecte	d, B: N	Moderate	impact i	is expect	ed, C:	Level of	impact	unknow	n, D: N	lo / negl	igible in	npact is
	Resettlement	-B	-	-C	-C	-C	-C						D	D	D		-B
	Living and Livelihood	-B		-C	D	+B	+C						+B	D	+B		+B
	Local Economy	D		+B	+C	+C	+B						D	D	+A		+A
nent	Historical / Cultural Heritage	D		D	D	D	D						D	D	D		D
'iron	Land Use	-B		D	D	D	-C						D	D	-B		-B
l Env	Vulnerable Groups	D		D	D	D	D						D	D	-C		D
Socia	Local Conflict	-C		-C	D	D	-B						D	D	-B		-B
Sc	Water Use / Right	-B		-C	-C	+C	-C						-C	D	-C		-C
	Social Infrastructure / Services	-C		D	-C	-C	D						D	D	D		-C
	Infectious Diseases	D		D	D	D	D						D	D	-C		D

Outline of Scoping Results

Project Title: Irrigation Development in Wau

Type of Impact and	Score	Outline of Impact	Expected Mitigations	Study Items for EIA	Recommended Method
(1) Pollution				·	
Air pollution	-C	 Exhaust gas generated by construction works and operation of pump 	 Use low-emission equipment with proper maintenance 	 Air quality conditions Construction plan, pump operation plan 	 Check of quality of construction equipment and pump in terms of prevention from exhaust gas Site survey on location of possible sensitive zones against air pollution such as residential area, school zone, etc.
Water pollution, Soil / sediment contamination	-C	 Turbid water from construction site Oil leakage Pesticide and fertilizers in farming 	 Proper temporary drainage Storage of used oil Proper use of pesticide and fertilizers 	 Water quality conditions arming plan in terms of use of pesticide, fertilizer, etc. 	 Measure of current water quality Examine of possible pollution sources by the project
Waste	-C	Construction wasteAgricultural waste	 Proper use of waste disposal site Proper waste storage Waste recycle, reuse and reduction 	Disposal siteWaste type	 Investigation of possible disposal site for construction waste Estimation approximate waste volume
Noise	-C	 Construction noise by equipment, truck Noise form generator during pump operation 	 Noise barrio Select low-noise generator, equipment, truck, etc. Adjust construction time avoiding night time 	 Noise measurement Sensitive zone 	 Check of quality of construction equipment and pump in terms of prevention from noise / vibration Site survey on possible sensitive zones against noise / vibration such as residential area, school zone, etc.
(2) Natural Environm	ent			•	
Ecosystem	-B	 Possible habitats, feeding / nurturing area for wildlife Secondary forest, plantation 	 Canal arraignment avoiding wildlife corridor 	 Location of wildlife habitats, feeding / nurturing area Forest, plantation 	 Interview with local communities Direct observation on wildlife habitats, migration, etc. Trap survey

Type of Impact and Score		Outline of Impact	Expected Mitigations	Study Items for EIA	Recommended Method
Hydrology, Floods / erosion	-C	 Obstruction of river water flow by command area 	Proper design of command areaFlood prevention	River water flowPossible flood prone area	 Historical records of disasters Measure of river flow Simulation on change of river flow
Geology	+C	 Possible encouragement on underground water reserve by dam 	- Monitoring of well water	 Underground water monitoring 	- Underground water survey
Land scape	-C	- Change of topographic feature	- Encourage sightseeing	 Public consultation, interview 	 Interview with local people, e.g. about possible demand on sightseeing
(3) Social Environmen	nt				
Resettlement	-В	 Land occupation Several houses located in/near dam site 	- Agreement on resettlement with proper compensation plan	 Land use Public consultation Resettlement plan 	 Survey on land use, land status, land ownership, etc. Estimation of land and asset price Public consultation for consensus building
Living and livelihood	+B	 Land occupation Job / business opportunity be construction works, farming 	 Public announcement, consensus building Priority recruitment to local community 	Community and local job profilePublic consultation	 Investigation of community living condition and livelihood Interview with communities
Local economy	+A	 Job / business opportunity be construction works, farming 	 Priority procurement from local Proper farming plan to increase agricultural production 	- Business profile in local	 Investigation of local economic profile Investigation of future plans, developments, investments
Land use	-B	 Land occupancy Obstruction of existing business 	 Consensus building Encourage alternative improvement 	 Existing and future land use plan Public consultation 	 Survey on land use, land status, land ownership Investigation of land use plan Public consultation
Local Conflict	-B	- Gap of benefits among communities	 Consensus building Income recovery plan Proper compensation 	 Public consultation Compensation plan 	 Investigation of job profile, income level and sources Public consultation
Water use / right	-C	 Change of water resource condition especially in command area 	Consensus buildingProper rules on fair water use	 Public consultation Legal status on water use / right 	 Investigation of water use / right Public consultation

Type of Impact and Score		Outline of Impact	Expected Mitigations	Study Items for EIA	Recommended Method
Social Infrastructure / Services	-C	 School near dam site Water supply facility in command area Scattered grave yards in the project site 	 Proper design avoiding those facilities, relocation if possible and necessary 	Land useMapping	 Site survey on location of social infrastructures Interview with local communities, etc.

Irrigation Development Master Plan (IDMP)

Initial Environmental Examination Survey Wau Rice Scheme

Western Bahr el Ghazal State

Field report

June 2015

Contents:

- 1. Introduction
- 2. Objectives
- 3. Environmental related issues
- 3.1. Wildlife
- 3.2. Forestry
- 3.3. Mining
- 3.4. Land evaluation

4. Communities living in project areas

- 4.1. Kuanya community
- 4.2. Eastern Bank Community
- 4.3. Koum Community
- 5. Annexes
- 5.1. Meeting memo
- 5.2. List of people met
- 5.3. Activities schedule
- 5.4. Type of wildlife animal inhabitant in western Bhar el Ghazal state, Listed by Office of wildlife services in Wau :
- 5.5. Photos

1. Introduction

It is realized that the irrigation development creates a risk on environmental and social condition, either negative or positive impacts. In order to overcome such impacts, the alternatives must be examined in order to avoid or minimize adverse impacts and to choose better project options in terms of environmental and social considerations. In the examination of measures, priority is to be given to avoidance of environmental impacts; when this is not possible, minimization and reduction of impacts must be considered next. Compensation measures must be examined only when impacts cannot be avoided by any aforementioned measures. The initial environmental examination (IEE) is to be applied to all selected priority projects, during IDMP studies.

2. Objectives

The objectives of the IEE

- 1. To identify the environmental condition in the pilot project site proposed under the prefeasibility study (Jebel Lado, Wau and Rejaf East)
- 2. To preliminary assess the environmental impacts likely caused by the proposed plan, and propose an environmental impact assessment study which is legally required under the RSS.
- 3. To test the Guideline for Environmental and Social Considerations for Irrigation Development (ESCID Guideline) for reviewing and finalizing.

3. Environmental related issues

3.1. Wildlife

The state office for wildlife service provided the team vital information about wildlife inhabitant in the project area. During interview, the director of wildlife service deliberated different animal spices living in the area in past, but they migrated to other the area due to insecurity and human activities such as forestry cutting and grass burning in the area, those animal such as Dithid, Elephants, Greif, white rhino and buffalo migrated area to the North West Namtina area.

In river, the project will affect Hoopoes (Fras el bahr) which live in the flood plain for feeding. Their territory is in distance of around 1,000m. The islands in rivers are also used by some animal such as Crocodile for putting eggs.

Also animals in the area are Ghazal, Zioef, Morfen, Namir, Monkey observed. Brds, Abu Markob, also live in the area; they migrate between the project area and southern parks and Nimatina Park. Most of the animals are watering in Rivers Jur, Sue and Bussari, also use water in some deeper reach of small streams and ponds. Most of grass-eating animals are grassing in bushes and river flood area.

Illegal hunting and funds are main constrains facing wildlife services office to protect the animals in the area

3.2. Forestry

During meeting with director of forestry in Ministry of Agriculture and forestry, he explained that the reserved area for forestry was along the river bussari. The office stops plantation of trees due to extension of Wau town and financial limitation.

Most of the wild fruit trees were cut out for construction of house / road, making charcoal and fire wood. The wild fruit trees in the area are Lulu, Kurnyonk, Naback, Delib, Laluob, and Mongo. Other important trees like Mohgani, Tek Sahab and Durot (use for dokan) are also found.

Reserved forests near the project area are Garenti, Nai Akok (1931), Nahamtina (1947) Kur Ganda and Tonj one.

3.3. Mining

The director of mining in Ministry of finance and industry explained that there are few industries in state, one factory is state-company for ice production, it is located on the left bank of river Jur, and also there is one state water factory operated.

The bricks makers are found along the river Bussuri, Sue and Jur. The directorate of mining allocates places to bricks makers, bricks makers are licensed for only one year (5 to 6 months in dry season). Around 70 people are registered in the project area, one lot for one maker is 30 x 30 m, license fee is 300 ssp per one year.

There four areas along Jur river are identified for bricks making area namely Eastern banks, Garanti, Molem and Madan Abu Ajajach

The price of brick making 1,000 bricks costs around 50 ssp, while one person can make between 50,000 to 180,000 bricks in one season, so that the bricks maker can get benefit of 50,000 to 150,000 ssp per year.

The sand and clay mining for construction materials is approved by local authority while aggregate is approved by directorate of IM. Now those are illegally operated in the command area even though the commissioner of Wau has given an order in 2013 to stop brick making and sand mining in the area.

3.4. Land evaluation

Base on land law, the land belong to local community as an owner and it management by government. The Land is evaluated base on classes such as 3rd class, 2nd class, 1st class and addition to investment land and agricultural land

3rd class land/plot evaluation:

- Land charge fees = 350 ssp
- Land form = 50 ssp
- Survey fee = 50 ssp
- Administration fee = 50 ssp
- Sketch Drawing = 60 ssp
- Total = 560 ssp

2nd class/plot evaluation:

- Land charge fees = 350 ssp
- Land form = 50 ssp
- Survey fee = 50 ssp
- Administration fee = 20 ssp
- Sketch Drawing = 20 ssp
- Total = 810 ssp

1st class/plot evaluation:

- Land charge fees = 800 ssp
- Land form = 150 ssp

- Survey fee = 150 ssp
- Administration fee = 40 ssp
- Sketch Drawing = 20 ssp
- Total = 1060 ssp

Investment land inside Wau city council area (green bill)

- -1m2 = 125 ssp
- Land size is around 2,500 m2

Investment land outside Wau city council area

- 1m2 is between 5 to 10 ssp

Requirements for investment land

- Nationality
- Type of investment
- Location
- Investment capital
- Environmental grantee for any impact occur

Land evaluation for bank loan:

- Free land or open land in 3rd class 50,000 to 60,000 ssp
- Land with buildings is 100,000 to 500,000 ssp

Land investment in village area

- Is under county authority
- Wau city radius is around 7 to 8 km
- Directorate of land has staff at county level

Town planning

- Base on land community request
- Base on number of applications submitted to director of land

Agricultural land

- Application to ministry of agriculture and forestry
- Land confirm from local community
- Agriculture land list for 1 feddan is 500 ssp for around 2 to 10 years

Plans / projects in / around the project site:

- Oil station
- Prison mongo trees
- Investment land for hotels
- Water treatment plant
- Water distribution pipeline
- Football stadium for FIFA

Flood:

- In 1970s big flood killed some people and destroyed local houses in Wau town

4. Communities living in project areas

4.1. Kuanya community

The community are living within dam side and surrounding, the number of people living in the area are around 3,000 persons and number of household member per house are between 5 to 11 people. The village was established long time ago since war between community of Kuanya and Bongo community in warrap state, around 6 generation Kuanya community chief attended

They are coming from Nile River following the rivers course and we call Jur Chol (in Dinka language) because during their migration they spent the whole day in one place and at night they moved to other place. The land is belong to government and is responsibility of community to protect land also the land is manage by leaders of community

No graves yard in the area, the people dig graves for die body of their relatives at their homes; there is no clinic nor health centre, but schools is in project area

The community has exercised in some businesses such as farming and sale crops, charcoal, woods and also some small shop for sale oil, salt and sugar etc. also community makes some tools like maloda, Harba using steels.

Fishermen do fishing in rivers Sue, Jur and along the Kuanya stream (dam site). The Kinds of fishes are: Quth, Yath, Bolta, Rial, Auar, Lik, etc. Also it was found Gormod, bulta in stream (dam site), Rou, Janang, Aganang (Warol) and Granti.

The people do hunting in bush / forest around dam site and along the river site. They use rope and knife, and some people may use gun.

The kinds of wildlife animal hunted in the area are Dideth, Gazala, (Loij), etc.

There no flood in area but Kuanya stream received water from Jur River during high flood time and water flow back to high land

The Kuayna community people believe in some animal and trees, also there are wild fruits trees in area use as food during food shortage time

4.2. Eastern Bank Community :

The number of people living in community is estimated around 7,500 persons based on referendum election, but new it may reach to 11,000. Number of family member is 5 to 9 people in one house.

Main businesses activities in the area are farming and sale agricultural products, fishing (fishermen can get 150 ssp a day) and Sale tea, food and alcohols and Sale smoking wood. Those are mainly taken by women. Some people sale grass, fire wood, house wood and charcoals, also a few people are working in bricks making,

Fish the fishermen catching in river Jur and Kinds are Ator, Ngok, Lak, Kawara, Atiek, Aluei, Luoth; also some animal such as Rou, Nhair, Agangany are caught in rivers.

