PART 2 IRRIGATION SCHEME DEVELOPMENT PLAN

CHAPTER 5 INSTITUTIONAL SET-UP OF THE IRRIGATION SCHEME

5.1 Demarcation of Stakeholders' Roles

MEDIWR takes primal responsibility to develop the Rejaf East Irrigation Scheme, including feasibility study, design works, implementation, O&M of the main structures, and monitoring and evaluation of the project.

Key directorates of MEDIWR in development of the Rejaf East Irrigation Scheme are six, which include Directorate of Irrigation and Drainage (DID), Directorate of Planning and Programmes (DPP), Directorate of Water Resources Management (DWRM), Directorate of Power Engineering and Grid (DPEG), and Directorate of Hydrology and Survey (DHS). Their main functions in development of the Rejaf East Irrigation Scheme are summarized in Table 5.1.1.

Organization	Stakeholders	Key Functions in Irrigation Development
MEDIWR	Directorate of Irrigation and	Construction and operation of irrigation scheme; including
	Drainage (DID)	pump station, canals, farm lots and flood control structures.
	Directorate of Planning and	Coordinate staff training including State government staff;
	Programmes (DPP)	Coordinate planning process; Monitoring and Evaluation of
		the project implementation, Harmonize budgeting
		procedure for effective budget execution.
	Directorate of Water Resources	Establishment of institutional framework; Integrated Water
	Management (DWRM)	Resources Management approach; Pollution prevention
		and mitigation.
	Directorate of Power	Construction, rehabilitation, maintenance and operation of
	Engineering and Grid (DPEG)	power plant and grid.
	Directorate of Hydrology and	Resource assessment, feasibility studies, information
	Survey (DHS)	management and research; Establishment of centralized
		hydromet and water use/abstraction information
		management system; Accumulation of long time historical
		Hydromet and water use/abstraction data/information using
		hydromet equipment installed at the Rejaf East Irrigation
	ctions of directorates MW/PI	Scheme.

Table 5.1.1 Key Directorate of MEDIWR in National Irrigation Development Programme

Source: Main Functions of directorates MWRI Strategic Plan 2012-2017, MWRI

Programme Profile of IDMP, National Irrigation Development Programme (NISDP)

In addition to MEDIWR, MAFCRD, MLFI, MOE, MWLCT and etc. are also important stakeholders in development of the Rejaf East Irrigation Scheme. At the planning stage, MAFCRD is required to develop water demand plan for crops related the project. MAFCRD also takes responsibility for on-farm level irrigation management, including allocation of farm plot to farmers, preparation of cropping calendar, estimation of water demand, extension of irrigation farming, and O&M of irrigation facility at on-farm level.

MWLCT also plays important role for conservation of wild life in and around the project site, while MOE is a primal ministry for environmental protection including watershed conservation. Table 5.1.2 shows stakeholders and their key functions in Rejef East Irrigation Scheme development.

	Table offiz Galdeneration interved in radional ingation periodephotic regianne							
Organization	Stakeholders	Key Functions in Irrigation Development						
FSC	Food Security Council	Create a national food security policy to ensure adequate food						
		availability throughout South Sudan.						
MAFCRD	Directorate of Agriculture	Promote development and adaptation of appropriate technology for						
	Production and Extension	irrigation farming; Establish and manage an effective agricultural						
	Services (DAPES)	extension service; Human resource training in the field.						

Table 5.1.2 Stakeholders involved in National Irrigation Development Programme

Organization	Stakeholders	Key Functions in Irrigation Development
	Directorate of Cooperatives	Provide guidance to establish cooperatives and issuance of the
	(DC)	registration certificate if necessary.
	Directorate of Rural	Provide technical assistance and training to State governments
	Development (DRD)	and other local governments to build their capacity to assume their
		responsibilities for irrigated agriculture.
	Directorate of Planning (DP)	Formulate registration, policies, standards and plans for irrigated
		agriculture development.
	Directorate of Special	On-farm level irrigation management, including allocation of farm
	Projects and Donors	plot to farmers, preparation of cropping calendar, estimation of crop
	Coordination (DAPDC)	water requirement, and instruction to farmers for O&M of irrigation facility at on-farm level.
MOE	Ministry of Environment	Conduct EIA of irrigation projects; Environmental protection
MOL		including watershed conservation; Advice and support States and
		local governments in their responsibilities for environmental
		protection.
MWLCT	Directorate of Wild Life	Develop water demand plan for wildlife and other conservation
	Conservation	purposes if any.
MLHPP	Ministry of Lands, Housing	Surveying and mapping of the project area and safe keeping maps
	and Physical Planning	ad documents; Establish and oversee the operation of the land
		registry.
LC	Land Commission	Establish and oversee the operation of the Land Registry.
NBS	National Bureau of Statistics	Provide socio-economic data/information for irrigation development
		plan and M&E.
MTRB	Ministry of Transport, Roads	Construction of Farm-To-Market road to improve market
	and Bridges	accessibility of irrigation command areas; Permit common use of
		road/bridge for irrigation scheme development and Hydromet
		equipment installation.
MGCSW	Ministry of Gender, Child and	Promote income generating activities of vulnerable groups; Plan
	Social welfare	and implement repatriation, relief, resettlement and reintegration of
		internally displaced persons and refugees.
MFEP	Ministry of Finance and	Budgetary arrangement for irrigation development; Supporting
	Economic Planning	donor buying process for irrigation development.
MTII	Ministry of Trade, Industry	Promotion of Public Private Partnership and private sector
	and Investment	investment in future.
MLFI	Directorate of Animal	Coordinate participation of livestock keepers in irrigation planning;
	Production and Range	Develop water demand plan for dipping and watering facilities for
	Management (DAPRM)	livestock if necessary.
	Directorate of Livestock and	Provision of research results to mitigate conflict between farmers
	Fisheries Research	and pastoralists so as to sustain irrigation water use among
	Development (DLFRD) Directorate of Extension and	stakeholders.
		Coordinate participation of pastoralists in irrigation planning; Develop water demand plan for pastoralistsq watering points if
	pastoralists Development (DEPD)	necessary.
	Directorate of Fisheries and	Coordinate participation of fisher folks and aquaculture business
	Aquaculture Development	entity in irrigation planning if any; Develop water demand plan for
	(DFAD)	fisheries and aquaculture related facilities if any
	Directorate of Investments	Collection and provision of necessary data/information for irrigation
	Planning and Statistics	development plan and M&E.
	(DIPS)	
WRMA	Water Resources	[After the Water Bill being enacted] Regulate the management;
	Management Authority	Development and use of water resources; Issue regulation on
	(WRMA)	water resources allocation and the issuance of permits; Issue
		permits for inter-basin water transfer; Provide guidelines to BWB
		on the pricing strategy for charges to be levied under the Water Bill;
		Ensure collection, analysis and dissemination of data and
		information on water resources, etc.
BWB	Basin Water Boards (BWB)	[After the Water Bill being enacted] Protecting water resources
		and increasing water availability, Receiving permit applications for
	1	water abstraction, for water use and recharge, determining, issuing
		and varying water permits and enforce the conditions of those permits; Receiving permit applications for the construction of

Organization	Stakeholders	Key Functions in Irrigation Development
		works, and determining, issuing and enforcing the conditions of those permits; Enforcing regulations; Coordinate and facilitate the formation and activities of WUAs; Setting the level of charges to be levied under this Act in accordance with the pricing strategy and guidelines issued by the WRMA; Collecting water permit and water use charges; etc.
IB	Irrigation Boards (IB)	[After the Water Bill being enacted] Protecting water resources and increasing irrigation water availability, Receiving permit applications for irrigation water users, for water use and recharge, determining, issuing and varying water permits and enforce the conditions of those permits; Receiving permit applications for the construction of irrigation and drainage facilities, and determining, issuing and enforcing the conditions of those permits; Enforcing regulations; Coordinate and facilitate the formation and activities of WUAs; Setting the level of charges to be levied under this Act in accordance with the pricing strategy and guidelines issued by the WRMA; Collecting irrigation fee for O&M of irrigation facilities; etc.
C/WC	Catchments/Watersheds Committees	[After the Water Bill being enacted] To formulate catchment or sub-catchment integrated water resources management plans; To resolve water resources conflicts in the catchment or sub-catchment; To perform other functions delegated by the BWB.
WUA	Water Users Association (WUA)	Manage, distribute and conserve water from a source/facility used jointly by the members of the WUA; Resolve conflicts between members of the association; Collect water user fees on behalf of the BWB; Represent the special interests and values arising from water used for both public and private purposes.
SDWS	State Directorate of Water and Sanitation (SDWS)	Coordination between central government, counties and communities concerned to formulate irrigation development plan, implementation and O&M of the project; participation in M&E of the project.
SDALFF (SLMALFF)	State Directorate of Agriculture, Livestock, Fisheries and Forestry (SDALFF)	Coordination between central government, counties and communities concerned to formulate irrigation development plan, implementation and O&M of the project; participation in M&E of the project.
SDC/RD (SLMC/RD)	State Directorate of Cooperatives, Rural/Community Development	Coordination between central government, counties and communities concerned to formulate irrigation development plan, implementation and O&M of the project; participation in M&E of the project.
SDLS (SLMLS)	State Directorate of Land and Survey	Coordination between central government, counties and communities concerned to formulate irrigation development plan, implementation and O&M of the project; participation in M&E of the project.
CDWS (LG)	County Department of Water and Sanitation (CDWS)	Coordination between central government, state and communities concerned to formulate irrigation development plan, implementation and O&M of the project; participation in M&E of the project.
CDALFF (LG)	County Department of Agriculture, Livestock, Fisheries and Forestry (CDALFF)	Coordination between central government, state and communities concerned to formulate irrigation development plan, implementation and O&M of the project; participation in M&E of the project.
CDC/RD	County Department of Cooperatives, Community/Rural Development	Coordination between central government, state and communities concerned to formulate irrigation development plan, implementation and O&M of the project; participation in M&E of the project.
At Community Level	Farmers/Pastoralists Union, Cooperatives Society, Fishing Folks, Civil Society Functions of directorates MWRI	Participation in irrigation development planning, implementation and O&M of the project; participation in M&E of the project.

Source: Main Functions of directorates MWRI Roles, Functions and Responsibilities of the National Ministries, Ministry of Cabinet Affairs, November 4th, 2013. Programme Profile of IDMP, National Irrigation Development Programme (NISDP)

5.2 Category of Irrigation Scheme

The Rejaf East Irrigation Scheme will be developed under the National Irrigation Scheme Development Programme (NISDP). The NISDP is owned by the national government with large/medium scale command area and irrigation facilities and is developed by the national government. Definition of the NISDP is summarized in Table 5.2.1.

	Table 6.2.1 Gategorization of the imgation conomic										
Programme	Definition	Capital Investment (funding source)	Implementation (Construction)	Owner	O&M /a	Responsible Organization of Land Allocation	Technical Assistance	Supervision of Scheme Management			
National Irrigation Scheme Development Programme (NISDP)	- Large (more than 500 ha) - Land property belongs to National	National/ Private Sector (Bank)/ International Development Bank/ DPs (grant)	National	National	National (Scheme Management Office)/ WUA	National/ Community	National/ DPs/ NGOs	National			

Table 5.2.1 C	ategorization of th	he Irrigation Scheme	е

Note: a/ Óperation and maintenance of irrigation scheme could transfer to local government in the long-term, depending on their capability.

5.3 Division of Roles within the Irrigation Schemes

MEDIWR takes primal responsibility to develop the Rejaf East Irrigation Scheme, from planning, designing, implementation, and O&M. The line ministries of the MEDIWR at state government and local government also play key roles in irrigation development planning in terms of coordination among grassroots level stakeholders, and M&E of the irrigation programmes/projects.

Community participation in planning, implementation, operation and maintenance of on-farm level irrigation scheme is a key for successful implementation of the irrigation development. In some cases, land belongs to communities, and the government cannot start any irrigation development procedures without permission and participation of communities. Table 5.3.1 shows role and responsibility for implementation of the Rejaf East Irrigation Scheme development project.

	Responsibilities								
Type of programme/project	National Government/DPs	State Government/DPs	County or LG	Community	Private Sector				
National programme/project (Nationally planned and nationally implemented)	Planning Financing Implementation M&E	Coordination M&E	Coordination M&E	Contribution Coordination M&E					

5.4 Private Sector Involvement

In irrigation development, there are several types of private sector involvement including participatory irrigation management (PIM), irrigation management transfer (IMT), and public private partnership (PPP). In the Republic of South Sudan, the irrigation development under the current government has just started through the IDMP, and establishment of organizational structure and capacity development of the government officials has just started at the national level. Technical and administrative capacity development at state, county and community level will be conducted afterward.

When we consider current constraints on irrigation development including sophisticated land holding system, capacity of the government in terms of financial and human resources, introduction of PIM must be necessary to promote the irrigation development to nationwide. In this regard, community participation in irrigation development from planning stage till operation and maintenance of irrigation

facilities at least on-farm level is required. Following table shows range of institutional arrangement of PIM. Among them, the shared management is suitable for the Rejaf East Irrigation Scheme.

Activity	Full Agency Control	Agency O&M (User Input)	Shared Management	WUA Owned (Agency Regulation)	Full WUA Control	Irrigation Management Company Board
Regulation	Agency	Agency	MEDIWR	Agency	WUA	Agency
Ownership of Structure & Assets	Agency	Agency	MEDIWR	WUA	WUA	Private Company
O&M Responsibility	Agency	Agency	Scheme Management Office/ WUA	WUA	WUA	Private Company
Collection of Water Charges	Agency	Agency	Scheme Management Office/ WUA	WUA	WUA	Private Company
Unit of Representation	Agency	WUA	WUA	WUA	WUA	Company & User Committee

Table 5.4.1 Range of Institutional Arrangements for PIM

Source: Arranged by the IDMP-TT based on %Rarticipatory Irrigation Management+, J. Raymond Peter, Executive Director, International Network on Participatory Irrigation Management, Washington DC (INWEPF/SY/2004(06))

CHAPTER 6 AGRICULTURAL PLANNING

6.1 Basic Concept of Agricultural Planning for Priority Projects

The priority project areas will be the model of irrigated agriculture in RSS in future after IDMP actually start working. Therefore, the farming plans of priority project areas should have form that can contribute to the strategic plan specified in the governmental policies related to agricultural sector. In addition, it would be necessary to examine the agricultural potential of each project areas from various aspects, such as natural condition, marketing, and beneficiariesøcapacity and their technical potential.