The hunting place is far from residences in bush, trees. Animals hunted are Amonk, Pair, dharei, Boal, Anynjir.

The floods were near overtopping to the main road in 2007, 2013 and 2014.

NB: community request to extend the irrigation project to include also high land

4.3. Koum Community

People living in village are around 6,805 people, based on the 2008 statistics, but new number is increase due to returnees come back from Khartoum after separation, number of household member is between 5 to 12 people. History of village has started since long time ago, but people were displaced during the war.

The land is belong to government, but is under Red chief of community, the border of land is managed through chiefs, but the lands, in generally, is managed through discussion between communities to agree on issue related to land use, or to allot land to new comers. If someone needs large land, all related communities gather and discuss the matters.

Several old houses are found inside the command area, some of them have been damaged with no people residing. Previously a cattle camp was inside, but it was stopped since 1999 when rice cultivation was started. There were conflicts between rice farmers and cattle keepers.

The main business activities is farming and selling agricultural products, also fishing, charcoals making, wood honey hunting, animal hunting (one person has 100 dogs for hunting), selling cattle, making hand tools wooden chair and other wooden things, mining sand and aggregate in river, making bricks, selling tea, food and alcohols. Some of them are managed by women. Also some communities are working government as office staff and policemen.

The fishermen fishing in river Jur and types of fish are Kawara, Atoor, Luath, Aguar, Reial, Ateik, Aluei, Yath, Gauth, Chuor also animal such as Raw, Aganany, Nyayal, and Arou

The hunting place is in very far area in bush forestry called Aliay Nhom. Kinds of animal are Aluhal, Boal, awen, agwar, abil thowr, angorei, Amonk, Luach, Kawei, thanik, Agongei, pair, Dhaiar, Wood (bird), wal (bird), Awayich (bird), ajath bod (bird), Lolok (bird), monk (bird), Amayok (bird) etc.

Other animal migrating from other places are Zebra, Buffalo Aluel wang, Elephant, thonak, Kaiel, Lion, Aboak, gaik reial, bam monkey, and also migratory birds such as Awet marial, Maril bek, Gal, Arom gony are found.

Some houses along the river Jur were damaged due to floods in years 1998, 2012, and 2013. The floods damaged houses and farmland. The water spread to residential area and covered main road.

Annexes

Annex 1 Meeting memo

Meeting with wildlife services office:

Maboir Rulrac 0956889484 ó Director

Sisto Mapol 0956132155

- Our animal will not affect the project
- Animal called Dithidid is inhabitant in area
- In river the project will affect by Hoopoes (Fras el bahr) which use the floodplain as place for feeding distance of around 1,000m is used
- Monkey and elephant are also in the area
- The islands in rivers are also use by some animal in river for putting their eggs
- Also other animal in area are: Ghazal, Zioef, Morfen, Namir,
- Q1: Brides known as Abu Markob is also in the area and most of animal in the area migrated due to insecurity and human, also white rhino has been in area but now is only find in shambi
- Q2: the animals like Buffalo migrated the area due to the insecurity and diseases also some animal migrated due to forestry and grass burning in the area
- Due to the fiery the land loss fertility and rain decrease, also for some other bed human activity rives was silted up and flow decrease

Meeting with BGU:

Attend by : deputy Vice chancellor, Anthony Julu, director of institute of public and environmental health (0955786278/0911405124), Leonard George Shelli, economic and RD (0955502570) and Elizabeth Alberto Tiringu director of rural development (0956313723/0922122990)

- The all appreciate the effort for carry out studies for IDMP
- The university has not any study or research in field of environment due to financial constraints
- Their also premise to directed study to carry out their graduate study in such field

Meeting with Director of forestry

Mr. Abd el Rihim Adress (0913509328)

- The reserved area for forestry is along the river bussari
- We stop plantation due to extension of Wau town and financial limitation
- Most of wild trees fruit was cut out due to develop of land for purpose of house, road or making charcoal and fire wood.
- The wild fruit trees in the area are: Lulu, Kurjonk, Naback, Delib, Laluob, Mongo,
- Other important trees like Mohgani, Tek Sahab and Durot (use for dokan)
- Issue of the funding for new trees planting is big problem
- Burning trees law is still not out
- Takic trees reserved area are 12 in No. in state
- The forestry reserved area near to project area are: Garenti, Nai Akok(1931), Nahamtina (1947) Kur Ganda and Tonj one, but they cannot affect by project
- Any agriculture project need trees plantation to increase production

Meeting with Directorate of Industry and Mining

Mr. Alfatah Ahemed óDirector of Mining (09122955275)

Mr. Mobarak Mohammed Alieas ó inspector for Mining (0955704487)

- There is the ice industry in left bank of river Jur
- The bricks makers are easily to be relocated to other place as we have many other places
- We allocated places to bricks makers
- The places is distributing to bricks maker by directorate of industry and mining office and license is given for only year only (5 to 6 months dry season)
- Around 70 people are registered and are given land for bricks making in project area
- The land given is 30x30 m for one person
- The commissioner of Wau gives order in 2013 to stop brick making in project area
- Four areas are identified for bricks making in along jur river named Eastern banks, Garanti, Molem and Madan Abu Ajajach
- License fees is 300 ssp per one year
- The price of brick making 1,000 bricks is cost around 50 ssp
- One person can make between 50,000 to 180,000 brick in one season
- Bricks maker can get benefit of 50,000 to 150,000 ssp per year
- The sand and clay for construction is approved by local authority but aggregate is approved by directorate of IM
- Some people dig and get sand and clay with go to local authority.

Meeting with Director of Land in MPI

Mr. Karlo Vitale (0956854441)

- Base on land law is give the to local community as land owner and it management by government
- Land is evaluated base on classes there is 3rd class, 2nd class, 1st class and addition to investment land and agricultural land

3rd class land/plot evaluation:

- Land charge fees = 350 ssp
- Land form = 50 ssp
- Survey fee = 50 ssp
- Administration fee = 20 ssp
- Sketch Drawing = 20 ssp
- Total = 560 ssp

2nd class/plot evaluation :

- Land charge fees = 350 ssp
- Land form = 50 ssp
- Survey fee = 50 ssp
- Administration fee = 20 ssp
- Sketch Drawing = 20 ssp
- Total = 810 ssp

1st class/plot evaluation:

- Land charge fees = 800 ssp
- Land form = 150 ssp
- Survey fee = 150 ssp
- Administration fee = 40 ssp
- Sketch Drawing = 20 ssp

- Total = 1060 ssp

Investment land inside Wau city council area (green bill)

- 1m2 = 125 ssp
- Land size is around 2,500 m2

Investment land outside Wau city council area

- 1m2 is between 5 to 10 ssp

Requirements for investment land

- Nationality
- Type of investment
- Location
- Investment capital
- Environmental grantee for any impact occur

Land evaluation for bank loan:

- Free land or open land in 3rd class 50,000 to 60,000 ssp
- Land with buildings is 100,000 to 500,000 ssp

Land investment in village area

- Is under county authority
- Wau city radius is around 7 to 8 km
- Directorate of land has staff at county level

Town planning

- Base on land community request
- Based on number of applications submitted to director of land

Agricultural land

- Application to ministry of agriculture and forestry
- Land confirm from local community
- Agriculture land list for 1 feddan is 500 ssp for around 2 to 10 years

IDMP project land

- Oil station
- Prison monga trees
- Investment land for hotels
- Water treatment plant
- Water distribution pipeline
- Football stadium for FIFA

Flood:

- In 1970s big flood displaced some people with local houses in Wau town

Meeting with area manager of south Sudan urban water corporation- Wau

Mr. Olwak Mugo Yowin (0911069282)

- The project for water supply for eastern bank area is for rice cultivation from beginning and change to water for livestock and final is become water treatment plant for supplying residents of eastern bank.
- The project will has steel pipe
- The area manger complain about steel pipe and joints due to maintenances and soil humid in area
- He said the area is flooding so the humidity is high
- Design capacity is 150m3 per hour which has 4,500 m3 per day
- Level tank for storage water and also ground storage
- Steel pipe with 6 inch and length of around 1,200 m
- Pump station at right bank of river jur

Meeting with Kanunya community

Q1: number of people living in the area around 3,000 person and No. of people in one household are between 5 to 11 people

Q2: the area was established long time ago since war between community of Kuanya and Bongo community in warrap, around 6 generation chief attended

We are coming from Nile river following the rivers course and call Jur Chol (in Dinka language)because during our migration we use to spent the whole day in one place and at night we move to other place

Q3: the land is belong to government and is responsibility of community to protect land also the land is manage by leaders of community

Q4: no graves yard in the area, the people dig graves for body of their people in their homes, we not clinic or health centre but we have schools, no in project area

Q5: our business is farming and sale crops, charcoal, woods

Also some small shop for sale oil, slat sugar etc.

Also we make some tools like maloda, Harba using steels

Q6: yes there is fishermen fishing in river jur and long the Kuanya stream (dam site)

Kinds of fishes:

Quth, Yath, Bolta, Rial, Auar, Lik, in river

Gormod, bulta in stream (dam site)

Rou, Janang, Aganang (Warol) and Granti ó animal

Q7: hunting in push forestry around dam site, far from dam site also and along the river site

We use rob to put in animal passage and also Hraba and some people may use gun

Q8: Dideth, Gazala, (Loij) around dam site or far away

Pair, Namir, and loin

Q9: there no flood in area but Kuanya stream recived water from Jur River during flood time and water flow back to high land

Yes there people believe in some animal and trees

There also wild fruits trees in area use as food during food shortage time

Meeting with Eastern bank community:

Q1: No. of people living in community are around 7,500 person base on referendum election, but new it may reach to 11,000

The number of people in one household is between 5 and 9 people

Q2: in 1944 my grandfather came to this area, (Malang Aguar) and he find someone call Akwoyo in area, the area is call wond hok due to cow use to vaccinated in area

Malang Akuar came for place call Khor Malang in west bank of river Jur

Q3: UN plan land belong to community and government own land planed inside town area, but all land is for government

Community manage land through local authority

Q4: there no any infrastructures in the project area

Q5: main businesses activities area: farming and sale agricultural products, fishing (fishermen can get 150 ssp a day)

Sale tea, food and alcohols by women

Sale grass, fire wood, house wood and charcoals

Bricks making

Sale smoking wood by women

Q6: yes there is fishermen fishing in river Jur

Kinds of fish are: Ator, Ngok, Lak, Kawara, Atiek, Aluei, Luoth,

Animal are: Rou, Nhair, Agangany

Q7: the hunting place is far away from home in bush trees

Q8: type of animal hunting: Amonk, Pair, dharei, Boal, Anynjir

Q9: the flood of last year is near to overtopping the main road

2007 flood was overtopping the main road in some places the 2013 and 2014 flood damage some places along the canal route area, in place call Nai Gair, in Abociboc

The flood of 1975 reached to monga trees

NB: community requested to extend the irrigation project to include also high land

Meeting with Koum community:

Q1: people living in area are around 6,805 people, bas on 2008 statistics, but new number is increase

Number of household member is between 5 and 12 people

Q2: the area start long time ago, but people were displace during the war, but new people came back again

This village is there before Sudan independent

Chief Makuac Akec is founder of the area

People said they are coming for tree call chuai allocated in east side

But in realty people are originated from Wau town

Q3: land is belong to government, but is under Red chief of community

The border land is manage through chiefs

The land is manage through discussion between community to agree on issue raise to land use, or to allot land to new comes

If someone needs big land, all people can be call to meet and discussed

Q4: we have old house inside the command area, some house has people and some are damage no people

Previously we have cattle camp in the command area; we stop use that cattle camp in 1999 during the rice cultivation in the area, due to conflicts between rice farmers and cattle keepers

Q5: the main business activities is farming and sale agricultural products

Fishing, Charcoals, wood honey hunting, animal hunting (one person has 100 dogs for hunting), sale cattle, making hand tools using steel, making wooden chair and other wooden things, mining sand and aggregate in river, making bricks, sale tea, food and alcohols by women, working with government as office staff and policemen

Q6: yes there is fishermen fishing in river Jur

Kinds of fish: Kawara, Atoor, Luath, Aguar, Reial, Ateik, Aluei, Yath, Gauth, Chuor

Kinds of animal: Raw, Aganany, Nyayal, Arou

Q7: the hunting place is in very far area in bush forestry called Aliay Nhom

Q8: Kinds of animal: Aluhal, Boal, awen, agwar, abil thowr, angorei, Amonk, Luach, Kawei, thanik, Agongei, pair, Dhaiar, Wood (bird), wal (bird), Awayich(bird), ajath bod(bird), Lolok(bird), monk(bird), Amayok(bird)

Other animals migrating to the area are: Zibra, Buoffla Aluel wang, Elephant, thonak, Kaiel, Lion, Aboak, gaik reial, bam monkey,

Migrated birds: Awet marial, Maril bek, Gal, Arom gony

Q9: the houses along the river Jur in our area got damage due to flood in years 1998, 2012, and 2013, the flood damage house and farms land

The river Jur overtopping during the flood time is spelling to residential area

The main road is about to overtopping is only around 5 to 10 cms

NB: when the project will start (question from Kuom chief)

People waiting for project to get job

Issues of tractors is raise

Donøt allow politicians to diverted the project to another area

Name	Title	Institution
Maboir Rulrac	Director General	wildlife services office
Sisto Mapol	Director for administration	wildlife services office
Mamour	deputy Vice chancellor	Meeting with BGU:
Anthony Julu, Leonard	director of institute of public and environmental health	
George Shelli	economic and RD	
Elizabeth Alberto Tiringu	director of rural development	
Mr. Abd el Rihim Adress	Director of forestry	Ministry of Agriculture and forestry
Mr. Alfatah Ahemed	Director of Mining	Ministry of finance and industry
Mr. Mobarak Mohammed Alieas	inspector for Mining	
Mr. Karlo Vitale	Director of Land	Ministry of physical infrastructure
Mr. Olwak Mugo Yowin	Area manager of south Sudan	
	urban water corporation- Wau	

Annex 2: List of people met

Annex 3: Activities schedule

Date	Activity	Time	Issues	Findings
22/06-	Departure from	10:00	Flight delay	
2015	Juba airport	am		
	Arrival to wau	11:00	Delay at wau airport	
	airport	am		
	Meeting with D.G	12:20	Discussion about	No plan from ministry in project site as site
	Ministry of	PM	ministry plan project	belong to ministry of agriculture
	physical		at IDMP project sites	
	infrastructure		Arranged meetings	Environmental authorities concern:
			with other	Directorate of tourism and hotels in MPI,
			environmental	Directorate of Environment MAF, institute of
			authorities concern	public health BGU, Directorate of industry and
				mining in ministry of Finance, wildlife office
	Meeting with	1:30	Appointment for	At 9:00 am on 23/06/2015
	ministry of MAF	pm	meeting with	
	consultant		directorate of	
			environment	
	Meeting with	3:00	Discussed research	Appointment to meeting head of institute of
	deputy vice	pm	studies on	public health and important individual with
	chancellor		environment and	wide knowledge about environment at 11:00
			college concern	am on 23/06/2015
			environment	
23/06/	Meeting with			
2015	wildlife services			
	director			

Date	Activity	Time	Issues to discussed
Mon.	Arrival	11:30 AM	
22/06/2015			
	Meeting with DG MPI	12:00 PM	Introduction
			Debriefing about mission
			Discussion about environmental issues and
			authorities concern
			Appointment with authorities concern
	Meeting with ministry of	1:20 PM	Appointment with directorate of environment

	Agriculture consultant		
	Meeting with Deputy vice	3:00 PM	Appointment with institute of public health
	chancellor		
Tue.	Meeting with directorate of	09:00 AM	
23/06/2015	environment MAF		
	Meeting with institute of public	11:00 AM	
	health BGU		
	Appointment with wildlife		
	office		
	Ministry of finance directorate		
	of industry and mining		
	Meeting with James Adam boy		Flood
	Appointment with three local		
	communities		
Wed.	Meeting with directorate of		
24/06/2015	land MPI		
	Meeting with Kuanya		
	community		
	Visiting dam site		
Thus.	Meeting with community along		
25/06/2015	canal route		
	Observation of environment		
	issues along canal route		
Fri.	Meeting with community at		
26/06/2015	command area block C		
	Observation at command area		
	and brick make area		
Sat.	Meeting with koum community		
27/06/2015			
Sun.	Back to Juba		
28/06/2015			

Annex 4: Type of wildlife animal inhabitant in western Bhar el Ghazal state, Listed by Office of wildlife services in Wau :

- 1. Ostrich
- 2. Porcupine
- 3. Pancoline
- 4. Aardvark
- 5. Pastas Monkey
- 6. Colobus monkey
- 7. Chambazee
- 8. Jacal
- 9. African hunting dog
- 10. Sported Hyena
- 11. Strip Hyena
- 12. Cheetah
- 13. Serval cat
- 14. Leopard
- 15. Lion
- 16. Orbi
- 17. Whiter buck
- 18. Roan antelope

- 1. Jacal
- 2. Retal
- 3. Carcal
- 4. Til-thiil
- 5. Lelwel
- 6. Tiang
- 7. Physons
- 8. Crocodile
- 9. Hippo
- 10. Warthog
- 11. Push pig
- 12. Grief
- 13. Buffalo
- 14. Buga
- 15. Bush back
- 16. Bohor
- 17. Baboon

THE REPUBLIC OF SOUTH SUDAN

MINISTRY OF ELECTRICITY, DAMS, IRRIGATION & WATER RESOURCES

WATER SECTOR

IRRIGATION DEVELOPMENT MASTER PLAN

(FINAL REPORT)

ANNEX 9: IMPLEMENTATION PLANS FOR PRIORITY PROJECTS

9-2: Pre-Feasibility Study of Jebel Lado Irrigation Scheme

NOVEMBER 2015

THE PROJECT FOR IRRIGATION DEVELOPMENT MASTER PLAN IN THE REPUBLIC OF SOUTH SUDAN (RSS) LOCATION MAP

Map of the Republic of South Sudan

Location Map: Adopted from African Development Bank

TABLE OF CONTENTS

PART 1 PRESENT SITUATION OF THE PROJECT AREA

CHAP	FER 1 SITE PROFILE	ANN9-2: JL-1
1.1	Location	ANN9-2: JL-1
1.2	Beneficiary Area and Communities	ANN9-2: JL-1
1.3	Basic Community Profile	ANN9-2: JL-1
СНАР	FER 2 NATURAL CONDITIONS	ANN9-2: JL-5
2.1	Topographic Survey	ANN9-2: JL-5
2.2	Geological Survey	ANN9-2: JL-7
2.3	Hydrology	ANN9-2: JL-7
2.4	Soil Investigation	ANN9-2: JL-8
CHAP	FER 3 AGRICULTURE AND SOCIO-ECONOMIC	ANN9-2: JL-10
3.1	Methods of Agriculture and Socio-Economic Survey	ANN9-2: JL-10
3.2	Socio-Economic Indicators	ANN9-2: JL-11
3.3	Farm Land and Cropping Pattern	ANN9-2: JL-14
3.4	Farming Practices	ANN9-2: JL-17
3.5	Productivity	ANN9-2: JL-19
3.6	Selling of Produces	ANN9-2: JL-22
СНАР	FER 4 DEVELOPMENT CONSTRAINTS AND POTENTIALS	ANN9-2: JL-23
PART 2	2 IRRIGATION SCHEME DEVELOPMENT PLAN	
СНАР	FER 5 INSTITUTIONAL SET-UP OF THE IRRIGATION SCHEME	ANN9-2: JL-25
5.1	Demarcation of StakeholdersøRoles	ANN9-2: JL-25
5.2	Category of Irrigation Scheme	ANN9-2: JL-28
5.3	Division of Roles within the Irrigation Schemes	ANN9-2: JL-28
5.4	Private Sector Involvement	ANN9-2: JL-28
СНАР	FER 6 AGRICULTURAL PLANNING	ANN9-2: JL-30
6.1	Basic Concept of Agricultural Planning for Priority Projects	ANN9-2: JL-30
6.2	Agricultural Planning (Cropping Pattern)	ANN9-2: JL-30
СНАР	FER 7 IRRIGATION AND DRAINAGE PLAN	ANN9-2: JL-32
7.1	Parameters Affecting Crop Water Requirement	ANN9-2: JL-32
	7.1.1 Climate and Weather Parameters	ANN9-2: JL-32
	7.1.2 Cropping Pattern Plan in the Farmlands	ANN9-2: JL-35
	7.1.3 Crop Coefficient Factor	ANN9-2: JL-36
7.2	Estimation of Crop Water Requirement	ANN9-2: JL-36
	7.2.1 Reference Evapo-transpiration (ET_0)	ANN9-2: JL-36
	7.2.2 Crop Coefficient (Kc)	ANN9-2: JL-37
	7.2.3 Crop Evapo-transpiration under standard conditions (ETc)	ANN9-2: JL-38
7.3	Estimation of Irrigation Water Requirements	ANN9-2: JL-39
	7.3.1 Calculation of Consumptive Irrigation Requirements (CIR)	ANN9-2: JL-39
	7.3.2 Calculation of Net Irrigation Requirements (NIR)	ANN9-2: JL-40
	7.3.3 Calculation of Field Irrigation Requirements (FIR)	ANN9-2: JL-40

	7.3.4 Calculation of Gross Irrigation Requirements (GIR)	ANN9-2: JL-40
	7.3.5 Calculation of Irrigation Water Requirements	ANN9-2: JL-40
	7.3.6 Calculation of Scheme/Farm Water Requirements	ANN9-2: JL-42
СНАРТ	ER 8 FACILITY PLAN AND DESIGN	ANN9-2: JL-44
8.1	General	ANN9-2: JL-44
	8.1.1 Outline of Main Facilities	ANN9-2: JL-44
	8.1.2 Command Area	ANN9-2: JL-44
8.2	Pump Station	ANN9-2: JL-46
8.3	Main Canal	ANN9-2: JL-51
8.4	Irrigation and Drainage System in Farmlands	ANN9-2: JL-55
СНАРТ	ER 9 OPERATION AND MAINTENANCE PLAN	ANN9-2: JL-60
9.1	Establishment of Scheme Management Office	ANN9-2: JL-60
9.2	Operation Plan	ANN9-2: JL-61
9.3	Maintenance Plan	ANN9-2: JL-63
9.4	Financial Management of Irrigation Scheme	ANN9-2: JL-65
СНАРТ	ER 10 COST ESTIMATE	ANN9-2: JL-72
10.1	Conditions for Cost Estimate	ANN9-2: JL-72
10.2	Project Cost	ANN9-2: JL-72
СНАРТ	ER 11 IMPLEMENTATION PLAN	ANN9-2: JL-73
11.1	Conditions of Construction	ANN9-2: JL-73
11.2	Implementation Schedule	ANN9-2: JL-73
СНАРТ	ER 12 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS	ANN9-2: JL-74
12.1	Purposes	ANN9-2: JL-74
12.2	Methods	ANN9-2: JL-74
12.3	Evaluation of Alternatives	ANN9-2: JL-74
12.4	Current Environmental and Social Aspects	ANN9-2: JL-77
12.5	Evaluation of the Impact	ANN9-2: JL-79
12.6	Conclusions and Recommendations	ANN9-2: JL-81
СНАРТ	ER 13 PROJECT EVALUATION	ANN9-2: JL-84
13.1	Outline of the Project Area	ANN9-2: JL-84
13.2	Farming Plan	ANN9-2: JL-84
13.3	Basic Assumptions for Economic Analysis	ANN9-2: JL-84
13.4	Project Cost	ANN9-2: JL-85
13.5	Project Benefits	ANN9-2: JL-86
13.6	Project Evaluation	ANN9-2: JL-87
СНАРТ	ER 14 CONCLUSION AND RECOMMENDATIONS	ANN9-2: JL-89
APPEN APPEN APPEN	DIX-1 FACILITY PLAN AND DESIGN DIX-2 DRAWINGS DIX-3 PROJECT INVESTMENT COST	

3.1 Project Investment Cost	ANN9-2: APP3/JL-1
3.2 Pump Station & Pipeline Works	ANN9-2: APP3/JL-2
3.3 Main Irrigation Canal Works	ANN9-2: APP3/JL-7

3.4 On-Farm Irrigation Facilities	ANN9-2: APP3/JL-14
APPENDIX-4 OPERATION AND MAINTENANCE PLAN COST	
4.1 Unit Cost of Personnel Expenses (SSP/month)	ANN9-2: APP4/JL -1
4.2 Annual Personnel Expenses (SSP/year)	ANN9-2: APP4/JL -2
4.3 Equipment and Machinery Investment Cost	ANN9-2: APP4/JL -3
4.4 Equipment and Machinery O&M Cost	ANN9-2: APP4/JL -4
4.5 Water Tariff Estimation	ANN9-2: APP4/JL -5
4.6 Affordability to Pay (ATP)	ANN9-2: APP4/JL -6
4.7 Cash Flow Analysis	ANN9-2: APP4/JL -7
APPENDIX-5 ENVIRONMENTAL AND SOCIAL CONSIDERATION	