Government plans to be considered

Agricultural Sector Policy Framework (2012-2017) with its setting vision of õFood security for all the people of the Republic of South Sudan, enjoying improved quality of life and environmentö. Food insecurity is the most critical issue for South Sudanese and sustainable irrigation infrastructure and flood management system is expected to improve agricultural productivity and food security enhancement. This document also addressed some key issues as the mission of MAFCRD for instance acceleration of food and agricultural production through commercial smallholder and large scale agriculture, using mechanized and irrigation technology.

In addition, the comprehensive national development plan initiated just after the independence, namely õSouth Sudan Development plan (SSDP) 2011-2013ö prioritizes the agricultural sector for economic development. In fact, main means of livelihoods of South Sudanese are agriculture and animal husbandry. To achieve basic improvement of peopleøs livelihoods, commercial agriculture should be promoted for future economic growth.

To make farming systems of priority project areas to follow the above strategic plan of the government, followings should be incorporated into the farming plans.

- ✓ Mechanized and intensive farming system
- ✓ To grow staple crops for subsistence giving priority to the crops with high water requirement
- \checkmark To grow commercial crops for cash generation

With setting the above as basic concept of farming plan for priority project areas, crops to be cultivated for each area are examined considering the specific conditions, such as natural condition, marketing, and beneficiariesøcapacity and their technical potential.

6.2 Agricultural Planning (Cropping Pattern)

The command area in Rejaf East is owned by three (3) communities namely; Guduge, Migiri and Mogoro. Therefore, beneficiaries the farmers in future irrigation scheme are expected to be mainly the members from those three (3) communities. Hence, their potentiality and intension should be taken into consideration for the plan.

According to the socio economic survey, the farmers in the communities allocate large area to vegetable cultivation and their irrigated farmland/HH was the largest among the three (3) sites. Above all, the farmers in Rejaf East seem to be more familiar with irrigated farming, and also relatively experienced in using agro-chemicals or agricultural machinery use rather than other two (2) sites. The farmers in Rejaf East seem to be eager to produce vegetables as a mean of cash generation and lots kind of vegetables are cultivated.

Accordingly, the share of vegetables counts up to more than half of all requested crops. (See Table

6.2.1 below)Overall, Maize and Ground nut has been the most chosen crops by interviewees. Among the vegetables, Okra and Jewø mallow ranked at the highest followed by Tomato and Egg plant.

Percentage of Answers
r ercentage of Answers
9.9
4.9
4.9
7.4
9.9
3.7
3.7
3.7
51.9
(11.1)
(12.3)
(12.3)
(4.9)
(9.9)
(1.2)

Source: IDMP TT (Socio-economic survey, 2015) * The questionnaire allowed multiple answers to the interviewee

* Parenthesized numbers show the breakdown of vegetables.

In addition, there is much promising potential in vegetable cultivation in Rejaf East, because the area is very near from the markets in Juba, only five (5) to six (6) km away, with high accessibility to the place with high demand of food crops.

As same as other two (2) sites, natural condition should be considered to make the plan realizable. The above crops highly requested from the farmers were examined from the aspect of heat temperature tolerance and its suitable soil type (Soil in the command area ranges mainly from Sandy to Sandy Loam).As results, no crops above have been excluded. There is no crucial obstacle regarding soil condition like acidity of soil etc. Actually, sandy to sandy loam is generally suitable for vegetable production. However, one point should be considered is that there is damp area near from the river. Drainage management should be applied in such area.

With the considerations above, Maize, Ground nut, Okra, Jewøs mallow, Tomato and Egg plant have been selected as representative of the farming plan.

Figure 6.2.1 shows the planned cropping pattern with project for Rejaf East.

	%	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Maize + Tomato	38												
G nuts + Jew's mallow	17											r	
Okra + Egg plant	41												

Figure 6.2.1 Planned Cropping Pattern

CHAPTER 7 IRRIGATION AND DRAINAGE PLAN

7.1 Parameters Affecting Crop Water Requirement

7.1.1 Climate and Weather Parameters

(1) Meteorological stations

The nearest meteorological stations for the priority project site are shown as below. These meteorological stations have the data, such as rainfall, temperature, relative humidity, and wind speed and so on. Though the sunshine hour data cannot be found at the meteorological stations, it should be estimated by õFAO Irrigation and Drainage Paper No.24ö.

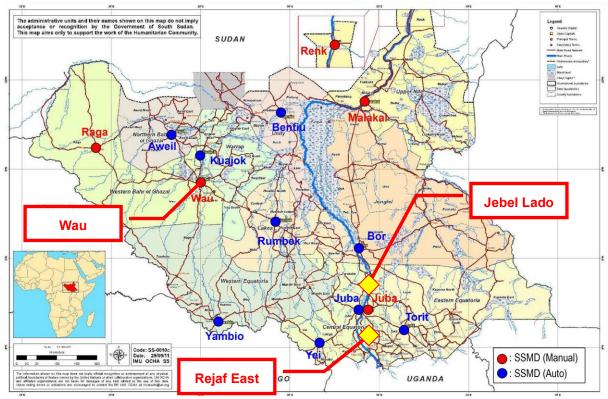
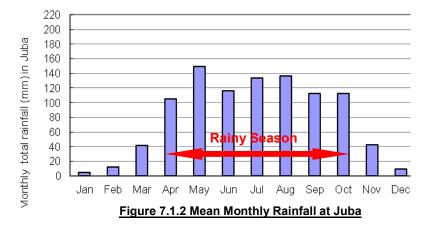


Figure 7.1.1 Meteorological Stations in South Sudan

Priority Project Site	Climate Data	Meteorological Station	Remarks
Wau	Temperarure, Rainfall	Wau	
	Relative Humidity,	Kauajok	No data in Wau
	Wind Speed		meteorological station
Jebel Lado	Temperarure, Rainfall	Juba	The nearest
	Relative Humidity		meteorological station
	Wind Speed		
Rejaf East	Temperarure, Rainfall	Juba	The nearest
	Relative Humidity		meteorological station
	Wind Speed		

<u>Table</u>	7.1.1 Meteorological Stations for Necessary	<u>Climate Data</u>

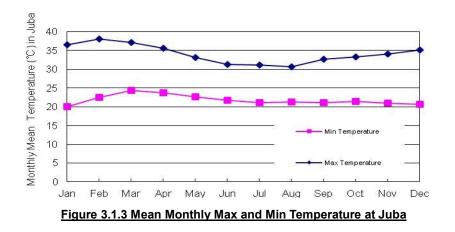

(2) Rainfall

The priority project areas climate belongs to the equatorial subtropical type. According to the data, it is categorized that Apr-Oct period is õRainy seasonö, and Nov-Mar period is õDry seasonö. And it is characterized by mean annual rainfall of about 1,000 mm distributed in one rainy seasons, high

temperatures and whereby consequently high evaporation. The mean monthly rainfall for Juba station is given in Table 7.1.2 and Figure 7.1.2.

Meteorological Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Juba (mm)	4.4	11.8	41.7	105.6	149.2	116.1	134.0	136.7	112.4	112.6	42.9	9.8	977
Source: Meteo	Source: Meteorological Station Data (1901-2012 complied from several sources)												

Table 7.1.2 Mean Monthly Rainfall at Juba


(3) Temperature

The temperature in Wau and Juba area does not vary much throughout year. The hottest temperature appears in Feb -Mar, which corresponds to the end of the dry season. In both area, the mean monthly maximum temperature varies between 30 °C and 38 °C while the minimum temperature varies between 19 °C and 24 °C (see Table 7.1.5, Figure 7.1.3).

Item	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
Min Temp (°C)	20.0	22.5	24.4	23.7	22.7	21.8	21.1	21.3	21.1	21.4	20.9	20.6	21.8
Max Temp (°C)	36.6	38.1	37.2	35.6	33.1	31.3	31.2	30.6	32.7	33.3	34.0	35.2	34.1

Table 7.1.3 Monthly Mean Max and Min Temperature at Juba

Source: Meteorological Station Data (2009-2012 provided by SSMD)

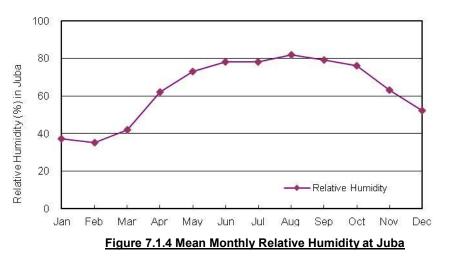
(4) Sunshine hours

Average sunshine hour is given in Table 7.1.6 estimated by FAO Irrigation and Drainage Paper No.24. By using the table by FAO, the shine hour can be estimate on a pro-rata basis of the latitude. It can be said that throughout the year, the isolation in priority area is long and strong, and the annual average keeps about 12 hours per day.

North Latitude	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
50°	8.5	10.1	11.8	13.8	15.4	16.3	15.9	14.5	12.7	10.8	9.1	8.1	
40 °	9.6	10.7	11.9	13.3	14.4	15.0	14.7	13.7	12.5	11.2	10.0	9.3	
30 °	10.4	11.1	12.0	12.9	13.6	14.0	13.9	13.2	12.4	11.5	10.6	10.2	
20 °	11.0	11.5	12.0	12.6	13.1	13.3	13.2	12.8	12.3	11.7	11.2	10.9	
10 °	11.6	11.8	12.0	12.3	12.6	12.7	12.6	12.4	12.1	11.8	11.6	11.5	
7.7 ° (Wau)	11.7	11.8	12.0	12.3	12.5	12.6	12.5	12.4	12.1	11.9	11.7	11.6	12.1
5.1 ° (Jebel Lado)	11.8	11.9	12.0	12.2	12.3	12.4	12.3	12.3	12.1	12.0	11.9	11.8	12.1
5 °	11.8	11.9	12.0	12.2	12.3	12.4	12.3	12.3	12.1	12.0	11.9	11.8	
0 °	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	12.0	

Table 7.1.4 Average Sunshine Hours Estimated by FAO Irrigation and Drainage Paper No.24

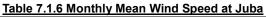
Source : FAO Irrigation and Drainage Paper No.24

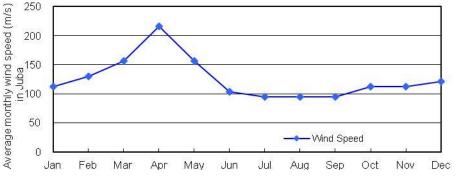

(5) Relative humidity

The yearly mean relative humidity is calculated at 63% for Juba. At Juba, it has 35 % in February, and has 82% in August. The monthly relative humidity data is given in Table 7.1.5 and in Figure 7.1.4, and as shown it is characterized by equatorial subtropical type.

Meteorological Station Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual Average Juba (%) 37 35 42 62 73 78 78 82 79 76 63 52 63		Table 7.1.5 Monthly Mean Relative Humility at Suba														
Juba (%) 37 35 42 62 73 78 78 82 79 76 63 52 63	0	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Source Meteorological Station Date (2000-2012 provided by SSMD)	()	-			-	-	-	-	82	79	76	63	52	63		

Table 7.1.5 Monthly Mean Relative Humidity at Juba


Source : Meteorological Station Data (2009-2012 provided by SSMD)



(6) Wind speed

Mean annual velocity exceeds 70 km/s and even reaches as high as 4 m/s speed during the dry months (refer to Table 7.1.6 and Figure 7.1.5). The wind conditions are determined mainly by the breeze effect from the Indian ocean. Night winds originate in gales which start blowing during the previous afternoon on the Somalian Coast.

			Table		o nen y	mount		//// ut	U UNU				
Meteorological Station	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual Average
Juba (km/day)	112	130	156	216	156	104	95	95	95	112	112	121	125.3
Source Meter	Source Meteorological Station Data (2009-2012 provided by SSMD)												

Figure 7.1.5 Mean Monthly Wind Speed at Juba

(7) Summary of the necessary climate and weather data

Priority Project : Jebel Lado, Rejaf East Station : Juba Altitude :462m, Latitude : 5° 4'N, Longitude : 31° 40'E

Table 7.1.7 Summary of the Chinate Data at Suba													
Item	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Average Total
Min Temp (°C)	20.0	22.5	24.4	23.7	22.7	21.8	21.1	21.3	21.1	21.4	20.9	20.6	21.8
Max Temp (°C)	36.6	38.1	37.2	35.6	33.1	31.3	31.2	30.6	32.7	33.3	34.0	35.2	34.1
Humidity (%)	37	35	42	62	73	78	78	82	79	76	63	52	63
Wind (km/day)	112	130	156	216	156	104	95	95	95	112	112	121	125.3
Sunshine (hours)	11.8	11.9	12.0	12.2	12.3	12.4	12.3	12.3	12.1	12.0	11.9	11.8	12.1
Rainfall (mm)	4.4	11.8	41.7	105.6	149.2	116.1	134.0	136.7	112.4	112.6	42.9	9.8	977

Table 7.1.7 Summary of the Climate Data at Juba

7.1.2 Cropping Pattern Plan in the Farmlands

The crop type, variety and development stage should be considered when assessing the evapotranspiration from crops grown in large, well-managed fields. Differences in resistance to transpiration, crop height, crop roughness, reflection, ground cover and crop rooting characteristics result in different ET levels in different types of crops under identical environmental conditions. The Cropping Pattern Plan in Rejaf East Farmlands is shown in Table 7.1.8.

Table 7.1.8 Cropping Pla	n
--------------------------	---

Project site	Rainy season	Dry season
Rejaf East	Maize, ground nuts, okra	Vegetable (Egg plant/ tomato/ Jewo mallow)

7.1.3 Crop Coefficient Factor

Most of the effects of the various weather conditions are incorporated into the ETo estimate. Therefore, as ETo represents an index of climatic demand, Kc varies predominately with the specific crop characteristics and only to a limited extent with climate. This enables the transfer of standard values for Kc between locations and between climates.

7.2 Estimation of Water Requirement

To estimate the crop water requirements, guidelines were developed and published by FAOõFAO Irrigation and Drainage Paper No. 24, Crop water requirementsö.

7.2.1 Reference Evapo-transpiration (ETo)

(1) Estimation methods

The evapo-transpiration rate from a reference surface, not short of water, is called the reference crop evapo-transpiration or reference evapo-transpiration and is denoted as ETo. The reference surface is a hypothetical grass reference crop with specific characteristics. The only factors affecting ETo are climatic parameters. Consequently, ETo is a climatic parameter and can be computed from weather data. ETo expresses the evaporating power of the atmosphere at a specific location and time of the year and does not consider the crop characteristics and soil factors.