TABLES AND FIGURES

Table 1.3.1	Basic Information of the Communities	ANN9-2	2: JL-2
Table 1.3.2	Produced Crops	ANN9-2	2: JL-3
Table 1.3.3	Current Farming Operation Calendar	ANN9-2	2: JL-4
Table 2.4.1	Chemical Analysis Results	ANN9-2	2: JL-9
Table 3.1.1	IntervieweesøInformation	ANN9-2:	JL-10
Table 3.2.1	Average Household Members	ANN9-2:	JL-11
Table 3.2.2	Net Cash/Inputted Income from Farming	ANN9-2:	JL-11
Table 3.2.3	Average Household Income from Non-farming	ANN9-2:	JL-12
Table 3.2.4	Average Household Expenditure	ANN9-2:	JL-12
Table 3.2.5	Gender Rates of Selling Cereals (%)	ANN9-2:	JL-13
Table 3.2.6	Gender Rates of Selling Vegetables (%)	ANN9-2:	JL-13
Table 3.2.7	Gender Rates of Selling Livestock(%)	ANN9-2:	JL-13
Table 3.2.8	Managing Income of Cereals (%)	ANN9-2:	JL-13
Table 3.2.9	Managing Income of Vegetables (%)	ANN9-2:	JL-13
Table 3.2.10	Managing Income of Livestock (%)	ANN9-2:	JL-14
Table 3.2.11	Managing Income of Non-farming (%)	ANN9-2:	JL-14
Table 3.2.12	Gender Rates of Water Taking (%)	ANN9-2:	JL-14
Table 3.2.13	Gender Rates of Collecting Firewood (%)	ANN9-2:	JL-14
Table 3.2.14	Basic Data on Water Taking	ANN9-2:	JL-14
Table 3.2.15	Basic Data on Collecting Firewood	ANN9-2:	JL-14
Table 3.3.1	Average of Farm Land Area	ANN9-2:	JL-15
Table 3.4.1	Sources of Agricultural Inputs Procurement (no. of Answers)	ANN9-2:	JL-17
Table 3.4.2	Problems in Obtaining Farm Inputs (no. of Answers)	ANN9-2:	JL-17
Table 3.4.3	Inventory of Owned Farm Machinery/Tools	ANN9-2:	JL-19
Table 3.4.4	Average Number of Livestock with the Owners	ANN9-2:	JL-19
Table 3.4.5	Average Number of Livestock in the Samples	ANN9-2:	JL-19
Table 3.5.1	Crop Yields	ANN9-2:	JL-20
Table 3.5.2	Important Causes of Pre-harvest Damage or Loss (no. of Answers)	ANN9-2:	JL-20
Table 3.5.3	Crop Produces Use	ANN9-2:	JL-21
Table 3.5.4	Net Cash Income, Gross Cash Income and Production Cost per ha	ANN9-2:	JL-21
Table 3.5.5	Net Income Estimate	ANN9-2:	JL-22
Table 3.6.1	Mode of Transport	ANN9-2:	JL-22
Table 3.6.2	Problems in Marketing of Produces	ANN9-2:	JL-22
Table 4.1.1	Problems in Farming	ANN9-2:	JL-23
Table 4.1.2	Items Needed to be Improved	ANN9-2:	JL-23
Table 5.1.1	Key Directorate of MEDIWR in National Irrigation Development Progr	amme	
		ANN9-2:	JL-25
Table 5.1.2	Stakeholders Involved in National Irrigation Development Programme .	ANN9-2:	JL-25
Table 5.2.1	Categorization of the Irrigation Scheme	ANN9-2:	JL-28
Table 5.3.1	Roles and Responsibilities of Programmes/Projects Implementation	ANN9-2:	JL-28
Table 5.4.1	Range of Institutional Arrangements for PIM	ANN9-2:	JL-29
Table 6.2.1	Requested Crops	ANN9-2:	JL-31
Table 7.1.1	Meteorological Stations for Necessary Climate Data	ANN9-2:	JL-32
Table 7.1.2	Mean Monthly Rainfall at Juba	ANN9-2:	JL-33

Table 7.1.3	Monthly Mean Max and Min Temperature at Juba	ANN9-2: JL-33
Table 7.1.4	Average Sunshine Hours Estimated by FAO Irrigation and Drainage	Paper No.24
		ANN9-2: JL-34
Table 7.1.5	Monthly Mean Relative Humidity at Juba	ANN9-2: JL-34
Table 7.1.6	Monthly Mean Wind Speed at Juba	ANN9-2: JL-35
Table 7.1.7	Summary of the Climate Data at Juba	ANN9-2: JL-35
Table 7.1.8	Cropping Plan	ANN9-2: JL-35
Table 7.2.1	Water Requirement Estimation Methods by FAO	ANN9-2: JL-36
Table 7.2.2	Evapo-transpiration (ETo) in Jebel Lado and Rejaf East Estimated b	y Penman-Monteith
		ANN9-2: JL-37
Table 7.2.3	Crop Coefficient by Each Crop	ANN9-2: JL-37
Table 7.3.1	Irrigation Efficiencies for Jebel Lado and Rejaf East	ANN9-2: JL-40
Table 7.3.2	Jebel Lado Scheme Irrigation Water Requirements	ANN9-2: JL-42
Table 7.2.5	Calculation of Irrigation Water Requirements pert Month for Jebel L	ado Scheme
		ANN9-2: JL-43
Table 8.2.1	Water Requirement	ANN9-2: JL-47
Table 8.2.2	Total Head of Pump	ANN9-2: JL-47
Table 8.3.1	Main Canal	ANN9-2: JL-52
Table 8.3.2	Calculation of Main Canal Section	ANN9-2: JL-53
Table 8.4.1	Calculation of Irrigation Canal Section and Farm Ditch	ANN9-2: JL-57
Table 8.4.2	Calculation of Drainage Section	ANN9-2: JL-57
Table 9.1.1	Management Structure of Jebel Lado Irrigation Scheme	ANN9-2: JL-60
Table 9.1.2	Ideal Equipment and Machineries at Scheme Management Office	ANN9-2: JL-61
Table 9.1.3	Ideal Demarcations among Stakeholders	ANN9-2: JL-61
Table 9.2.1	Typical Water Distribution Method in Open Canal Scheme	ANN9-2: JL-62
Table 9.2.2	Typical Operation Activities and Responsible Organizations	ANN9-2: JL-63
Table 9.3.1	Typical Maintenance Activities of Irrigation Facilities	ANN9-2: JL-64
Table 9.3.2	Typical Maintenance Activities and Responsible Organizations	ANN9-2: JL-65
Table 9.4.1	Annual O&M Cost	ANN9-2: JL-65
Table 9.4.2	Annual O&M Cost	ANN9-2: JL-66
Table 9.4.3	Proposed ISF and MembersøFee	ANN9-2: JL-68
Table 10.1.1	Conditions for Estimate	ANN9-2: JL-72
Table 10.2.1	Project Cost	ANN9-2: JL-72
Table 11.2.1	Implementation Schedule	ANN9-2: JL-73
Table 12.2.1	Summary of Preliminary Survey Methods	ANN9-2: JL-74
Table 12.3.1	Summary of Project AlternativesøDescriptions	ANN9-2: JL-74
Table 12.3.2	Evaluation Methods (Evaluation Items)	ANN9-2: JL-76
Table 12.3.3	Summary of Scoring and Ranking	ANN9-2: JL-76
Table 12.5.1	Results of Scoping	ANN9-2: JL-80
Table 12.6.1	Recommended Survey Methods for Further Study	ANN9-2: JL-81
Table 13.3.1	Financial and Economic Price of Agricultural Produces/Inputs	ANN9-2: JL-85
Table 13.4.1	Summary of Project Cost (Financial Price)	ANN9-2: JL-86
Table 13.4.2	Estimation of Project Cost at Economic Price	ANN9-2: JL-86
Table 13.5.1	Summary of Net Incremental Benefit at Financial Price	ANN9-2: JL-87
Table 13.5.2	Summary of Economic Incremental Benefits	ANN9-2: JL-87
Figure 1 1 1	Location of Project Area	A NINIO 2. II 1
rigule 1.1.1	Location of Flojeet Alea	

Figure 2.1.1	Overview of Survey Area	ANN9-2: JL-0
Figure 2.1.2	Topographic Map	ANN9-2: JL-6
Figure 2.2.1	Locations of Boreholes in the Survey Area	ANN9-2: JL-7
Figure 2.4.1	Soil Survey Points	ANN9-2: JL-8
Figure 2.4.2	Land Scape in Command Area	ANN9-2: JL-9
Figure 2.4.4	Soil Profile in Command Area	ANN9-2: JL-9
Figure 3.3.1	Cropping Pattern	ANN9-2: JL-16
Figure 3.3.2	Land Use Ratio in 3 Priority Project Sites	ANN9-2: JL-16
Figure 6.2.1	Planned Cropping Pattern	ANN9-2: JL-3
Figure 7.1.1	Meteorological Stations in South Sudan	ANN9-2: JL-32
Figure 7.1.2	Mean Monthly Rainfall at Juba	ANN9-2: JL-33
Figure 7.1.3	Mean Monthly Max and Min Temperature at Juba	ANN9-2: JL-33
Figure 7.1.4	Mean Monthly Relative Humidity at Juba	ANN9-2: JL-34
Figure 7.1.5	Mean Monthly Wind Speed at Juba	ANN9-2: JL-35
Figure 7.2.1	Crop Coefficient Curve	ANN9-2: JL-37
Figure 7.2.2	Crop Coefficient	ANN9-2: JL-38
Figure 7.2.3	Dependable Rainfall at Juba	ANN9-2: JL-39
Figure 7.2.4	Effective Rainfall at Juba	ANN9-2: JL-39
Figure 8.1.1	Location Map	ANN9-2: JL-45
Figure 8.2.1	Flow of Curved River	ANN9-2: JL-46
Figure 8.2.2	Location and River Cross Section at Pump Station	ANN9-2: JL-46
Figure 8.2.3	Plan and Section of Pump Station Building (Plan)	ANN9-2: JL-48
Figure 8.2.4	Plan and Section of Pump Station Building (Profile)	ANN9-2: JL-49
Figure 8.2.5	Plan and Section of Pump Station Building (Profile)	ANN9-2: JL-50
Figure 8.2.6	Typical Section of Pipeline	ANN9-2: JL-50
Figure 8.2.7	Discharge Chamber	ANN9-2: JL-5
Figure 8.3.1	Location Map	ANN9-2: JL-52
Figure 8.3.2	Northern Canal Profile	ANN9-2: JL-53
Figure 8.3.3	Southern Canal Profile	ANN9-2: JL-54
Figure 8.3.4	Typical Cross Section of Main Canal	ANN9-2: JL-54
Figure 8.4.1	Location Map	ANN9-2: JL-55
Figure 8.4.2	Layout of Irrigation and Drainage Facilities in Command Area	ANN9-2: JL-50
Figure 8.4.3	Typical Cross Section of Irrigation and Drainage Facilities in Command	l Area
		ANN9-2: JL-57
Figure 8.4.4	Typical Cross Section of Drainage in Command Area	ANN9-2: JL-58
Figure 8.4.5	Typical Cross Section of Road Crossing in Command Area	ANN9-2: JL-58
Figure 9.4.1	Balance of Revenue and Expenditure	ANN9-2: JL-70
Figure 11.1.1	Monthly Rainfall (Juba Station)	ANN9-2: JL-73
Figure 12.4.1	Overview of Possible Impacts	ANN9-2: JL-77
Figure 12.4.2	Location of Designated Areas of Wildlife Conservation	ANN9-2: JL-78
Figure 12.4.3	Typical Wildlife	ANN9-2: JL-78
Figure 12.4.4	Location of Existing Farm Land	ANN9-2: JL-79
Figure 12.4.5	Facilities in the Project Site	ANN9-2: JL-79
PART 1 PRESENT SITUATION OF THE PROJECT AREA

CHAPTER 1 SITE PROFILE

1.1 Location

Jebel Lado proposed project site is located in pre-urban area, around 20km from Juba, where high demand of food supply due to its large population. Hence, there is a large potential to generate cash income by producing cash crops including vegetables. Especially, production of leafy vegetables, which are not imported from foreign countries because of its perishability, is likely to make a good profit. In addition, low humidity in dry season can lead to reduction of risk caused by fungi or disease.

Source: IDMP TT

Figure 1.1.1 Location of Project Area

1.2 Beneficiary Area and Communities

There are two (2) communities residing in the project area namely Nyuwa and Piete. The irrigable area lies between the White Nile River and a seasonal stream; the land is tenured under above communities.

1.3 Basic Community Profile

(1) Basic information about the communities

Table 1.3.1 shows the basic information of the communities, such as administrative organization, population, the number of the households, tribe and the means of livelihoods.

Name of community			Nyuwa		Piete		
Key information (Administrative organization a	nd po	pulatio	n, etc.)				
State ^{*1}	CES	S		CES			
County	Jub	а		Juba			
Payam	Nor	thern E	Bari	Northe	ern Bari		
Boma	Jeb	el-Lado	o East	Jebel-	Lado East		
Population			2,026		800		
No. of HHs			875		197		
No. of HHs/peoples			(985)		197		
Name of Tribe			Bari		Bari		
Means of the Livelihoods		/ *3	Ranking/% ^{*4}	✓ ^{*3}	Ranking/% ^{*4}		
Grazing			Ŭ	~	2		
Farming		~	1	~	1		
Fishery		~	2	~	2		
Hunting		~	3	~	4		
Remittance							
Full-time/Permanent Wage							
Labour							
Part-time/Temporally Wage Labour		~	3	~	3		
Business owner		~	4	~	5		
Livestock	•	/ ^{*3}	Ranking ^{*4}	✓ ^{*3}	Ranking ^{*4}		
Cattle				~	2		
Goat				~	1		
Sheep				~	2		
Chicken		~	1	~	1		

	Table 1.3.1. B	asic Information	of the Communities
--	----------------	------------------	--------------------

*1 CES stands for Central Equatoria State₀
*2 The number with parentheses shows the number of people engaged in agriculture.
*3 Check mark (✓) is put to the option found in community.
*4 Ranking per number

The population is approximately 2,000 persons and 800 persons in Nyuwa and Piete respectively. Most of the communities have farming as the main means of their livelihoods, and fishing is next major livelihood. Cattle grazing are operated in Piete community area only. The two communities belong to Bari tribe.

Farmers in the community have an experience of irrigated farming along river using buckets in dry season cultivating tomato, egg plant and okra. They are currently cultivating cereals such as maize, millet, sorghum and rice and cash crops such as sesame and vegetables. Their production is sometimes not enough for their own consumption because their farmland is too small.

According to the above situation, assurance of crop production for farmers themselves would have to be considered. Also cash generation by cultivating cash crops including vegetables should be considered in the farming plan.