Although several methods exist to determine ETo such as 1) Blaney-Criddle, 2) Radiation, 3) Modified Penman and 4) Pan evaporation methods as shown in Table 3.1.9. The modified Penman method was considered to offer the best results with minimum possible error in relation to a living grass reference crop. It was expected that the pan method would give acceptable estimate, depending on the location of the pan. The radiation method was suggested for areas where available climatic data include measured air temperature and sunshine, cloudiness or radiation, but not measured wind speed and air humidity. Finally, the publication proposed the use of the Blaney-Criddle method for areas where available climatic data cover air temperature data only.

Estimation Methods	Feature	Necessary data	Remarks	Adoption
1) Blaney-Criddle	The most simplest	Temperature		
	method			
2) Radiation	Simple method	Temperature, Sunshine		
3) Modified Penman	Suggested method	Temperature, Humidity,	Calculated by	The Project Team
(Penman-Montieth)	by FAO	Wind, Sunshine	CROPWAT 8.0	adopted this method.
4) Pan evaporation	Actual Measurement	Evaporation		
	method			

Table 7.2.1 Water Requirement Estimation Methods by FAO

The FAO Penman-Monteith method is recommended as the sole standard method. It is a method with strong likelihood of correctly predicting ETo in a wide range of locations and climates and has provision for application in data-short situations. Therefore the project team adopted this Penman-Montieth method as the estimation method of the water requirement.

(2) Monthly values of reference (potential) evapo-transpiration (ETo)

Monthly values of potential/reference evapo-transpiration (ETo) can be estimated using Penman-Monteith method. Data used in estimating the potential/reference evapo-transpiration using Penman-Monteith method are the mean monthly values of temperature, relative humidity, ratio of actual sunshine duration to the maximum possible one, and wind speed. Together with the climate data

recorded at Juba meteorological station and employed in estimating the ETo, the monthly ETo values are given in Table 7.2.2, which range from 5 mm to about 7 mm per day:

Particulars	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Min Temperature (°C)	20.0	22.5	24.4	23.7	22.7	21.8	21.1	21.3	21.1	21.4	20.9	20.6
Max Temperature (°C)	36.6	38.1	37.2	35.6	33.1	31.3	31.2	30.6	32.7	33.3	34.0	35.2
Relative Humidity (%)	37	35	42	62	73	78	78	82	79	76	63	52
Wind speed (km/day)	112	130	156	216	156	104	95	95	95	112	112	121
Sunshine (hours)	11.8	11.9	12.0	12.2	12.3	12.4	12.3	12.3	12.1	12.0	11.9	11.8
Radiation (MJ/m2/day)	25.7	27.1	28.1	28.2	27.3	26.7	26.8	27.8	28.0	27.3	26.0	25.2
ETo (mm/day)	5.84	6.64	7.20	7.08	5.96	5.35	5.30	5.39	5.66	5.67	5.56	5.66

Table 7.2.2 Evapo-transpiration (ETo) in Jebel Lado and Rejaf East Estimated by Penman-Monteith

Source: JICA Team based on meteorological data recorded at Juba station.

7.2.2 Crop Coefficient (Kc)

The crop coefficient is depended on the crop development stages. The crop coefficient curve is shown (Kc curve) to Figure 7.2.1. The crop coefficient (Kc) estimated is as follows Table 7.2.3, which varies from the initial stage to the peak stage. Estimation of crop coefficient (Kc) refers to the recommended figures in the õCrop Water Requirements No.24 FAO Irrigation and Drainage paperö.

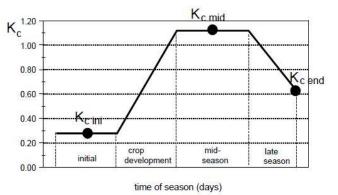
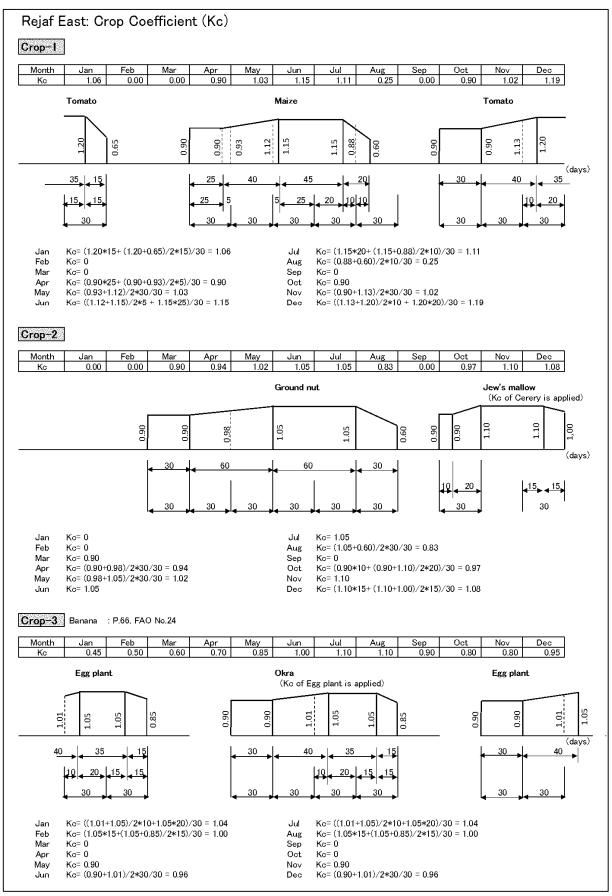



Figure 7.2.1 Crop Coefficient Curve

Table 7.2.3 Grop Coefficient by Each Grop										
Crop	Kc ini	Kc mid	Kc end							
Maize	0.90	1.15	0.60							
Egg plant/ okra	0.90	1.05	0.85							
Tomato	0.90	1.20	0.65							
Jewos mallow*	0.90	1.10	1.10							
Ground nuts	0.90	1.05	0.60							
Note Ka of low mal	lour in onnlin	d Ka of adam								

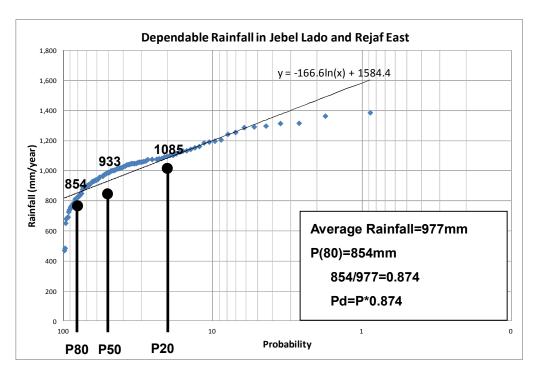
Table 7.2.3 Crop Coefficient by Each Crop

Note: Kc of Jewos mallow is applied Kc of celory.

7.2.3 Crop Evapo-transpiration under standard conditions (ETc)

The crop evapotranspiration under standard conditions, denoted as ETc, is the evapotranspiration from disease-free, well- fertilized crops, grown in large fields, under optimum soil water conditions, and achieving full production under the given climatic conditions. Crop evapotranspiration can be calculated from climatic data and by integrating directly the crop resistance, albedo and air resistance factors in the Penman-Monteith approach. As there is still a considerable lack of information for different crops, the Penman-Monteith method is used for the estimation of the standard reference crop to determine its evapotranspiration, ETc = Kc ETo.

7.3 Estimation of Irrigation Water Requirements


7.3.1 Calculation of Consumptive Irrigation Requirements (CIR)

The consumptive irrigation requirement is the quantity of water actually required by the plant.

CIR = Consumptive use ó effective rainfall CIR = ETc ó Eff. rainfall

(1) Effective rainfall (dependable rainfall)

Effective rainfall should be estimate by õDependable Rainfall (Pd)ö. The õDependable Rainfall (Probability=80%)ö is used for the design of irrigation system capacity. The õDependable Rainfall (80%)ö is corresponding to 80% probability of exceedance and representing a dry year.

Figure 7.3.1 Dependable Rainfall at Juba

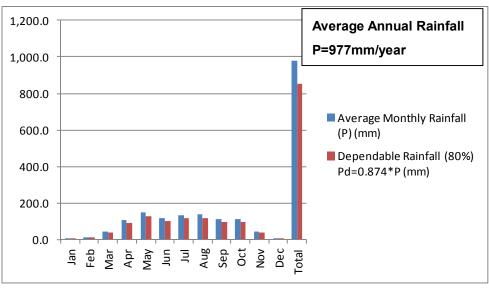


Figure 7.2.4 Effective Rainfall at Juba

(2) Estimation of the effective fainfall

Effective rainfall should be estimate by the formula suggested by FAO.

FAO Method (Suggested Method), Pd: Dependable Rainfall (Probability=80%)

Pe=0.6*Pd-10 (Pd≦70mm/month)

Pe=0.8*Pd-24 (Pd>70mm/month)

The estimated effective rainfall for Rejaf East scheme is shown in Table 7.3.3.

7.3.2 Calculation of Net Irrigation Requirements (NIR)

The net irrigation requirement (NIR) is equal to consumptive irrigation requirement plus the water required for other purpose, such as leaching of alkaline or salty soils.

NIR = CIR + Le

Where Le is the water required for leaching and other purposes.

7.3.3 Calculation of Field Irrigation Requirements (FIR)

The field irrigation requirement (FIR) is the amount of water required to be applied to the field. It is equal to the net irrigation requirements plus the amount of applied water lost as surface runoff, evaporation and deep percolation.

FIR = NIR + Water application losses

FIR = NIR/Ea

Where Ea is field application efficiency

The calculated NIR (ETcrop1, ETcrop2 and ETcrop3) for Rejaf East scheme is shown in Table 7.3.3.

7.3.4 Calculation of Gross Irrigation Requirements (GIR)

The gross irrigation requirement is the quantity of water required at the head of the canal; is greater than the field irrigation requirements because there are always some transit (conveyance) losses.

GIR = FIR + Conveyance losses

GIR = FIR / Ec

7.3.5 Calculation of Irrigation Water Requirements

Irrigation is required when rainfall is insufficient to compensate for the water lost by evapotranspiration. The primary objective of irrigation is to apply water at the right period and in the right amount. By calculating the soil water balance of the root zone on a daily basis, the timing and the depth of future irrigations can be planned.

The daily water balance, expressed in terms of depletion at the end of the day is:

Dr, i = Dr, i-1 - (P - RO)i - Ii - CRi + ETc, i + DPi

where

Dr, i: root zone depletion at the end of day i [mm],

Dr, i-1: water content in the root zone at the end of the previous day, i-1 [mm],

Pi: precipitation on day i [mm],

ROi: runoff from the soil surface on day i [mm],

Ii: net irrigation depth on day i that infiltrates the soil [mm],

Cri: capillary rise from the groundwater table on day i [mm],

ETc, i: crop evapotranspiration on day i [mm],

Dpi: water loss out of the root zone by deep percolation on day i [mm].

During this Pre-feasibility study for Rejaf East scheme most of the soil water balance parameters were negligent but they must be considered during feasibility study stage.

Therefore the daily water balance is expressed as follow:

0 = 0 - (P - 0)i - Ii - 0 + ETc, i + 0Ii = ETc,i ó Pi or NIR = ETc ó Eff. rainfall

There is no leaching required; the CIR is equal to NIR

The scheme/farm irrigation requirement is equal to net irrigation requirements plus field application losses, filed canal losses and conveyance losses.

Scheme/farm irrigation water requirement = Net irrigation requirements/Ep

Where Ep is overall Irrigation Efficiency

Ep= Ec.Eb.Ea

Where Ec is Conveyance efficiency, Eb is field canal efficiency and Ea field application efficiency.

(1) Overall irrigation efficiency

Overall irrigation efficiency, so-called project irrigation efficacy, is composed of 1) conveyance efficiency (Ec), 2) field canal efficiency (Eb) or distribution efficiency, and 3) field application

efficiency (Ea). The project irrigation efficiency is estimated by multiplying these 3 efficiencies. Table 7.3.1 presents the efficiencies applied in the target project with reference to the recommended efficiencies in the FAO Irrigation and Drainage Paper No.24, Crop Water Requirements¢ as; 0.90 for the conveyance efficiency, 0.90 for the field canal efficiency, 0.60 for the field application efficiency in Jebel Lado and Rejaf East scheme, whereby the project irrigation efficiency comes to 0.49 for Jebel Lado and Rejaf East. Furrow irrigation methods are adopted in the farmlands because of the gentle terrain and soil feature of loam.

Efficiency	E	Remarks							
Conveyance Efficiency (Ec)	0.90	Continuous supply							
Field Cancel Efficiency (Eb)	0.90	Blocks larger than 20 ha							
Field Application Efficiency (Ea)	0.60	Referred to the case of furrow irrigation							
Project Irrigation Efficiency	0.49	Overall irrigation efficiency							
, , ,	otor require	monto No 24 EAO irrigotion and drainago papar							

Source: JICA Project Team based on Crop water requirements No.24 FAO irrigation and drainage paper

Irrigation Project Efficiency or Overall Irrigation Efficiency = Ec.Eb.Ea

Like in the case of Jebel Lado, the overall efficiency for Rejaf East Scheme = 0.9*0.9*0.6 = 0.49

7.3.6 Calculation of Scheme/Farm Water Requirements

q = NIR/Ep

Where q is the Scheme irrigation water requirements, NIR is Net irrigation water requirements and Ep is overall irrigation efficiency.

NIR (ETcrop1, ETcrop2 and ETcrop3) is expressed in average mm/day, in mm/month and in l/s/ha.

Therefore q = NIR (mm/day)/Ep = NIR ((mm*ha)/(24 hr*ha))/Ep

= NIR ((mm*(10000 m²))/((24*60*60 s)*ha))/Ep

= NIR (((10⁻³ m)*(10000 m²))/((86400 s)*ha))/Ep

= NIR ((10⁻³ *10⁴ m³)/((86400 s) *ha))/Ep

- = NIR (10 m³)/(86400 s)/ha/Ep
- = NIR (10*(1000 l)/(86400 s)/ha/Ep
- = NIR (10000 l)/(86400 s)/ha/EP
- = NIR ((10000/86400) l/s/ha)/Ep

= NIR ((1/8.64) l/s/ha)/EP = NIR (0.1157 l/s/ha)/0.49

C.F = 1/8.64 = 0.1157

Hence $q = CIR ((C.F) \frac{1}{s/ha})/0.49$

Where C.F is Conservation factor from mm/day to l/s/ha

(2) Calculated water requirement

Table 7.3.2 and Table 7.3.3 show the calculation of water requirement by month in Rejaf East.

1. Site	Rejaf East					
2. Command Area	960 ha					
3. Planting ratio	0.96					
4. Planting area	922 ha					
3. Water Source	River					
3. Irrigation Facility	Pump					
4. Irrigation Water Requirement	Pump 1.32 m ³ /s g= 1.430 l/s/ha					
	q= 1.400 %3/10					

Table 7.3.2 Rejaf East Scheme Irrigation Water Requirements

Table 7.3.3 Calculation of Irrigation Water Requirements per Month for Rejaf East Scheme

Water Requirement: Rejaf East (A=960ha)

		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
I) ETcrop			Dry Season				R	ainy Seaso	n			Dry S	eason	
Min Temperature	(°C)	20.0	22.5	24.4	23.7	22.7	21.8	21.1	21.3	21.1	21.4	20.9	20.6	2
Max Temperature	(°C)	36.6	38.1	37.2	35.6	33.1	31.3	31.2	30.6	32.7	33.3	34.0	35.2	
Relative Humidity	(%)	30.0	35	42	62	73	78	78	82	79	76	63	52	e
Wind speed	(km/day)	112	130	156	216	156	104	95	95	95	112	112	121	1:
Sunshine	(hours)	11.8	11.9	12.0		12.3	12.4	12.3	12.3	12.1	12.0	11.9	11.8	
Radiation	(MJ/m2/dav)	25.7	27.1	28.1	28.2	27.3	26.7	26.8	27.8	28.0	27.3	26.0	25.2	
ETo	(mm/dav)	5.84	6.64	7.20	7.08	5.96	5.35	5.30	5.39	5.66	5.67	5.56	5.66	CropWar8
Crop 1	(mm/uay)	Vegetable	0.04	1.20	Maize	Maize	Maize	Maize	5.59	5.00	Vegetable		Vegetable	Tomato
Crop 2		vegetable		Group	d Nuts	Groun		Ground	d Nute		vegetable	vegetable		Jew's mallow
Crop 3	-	Vegetable	Vegetable	Gioun			Vegetable	Vegetable				Vogotoblo		Okra/Egg pla
Crop coeffient 1	Kc1	1.06	0.00	0.00	0.90	1.03	1.15	1.11	0.25	0.00	0.90	1.02	1.19	Okra/Egg pla
Crop coeffient 2	Kc2	0.00	0.00	0.00	0.90	1.03	1.15	1.05	0.25	0.00	0.90	1.10	1.08	
				0.90	0.94		0.96			0.00	0.00			
Crop coeffient 3	Kc3	1.04	1.00			0.90		1.04	1.00			0.90	0.96	
Etcrop 1 (ET ₀ x Kc1)	(mm/day)	6.19	0.00	0.00	6.37	6.14	6.15	5.88	1.35	0.00	5.10	5.67	6.74	
Etcrop 2 (ET _o x Kc2)	(mm/day)	0.00	0.00	6.48	6.66	6.08	5.62	5.57	0.00	0.00	5.50	6.12	6.11	
Etcrop 3 (ET _o x Kc3)	(mm/day)	6.07	6.64	0.00	0.00	5.36	5.14	5.51	5.39	0.00	0.00	5.00	5.43	
		└───												
2) Effective Rainfall (Pe)					105 -	1 10 -	110	101-	100 -		110 -	10 -		
Monthly Mean Rainfall	(mm/month)	4.4	11.8	41.7	105.6	149.2	116.1	134.0	136.7	112.4	112.6	42.9	9.8	9
Dependable Rainfall (80%)	(mm/month)	3.8	10.3	36.5	92.3	130.5	101.5	117.2	119.5	98.3	98.5	37.5	8.6	8
Effective Rainfall (ER)	(mm/month)	0.0	0.0	12.0	50.0	80.0	57.0	70.0	72.0	55.0	55.0	13.0	0.0	4
Effective Rainfall (ER)	(mm/day)	0.0	0.0	0.4	1.7	2.7	1.9	2.3	2.4	1.8	1.8	0.4	0.0	
3) Groundwater Contribution (Ge)	(mm/day)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4) Stored Soil Water (Wb)	(mm/day)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
5) Etcrop - (Pe+Ge+Wb)														
Etcrop 1	(mm/day)	6.19	0.00	0.00	4.67	3.44	4.25	3.58	0.00	0.00	3.30	5.27	6.74	
Etcrop 2	(mm/day)	0.00	0.00	6.08	4.96	3.38	3.72	3.27	0.00	0.00	3.70	5.72	6.11	
Etcrop 3	(mm/day)	6.07	6.64	0.00	0.00	2.66	3.24	3.21	2.99	0.00	0.00	4.60	5.43	
(6) Total Efficiency														
Conveyance Efficiency	Ec	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	
Field Canal Efficiency	Eb	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	Lining
Field Application Efficiency	Ea	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	Furrow
Total Irrigation Efficiency	Ep	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.49	
7) Irrigation Hour	(hour)	24	24	24	24	24	24	24	24	24	24	24	24	
. /	(_		
8) Unit Water Requirement														
Crop 1	(l/s/ha)	1.46	0.00	0.00	1.10	0.81	1.00	0.85	0.00	0.00	0.78	1.24	1.59	
Crop 2	(l/s/ha)	0.00	0.00	1.44	1.17	0.80	0.88	0.77	0.00	0.00	0.87	1.35	1.44	
Crop 3	(l/s/ha)	1.43	1.57	0.00	0.00	0.63	0.77	0.76	0.71	0.00	0.00	1.09	1.28	
0100 0	(1/3/114)	1.45	1.57	0.00	0.00	0.00	0.77	0.70	0.71	0.00	0.00	1.05	1.20	
9) Command Area														
Crop 1	(ha)	365	365	365	365	365	365	365	365	365	365	365	365	
Crop 2	(ha)	163	163	163	163	163	163	163	163	163	163	163	163	
Crop 3	(ha)	394	394	394	394	394	394	394	394	394	394	394		Command A
Total	(ha)	922	922	922	922	922	922	922	922	922	922	922	922	
I Utai	(11d)	922	922	922	522	922	922	922	922	322	922	922		anting Ratio 9
10) Water Requirement for Pump													Pla	anung rados
	(m2/a/0 === 4)	0.50	0.00	0.00	0.40	0.00	0.36	0.31	0.00	0.00	0.00	0.45	0.50	
Crop 1	(m3/s/Crop1)	0.53				0.30					0.28	0.45	0.58	
Crop 2	(m3/s/Crop2)	0.00	0.00	0.24	0.19	0.13	0.14	0.13	0.00	0.00	0.14		0.24	
Crop 3	(m3/s/Crop3)	0.56	0.62	0.00	0.00	0.25	0.30	0.30	0.28	0.00	0.00	0.43	0.50	
Total	(m3/s/Total)	1.10	0.62	0.24	0.59	0.67	0.81	0.73	0.28	0.00	0.43	1.10	1.32	
			1 001		1 505 575		0.105.55	1 00 1 00 1	70		1 10		0.445.15	
11) Water Requirement for Dam	(m3/month/Total)	2,839,422	1,601,732	609,141	1,535,045	1,747,049	2,103,377	1,904,809	724,350		1,105,561		3,418,454	20,444
								Required P	umn Discha	rae		1.32	(m3/s)	

CHAPTER 8 FACILITY PLAN AND DESIGN

8.1 General

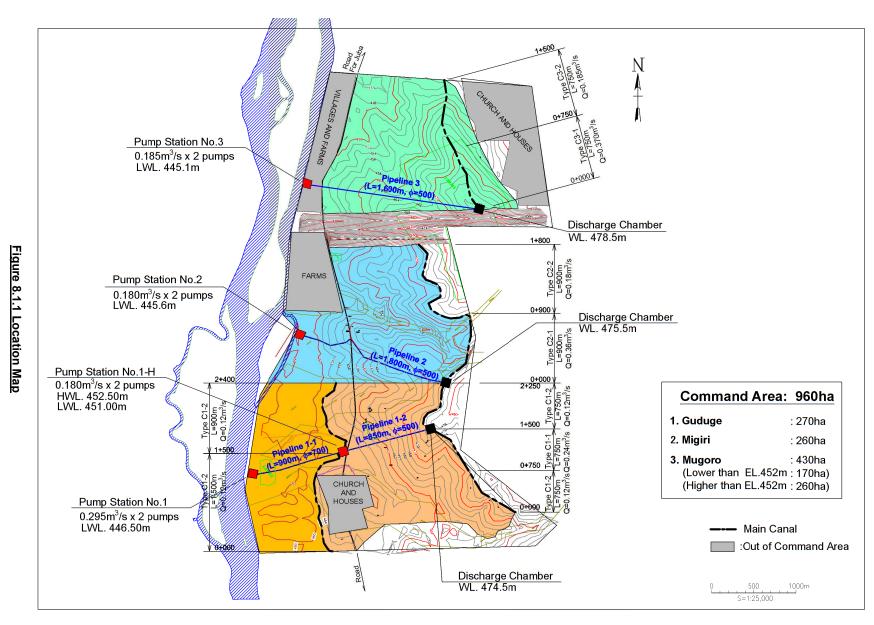
8.1.1 Outline of Main Facilities

Main facilities planed in Rejaf East shemea are as follows,

- Command area: A=960ha
- Pump station: 4 place
- Main Irrigation Canal: riverside L= 2.4km, hillside L=5.6km
- Irrigation and Drainage Facilities in command area: 1 L.S Secondary canal, Tertiary canal, Feeder canal, Drainage, Road, Road crossing, Distribution gate, Water measurement facilities, etc.

Pump station is planned by each community because of the difficulty of consensus among three (3) communities. Pump facility are operated through the year for farming, withdrawing from Bahr el Jebel.

8.1.2 Command Area


Command area is located from the right bank of Bahr el Jebel toward the hillside of almost 2km distance. The terrain between riverside and Rejaf Road is flat of ground level about EL.450m, and many small irrigation farms are scattered along the river. The area of more EL.452m is featured as undulate hillside. The land gradient shows around 2.0% toward the west from the east.

Also the terrain of hillside is complicated, and many bushes, trees and grasses dominate in the site. Pump station site has some big trees. In the pipe line and canal line, the conditions are almost same as the command area.

Pump station site is located beside Bahr el Jebel. The land is almost bare and some trees are shown. In the pipe line and canal line, there are community road among some small communities, bushes and trees etc. along the line.

In addition, on the route of the pipeline No.1, the additional pump station called No.1-H is planned near the Rejaf road to convey the irrigation water to the hillside farms in the view of the reduce the total head of pump and the economic efficiency.

- To reduce the total head of pump contributes to save the engine power,
- To reduce the discharge in the pipeline contributes to make the pipe diameter to small size, and
- To raise the economic efficiency due to the above matters.

RSS, MEDIWR, Water Sector, Irrigation Development Master Plan (IDMP)

8.2 Pump Station

8.2.1 Location and River Water Level

(1) River water level

The pump stations are located at the right of Bahr el Jebel. The water level measured in the survey work at the pump station on 3rd June 2015 is shown in the Table 8.2.1 and Figure 8.2.1. According to the water level record at Juba gauge station which is comparatively near to the pump station, the range of water level fluctuation is observed among 2.04m water depth as shown in the Figure 8.2.1.

Low Water Level (LWL) required in pump design of Bahr el Jebel is assumed at the about 0.5m lower down the river observed water level, and High Water Level (HWL) also assumed at the plus 2.0m with LWL.

Dump Station Number	River Water Level	Design Low Water Level	Design High Water							
Pump Station Number	Observed (WL.m)	(LWL.m)	Level (HWL.m)							
No.1	446.96	446.50	448.50							
No.2	446.06	445.60	447.60							
No.3	445.59	445.10	447.10							

Table 8.2.1 Water Level of Bahr el Jebel at Pump Station Location

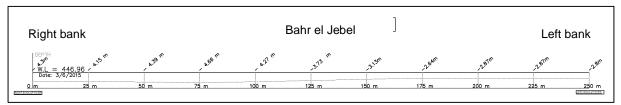


Figure 8.2.1 River Cross Section at Pump Station No.1

8.2.2 Pump Facilities

(1) Pump type and number of pump

For the pump type, the horizontal centrifugal and double suction is adopted as it is commonly used with high suction efficiency.

The unit capacity (Discharge) of per pump varies depending on the planned number of pumps to be equipped for a scheme. In order to operate the pumps effectively and to minimize the running cost in conformity with the fluctuating supply demands, a combination of pumps with different capacities can be considered possible, however, it is judged to be more advantageous to apply a certain number of pumps with the same capacity taking into such viewpoints as 1) reducing of pump procurement cost, 2) possible equalization in running pumps and 3) need for harmonious collaboration of pump operation with the pump equipment.

Therefore the two (2) same capacity pumps are planned to provide at the site. According to the õDesign Pump Facilities Technical Document (Japan)ö, the pump diameter () is determined as follows based on the pump capacity.

Pump station No.1: 0.295 m^3 /s (unit capacity) × 2 set = 0.59 m^3 /s, 350mm Pump station No.1-H: 0.180 m^3 /s (unit capacity) × 2 set = 0.36 m^3 /s, 300mm Pump station No.2: 0.180 m^3 /s (unit capacity) × 2 set = 0.36 m^3 /s, 300mm Pump station No.3: 0.185 m^3 /s (unit capacity) × 2 set = 0.37 m^3 /s, 300mm

Pump Station	Farm Area	Plannting	Irrigable	Water Requirement (m3/s)											
Number	(ha)	Ratio	Area (ha)	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Station No.1	170	0.96	163	0.49	0.28	0.11	0.26	0.30	0.36	0.33	0.13	0.00	0.19	0.49	0.59
Station No.1-H	260	0.96	250	0.30	0.17	0.06	0.16	0.18	0.22	0.20	0.08	0.00	0.12	0.30	0.36
Station No.2	260	0.96	250	0.30	0.17	0.06	0.16	0.18	0.22	0.20	0.08	0.00	0.12	0.30	0.36
Station No.3	270	0.96	259	0.31	0.17	0.07	0.17	0.19	0.23	0.21	0.08	0.00	0.12	0.31	0.37

Table 8.2.2 Water Requirement (m³/s)

(2) Total head of pump

The actual head is given as the difference between the discharge water level and the suction water level. The total head is obtained by adding various losses in pipes to the actual head.

Table 8.2.3 Total Head of Pump											
Items	Unit	No.1	No.1-H	No.2	No.3						
Pump Capacity per Unit	Q (m ³ /s)	0.295	0.18	0.18	0.185						
Design outlet Water level	DWL (m)	452.50	475.00	475.50	478.50						
Design Intake Water Level	LWL (m)	446.50	451.50	445.60	445.10						
Actual head	Ha (m)	6.00	23.50	29.90	33.40						
Total Head Loss	(m)	7.4	11.07	20.01	19.08						
Total Head	(m)	13.40	34.57	49.91	52.48						
Design Total Head	H (m)	14.00	35.00	50.00	53.00						

Table 8.2.3 Total Head of Pump

(3) Pump shaft power and planned diesel engine output

No electricity is in the pump station site. Therefore the diesel engine is adapted for the pump operation. The pump shaft power and diesel engine output are calculated in the Table 8.2.4.