(2) Basic agricultural status

1) Average farming land per household

Average farming land per household in Nyuwa community counted for 1 feddan/HH, and Peiti community was 0.5 ó 2.0 feddan/HH.

2) Produced crops

Following questions are asked to the heads of communities regarding each crop in the questionnaire;

Q1: Is the crop cultivated in your community?

- Q2: Ranking of the crop as per production volume.
- Q3: Production of the crop is enough for self-consumption?
- Q4: Is the produced crop for selling, consumption or both?
- Q5: Which is the priority purpose of the produced crop, selling or consumption?
- Q6: How much was farm gate price of the crop?
- Q7: What market was the crop sold to?

Table 1.3.2 shows the produced crops based on the interview. In the surveyed two (2) communities produce sorghum, maize and ground nut, those are produced for mainly for self-consumption and also for selling. Communities answered those production are not enough for their consumption.

<u>Sesame</u> is popular in the communities and cultivated mainly for selling. Farm gate price of sesame is much higher than that of cereals. The communities answered production of sesame is not enough, which means that sesame is in high demand for generating cash and also for their consumption.

<u>Cassava</u> is produced mainly for self-consumption in the communities. Even its production is relatively lower than sorghum, maize, ground nut and sesame; it is one of staple food for the community members.

<u>**Rice</u>** is cultivated in Nyuwa community; its production is less lower than other crops.</u>

<u>Major vegetables</u> in the communities are tomato, okra and Jewøs mallow. All of the vegetables produced in the communities are mainly for selling in Jebel Lado. Vegetable production as per ranking in Peiti was relatively higher than other crops compared to the other communities.

					Sorghu	um		Maize						Ground nut							
	Q1 ^{*2}	Q2	Q3 ^{*3}	Q4 ^{*4}	Q5 ^{*5}	Q6	Q7	Q1 ^{*2}	Q2	Q3 [*]	³ Q4	⁴ Q5 ^{*5}	Q6	Q7	Q1 ^{*2}	Q2	Q3 [*]	3 Q4 ^{*4}	Q5 ^{*5}	Q6	Q7
Nyuwa	~	1	Υ	В	С	120 SSP/50kg	Libiay	>	2	Ν	В	С	120 SSP/50kg	Libiay	>	2	Y	В	С	150 SSP/50kg	Libiay
Piete	~	1	Y	В	С	120 SSP/50kg	Juba	>	2	Υ	B	С	120 SSP/50kg	Juba	>	2	Y	В	С	150 SSP/50kg	Juba
					Mille	t						Sesar	ne						Cassa	iva	
	Q1 ^{*2}	Q2	Q3 ^{*3}	Q4 ^{*4}	Q5 ^{*5}	Q6	Q7	Q1 ^{*2}	Q2	Q3	³ Q4	[‡] Q5 ^{*5}	Q6	Q7	Q1 ^{*2}	Q2	Q3	³ Q4 ^{*4}	Q5 ^{*5}	Q6	Q7
Nyuwa			Ν	[~	4	Ν	S	S	250 SSP/50kg	Libiay	~	5	Ν	С	С		
Piete			}					~	3	Ν	S	S	250 SSP/50kg	Juba	~	4	Ν	С	С		
					Whe	at		Rice								Toma	to				
	Q1 ^{*2}	Q2	Q3 ^{*3}	Q4 ^{*4}	Q5 ^{*5}	Q6	Q7	Q1 ^{*2}	Q2	Q3	3 Q4	¹ Q5 ^{*5}	Q6	Q7	Q1 ^{*2}	Q2	Q3	3 Q4 ^{*4}	Q5 ^{*5}	Q6	Q7
Nyuwa			N					~	n/a	N		1			~	3	Y	S	S	100 SSP/box	Libiay
Piete			Ν]						N		1	}		~	2	Y	S	S	100 SSP/box	Juba
					Okra	1					J	ew's m	allow						Cow p	ea	
	Q1 ^{*2}	Q2	Q3 ^{*3}	Q4 ^{*4}	Q5 ^{*5}	Q6	Q7	Q1 ^{*2}	Q2	Q3 [*]	3 Q4	⁴ Q5 ^{*5}	Q6	Q7	Q1 ^{*2}	Q2	Q3 [*]	³ Q4 ^{*4}	Q5 ^{*5}	Q6	Q7
Nyuwa	~	3	Y	S	S	50 SSP/box	Libiay	>	3	Y	S	S	70 SSP/box	Libiay			1		1	}	
Piete	~	2	Y	S	S	50 SSP/box	Juba	~	2	Y	S	S	70 SSP/box	Juba	~	2	1			}	
					Egg pl	ant		Onion													
	Q1 ^{*2}	Q2	Q3 ^{*3}	Q4 ^{*4}	Q5 ^{*5}	Q6	Q7	Q1 ^{*2}	Q2	Q3 [*]	3 Q4	⁴ Q5 ^{*5}	Q6	Q7							
Nyuwa																					

Table 1.3.2 Produced Crops

*1 Eastern Bank is an abbreviation of "Eastern Bank of Wau Municipality

*2 Check mark (✔) is put to crop cultivated in the community. *3 If answer was "Yes", put "Y" and if it was "No", put "N".

*4 If answer was "Selling", put "S", if it was "Consumption", put "C" and if it was "Both", put "B"

*5 If answer was "Selling", put "S", if it was "Consumption", put "C".

3) Current farming calendar

Current farming operation calendars in two (2) communities show similar aspects as described in Table 1.3.3. Farming operation in Jebel Lado starts from May.

ityuv	va community													
	Month		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
No	Crops	Rain												
1	Sorghum		0	0	○ ▲							×	×	×
2	Maize		0	0								×	×	×
3	Groundnut		0	0	0							×	×	×
4	Millet													
5	Sesame		0	0										×
6	Cassava		×											
				0		0								

Table 1.3.3 Current Farming Operation Calendar

Nyuwa Community

Peiti Community

								•	• •		-			
	Month		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	⊦eb	Mar
No	Crops	Rain												
1	Sorghum		0	0	0 🔺							×	×	×
2	Maize		0	0								×	×	×
3	Groundnut		0	0	0							×	×	×
4	Millet													
5	Sesame		0	0								×	×	×
6	Cassava		×											
				0		0								

$\langle \text{Legend} \rangle$							
Heavy Rain	Light Rain:						
Land Preparation: × Seed sowing: Transplanting: △							
Weeding: ▲ Fertilizer application: ■ Harvesting: □							

4) Other information regarding farming systems

i) Farming systems

All of the communities practice shifting cultivation, because of the influence from stranger or soil condition.

ii) Experience of irrigated agriculture

The communities in Nyuwa and Piti have less experience on irrigated agriculture unlike communities in Wau.

iii) Use of agricultural inputs

Also they dongt have experience of use of manure and pesticides.

iv) Constraints affecting agricultural production and income generation

All of the communities agreed that they have major constraints in RSS; flood, draught, birds/animals and insects.

v) Crops for irrigation scheme in future

Cash crops including vegetable are raised as the crops farmers in the community wish to cultivate in the irrigation scheme in future. All of the communities answered they are willing to accept the crop cultivation recommended by the government.

CHAPTER 2 NATURAL CONDITIONS

2.1 Topographic Survey

(1) Scope of works

For topographic survey, the following equipment was used:

- Total station Sokkia set 510;
- Global positioning system (GPS) receiver (Sokkia GRX1, Trimble 5800);
- Level and
- AutoCAD system (Autocad civil 3D).

Survey structure contains:

1) **PIPELINE:**

- Establishment of temporary benchmark (TBM)
- Longitudinal profile survey: in drawing profile use the Auto cad civil 3d and layout in (A3) paper (plan & profile in one sheet Scale: V=1/100, H=1/1,000)

- Cross-sectional Survey: any 100 m, width of section 200m, 15 sections (scale: V=1/100, H=1/100)

- Plane Survey: area (1500*3300 m²) create contour map by scale 1:4000

2) Canal route survey:

- Establishment of temporary benchmark (TBM)
- Longitudinal profile survey: in drawing profile use the Auto cad civil 3d and layout in (A3) paper (plan & profile in one sheet Scale: V=1/100, H=1/1,000)

- Cross-sectional Survey: any 200m, width of section 200m, 15 sections (scale: V=1/100, H=1/100)

- Plane Survey: 4 area (200*200 m²) create contour map by scale 1:4000

3) Command area survey:

- Establishment of temporary benchmark (TBM)
- Longitudinal profile survey: in drawing profile use the Auto cad civil 3d and layout in (A3) paper (plan & profile in one sheet Scale: V=1/100, H=1/1,000)
- Cross-sectional Survey: any 100m, width of section 200m, 15 sections (scale: V=1/100, H=1/100)
- Plane Survey: area (6500*2000 m²) create contour map by scale 1:4000

4) **Pumping station survey:**

- Establishment of temporary benchmark (TBM)
- Cross-sectional Survey: any 500m, width of section 500m, 15 sections (scale: V=1/100, H=1/100)
- Plane Survey: area (500*300 m²) create contour map by scale 1:4000

The survey area is described as below:

Figure 2.1.1 Overview of Survey Area

(2) Topographical profile

Topographic feature is drawn in Figure 2.1.2.

Source: IDMP TT

Figure 2.1.2 Topographic Map

Command area is located 3.5km from Bahr el Jebel. Bushes, trees and grasses dominate in the site. The terrain is almost flat and the land gradient toward the west shows around 0.9%. Pump station site is located beside Bahr el Jebel. The land is almost bare and some trees are shown. In the pipe line and canal line, there are community road among some small communities, bushes and trees etc. along the line.

2.2 Geological Survey

(1) Scope of works

Geological survey and soil mechanical Investigation was made at the proposed project area in Jebel Lado by drilling four (4) boreholes.

- 1) Boring 4no.holes to depths between 5.0m (for3No.holes) and10.0m (for1No.hole) at the proposed site.
- 2) Visual description of soils within the soil profile and carrying out Laboratory soil tests to classify the soil.
- 3) Observing and stating the depth of the water table within the soil profile for each borehole.
- 4) Conducting Standard Penetration Tests at an interval of 1.0m in each borehole
- 5) Retrieving of Soil samples in each borehole respectively.
- 6) Obtaining the safe bearing capacity based on the field SPT Values.
- 7 Compiling a Geotechnical Investigations report

Locations of boreholes are shown in Figure 2.2.1.

Source: IDMP TT

Figure 2.2.1 Locations of Boreholes in the Survey Area

(2) Geological profile

In the pump station site, the subsurface soils are predominantly clayey sands (SC) and poorly graded sands (SP). Bearing capacity is low/ middle for the foundation structures. In the canal line, the subsurface soils are various by area, such as sands (SP and SC) to gravels (GW), Inorganic clays of high plasticity (CH)) and silty sands (SM). Bearing capacity is high for the foundation of structures.

2.3 Hydrology

Annual rainfall is about 1000mm. Bahr el Jebel has plenty of water for irrigation water. According to the soil survey, soil there is relatively fertile with high content of humus and CEC. It allows cultivation of various kinds of crops with appropriate control of soil pH.

High temperature especially in dry season (maximum temperature is above 35° C) should be considered in crop selection in dry season. So, crops that are able to grow under high temperature should be selected for dry season such as soybean, egg plant, okra etc.

2.4 Soil Investigation

Soil survey was conducted in the priority project areas by RSS-TTs to grasp soil condition in the command area.

(1) Methodology

Generally, there are two (2) ways to select survey points in certain area. The first way is just to choose points to cover the area equally, for instance by covering square mesh with certain distance and selecting the crossing as survey points. This way is applied in case no specific geological or topographic information is available.

On the other hand, the second way is to select survey points according to the existing information regarding soil type distribution in

Figure.2.4.1 Soil Survey Points
* Blue points are for 50 cm depth cross section survey, and red ones are for 1
m depth.
* Distance of mesh covered over the command area is 1 km.

the area, which is applicable only in case there available information got on the ground. In case of Jebel Lado, the first way was applied, because there was no detailed information obtained on the ground.

Figure 2.4.1 shows the survey points planned in consultation with RSS-TT, and 18 points were determined as a result. However, some points were skipped due to the limited time frame then 14 points were surveyed after all.

(2) Result of field observation (soil conditions)

The greater part of soil has dark brown colour and its texture ranges from clay loam to high clay, while soil near from small stream running through No.10 to No.4 (see Figure 2.4.1) has relatively yellowish brown colour and its texture ranges from sandy loam to silt loam. Soil with high clay content, which widely spreads over the command area, is very hard and compact and many small cracks were observed on the soil surface and cross section. It seems cracks are generated under the condition of continual contraction and expansion.

On one hand, soil along No.10 to 4 (See Figure 2.4.1) is relatively fluffy. Clear vertical change of soil type was not observed with no appearing stone/gravels or ground water coming up., namely, clayish soil is filling up to at least 1m depth in the command area as a whole.