Table 0.2.4 Dieser Engine Output									
Pump Station	Power Shaft Power (kw)	Diesel Engine Output (kw)							
Station No.1	49.3	57							
Station No.1-H	79.0	91							
Station No.2	112.8	130							
Station No.3	122.9	141							

Table 8.2.4 Diesel Engine Output

8.2.3 Pump Building

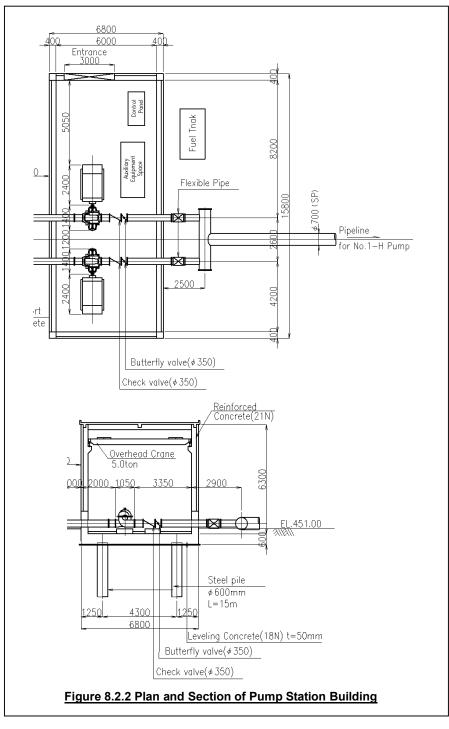
(1) Style of building

Pump station building is constructed for the purpose to protect the equipment and O&M works from winds and rains, and the structure and layout shall be of percolation-proof from outer and inner basin as well as rain water.

Based on the considerations of the space of installation for the pumps, engines, valves and auxiliary equipment and the required space for effective O&M works, the plan and section of pump station building are planned as shown in the Figure 8.2.2.

(2) Structure of building

The structure type of pump station building shall be of reinforced concrete which is superior in the characteristics of fire-proofing, durability and anti-wind, though concrete blocks shall be used for the wall body on ground.


(3) Foundation work

<u>Pump station No.1 and No.2</u>: According to the log of boring PB-01 and PB-02, the geological condition is shown the medium dense and it is not suitable for the spread foundation. It is

recommended to adopt the pile foundation in future design stage through the additional geological investigation for clarifying the very dense layer.

<u>Pump station No.3</u>: According to the log of boring PB-03, the geological condition are shown the loose dense of the 3m depth and it is not suitable for the spread foundation. It is recommended to adopt the replacement foundation that remove away the loose soil and back fill by the suitable soil with the adequate compaction manner.

<u>Pump station No.1-H</u>: According to the log of boring RB-01 near the pump station but the distance of about 1km far, the geological condition are shown the high dense and it is suitable for the spread foundation. However, it is recommended to carry out the additional geological investigation for clarifying the geological conditions at the site.

ANN9-3: RE-48

8.2.4 Riverbank Protection

(1) Installation range

Due to the possible erosion by river flow, however, the suction pipe embedded underground might be exposed and the safety of the pipe could be endangered with the trashes/drifts clinched. This requires the riverbank protection works for attaining sustainable operation of the pump station. The extent of the riverbank protection shall cover 20 m each of both upstream and downstream directions from the centre of suction pipe.

(2) Structure type

The structure of mortar masonry retaining wall by using natural stones shall be adopted for the protection works, considering the gentle slope of 1:2.0, safety against the effect of water flow, availability of required materials, other viewpoints including landscape evaluation, economy and easiness in construction etc.

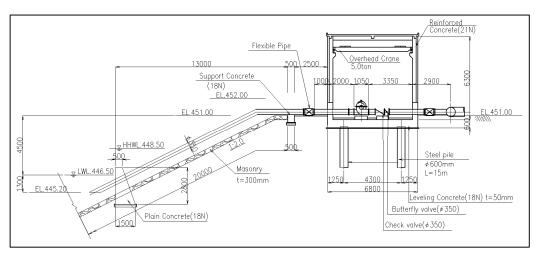


Figure 8.2.3 Plan and Section of Pump Station Building (Profile)

8.2.5 Storage for Pump Station No.1-H

Storage structure is required to store and convey the irrigation water for the hillside farms at the outlet of pipeline in the vicinity of Rejaf road. The capacity of storage (V) is determined at more than $650m^3$ to ensure the half an hour volume of the pump No.1-H capacity $0.36m^3$ /s of 2 set. The structure type shall be of firm reinforced concrete or masonry with mortal to avoid the water leakage.

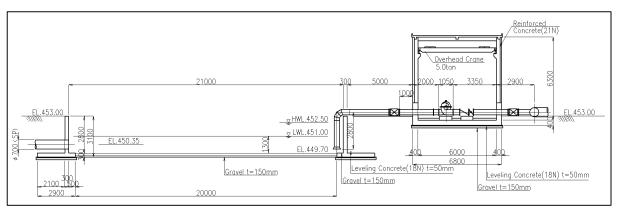


Figure 8.2.4 Storage

8.2.6 Pipeline

(1) Typical section

The irrigation water lifted by the pump is carried to the discharge chamber, which is located at the intermediate point of the irrigation canal, through the pipeline of 500mm diameter in case of the pipeline No.2, No3 and No.1-H.. The pipe diameter is to be so determined that the flow velocity inside pipe would be in the range of 1.5-2.5 m/s in general considering such factors as protection of turbulent flow and sedimentation as well as economy.

Table 8.2.5 Pipeline Dimensions											
Pipeline Number	Diameter (mm)	Section Area (m ²)	Discharge (m ³ /s)	Velocity (m/s)							
Station No.1	700	0.385	0.59	1.53							
Station No.1-H	500	0.196	0.36	1.83							
Station No.2	500	0.196	0.36	1.83							
Station No.3	500	0.196	0.37	1.88							

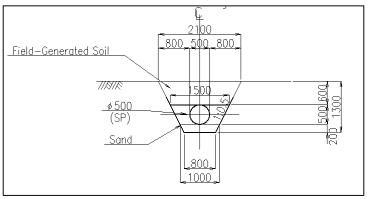


Figure 8.2.5 Typical Section of Pipeline No.1

(2) Discharge chamber

The discharge chamber is to dissipate the flow from discharge pipe, change the flow direction and divert the flow to the downstream canal so that the pressure fluctuation accompanying the sudden change of flow quantity as caused by the start and stop of pump operation can be absorbed in the chamber as the change of water level in the chamber.

In the discharge chamber, tractive force will occur due to the disturbance of flow and the high velocity. Therefore, the structure shall be of firm reinforced concrete type.

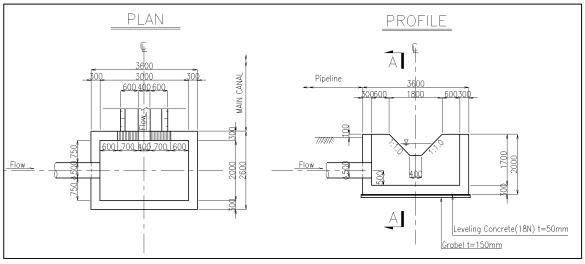


Figure 8.2.6 Discharge Chamber (reference)

8.3 Main Canal

8.3.1 Location

Main canal shall be planned to conduct the irrigation water from the discharge chamber at the end of pipeline to the command area. Main canals are planned at both riverside and hillside, which are flat and undulate respectively. Because of the difficulty of consensus among the communities, Main canals are planned by each community show in the Figure 8.1.1.

The station number, length, and design discharge of each section is shown in the Table 8.3.1.

Table 8.3.1 Main Canal										
Туре	Length (m)	Design Discharge (m3/s)	Remarks							
Area of Pump Station No.1 & No.1-H	2.400									
C1-1	750	0.24								
C1-2	3,900	0.12								
Area of Pump Station No.2	1.800									
C2-1	900	0.36								
C2-2	900	0.18								
Area of Pump Station No.3	1.500									
C3-1	750	0.37								
C3-2	750	0.185								

Table 8.3.1 Main Canal

8.3.2 Examination Method of Canal Capacity

Main canal is designed of the plain concrete lining, considering hydraulic characteristics, conveyance efficiency, durability, and maintenance. The size of the cross section is planned by the volume of the required water with Manning formula

Items		C1-1	C1-2	C2-1	C2-2	C3-1	C3-2
Design discharge	Q (m³/s)	0.24	0.12	0.36	0.18	0.37	0.185
Width of canal bed	B (m)	0.40	0.30	0.50	0.40	0.40	0.30
Water depth	d (m)	0.403	0.313	0.457	0.348	0.384	0.299
Bank slope	1:N	1.0	1.0	1.0	1.0	1.0	1.0
Cross-sectional area of flow	A (m)	0.324	0.192	0.437	0.260	0.301	0.1796
Wetted perimeter	P (m)	1.540	1.185	1.793	1.384	1.486	1.146
Hydraulic mean depth	R (m)	0.210	0.162	0.244	0.188	0.203	0.156
Coefficient of roughness	n	0.015	0.015	0.015	0.015	0.015	0.015
Canal bed slope	I (%)	0.10	0.10	0.10	0.10	0.286	0.286
Mean velocity	V (m/s)	0.746	0.626	0.823	0.691	1.229	1.034
Velocity head	hv (m)	0.028	0.020	0.035	0.024	0.077	0.055
Free board	Fb (m)	0.196	0.187	0.193	0.152	0.216	0.201
Height of canal	Н	0.60	0.50	0.65	0.50	0.60	0.50

Table 8.3.2 Calculation of Main Canal Section

Canal section is shown in the Figure 8.3.1.

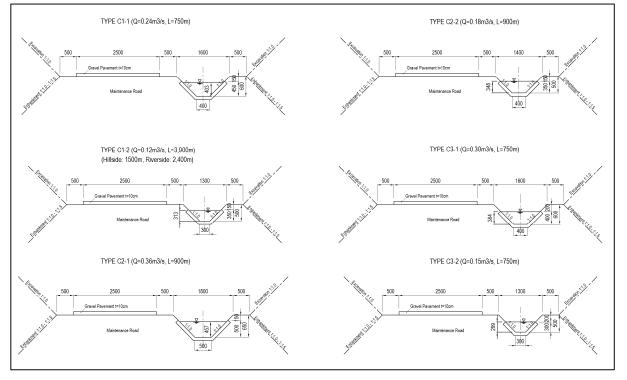


Figure 8.3.1 Typical Cross Section of Main Canal

8.4 Irrigation and Drainage System in Farmlands

8.4.1 Outline of Command Area

The command area is comprised of three (3) communities and the pump station is panned by each community. The terrain between riverside and Rejaf Road is flat of ground level about EL.450m, and many small irrigation farms are scattered along the river. The area of more than EL.452m is featured as undulate hillside. The land gradient shows around 2.0% toward the west from the east.

The major facilities such as the secondary canal, drainage and road are generally arranged from hillside toward riverside. The tertiary canal is planned to branch off from the secondary canal, also the feeder canal is planned to branch off from the tertiary canal for the distributing the irrigation water to the furrows. The canal is made of the earth because of a small size.

The drainage is allocated between the both secondary canals. The surplus water from tertiary canal and farm flows down to the drainage. The drainage is planned to be the earth canal.

The road used for farming and maintenance for facilities shall be planned along the secondary canal and tertiary canal. The road crossing is placed at the crossing point between the canal and road.

The length of furrow from 40m to 100m is assumed based on the soil survey results conducted in command area and Table 8.4.1 shown below. That survey results that the soil classification is mainly sandy loam or loam.

Table 6.4.1 Example of Maximum 1 arrow Eongth of Different Con					
Soil	Root zone depth (m)	One-time irrigation volume (mm)	Maximum furrow length (m)		
Sandy soil	40	16	4		
Volcanic ash soil	40	44	29		
Sandy loam	40	34	36		
Loam	40	38	99		
Clay	40	44	121		

Table 8.4.1 Example of Maximum Furrow Length of Different Soil

Note: Furrow inclination is 10% Source: Engineering Manual for Irrigation & Drainage, Upland Irrigation (1990), the Japanese Institute of Irrigation and Drainage

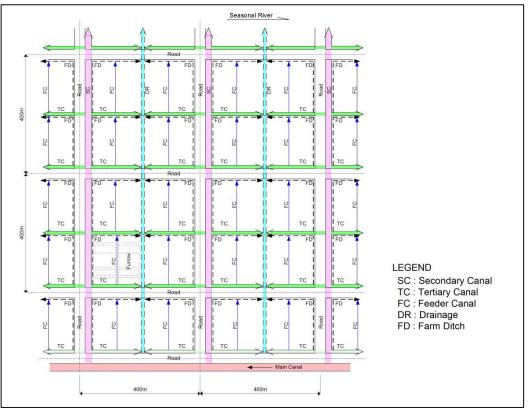


Figure 8.4.1 Layout of Irrigation and Drainage Facilities in Command Area

8.4.2 Design Discharge of Canal and Drainage

(1) Irrigation canal

Unit water requirement was estimated at 1.43 l/s/ha, depending on the calculation of water requirement.

- Secondary canal: $Q = 0.12m^3/s$ (=0.00143×averagely 80ha)
- Tertiary canal and Feeder canal: $Q = 0.023 \text{ m}^3/\text{s}$ (=0.00143×16ha)

(2) Drainage

Unit area drainage discharge was estimated at 0.045m3/s/ha, depending on the calculation of runoff discharge...

- Drainage : $Q = 3.78 \text{m}^3/\text{s}$ (=0.045× averagely 84ha)
- Farm ditch: $Q = 0.090 \text{ m}^3/\text{s}$ (=0.045×averagely 2ha)

8.4.3 Examination Method of Canal Capacity

All of canals in the command area are designed of the earth canal, considering the economical reason. The size of the cross section is planned by the volume of the required water with Manning formula.

Table 8.4.2 Calculation of Irrigation Canal Section and Farm Ditch					
Items		Secondary	Tertiary	Feeder	Farm
		canal	canal	canal	ditch
Design discharge	Q (m ³ /s)	0.12	0.023	0.023	0.090
Width of canal bed	B (m)	0.30	0.30	0.30	0.30
Water depth	d (m)	0.270	0.174	0.092	0.182
Bank slope	1:N	1.0	1.0	1.0	1.0
Cross-sectional area of flow	A (m)	0.154	0.082	0.036	0.088
Wetted perimeter	P (m)	1.064	0.792	0.560	0.815
Hydraulic mean depth	R (m)	0.145	0.104	0.064	0.108
Coefficient of roughness	n	0.025	0.025	0.025	0.025
Canal bed slope	I (%)	0.50	0.10	1.0	1.0
Mean velocity	V (m/s)	0.780	0.279	0.642	0.907
Velocity head	hv (m)	0.031	0.004	0.021	0.042
Free board	Fb (m)	0.180	0.126	0.203	0.168
Height of canal	H (m)	0.45	0.30	0.30	0.35

Table 8.4.2 Calculation of Irrigation Canal Section and Farm Ditch

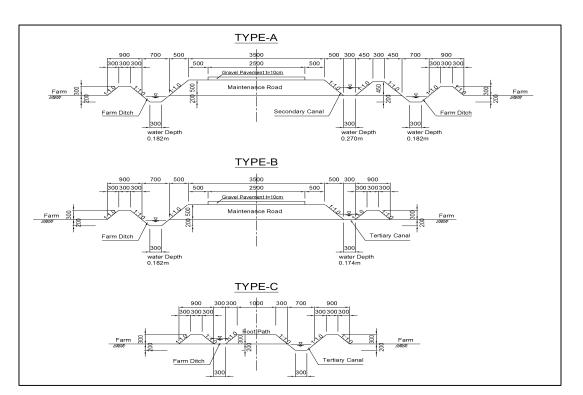


Figure 8.4.2 Typical Cross Section of Irrigation and Drainage Facilities in Command Area

8.4.4 Relative Structures

In general the relative structures such as diversion gate, drop, water measurement facilities, cross culvert and siphon etc. are required in the canal system if necessary. They shall be designed considered the canal system and the terrain around canal in the future design stage.

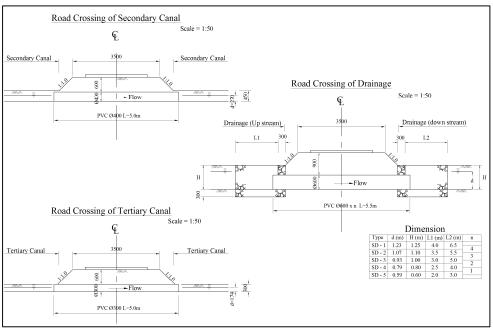


Figure 8.4.3 Typical Cross Section of Road Crossing in Command Area

8.4.5 Recommendation

(1) Investigation for intake rate

In the future design stage, more investigation is required to carry out the design of upland. For example, the intake rate is very important factor to make a plan of irrigation system. The intake rate is the rate for irrigation water or rainwater infiltration into soil under the specific conditions, and generally measurement in term of mm/hr. As an index of water permeability in unsaturated soil, it is an important factor to be considered in deciding the irrigation method and the appropriate irrigation intensity for upland irrigation. The intake rate is measured either by the cylinder intake rate or by the furrow intake rate, depending on the purpose of the measurement. For furrow irrigation, the intake rate is measured by the furrow intake rate.

(2) Drainage arrangement plan

It is necessary to investigate and survey the existing drainage routes and system in the site through the interview to the villagers and the site investigation, before planning the drainage arrangement. After that, the irrigation canal arrangement would be planned on the map.

CHAPTER 9 OPERATION AND MAINTENANCE PLAN

9.1 Establishment of Scheme Management Office

Establishment of the scheme management office is quite effective since all resources relating to the scheme management are placed in one place. Therefore, it is recommended to establish Irrigation Scheme Management Office at each irrigation site.

Irrigation method in Jebel Lado and Rejaf East is pump irrigation. Pump irrigation scheme also required a senior pump engineer to maintain its operational function properly. Under the senior pump engineer, several support specialists are required in accordance with scale of the scheme. For example, assignment of electric engineer and service technician are necessary. Following table shows ideal management structure of pump irrigation scheme.

Department	Functions and Responsibilities	Required Staff	Proposed No.
1. Admin.	Overall management of the scheme	Manager (Irrigation/Dam Eng.)	1
	 Coordination among stakeholders 	Deputy Manager	4
		(Electromechanical Eng.)	1
	Marketing	Senior Accountant	1
	ProcurementAssets tracking	Cooperative Officer	1
	 Keeping books of accounts for scheme 	Asst. Accountant	1
	operations	Asst. Cooperative Officer	1
	Irrigation fee collectionAdministration of salaries, wages and	Tariff Collector	2
	other disbursements	Messenger/Guard/Driver	6
2.	Annual planning and monitoring of dam/	Senior Irri./Dam Eng. (Dams,	4
Irrigation/Dam	pump operations, water distribution, etc.	Pumps, Canals, etc)	1
O&M	 Maintenance of dam/pump facilities, 	Electromechanical Eng.	1
	distribution network, etc.	Planning and Bugeting Officer	1
	Hydromet data recording, monitoring	Asst. Irrigation/Dam Eng.	1
	and reporting	Asst. Planning/Budgeting Officer	1
	Opening, closure and maintenance of	Irrigation Technician	2
	water control and distribution gates	Pump operator	2
	 Supervision of canals maintenance 	Irrigation Water Controller (Gate	2
	 Safeguarding of supplies and the 	Keeper)	2
	facilities	Facilities' Guards	4
 Farm Level O&M 	 Seed multiplication, observation trials for new rice varieties 	Senior Agronomist	1
	 Annual planning and monitoring of cropping plan and water requirement 	Agronomist	1
	 Extension of irrigated agriculture On-farm water management planning 	Agricultural Engineer	1
	and supervision	Asst. Agricultural Engineer	1
	 Provision of outreach services to farmers On-farm water management among farmers Supervision of distribution and field 	Extension Worker	2
		Tractor Operator	1
	canals maintenance	Asst. Tractor Operator	1
4. Processing	 Collection, drying, milling of rice 	Rice mill operator	0
O&M	Storing rice with proper pesticide control	Asst. Rice mill operator	0
Total			37

Table 9.1.1 Management Structure of Rejaf East Irrigation Scheme

For operation and maintenance purpose, following equipment and machineries are needed.

Function	Equipment and Machineries		
1. Administration	 PC for accounting and financial management purpose 		
2. Irrigation Engineering	 PC for planning and data management purpose 		
	Amphibious excavator, Backhoe, Bulldozer, Dump track		
3. Agricultural Extension	 PC for planning and data management purpose 		
	 Motorbike for extension purpose (2) 		
4. Farm Operation	Tractor (5), Harvester (3)		
5.O&M	Working machines (Lathe Machine, Welding Machine, Power		
	Drill, Power Saw, Generator, Portable Generator, etc.)		

Table 9.1.2 Ideal Equipment and Machineries at Scheme Management Office

MEDIWR takes an initiative to organize the Irrigation Scheme Management Office. However, the Scheme Management Office cannot be managed by officials from MEDIWR alone, and collaboration with relevant stakeholders especially MAFCRD and Central Equatoria state government are inevitable. At the time of design work (detail design stage of the irrigation development planning), it is recommended to establish the management office through intensive discussion on function of the management office, demarcation of responsibility, staff allocation, and budget allocation. Also, it is important to discuss the demarcation with WUA. Ideal demarcation among stakeholders is as follows;

Stakeholders	Demarcation	
1. National Government	 Taking initiative to establish SMO (MEDIWR) 	
	\cdot Based on the report from SMO, taking necessary measure to	
	repair or rehabilitate the irrigation system (MEDIWR)	
	 Assign relevant officials to SMO (MEDIWR, MAFCRD) 	
2. Central Equatoria State Juba	 Assign relevant officials to SMO 	
County, Rejaf Payam Office	 Supervising and support SMOc activities 	
	 Coordination among and mobilization of communities 	
3. Rejaf East Irrigation Scheme · Coordinate and facilitate the formation and activities of		
Management Office (SMO)	 O&M of main irrigation facilities (pump station, main and 	
	secondary canal, intake gate until on-farm)	
	Provision of tractor service	
	 Provision of seeds and other inputs if any 	
	Collection of irrigation service fee and tractor service fee	
4.WUA	 On-farm level operation and maintenance 	
	 Payment of irrigation service fee 	
	Selling of products	

	Table 9.1.3	Ideal D	Demarcations	among	Stakeholders
--	-------------	---------	--------------	-------	--------------

9.2 Operation Plan

(1) Water distribution plan

Operation plan includes basic operation plan at feasibility planning stage, and annual operation plan after implementation of the project. Objective of the basic operation plan is to establish basic method of operation, such as selection of water distribution method and order of the water distribution among upstream/downstream or large-/small-scale farmers. Typical water distribution methods are summarized in Table 9.2.1 Responsible organizations at this stage are the scheme management officials from MEDIWR and MAFCRD, and collaboration between both organizations and communities is necessary.

Method	Description
Flow Sharing (Proportional Delivery) Method	Every farm receives an equal share of the canal discharge. The structure that is suitable for this method of water distribution is the proportional division box. The flow over each weir is proportional to the width of the crest, provided that these crests have the same height and shape. This method does not need any action by farmers or operators for regulating the flow of irritation water to the farms.
Time Sharing (Rotation) Method	Every farm receives the full canal discharge. The distribution of an irrigation delivery to one farm must be chosen in a way that both meets the irrigation water needs of the crops and is convenient to the farmers. With this method, there is no need for a flow division structure. It may be convenient to have structures with allow either closure or passage of the full canal flow. The method does require action from operators or farmers to direct the canal flow to the farm that is schedule to receive irrigation water.

Table 9.2.1 Typical Water Distribution Method in Open Canal Scheme

Source: Irrigation Scheme Operation and Maintenance, Irrigation Water Management Training Manual No.10, FAO1996.

(2) Annual operation plan

The annual operation plan includes preparation of cropping calendar, estimation of expected water demand and supply, and irrigation facility operation planning. After irrigation system being constructed, MAFCRD takes responsibility on developing annual clopping calendar, which in turn utilized in estimation of crop water requirement or water demand. Then, water distribution plan is developed by MEDIWR, based on water distribution method, irrigation water availability, and management capacity of gate operator. Basic process of the water management is as follows;

- 1) The scheme management officials from MAFCRD, in collaboration with farmers, develop cropping calendar and crop water requirement. Then the scheme management officials estimate seasonal water demand of command area
- 2) Based on the request from the water users, the scheme management officials from MEDIWR decide water volume at intake facility and develop pump operation plan
- 3) Based on the above plan, in-charge of water control makes schedule of water distribution including gate operation plan
- 4) The above water distribution plan should be informed to all over the operators at main and branch as well as terminal canals thoroughly.

According to FAOø guideline for irrigation development, the planning of irrigation schedules should take into consideration the following issues¹.

- Irrigation schedules must be simple, in particular in irrigation schemes where many farmers are involved. It will often be necessary to discuss with the farmers the various alternatives and come to an agreement which best satisfies all parties involved. Important to guarantee is that in these discussions all groups of farmers, small and large, head-end and tail-end, women and men, are properly represented.
- On-demand water delivery ensures the farmers an adequate and timely water supply, in cases where water is not a limiting factor. On-demand rotation is often convenient for them in terms of flexibly planning their work. A disadvantage might be that influential irrigators can better defend their interests than vulnerable or female irrigators, whose -demand may not be heard@ Especially

¹ SEAGA Sector Guideline, FAO, 1998

during peak periods such as land preparation or transplanting, less influential farmers, notably women farmers, could have problems to secure their water turn.

- A scheduled water delivery or rotation system has the advantage that it guarantees a regular supply of water to each plot, although timing might be less convenient and quantity not always adequate, especially in the tailend of the scheme. If possible a design that plans for night irrigation should be avoided, as especially for women it might not be socially acceptable or dangerous to go out at night for their irrigation turn. During planning meetings with the farmers these issues need to be discussed, and a decision reached on what type of water delivery suits everyone best.
- In a scheduled rotation system it is crucial for all groups of farmers to have access to information regarding the timing of their water turn. Women may have less access to this information than men. Not having access to the right information results in sometimes losing all, or part, of their water share.

Table 9.2.2 shows a typical operation activities and their responsible organization;

Planning	Activity	Details	Timing	Responsible Organization
Basic Operation Planning (before construction)	Establishme nt of basic method of operation	Whether to adopt Flow Sharing (proportional delivery) Method or Time Sharing (rotation) Method. How to coordinate the intention of large-scale farmers and small-scale farmers, upstream farmers and downstream farmers.	at the F/S stage, design work stage, at the start of every season or every two seasons	MEDIWR/ MAFCRD
	Preparation of cropping calendar	Develop cropping calendar by season (dry and rainy season), per month, taking into consideration of pattern of planting (gradual increase in planting season and gradual decrease in harvesting season)	at the start of every season or every two seasons	Scheme Management Office (MAFCRD)
Annual Irrigation Planning (after construction)	Estimation of expected water demand and supply	Estimation of crop water requirement, based on cropping calendar. Water demand is estimated by considering effective rainfall, runoff, evaporation, transpiration, percolation, and conveyance loss.	at the start of every season or every two seasons	Scheme Management Office (MAFCRD)
	Irrigation scheduling and facility operation planning	Water distribution plan (including pump operation plans) is developed based on water distribution method, irrigation water availability, and management capacity of gate operator.	at the start of every season or every two seasons	Scheme Management Office (MEDIWR)

Table 9.2.2 Typical Operation Activities and Responsible Organizations

9.3 Maintenance Plan

(1) Maintenance method

Division of role in maintenance work is a key for successful and sustainable operation of irrigation system. Maintenance plan have to be developed based on clear commitment of all stakeholders, in addition to financial and human resources, and technical capacity of them. At the time of maintenance planning, technical and financial capabilities of stakeholders have to be discussed. In this regard, it is necessary to identify required maintenance works of each irrigation facilities.

For pump stations, followings are necessary operation and maintenance activities.

· Specification sheets, operation & maintenance manuals, spare parts list, operation records and so

on should always be available for the daily inspection and maintenance. To prolong the equipment life, the operation records should be described in accordance with the checking items (suction pressure, discharge pressure, current, voltage, operation hour, vibration, noise, etc).

- Spare parts, packing, oil and grease should be kept.
- Inspection shall be made before operation for related facilities as well as pump equipment in order to maintain fitness and stability among equipment, intake and discharge pipes, discharge reservoir, canal, etc.

Following table shows major structure of the Rejaf East Irrigation Scheme. The required maintenance works vary from structure to structure as follows.