Figure 2.4.2 Land Scape in Command <u>Area</u>

Figure 2.4.3 Soil Profile in Command Area Photo on the left shows the profile at No.4 and that on right shows that at No.8. Location of each point is shown in Figure.2.4.1

(3) Result of chemical analysis and consideration (soil chemistry)

Table 2.4.1 shows the result of chemical analysis of soil in Jebel Lado. Humus ratio seems fairly well, 2.2 % on average, ranging from 0.7 to 3.9 %. Estimated CEC ranges from 6.8 to 18.2 me/100g. Normally, more than 20 me/100g is ideal for farming, so there still room for improvement regarding CEC, even though it is not so bad. Nutrient contents are high as a whole in the command area, therefore, possible obstacle in farming would not be lack of nutrient, but excess. Especially, Calcium and Magnesium seems to be accumulated in the soil resulting in unbalanced base ratio. Even though generally nutrient is abundant in the command area, some of elements such as Potassium and Phosphorus contained very few at some points. It would have to be taken care with observation of crop growth. Soil pH tends to be alkaline, which may be partially effected by peopless activities. People from the communities near from the command area sometimes burn bushes in the command area to hut wild animals, then remained ashes with alkalinity probably affect soil some. It should be taken in to consideration for actual farming practice.

	Average	Minimum value	Maximum value
Humus ratio (%)	2.2	0.7	3.9
CEC (me/100g) ^{*1 *2}	12.2	6.8	18.2
NO ₃ -N (mg/100g)	2.0	0	3.1
Fe ₂ O ₃ (ppm)	10.1	0	27
P ₂ O ₅ (mg/100g)	103.6	0	342
K2O (mg/100g)	89.6	1	323
CaO (mg/100g)	516.6	241	829
MgO (mg/100g)	169.1	47	274
Mn (mg/100g)	2.0	0	5
рН	7.2	6.1	8.2
EC *3	0.0	0	0.08
Total N (%) ^{*2}	0.2	0.07	0.28
CN ratio ^{*2}	7.0	5.7	7.6
Base ratio			
CaO/MgO *2	2.5	0.9	7.1
MgO/K2O ^{*2}	61.9	0.3	644.1
CaO/K2O *2	98.1	1.1	960.8

Table :	2.4.1	Chemical	Analy	ysis	Results

Source: IDMP TT (Soil survey 2015) 1 CEC is an abbreviation of Caption Exchange Capacity, which was estimated based on humus ratio.

*2 Estimated value.

*3 EC is an abbreviation of Electric conductivity.

CHAPTER 3 AGRICULTURE AND SOCIO-ECONOMIC

3.1 Methods of Agriculture and Socio-Economic Survey

Agriculture and Socio-Economic Survey was conducted by interview with a questionnaire in the project area. The related two (2) communities were targeted; Nyuwa and Piete. Both of communities are under Jebel lado East Boma, Northern Bari payam, Juba county. The survey aimed to take necessary data for making the farming plan and evaluating the priority projects from the viewpoints of socio-economic and marketing. The contents of the questionnaire consisted of 14 items, centralizing the related questions to the situation of farming and household.

The enumerators in pairs were going to hold two interviews a day, target interviewees counted 26 households. It is necessary to previously explain the survey method to the interviewees since the questions include private points, such as household income, expenditure, etc. Grasping the current situation of the target communities is indispensable for the planning of the priority projects. Hence, a preliminary workshop was held before the survey. Days of workshop and number of interviewees are given as below:

Days of Workshops: Middle of May, 2015Number of interviewees: 23 persons (Breakdown is shown in the table below)

Tuble			
Community	Male	Female	Total
Nyuwa	14	1	15
Piete	7	1	8
Total	21	2	23
Courses IDMD TT /C	Saaia aaanamia au	(n_{1})	

Table 3.1.1 Interviewees' Information

Source: IDMP TT (Socio-economic survey, 2015)

The contents of the questionnaire are divided into the 14 items; 1) Background of household, 2) Land holding and land tenure, 3) Inventory of farm machinery and hiring cost of farming power, 4) Crop production and farming practices, 5) Income from other crops in home garden, livestock and other products, 6) Wages/ salary, leasing, business and other income, 7) Living expenses, 8) Present farming situation, 9) Selling of agriculture products, 10) Existing farmers' group and farmersøorganization, 11) Irrigation service charge / activity of WUA or WG, 12) Loan, 13) Agricultural services / agricultural activities, and 14) Gender/ roles and responsibilities.

In terms of the social sector, questions, such as land tenure, gender issues/roles, drinking water, cooking fuel, etc., were set in the questionnaire, referring *Handbook on Community Engagement*, April 2012, South Sudan Law Society. Though there is enough development potential of the land use, some issues, such as dealing of community land, land utilizing division of tribes, etc., have to be treated carefully.

From the viewpoints of making the planting plan, the enumerators asked the interviewees about their views for future crops based on the existing planting model. In addition to the question, the enumerators also asked their intention of the crop selection in order to grasp the needs of an irrigation project and reflect to the farming plan. Also, as for the introduction of fertilizer, concerned questions were made based on the results of the sales conditions survey in Juba to make the agriculture input plan for the priority projects in accordance with the actual conditions.

3.2 Socio-Economic Indicators

(1) Household members

Table 3.2.1 shows the average household members with the number of children under 14 years old in Jebel lado. The total average number of family members is 7.4 persons/ household.

Community	Adul	ts equal/abo	ve 14	C	Total				
	Male	Female	Sub Total	Male	Female	Sub Total			
Nyuwa	2.3	1.8	4.1	2.0	1.5	3.5	7.6		
Piete	2.5	1.6	4.1	1.5	1.5	3.0	7.1		
Total	2.3	1.7	4.1	1.8	1.5	3.3	7.4		
O THE LOND TT /C		0045							

Table 3.2.1 Avera	aae Household	Members
	go nouoonona	In on the other

Source: IDMP TT (Socio-economic survey, 2015)

Intervieweesøeducation experiences were also asked in the questionnaire. In Jebel lado, 14 persons answered to this question. Among them, three (3) have no educational experience, eight (8) have graduated only from primary school and three (3) have secondary or higher grade educational backgrounds. In addition, their wives have no educational experience at all and sometimes their children either.

(2) Income from farming and others

Table 3.2.2 shows the average income per annum from farming in Jebel lado. The annual net cash income from faming is about four (4) thousand SSP and annual SSP and annual net income is about nine (9) thousand SSP, respectively. More than half of net income is consumed within household. Major components of net cash income are those from Okra, Jewø mallow and Tomato followed by Sorghum and Ground nut. On the other hand, major components of net income are those from Sorghum, Okra, and Maize, followed by Ground nut and Jewø mallow.

	Area	Yield	Production	ratio for	Farm gate	Production	Net Cash	Net income
	(ha/HH)	(t/ha)	(kg/HH)	sale	price	cost	income	(SSP/HH)
					(SSP/kg)	(SSP/ha)	(SSP/HH)	
	(a)	(b)	(c)=(a)*(b)	(d)	(e)	(f)	(g)	(h)
							=(c)*(d)*(e)-(a)*(f)	$=(c)^{*}(e)-(a)^{*}(f)$
Maize	0.52	0.7	356.7	21.2%	3.9	149	217	1,314
Sorghum	0.51	1.2	624.8	15.5%	3.3	100	269	2,011
Cassava	0.03	1.6	54.5	43.6%	6	280	133	318
Common bean	0.08	0.9	71.7	48.2%	5.1	93	169	358
G nut	0.22	1.7	385.8	23.9%	3.4	261	255	1,253
Sesame	0.05	0.3	11.9	-	(4.8)	48	-2	55
Vegetables								
Okra	0.12	2.8	343.8	87.8%	5.4	440	1,576	1,803
Tomato	0.04	2.6	98.7	88.3%	5.2	721	425	485
Cucumber	0.01	0.1	1.4	66.7%	8	476	3	6
Jew's mallow	0.06	5.0	294.2	93.6%	3.5	421	939	1,005
Amaranthus	0.01	3.2	36.8	100.0%	0	524	-6	-6
Cowpea	0.04	0.8	34.8	83.3%	3.1	143	84	102
Bean	0.005	1.4	6.8	66.7%	5	0	23	34
Total							4,084	8,738

Table 3.2.2 Net Cash/Inputted Income from Farming

Source: IDMP TT (Socio-economic survey, 2015)

Note: Farm-gate price in () is the average of other sites due to lack of data in this site

Next table shows annual average household income from other than farming in each area. We can find that only the salary income from other occupation, such as government official, company employee, driver, etc. is appropriated in Jebel Lado as non-farming income.

Areas	Salary of other occupations	Wages as casual worker	Gifts and remittance	Lease of farm land	Total
Wau	317	162	462	-	940
Jebel Lado	706	-	-	-	706
Rejaf East	3,005	-	462	38	3,505
Total	1,299	53	320	13	1,685

Table 0.0.0 Average	املم مندم الم	In a a man a fina ma	Man fammalma	/00D/s	
Lable 3.2.3 Averao	e Housenoid	income from	Non-tarming	12255/	/ear)
Tuble Ville / Workig	o no ao ono la	In o o n o n	Non lanning		

Source: IDMP TT (Socio-economic survey, 2015)

(3) Living expenses

Next table shows average household expenditure in a year. The annual total outlay is about 16 thousand SSP. Outlay for foods is about six thousand SSP, which occupies 40 % of the total expenditure. Outlay for education is SSP 29 hundred, which is the biggest item and occupies 18 % of the total expenditure. The following big items are purchase of clothing, SSP 23 hundred (15%), outlay for medical care, SSP 22 hundred (14%), and purchase of meat and eggs, SSP 12 hundred (7%).

Table 6.2.4 Average Headenfold Experiatate							
Foods	(SSP/HH)	(%)	Other than foods	(SSP/HH)	(%)		
Maize	942	5.9	Tobacco and Cigarettes	356	2.2		
Sorghum	859	5.3	Soap, Shampoo	447	2.8		
Cassava	132	0.8	Electricity charges	13	0.1		
Common Beans	316	2.0	Firewood, cooking fuel and LP-gas	1	0.0		
Ground nut	372	2.3	Lighting fuel	17	0.1		
Sesame	9	0.1	Household furnishing and equipment	554	3.4		
Other tubers and Roots	-	0.0	Repair and maintenance of house	19	0.1		
Fish	701	4.4	Clothing	2,347	14.6		
Meat and Eggs	1,155	7.2	Medical care	2,245	14.0		
Vegetables	301	1.9	Education	2,947	18.3		
Flour	-	0.0	Recreation	65	0.4		
Bread	-	0.0	Ceremonial Occasions	73	0.5		
Tea and Coffee	575	3.6	Transportation and communication	474	2.9		
Milk and Yogurt	-	0.0	Remittance to relatives	100	0.6		
Liquor and Soft drinks	13	0.1	Land and house rent	18	0.1		
Cooking oil	597	3.7	Taxes	-	0.0		
Sugar and Salt	420	2.6	Loan repayment	12	0.1		
Spice and other foods	-	0.0	Sub total	9,689	60.3		
Sub total	6,392	39.7	Grand total	16,080	100.0		

Table 3.2.4 Average Household Expenditur	re
--	----

Source: IDMP TT (Socio-economic survey, 2015)

(4) Loans

Question regarding loan was made in the questionnaire and 21 interviewees answered to the question. Four (4) of them borrow money from their relatives. Two (2) of them borrow less than 140 SSP currently and one (1) is borrowing more than 1,400 SSP.

Their purposes of borrowing money were 1) To hire agricultural labor, 2) To obtain food and 3) because of emergency such as illness or injury.

On the other hand, majority of the interviewees are not borrowing money. The most major reason of not borrowing money was lack of opportunity/ place to borrow money.

(5) Farmers' groups/organizations

There was no interviewee who was a member of an existing farmersø group/organization or water group / water users association though 23 interviewees answered to concerned questions.

(6) Roles of males, females and children

Next table shows gender rates of selling cereals in each area. We can find that the ratio of female only is higher and the ratio of male only is lower than those of other areas. The reason is considered that selling amount of cereals in Jebel Lado is smaller than the total average so that the sales do not require male power so much. The ratio of õWith Childrenö means that children participate in the sales in 9 % of the total households which answered concerned questions in Jebel Lado.

Table 5.2.5 Gender Rates of Gening Gereals (76)							
Area	Male	Female	Both	With			
	only	only	M&F	Children			
Wau	42	19	38	12			
Jebel Lado	13	65	22	9			
Rejaf East	19	50	31	13			
Total	26	43	31	11			
Source IDMP TT (So	cio-economi	ic survey 201	5)				

Table 3 2 5	Gondor	Rates of	Solling	Coroals (%)	١
Table 3.2.3	Genuer	rales u	Seminy		,

Next table shows gender rates of selling vegetables. The ratio of female only is higher than that of male only. The reason is considered that selling vegetables does not require male power so much.

Table 6.2.6 Contact Rates of Coning Togetables (76)						
Area	Male	Female	Both	With		
	only	only	M&F	Children		
Wau	36	48	16	8		
Jebel Lado	9	78	13	9		
Rejaf East	25	56	19	6		
Total	23	61	16	8		
Source: IDMP TT (So	cio-economi	c survev. 20	15)			

Table 3.2.6	Gender	Rates	of Sellina	Vegetables ((%)

Next table shows gender rates of selling livestock. We can find that almost all sales of livestock are conducted by men. The reasons are considered that selling livestock requires male power and that provide comparatively big money.

Table 3.2.7 Gender Rates of Selling Livestock(%)						
Area	Male	Female	Both	With		
	only	only	M&F	Children		
Wau	92	0	8	0		
Jebel Lado	100	0	0	0		
Rejaf East	88	0	13	19		
Total	94	0	6	5		
Source: IDMP TT (Soci	o-economic	survey, 201	5)			

To grasp the situation of money management in households, gender rates of managing incomes are arranged in tables below. We can find that ratios of male only are higher than those of female only; especially, most income management of livestock is conducted by men. Item whose ratio of female only is comparatively high is non-farming.

Table 3.2.8 Managing Income of Cereals (%)

Area	Male	Female	Both
	only	only	M&F
Wau	46	8	46
Jebel Lado	78	13	9
Rejaf East	44	25	31
Total	57	14	29

Source: IDMP TT (Socio-economic survey, 2015)

Table 3.2.9 Managing Income of Vegetables (%)

Area	Male	Female	Both
	only	only	M&F
Wau	42	25	33
Jebel Lado	70	13	17
Rejaf East	38	31	31
Total	51	22	27

Source: IDMP TT (Socio-economic survey, 2015)

Area	Male	Female	Both
	only	only	M&F
Wau	71	4	25
Jebel Lado	100	0	0
Rejaf East	53	0	47
Total	76	2	22

Table 3.2.10 Managing Income of Livestock (%)

Source: IDMP TT (Socio-economic survey, 2015)

On the other hand, almost all works of water taking and collecting firewood are conducted by women as showing tables below.

Wau

Jebel Lado

Rejaf East

Total

Table 3.2.12 Gender Rates of Water Taking (%)

Area	Male	Female	Both	With
	only	only	M&F	Children
Wau	4	92	4	35
Jebel Lado	0	96	4	57
Rejaf East	7	93	0	33
Total	3	94	3	42

Table 3.2.13 Gender Rates of Collecting Firewood (%)

Source: IDMP TT (Socio-economic survey, 2015)

able 5.2.15 Ge			cungine	<u>woou (78)</u>								
Area	Male	Female	Both	With								
	only	only	M&F	Children								
Wau	4	96	0	44								
Jebel Lado	0	100	0	59								
Rejaf East	6	94	0	31								
Total	3	97	0	46								
Source: IDMP	Source: IDMP TT (Socio-economic survey, 2015)											

Source: IDMP TT (Socio-economic survey, 2015)

Next tables show average distances from houses to water source / collecting point of firewood, and necessary times per day/week for the works.

Table 3.2.14 Basic Data on Water Taking

Area	Distance	Times	Hours	Hours										
	(meter)	per	per	per										
		day	time	day										
Wau	830	3.1	0.7	2.1										
Jebel Lado	447	3.3	0.4	1.4										
Rejaf East	266	2.9	0.4	1.2										
Total	556	3.1	0.5	1.7										

Table 3 2 15 Basic Data on Collecting Firewood

			needing i n	CWOOd						
Area	Distance	Times	Hours	Hours						
	(meter)	per	per	per						
		week	time	week						
Wau	660	3.4	2.2	7.6						
Jebel Lado	820	2.1	1.5	3.3						
Rejaf East	920	2.5	1.4	3.4						
Total	780	2.7	1.7	4.7						
Source: IDMP TT (Socio-economic survey, 2015)										

Source: IDMP TT (Socio-economic survey, 2015)

(7) Land lease/borrow and land ownership

There was no interviewee who leased/ borrowed land in the case of Jebel Lado. Basically, farmers cultivate their own land and leasing/ borrowing of land are seldom conducted.

Additional interview related land ownership was conducted, however, no information was obtained in case of Jebel lado.

(8) Effect caused by the conflict

The answers to the question of problems that caused by the conflict occurred in December 2013, are summarized into three points below. We can understand the second point since the unusual price hike is still going on. The third point mentions shortage of labor for farming because some residents have evacuated from the riverside village to islands in Nile.

- No problem
- Price of commodities became high after the crisis
- Not able to cultivate because villagers have gone to islands

3.3 Farm Land and Cropping Pattern

(1) Farm land area

Table 3.3.1 shows the total farm land holding area with its breakdowns; 1) irrigated, 2) non-irrigated

Table 3.2.11 Managing Income of Non-farming (%) Area Male Female Both

42

22

38

34

only

only

23

17

25

22

M&F

35

61

38

45

ouro	71100	Diotarioo	111100	
per		(meter)	per	
day			week	
2.1	Wau	660	3.4	
		000	0.4	

	<u>(fed/HH)</u>						
	Total are	а					
		Ir	rigated	No	n-irrigated	Ho	mestead
Jebel Lado	4.3	0.6	(14.0%)	3.1	(72.0%)	0.6	(14.0%)
Wau	6.7	0.2	(3.0%)	5.6	(83.6%)	0.9	(13.4%)
Rejaf East	5.5	2.7	(49.1%)	1.6	(29.1%)	1.2	(21.8%)
Source: IDMP TT (Socio-ed	conomic surv	ey, 2015)					

and 3) homestead. More than three (3) quarters of total farmland area is non-irrigated land (72.0%). Total farmland extent is 4.3 feddans (nearly equal to 1.8 ha) on average in the site.

(2) Cropping pattern

Figure 3.3.1 shows the cropping pattern in Jebel Lado, which is estimated based on the socio-economic survey results and Figure 3.3.2 shows summarized land use ratio of crops in three (3) priority project sites. The overall cropping intensity is 95.0 % scoring higher ratio compared to the other two (2) sites. Maize and Sorghum are cultivated as major crops in the site, whose land use ratio are 28.7 % and 28.2 % respectively, and total land use ratio of these two (2) crops is more than half of overall cropping intensity in the site. There are some farmers interviewed who are cultivating maize twice a year. It seems they are planting short term maize which needs only 3 months of growth period to harvest. Other popular crops in the site are Ground nut and Okra, whose land use ratio were 12.4 % and 6.7 % respectively.

Maize, Sorghum, Ground nut and Sesame are cultivated mainly during rainy season. The farmers start land preparation before rainy season comes then start sowing the crops and harvest them around the end of rainy season. On the other hand, some of vegetables and cash crops are cultivated not only in dry season but also dry season. Vegetables and cash crops tend to be cultivated in dry season, which is same among three (3) sites. However, the land use ratio of staple food crops such as maize and sorghum is higher than other two (2) sites, which indicates production of these kind of staple crops is prioritized in the site comparing to the other two (2) sites.

					ſ	Ĩ				Î			2nd	dcno	oppi	ing	L	S		W		2r	nd c	rop	H pin) L					W					Η				(1) (1)
Sorghum	28.2%	ĩ			i i						5		-	L W	-	s -		-				-	w			H			-		-		-			н				19
Cassava	1.9%	н					• • •		-			H	s		L -		S				w		w	,	···															4
Common bean	4.5%		-		P	4-				5							w	-			s		- w		H					-		- H			Ĺ	s			w	7 (1)
Ground nut	12.4%	L							· · · · · · · · · · · · · · · · · · ·	· · ·			-	w	Ĺ -		s	-		Н			w			· · · ·				-	-	H								15
Sesame	2.6%										5	11		L	- w	s	-	•••	-		w	•••	н						-	_	н									7
Vegetables/Cash crops	16.6%																																							
Okra	(6.7%)				[3.	8mo	onth	ns/s	eas	on								4.2	mor	iths	/sea	aso	n	}															18
Tomato	(2.1%)				<u> </u>	4.	4mo	onth	ns/s	eas	on	3	.5m	nont	hs/:	sea	son	ו 														$\frac{1}{2}$								7
Cucumber	(0.5%)		1								ł							{							1						_	5.0)m	ont	:hs/	sea	son	1		1
Jew's mallow	(3.2%)		{		1	1													3.3	mor	ths	/sea	aso	n																12
Amaranthus	(0.6%)		2.5	Smor	nth	s/se	eas	on			1	1						[<u> </u>			1			ļ			1			_	Ļ	\perp			<u> </u>				4
Cowpea	(2.4%)				}	5.	0mo	onth	ns/s	eas	on				ŧ	5.0n	non	nths.	/sea	asor	1									_	_							_		3
Bean	(0.00())		3					,			1	1		1	;			ſ			(T	1			1		Т	1				7	Т			(T				1
	(0.3%)		<u> </u>	4	.0n	non	ths/	sea	ISOI	1	_[_{						<u>[</u>			<u> </u>	<u> </u>			1							1	_							

Annex 9-2: Pre-Feasibility Study of Jebel Lado Irrigation Scheme

Jan

Land use %

28.7

Feb

Ĺ

Mar

April

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

No. of *2

Answers

21

Month

Crop name

Maize

Rainy seasor

Source: IDMP TT (Socio-economic survey, 2015) *1: Parenthesized numbers show the breakdown of the above percentage. *2: Parenthesized numbers shows the breakdown of the above number *3: Cultivation period of vegetables shown in the figure above, is the average period of each cropsqsamples.

Figure 3.3.2 Land Use Ratio in 3 Priority Project Sites

3.4 Farming Practices

(1) Agricultural inputs procurement

Table 3.4.1 shows the sources of agricultural inputs procurement. Information regarding agro-chemicals, fertilizer and fuel for tractor is few due to those limited use among the interviewees.

The most common way to obtain cereal seed is to make it by themselves, and the second one is to get it from other farmers. Some farmers obtain cereal seeds from government, NGO, Village shop or trader. On the other hand, seed of bean and vegetables tend to be purchased more from town shop compared to that of cereals.

10000141100		nountariari				
	Agro-che	Fertilizer	Seed	Seed	Seed	Fuel for
	micals		(Cereal)	(Bean)	(vegetables)	tractor
Government	-	-	1	-	1	-
NGO	-	-	1	-	1	-
Town shop	-	-	-	6	11	-
Village shop	-	-	1	-	1	-
Trader	-	-	1	-	4	-
Other farmers	-	-	8	6	8	-
FarmersqOrganization	-	-	-	-	-	-
Others	-	-	-	-	-	-
Made by themselves	1	-	15	7	12	-
Total	1	-	27	20	37	-

Table 3.4.1 Sources of Agricultural Inputs Procurement (no. of Answers)

Source: IDMP TT (Socio-economic survey, 2015) * The questionnaire allowed multiple answers to the interviewee.

Table 3.4.2 shows the problems in obtaining farm inputs expressed by the interviewee. Availability is mentioned by the farmers as major issue of almost all of the items. Regarding cereal seed, its low quality is considered as problem. It can be one of the major causes that the farmers get cereal seed mainly from neighbours or make it by themselves (See table 3.4.2). On the other hand, the noticeable problem in obtaining bean and vegetable seeds is that these are too expensive for the farmers.

	Agro-che	Fertilizer	Seed	Seed	Seed	Fuel for
	micals		(Cereal)	(Bean)	(vegetables)	tractor
Non availability	-	-	4	1	1	-
Not available when needed	1	9	-	-	7	1
Available in small quantities only	-	-	6	-	1	-
Expensive	-	-	3	7	9	1
Transport problems	-	-	-	-	-	-
Lack of finance	-	-	4	-	1	1
Low quality	-	-	6	-	-	-
Total	1	9	23	8	19	3

Table 3.4.2 Problems in Obtaining Farm Inputs (no. of Answers)

Source: IDMP TT (Socio-economic survey, 2015) * The questionnaire allowed multiple answers to the interviewee

(2) Agro chemicals use

There are very few farmers using agro-chemicals such as fertilizers or pesticide. Among the interviewees, one (1) farmer in Nyuwa community answered he makes agro-chemicals by himself, and it might be a kind of bio-chemical. In addition, there are several farmers who use agro-chemicals for vegetable cultivation. It seems there is almost no use of agro-chemicals as general in farming practice in Jebel Lado. However, the farmers expressed they have difficulty in obtaining agro-chemicals including fertilizer, that is to say, it is unavailability of such agro-chemicals on time. It should be noted that they do not mention õExpensiveö as a problem they have in obtaining agro chemicals (See Table 3.4.2). The main problem might not be affordability but availability.

(3) Labour

Necessary labour for farming operation is supplied mainly from family, but sometimes farmers work as group. In other word, they help each other without any physical payment. Required working days for major farming operation was surveyed in the socio-economic survey. Declared working days vary widely and tend to be longer than that is considered as normal, because farmers repeatedly practice same operation such as land preparation or seeding with trial and error. Farmers often failed to start or continue cultivation due to deficit of rainfall or unexpected delay of rainy season.

(4) Farm machinery/tools

Table 3.4.3 shows the inventory of farm machinery and tools the farmers own. No farmer possess tractor or water pump. Only general hand tools for manual operation such as hoe and shovel are their major possessions.

One (1) farmer in Piete community has an experience in hiring tractor from the government to plow three (3) feddans of his farmland and. Its fee was 300 SSP/feddan. Even though the tractor rental service from the government is available in the site, few farmers seem to be able to utilize it. Actually, it seems they cannot afford to access it in spite of their willingness.

Regarding other farming equipment, almost no farmer borrowed or hired any other equipment such as weeder or water pump, which means almost all of their agricultural practices are done manually. However, there was one (1) farmer who borrowed a weeder from the government for a day with 200 SSP/day of payment as its rental fee.