Irrigation Facilities	Maintenance Activities
Pump Station	Inspection of deterioration of bearing grease and bearing surfaces, Changing and/or addition of bearing grease, Checking of vibration and noise, Changing of packing, Disassemble inspection, checking of tightness of bolts and nuts, checking of abnormal parts and inside valves, checking of accessories, cleaning
Irrigation Network (lined canals = main canal)	Removal of silt and solid deposition, Repair of damaged joints, slabs and lining concrete with cracks, Weed control at joints and on surface of slabs
Irrigation Network (unlined canals = in-field distribution canal)	Removal of silt, Cutting and removal of earth weeds and waterweeds on wetted parts of canal slopes, and floating waterweeds, Plugging small holes and replacement of porous soils to prevent seepage, Rebuilding of eroded banks
Head gates, check dates and other structures	Removal of silt and obstructions, Lubrication (oiling and greasing) of gates, Anticorrosion treatment (painting) of mechanical elements
Drainage Network	Removal of silt and solid deposition, Weed control in the canal section, Repair and shaping of canal section
Farm Road	Refilling of holes on road surface, Grading road surface, Repair of road shoulders eroded, De-silting and repair of side ditches and culverts, Provision of additional pavement materials for paved roads

Table 9.3.1 Typical Maintenance Activities of Irrigation Facilities

(2) Maintenance activities and responsible organizations

Maintenance works consist of routine maintenance, periodical maintenance and emergency maintenance works. The routine maintenance is a day-to-day maintenance work including cleaning silt at flow measuring devices, removal of floating debris, minor repair of canal and structures and greasing or oiling of gates of facilities. WUA should actively participate in this activity at least for on-farm level structure.

Periodical maintenance is works to be done at a certain interval, after harvest season or before planting season for example. Basically, WUA bear a responsibility for on-farm level maintenance, whereas the Rejaf East Irrigation Scheme Management Office are obligated to main facilities such as intake facilities, main and second canals, and gate structures. Emergency maintenance is an emergency works at the time of natural disasters which causes damages on irrigation structures. This type of maintenance requires large investment for long term and/or large scale of replacement, and main responsible organization should be the National Government (MEDIWR) except on-farm level structures.

Following table shows ideal demarcation of each stakeholder in maintenance works.

Table 3.3.2 Typical Maintenance Activities and Responsible Organizations						
Maintenance Level	Description	Activities	Responsible Organization			
Routine Maintenance	Day-to-day maintenance work.	 removal of earth weeds and waterweeds cleaning silt at flow measuring devices removal of floating debris minor repair of canal and structures greasing or oiling of bearing, gates, and other metal structures 	- On-farm: WUA/Community - Main facilities: Scheme Management Office			
Periodical Maintenance	Works to be done at a certain interval.	 strengthening of banks and structures Removal solid deposition & silt grass cutting of embankment & canal banks repair of damaged structures /a repair of damaged equipment /b painting of structures checking of tightness of bolts, nuts, inside valves, & accessories at pump station 	- On-farm: WUA/Community - Main facilities: Scheme Management Office			
Emergency Maintenance /a	Emergency work	- repair of damaged structure caused by unforeseen disasters, including floods, heavy rainfall, earthquake, theft, etc.	- Main facilities: Scheme Management Office/ County/ State/National - On-farm: WUA/Community			

Table 9.3.2 Typical Maintenance Activities and Responsible Organizations

Note: a/ Diagnosis of damaged structures (e.g. gate) is outsourced to engineering firms. b/ Maintenance of equipment (pump, electric supply, etc.) are outsourced to suppliers and manufacturer.

9.4 Financial Management of Irrigation Scheme

(1) Cost recovery through irrigation service fee

Whether an irrigation system is operated and maintained by a government agency or private organization, it always requires budget to undertake O&M activities. It needs budget for; 1) the services rendered by people in the delivery and distribution of irrigation water, 2) the normal maintenance of irrigation facilities and structures, and 3) the periodic and emergency repair of irrigation facilities and structures. Therefore, generating budget for these O&M activities is one of major function of the Scheme Management Office.

It is an important issue that, to which extent, the irrigation service fee (ISF) should cover costs of irrigation management, so called cost recovery principle. The costs to be discussed in the ISF estimation of the Rejaf East Irrigation Scheme are shown in table below.

Cost Items	Amount (SSP/year)				
Annual Operation and Maintenance Cost					
Personnel Expenses	626,472				
Pump Operation	4,100,600				
Equipment and Machineries (fuel, lubricant, etc.)	89,500				
Normal Maintenance Cost of Irrigation Facilities	73,200				
Depreciation Cost /a					
Project Facilities	3,168,100				
Equipment and Machineries	640,200				
Total Costs	8,698,072				
Note: a/ Straight line method is adopted to estimate depreciation cost					

Т	able	9.4.1	Annual	O&M	Cost
	aNIC	V. T. I	Annaan	00.00	000

Note: a/ Straight line method is adopted to estimate depreciation cost.

Even though cost recovery is a basic principle of ISF introduction, it is recommended to start at a lower level upon its introduction. The main focus at this stage is to let farmers develop the healthy habit of paying ISF regularly for the supply service of irrigation water, and enjoy timely and sufficient volume of water for crop production. Thereafter, the consumers, upon recognizing that irrigation water

is indispensable in their farming, will be more open to a higher ISF level and the next round of increases can be made to meet the cost recovery requirement.

Therefore, it is recommended to take step-wise targets for financial management of the Rejaf East Irrigation Scheme to materialize sustainable operation and management of the scheme.

- Short-term target is to make farmers familiarize irrigation farming and develop the healthy habit of paying ISF regularly for the irrigation water supply
- Mid-term target is to materialize cost recovery of annual O&M costs including personnel expenses, pump operation fee, equipment and machinery operation costs, and normal maintenance cost of irrigation facilities
- Long-term target is to accumulate the earning retention for periodic and emergency repair of irrigation facilities and structures

(2) Affordability to pay (ATP)

The level of the ISF is a sensitive issue in managing an irrigation scheme. If the level of ISF is too low, it would be impossible to mobilize adequate fund for regular operation and maintenance of the scheme, which in turn result in poor service delivery of the scheme. In contrast, if the ISF level is too high for farmers, price of products will increase due to high production cost, and farmers may lose incentive to participate in management of the irrigation scheme.

Therefore, it is quite important to set up a reasonable level of ISF to ensure management of the irrigation scheme. To identify the reasonable level of ISF, the planner sometime conducts interview survey to farmers for grasping their willingness-to-pay (WTP) and affordability-to-pay (ATP). Usually, WTP is estimated based on the socio-economic survey, and the survey was conducted in the course of IDMP formulation. However, since most farmers had no idea for systematic provision of irrigation water, it was difficult to obtain proper reply to estimate WTP. Therefore, in this ISF estimation, ATP was figured out to obtain proper level of ISF.

In water sector, ATP is usually estimated at 3 to 5% of disposable income. By following the precedent, the lowest figure of 3% was applied in this analysis, and ATP was estimated based on net income of planned crops in the Rejaf East Irrigation Scheme. Following table shows estimated ATP of the scheme.

Discussed Onema /a	Net Income /b	Affordability	ATP	ATP
Planned Crops /a	(SSP/ha)	Rate (%)	(SSP/ha)	(SSP/feddan)
Maize	4,699	3 %	140	60
Vegetables	265,470	3 %	7,960	3,340
Groundnuts	4,466	3 %	130	50

Table 9.4.2 Annual O&M Cost

Note: a/ Vegetable is represented by tomato.

b/ Family labour is excluded from net income of planned crops.

(3) Pricing method for the ISF

There are two (2) major practical pricing methods, namely area-based pricing and volumetric pricing. The area-based pricing is a fixed charge based on the area irrigated or supposed to be irrigated. They are often calculated by dividing the total area irrigated into the O&M costs of providing irrigation water, which basically follows the average cost pricing principle. While the volumetric pricing method is estimated and charged in accordance with amount of water delivered.

Further, the volumetric pricing method can be divided into two (2) methods, including block pricing and two-parts pricing. The block pricing involves varying the water price when water use for a set time period exceeds a set volume. If high water charges are a concern, an increasing block charge can be used. Whereas the two-part pricing is a combination of volumetric pricing and a fixed admission charge. The volumetric part can be based on marginal cost, which encourages less water use, while the fixed part can be used to make up any deficits and ensure a certain revenue flow regardless of how much water is available and delivered.

In this analysis, the area-based pricing method is adopted for ISF estimation. The O&M costs composed of fixed parts and variable parts. The former is depreciation costs which are constant during economic life of the equipments, machineries and facilities, whereas the latter is changeable in accordance of irrigation scheme management. Followings are assumption of the ISF estimation.

- Depreciation cost of project facilities are excluded from the fixed charge estimation since investment cost of the project facilities are too heavy for farmers to shoulder, and can be regarded as the national government property.
- On the other hand, equipment and machineries, including tractors and its attachments, can be regarded as properties of the irrigation management office since their economic life are relatively short, and should be reinvested by the users.
- As for the variable part, in this analysis, it includes personnel expenses, pump operation fee, equipment and machinery operation costs, and normal maintenance cost of irrigation facilities. This part was divided by proportion of water consumption volume of each crop, and then divided by planted area of each crop, so that ISF rate of each crop can be obtained.
- Minimum farm lot size is set as 1 acre.

Based on the above assumptions, following formulas are applied to obtain ISF of the Rejaf East Irrigation Scheme.

Fixed Charge (Member Fee) = $Dem \div Nl$

Where:

ere: Dem = Depreciation cost of equipment and machineries

Nl = Number of farming lot

Variable Charge (ISF_{C1}) = O&M × $\frac{VC1}{\Sigma VC1 I_3}$ ÷ A_{C1}

Where:

 $ISF_{C1} = ISF$ of Crop1

O&M = Annual O&M costs

 $VC_{1\sim3}$ = Total volume of water consumption of crops

 A_{C1} = Cropped area of Crop1

Based on the above formula, fixed charge as a member fee, and variable charge as an ISF were estimated. Then, on one hand, the estimated ISF was adjusted by ATP to obtain payable and practical level of ISF. However, since ATPs of maize and groundnuts are too low, ISFs of these crops are further adjusted to provide incentive to shift cash crop production. On the other hand, member fee is not adjusted by ATP, but can be paid by in kind. Following table shows proposed ISF and membersøfee in the Rejaf East Irrigation Scheme.

		ISF		Men	nbers Fee
Crop	Estimated ISF	ATP	Adjusted ISF	Members' Fee	In Kind
	(SSP/ha)	(SSP/ha)	(SSP/ha)	(SSP/ha)	(=Labour in Days)
Maize	2,381	140	140		
Vegetables	4,524	7,960	4,524	695	17 days
Groundnuts	3,571	130	130		

Table 9.4.3 Proposed ISF and Members' Fee

(4) Collection method for the ISF

There are two key steps in cost recovery; the first is to design a pricing mechanism that covers the appropriate costs, and the second is to achieve high collection rates through effective water management. Collecting ISF from farmers is crucial in many developing countries since most farmers are poor. Followings are ideal method for collecting ISF and membersøfee.

- Farmers have to inform their cropping plan of the season, before starting the crop season. WUA will compile each farmer plan and submit to the Scheme Management Office. Then the Office will issue ISF bill to each farmers through WUA. SMS billing system through mobile phone is more effective since most people nowadays use mobile phone.
- ISF and membersøfee is collected after harvesting crops when farmers can obtain cash income from their farm products. Payment methods include cash, bank transmission, check, and in kind. Farmer should pay at the Scheme Management Office after harvest of the season.
- Membersø fee can be paid by in kind and is estimated at SSP236/acre in the Rejaf East Irrigation Scheme, which could be converted to 12 days of labour work. ISF can also be paid by in kind, but it is recommended to collect ISF in cash since it is equal to or less than the ATP.
- Penalty clause must be clearly stated in statute, and properly be executed.
- Introduction of an incentive measure to ISF collectors is effective. Each collector should have own jurisdiction and those who mark the highest ISF collection rate of the year will be commented by managers of the Scheme.
- Privatization of billing and ISF collection (PPP) is also effective. Traditional chief or local authority would be involved with a certain incentives.

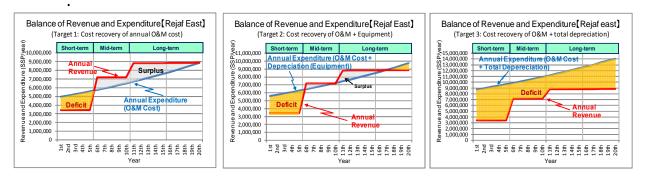
(5) Cash flow analysis to set management target

To see the balance of revenue and expenditure and assure the sustainability of the irrigation scheme management, cash flow statement of the scheme management office is effective. The cash flow statements show the movement of the scheme management officeø revenue and expenditure during a certain period. Cash inflow comes from daily operation of the scheme management office, including the collected ISF and other revenue such as membersø fee and penalty fee, whereas cash outflow includes regular operation and maintenance expenditures. Cash flow analysis will help the scheme management office to set relevant ISF to cover O&M costs of irrigation management, and help the office foresee potential deficit which would be the subsidy from the national or state government.

In the short-term, it could be happed that the revenue of the scheme management office cannot cover all O&M costs and the office heavily depends on subsidy from the national government, since farmers

are still poor and cannot pay higher ISF. However, in the mid-term, it is better to increase ISF rates in accordance with growing farmerøs income so that the revenue can cover normal O&M expenditure of the scheme. In the long-term, it is important to accumulate the earning retention for periodic and emergency repair of irrigation facilities and structures.

To see the degree of cost recovery based on the proposed ISF rate, three targets were set up in the cash flow analysis as follows;


- Target 1: Cost recovery of the annual O&M cost, which includes personnel expenses, pump operation fee, equipment and machinery operation costs, and normal maintenance cost of irrigation facilities.
- Target 2: Cost recovery of the annual O&M cost and a part of depreciation cost (equipment and machineries cost)
- Target 3: Cost recovery of the annual O&M cost and the total depreciation cost, including equipment and machineries cost, and project facilities such as pump station, canals, and on-farm structures.

Then, before starting the cash flow analysis, followings assumptions were established.

- Revenue includes ISF, membersøfee and tractor service fee, whereas expenditure includes annual O&M cost and depreciation of equipment, machineries and the project facilities.
- Price escalation is taken into consideration in the cash flow analysis. By taking linear regression of consumer index for four years (2011-2015), price escalation rate of 1.67%/annum for general consumption goods and 3.34% for fuel and electricity is estimated.
- ISF collection rate is lower at the beginning of irrigation service provision, but will increase after 5 years, and 10 years on the ground of incentive measures to the collectors and penalty measures to the farmers. As a default setting, ISF collection rate is set as 60% in the short-term, 70% in the mid-term and 80% in the long-term.
- Cropping area will change in short-term, mid-term, and long-term. According to the socio-economic survey conducted by the IDMP-TT at the project site, most farmers want to plant cereal crops for food security reason. However, it can be reasonably assumed that as farmer experiences irrigated agriculture more, they recognizes potential of irrigation farming and tend to increase cash crop production more.
- ISF is estimated based on the ATP of planted crops. In the short-term, minimum rate of 3% is applied in due consideration of farmersø financial capacity. However, as farmers become more familiar with irrigation farming and obtain more income from the farming, the ATP will be increase. In the mid-term and the long-term, the ATP of 5% is adopted.