	No. o m	of HHs ov nachineri	Average no. of machinery	
		(no.)	(no./HH)	
			Total	Total
	Nyuwa	Piete		
4-wheel tractor	-	-	-	-
Hand tractor	-	-	-	-
Hand sprayer	-	-	-	-
Engine sprayer	-	-	-	-
Weeder	-	-	-	-
Seeder	-	-	-	-
Hoe	14	8	22	2.4
Shovel	8	3	11	0.8
Manual thresher	5	4	9	2.6
Engine thresher	-	-	-	-
Oxen-drawn plow	-	-	-	-
Water pump(Oil)	-	-	-	-
Water pump (Electric)	-	-	-	-
Milling machine	1	-	1	1.0
Agro well	-	-	-	-
Mobile phone	7	3	10	1.1
Spade	5	1	6	2.3
Ax	9	4	13	1.7
Panga	6	4	10	1.7
Moloda	7	4	11	2.0
Gudum	-	1	1	1.0
Knife	-	-	-	-

Table 3.4.3 Inventory of Owned Farm Machinery/Tools

Source: IDMP TT (Socio-economic survey, 2015)

(5) Livestock raising

Average numbers of livestock in the owners and average numbers of livestock in the total of samples are shown in the tables below. Cow and goats in Jebel Lado are much less than those in Wau, so that we can clearly find weight of crop cultivation in Jebel Lado is higher than that of Wau.

Area	Cow	Bull/Ox	Sheep	Goats	Pigs	Chicken	Ducks
Wau	14.9	3.5	8.9	13.2	-	12.3	-
Jebel Lado	3.0	-	6.4	8.8	-	14.0	2.0
Rejaf East	2.0	-	11.3	5.9	1.0	8.4	10.0
3 areas	12.7	3.5	8.7	10.3	1.0	12.4	6.0
Source: IDMP TT (S	ocio-economic	survey 2015)					

Table 3.4.4 Average	e Number of Livestock	with the Owners

Source: IDMP TT (Socio-economic survey, 2015)

Area	Cow	Bull/Ox	Sheep	Goats	Pigs	Chicken	Ducks
Wau	8.0	1.1	5.2	9.2	-	8.0	-
Jebel Lado	0.3	-	1.4	3.4	-	11.0	0.1
Rejaf East	0.1	-	1.3	2.0	0.0	2.3	0.4
3 areas	2.9	0.4	2.7	4.9	0.0	6.9	0.2

Table 3.4.5 Average Number of Livestock in the Samples

Source: IDMP TT (Socio-economic survey, 2015)

3.5 Productivity

(1) Crop yields

Table 3.5.1 shows average crop yield in Jebel Lado. Yield ranges widely, for instance, the minimum yield is 0.2 t/ha and the maximum yield reaches 2.4 t/ha. As a whole, crop yield in Jebel Lado is nearly equal to or more than the average of three (3) sites. Some farmer achieve considerably high yield, for

Table 3.5.1 Crop Yields							
Crop	Average Yield	Minimum Yield	Maximum Yield	No. of sample	(Average yield of 3 sites)		
	(t/ha)	(t/ha)	(t/ha)		(t/ha		
Maize	0.7	0.2	2.4	21	0.7		
Sorghum	1.2	0.1	2.9	19	1.2		
Cassava	1.6	0.5	2.4	3	1.6		
Common bean	0.9	0.2	2.4	4	0.6		
G nut	1.7	0.2	3.8	13	1.5		
Sesame	0.3	0.1	0.4	2	0.6		
Vegetables							
Okra	2.8	0.2	11.9	18	1.8		
Tomato	2.4	0.1	5.2	7	2.8		
Cucumber	0.1	0.1	0.1	1	0.1		
Jew's mallow	5.0	0.6	14.3	11	3.1		
Amaranthus	3.2	1.9	5.7	4	3.2		
Cowpea	0.8	0.2	1.7	3	0.8		
Bean	1.4	1.4	1.4	1	1.4		

instance Okra and Jewøs mallow, those maximum estimated yield is 11.9 and 14.3 t/ha.

Source: IDMP TT (Socio-economic survey, 2015)

Table 3.5.2 shows the important causes of pre-harvest damage or loss in cereal and other crops cultivation which was expressed by the farmers in Jebel Lado. Problems caused by wild domestic/wild animals are mentioned as most striking constraint on both of cereal and other crop cultivation. Disease is also mentioned as important problem. Compared to the above problems, issues relevant to water supply is expressed by fewer interviewees.

Table 3.5.2 Important Causes of Pre-harvest Damage or Loss (no. of Answers)

	Cereal	Other crop
Domestic animals	14	14
Birds	14	13
Other wild animals	14	13
Pest	6	4
Disease	13	10
Too much rain	9	4
Too little rain	8	3
Shortage of irrigation water	2	1
Others	2	1
Tota	al 82	63

Source: IDMP TT (Socio-economic survey, 2015) *1 :The questionnaire allowed multiple answers to the interviewee *2 % thers+were not specified.

(2) Produces use

Table 3.5.3 shows crop productøs use in Jebel Lado. More than half of the Maize, Sorghum and Sesame are for self-consumption. Including other use in household, more than three (3) quarters of produce of Maize, Sorghum, Ground nut, and Sesame are consumed in household. Cassava and common beans are used almost half for household and selling respectively. On the other hand, vegetables are produced mainly for selling. Post-harvest losses of Maize, Sorghum and Cassava were mentioned, especially that of Cassava was relatively higher than others.

	Househ							Sold to	No. of
	old use	Self-con	Stock	Loan	Land	Post-h	Others	market	sampl
		sumption	for seed	payment	tenant	arvest			es
					fee	losses			
Maize	78.8%	58.9%	11.1%	-	-	0.7%	8.1%	21.2%	21
Sorghum	84.5%	63.9%	10.8%	-	-	1.1%	8.7%	15.5%	18
Cassava	56.4%	39.4%	6.4%	-	-	10.6%	-	43.6%	3
Common bean	51.8%	25.0%	18.0%	-	-	-	8.8%	48.2%	4
G nut	76.1%	42.6%	22.2%	-	-	-	11.3%	23.9%	13
Sesame	100.0%	94.4%	5.6%	-	-	-	-	-	2
Vegetables									
Okra	13.6%							87.8%	18
Tomato	11.7%							88.3%	7
Cucumber	33.3%							66.7%	1
Jew's mallow	6.4%							93.6%	12
Amaranthus	0.0%							100.0%	4
Cowpea	16.7%							83.3%	3
Bean	33.3%							66.7%	1

Table 3.5.3 Crop Produces Use

Source: IDMP TT (Socio-economic survey, 2015)

(3) **Profitability**

Table 3.5.4 shows net / gross cash income and production cost per ha in Jebel Lado. Net / gross cash income can only reflect the amount of cash sale, without inputted income to household such as self-consumption supply. Hence, the crops with high household use in Jebel Lado, like Maize, Sorghum and Ground nut tend to show lower net cash income compared to overall average of three (3) sites. Vegetables show high profitability because they are cultivated mainly for selling in Jebel Lado. In addition, unit production costs of vegetables in Jebel Lado are lower than the overall average as a whole.

	Net cash	n income	Gross cas	h income	Production	cost	No of
	(SSP/ha)		(SSP/ha)	-	(SSP/na)	_	samples
	Jebel	(Average	Jebel Lado	(Average	Jebel	(Average	
	Lado	of 3 sites)		of 3 sites)	Lado	of 3 sites)	
Maize	359	(791)	508	(917)	149	(125)	18
Sorghum	502	(959)	602	(1,058)	100	(99)	19
Cassava	3,608	(1,537)	3,889	(1,958)	280	(420)	3
Common bean	1,891	(1,064)	1,984	(1,139)	93	(75)	4
G nut	973	(1,713)	1,234	(1,955)	261	(242)	13
Sesame	-48	(643)	0	(735)	48	(92)	2
Vegetables							
Okra	15,258	(10,058)	15,699	(10,661)	440	(603)	18
Tomato	9,932	(10,335)	10,653	(10,949)	721	(614)	7
Cucumber	286	(286)	762	(762)	476	(476)	1
Jew's mallow	16,354	(9,557)	16,775	(10,112)	421	(555)	11
Amaranthus	8,167	(7,110)	8,690	(7,696)	524	(586)	4
Cowpea	1,317	(1,838)	1,460	(2,000)	143	(162)	3
Bean	4,762	(4,762)	4,762	(4,762)	0	(0)	1

Table 3.5.4 Net Cash Income, Gross Cash Income and Production Cost per ha

Source: IDMP TT (Socio-economic survey, 2015)

*1 Each unit values of net cash income, gross cash income and production cost were calculated respectively excluding invalid/unavailable values, hence net cash income value is not equivalent to the reminder after deducting unit production cost from unit gross income.

*2 Breakdown of vegetable production cost are Seed, fertilizer and agro-chemical obtains. *3 No. of samples are only that of Jebel Lado.

In addition to net cash income, the results of net income calculated are listed in the following table:

Crop	Yield	Farm-gate Price	Gross Income	Production Cost	Net Income
	(t/ha)	SSP/kg	SSP/ha	SSP/ha	SSP/ha
Maize	0.7	3.9	2,730	149	2,581
Sorghum	1.2	3.3	3,960	100	3,860
Cassava	1.6	6	9,600	280	9,320
Common bean	0.9	5.1	4,590	93	4,497
Groundnut	1.7	3.4	5,780	261	5,519
Sesame	0.3	(4.8)	1,440	48	1,392
Vegetables					
Okra	2.8	5.4	15,120	440	14,680
Tomato	2.4	5.2	12,480	721	11,759
Jew's mallow	5	3.5	17,500	421	17,079
Amaranthus	3.2	2.6	8,320	524	7,796
Cowpea	0.8	3.1	2,480	143	2,337
Cucumber	0.1	8	800	476	324

|--|

Source: IDMP TT (Socio-economic survey, 2015)

Note: Farm-gate price in () is the average of other sites due to lack of data in this site

3.6 Selling of Produces

Farmers in Jebel Lado are selling their produce mainly at the markets; Libia, Konyokonyo, and New site markets, where is located about 20 km away from the two (2) communities. In Nyuwa community, there are some farmers selling their produce to traders or collectors directly.

Table 3.6.1 shows the mode of transport the farmers in Jebel Lado use. Major ways of transport are public bus and motorbike and some of the farmers transport their produce by foot.

Mode of transport	No. of answers				
Public bus	19				
Tractor	-				
Private car	-				
Motorbike	13				
Bicycle	-				
On foot	7				
No need	-				
Total	39				
Source: IDMP TT (Socio-economic su	$r_{VOV} 2015)$				

Table 3.6.1 Mode of Transport

* The questionnaire allowed multiple answers to the interviewee

Table 3.6.2 shows the problems in marketing of produce mentioned by the farmers in Jebel Lado. The farmers particularly feel difficulty with low market prices, lack of facilities for transportation and storage and high transportation cost.

	0111000000
Problems in marketing of produce	No. of answers
Low selling prices	17
Lack of transportation facilities	15
High cost of transportation	16
Lack of storage facilities	15
Quality problems of products	11
Lack of packing material	7
Total	81

Table 3.6.2 Problems in Marketing of Produces

Source: IDMP TT (Socio-economic survey, 2015) * The questionnaire allowed multiple answers to the interviewee

CHAPTER 4 DEVELOPMENT CONSTRAINTS AND POTENTIALS

Table 4.1.1 shows the problems related to farming practices in Jebel Lado. As same as other two (2) sites, damages caused by pests /diseases and wild/domestic animals are most highly recognized as obstacles. Secondly highly recognized problems are water shortage and lack of farm roads. Some of farmers said hunger is the most serious challenge to practice farming.

Problems in farming	No. of answers
Water shortage	17
Drought damage	10
Low yield of crops	15
Drainage problems	8
Damage by pests and diseases	19
Weed damage	9
Damage by wild animal	19
Difficulty in hiring animal/mechanical power	10
Labour shortage	4
Difficulty in obtaining seeds	10
Difficulty in purchasing agro-chemicals	14
Difficulty in purchasing fertilizer	6
Lack of farm roads	17
Damage by domestic animal	19
Shortage of selling opportunity	15
Lack of storage facilities	10
Problems related to loans	5
Others	1
Total	208

Table 4.1.1 Problems in Farming

Source: IDMP TT (Socio-economic survey, 2015) * The questionnaire allowed multiple answers to the interviewee

Table 4.1.2 shows the items recognized as necessarily improved in farming practice in Jebel Lado. Corresponding to the Table 4.1.1, protection from pests/diseases and animals are high recognized as required improvement as same as other two (2) sites. Improvement of seeds and mechanization are also considered as in need by the farmers in Jebel Lado.

	1010100
Items needed to be improved	No. of answers
To acquire irrigation water	16
To improve irrigation facilities	12
To drain out excess water	9
To prevent pests and diseases	21
To prevent damage by animal	20
To prevent weed damage	16
To improve supplying system of farm inputs	16
To improve farm road	15
To improve transportation of products	12
To introduce improved seed/plant varieties	19
To improve farming practices	20
To introduce mechanized farming	21
To strengthen agricultural extension services	14
To improve and expand agricultural credit	8
To construct drying yard	8
To construct processing facilities	14
To construct storage facilities	11
Others	1
Total	253

Table 4.1.2 Items Needed to be Improved

Source: IDMP TT (Socio-economic survey, 2015) * The questionnaire allowed multiple answers to the interviewee

Summarized findings/features in the present agricultural situation in Jebel Lado

- ✓ More than half of farmland are used for maize and sorghum, which is higher share compared to other 2 sites. In addition, those cropsø share of self-consumption to total production is higher, which implies they prioritize staple crops production for self-supply.
- ✓ Vegetable cultivation generating cash income is fairly well practiced with relatively high profitability, while farmers feel much difficulty on low market price.
- ✓ Estimated crop yield is fairly good compared to other sites as a whole.
- \checkmark There are few farmers having an experience in using agricultural machinery and agro-chemicals.