Based on the above assumptions, cash flow analysis was conducted. The major findings of the cash flow analysis are as follows, and the results are shown in Appendix 4.

• Among three targets, only Target 1 could show positive result in the mid-term and the long-tem operation period, and other two targets were far from the cost recovery. It means the cost recovery of the annual O&M is achievable, whereas the cost recovery of depreciation costs is quite difficult in this scheme.

- As a default setting, ISF collection rate is set as 60% in the short-term, 70% in the mid-term and 80% in the long-term. However, under the condition, even the target 1 cannot be achieved due to mainly high O&M cost particularly pump operation cost. To achieve the target 1, it is necessary to increase ISF collection rate, including 70% in the short-term, 80% in the mid-term and 100% in the long-term. In addition, in the long-term, ATP have to be increased to 8% to achieve cost recovery target of the target 1.
- As for the Target 1, in the short-term, in other words, during the first 5 years, the balance of annual O&M cost and revenue is õminusö. The deficit must be compensated by the national government as a subsidy. However, in the mid-term and the long-term, the balance will become õplusö, meaning the Scheme Management Office can start accumulation of the earning retention to cover a part of depreciation costs after 6th year of its operation.
- As for the Target 1, the balance of revenue and expenditure cannot be õplusö during the short-term period. To overcome this situation, there are two possible ways for the scheme management, including increase in ISF rate, or increase in ISF collection rate. Among the alternatives, increase in ISF is not better solution since farmers are still poor at the beginning of irrigation water provision. Rather, making efforts to increase ISF collection rate is realistic. However, even if ISF collection rate becomes 100%, the balance at the short-term period is still õminusö due to mainly high project cost, O&M costs, and low revenues.
- Result of the cash flow analysis indicated that the Scheme Management Office can achieve the target 1, and can manage at least annual O&M cost under the proposed ISF level. Also, the Scheme Management Office can obtain a surplus from the 6th year, which can be the internal revenue fund for covering a part of depreciation costs or unexpected invents.
- However, the office cannot manage depreciation costs in full including amortization of equipment, machineries, and project structures, since the initial investment costs is quite high. Therefore, government support as a subsidy to cover the depreciation costs is necessary for reinvestment of the Rejaf East Irrigation Scheme.

(6) Recommendation

The cost recovery principle must be adapted in the irrigation scheme management, and its revenue should be their services including provision of irrigation water supply, tractor service, and others. However, as result of cash flow analysis indicated, it is not easy to recover depreciation cost. Therefore, it is recommended that financial target will be cost recovery of annual operation costs of the scheme. The annual O&M cost includes personnel expenditure, pump operation cost, equipment

and machinery operation cost, and regular maintenance cost of the scheme.

For this purpose, proposed ISF level is considered reasonable and proper. The proposed ISF estimated in the analysis is set in low level at the first 5 years in due consideration of farmersøfinancial capacity. However, it should be increased from 6th year when farmer beneficiaries become familiar with irrigation farming, and will be ready enough for paying higher ISF. Also, form the mid-term operation, it is necessary to advice farmers to shift more capital intensive farming, from current cereal crop production to more profitable crops through applying suitable farm inputs including high quality seeds, fertilizers and pesticides.

On the other hand, to materialize sustainable financial management of the scheme, administrative efforts and engineering efforts are necessary. If farmers could satisfied to the irrigation service from the Scheme Management Office, farmers will show their satisfaction through continuous payment of the ISF, which result in increase in revenue of the scheme. Therefore, the Office should provide demand oriented or used friendly services including input service, farming technology extension, post harvest services, and off-farm training for example, in addition to the regular supply of irrigation water.

If the financial target of the scheme is set to recover annual operation and maintenance costs, the Scheme Management Office can acquire surplus from 6th year. Accumulated amount of the surplus will be 5,425 thousand SSP by the end of the long-term period, after 20 years from the project completion. It is recommended that the surplus will be retained in the account of the scheme so that the scheme can reinvest a part of equipment and machinery costs needed, or can address unexpected event in the future.

CHAPTER 10 COST ESTIMATE

The project costs are estimated at USD. The unit price is set up on the basis of the actual construction orders done by MEDIWR.

10.1 Conditions for Cost Estimate

Table 10.1.1 presents the conditions for cost estimate.

	Table 10.1.1 Conditions for Estimate				
	Items	Contents and Conditions			
a)	Direct Construction cost	Labour, materials, machinery, etc. and including pump and relative facilities, etc			
b)	Indirection construction cost	45% of the above a), as overhead cost			
c)	Administration	4% of the above a)			
d)	Consultant Fee	5% of the above a)			
e)	Physical Contingency	5% of the above a)			

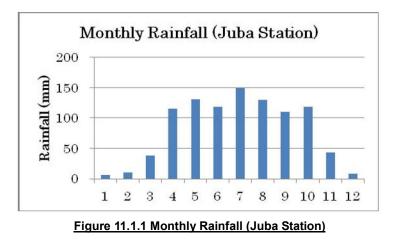
|--|

10.2 Project Cost

Project cost of Rejaf East is shown in Table 10.2.1.

Out of the total project cost, 44% for pump station and facilities in farmlands direct construction cost occupies large part of the total cost.

		ie 10.2.1 P	roject Cost		
No.	Work Description	Unit	Quantity	Price (million US\$)	Rate (%)
1.	Direct Construction Cost				
1-1	Pump Station	L.S.	1	4.4	19.1
1-2	Pipeline Work	L.S.	1	2.5	10.9
1-3	Main Irrigation Canal	L.S.	1	1.4	6.1
1-4	Facilities in Farmlands	L.S.	1	5.7	24.8
	Sub-total (A)			14.0	60.9
2.	Overhead (B=A*45%)	L.S.	1	6.3	27.4
	C=A+B	L.S.	1	20.3	88.3
3.	Administration (D=C*4%)	L.S.	1	0.7	3.1
4.	Consultant Fee (E=C*5%)	L.S.	1	1.0	4.3
5.	Physical Contingency (F=C*5%)	L.S.	1	1.0	4.3
	Total			23.0	100.0
	Command Area A=960ha			24,000 US\$/ha	


Table 10.2.1 Project Cost

CHAPTER 11 IMPLEMENTATION PLAN

11.1 Conditions of Construction

(1) Rainfall

Rainy season in Rejaf East seems to be from April to October in general. The earthworks are strongly influenced by rainfall. Therefore, the construction at the site might be intermitted in the vicinity of July.

(2) Land acquisition and collaboration with relative agencies

Land acquisition shall be finished by the beginning of construction. MEDIWR shall prepare the budget for the land acquisition and proceed to the procedure. Moreover MEDIWR shall proceed to collaborate with the relative agencies.

11.2 Implementation Schedule

It is proposed that all of the construction works should be achieved by 3rd year, considering their high priority and the earlier effective benefit.

	Project			Year	
Work Description	Cost	Quantity	1st	2nd	3rd
Pump Station	7.2	Investigation, Detail Design, Procurement: Pump etc. Construction (4 stations)			
Pipeline	4.0	Investigation, Detail Design, Procurement: Steel Pipe SPφ700/φ500, L=5.15km			
Main Irrigation Canal	2.3	Investigation, Detail Design, Main Canal L=7.95km			
Facilities in Farmlands	9.5	Investigation, Detail Design, Canal & Drainage A=960ha			
total	23.0	(million US\$)			

CHAPTER 12 ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

12.1 Purposes

The irrigation development master plan (IDMP) has selected three priority projects in Wau, Jebel Lado and Rejaf East. Those projects are expected to contribute to agricultural improvement in the RSS, while it is also important to avoid and/or mitigate any environmental and social impacts.

A guideline of environmental and social considerations for irrigation development (ESCID Guideline) has been developed in formulating the irrigation master plan. An IEE study was preliminarily taken for one of the priority projects in Rejaf East by using the ESCID Guideline.

The purposes of the IEE study are:

- To figure out current environmental and social aspects in the project site;
- To preliminarily assess the impacts likely affected by the priority projects;
- To indicate scope of works of an environmental impact assessment in the further process of feasibility study, e.g.

12.2 Methods

(1) Process of environmental and social considerations

According to the draft ESCID Guideline, the IEE is taken through the following main process.

- 1. Screening process: to identify whether or not further environmental and social considerations are necessary
- 2. Preliminary Survey: to find key environmental aspects
- 3. Scoping: to indicate highlighted impacts and the impact levels, and also to address the study method for a further study

(2) Methods for the preliminary survey

The preliminary survey was taken in the manner of hearing with local communities, government organization (county government, ministry, e.g.), visual observation, etc. The following table shows summary of the methods.

	<u> </u>
Survey Methods	Target Items
Data collection	Protected wildlife,
Interview with	Community profile, local economy, wildlife, flood
Local communities	records
State / County government	Current plan, program, project, etc., flood records, wildlife
Ministry of Wildlife Conservation	Wildlife
and Tourism, Wildlife officials	
Visual observation	Landuse, wildlife, local economy, water use, etc.
Topographic and geographic survey	Topographic and geographic condition
(conducted under the IDMP)	

12.3 Evaluation of Alternatives

(1) Description of the alternatives

The project was evaluated compared with õzero optionö. Evaluation was judged through scoring method on each following evaluation item.

Score	Evaluation Items								
Natural	Pollution (Air pollution, Water pollution, Waste, Soil/Sediment								
Environment	contamination, Noise and vibration, Odour, Global warming)								
	Biodiversity (Protected areas, Ecosystem)								
	Nature, disasters (Hydrology, Topography and geology, Subsidence								
	/ Erosion, Landscape)								
Social Environment	Land occupies resettlement (Resettlement. Landuse)								
	Social conflict (Vulnerable groups, Water use / Rights)								
	Living condition (Living and livelihood, Local economy, Historical /								
	Cultural heritage, Social infrastructure / Services, Infectious								
	diseases)								
Economy,	Economy, development								
development	Consistency								

Table 12.3.1 Evaluation Methods (Evaluation Items)

(2) Results of comparison

The summary of score is shown in the table below (details are given in Appendix 5):

Table 12.3.2 Summary of Scoring and Ranking						
Evaluation Items	Alternative A	Zero Option				
Natural Environment	2.7	3.0				
Social Environment	2.3	3.0				
Economy, development	4.5	3.0				
Total Score	9.5	9.0				
Rank	1	2				

Table 12.3.2 Summary of Scoring and Ranking

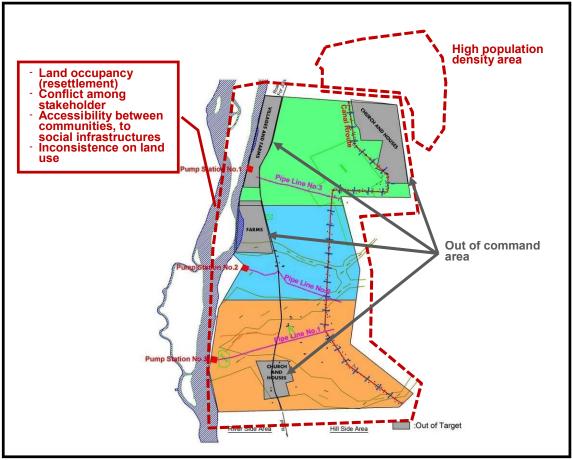
Source: IDMP-TT

1) Zero option

It is, of course, not expected to generate any environmental and social impacts by zero option. On the other hand, food security and economic improvement are urgent challenges in the RSS, especially agricultural / irrigation development can have high potential on these matters. The project site is located in the peri-urban of Juba city, therefore land use potential is high. This area is attractive for investment and land development for housing, commercial zone, possible future industrial development, etc.

2) Proposed project

Components of the alternative A are pump station, canal and pipeline, and command area. The proposed command area occupies large land, approximately 1,220 ha. Major impacts will be caused by land occupation. Certain community houses, social facilities exist along the road passing north to south. Some of areas in / around the project site have been invested by private sectors. Those complicated situation can raise conflict among communities and private sectors.

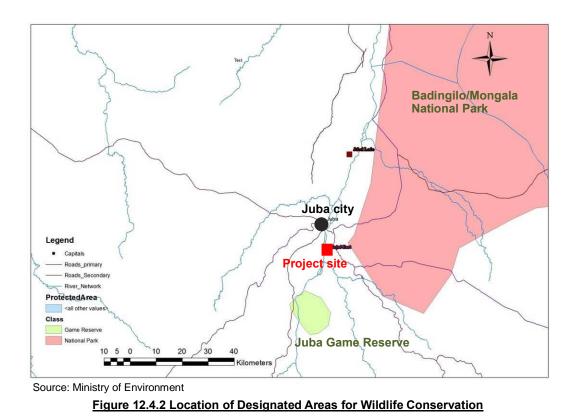

However there is large potential to generate cash income by the project because the project site is located adjacent Juba city. On the other hand, the project can increase agricultural land, and encourage agricultural production.

3) Results

Based on the above evaluation, the proposed project is suggestible. Demand on increasing of agricultural production, which contributes to economic development, is quite attractive in spite of complicated land hold condition. For smooth implementation of the project, sufficient consensus building among stakeholder is important.

12.4 Current Environmental and Social Aspects

Overview of possible adverse impacts is illustrated in the following map:



Source: IDMP-TT

Figure 12.4.1 Overview of Possible Impacts

(1) Natural environmental aspects

The project site, as shown in Figure 12.4.2, is located close to Badingilo / Mongala National Park and near Juba Game Reserve. Yet details study about wildlife habitats, feeding sites, migration corridors, etc. has not been taken, critical areas for wildlife conservation is not expected because the project site is located in peri-urban of Juba city, and population dense area exists eastern-north side of the project site.

The project site is only less than 10 km far from Juba city. The proposed command area is located from right bank of the White Nile River toward the hillside of around 2 km distance. The terrain between riverside and Rejaf Road is flat. Land cover characterizes bushes, grassland and tree plantation dominated.

Water flow of the White Nile River is estimated 37,210 MCM/year, and annual rainfall is around 1,000 mm. It is, therefore, concluded that plenty of water can be used for irrigation. Amount of pumped water is quite small compared with the river flow. On the other hand, kinds of tracks of stream were observed as shown in Figure 12.4.3.

According to the communities, rain water flushes along the seasonal streams in rainy season. Design of command area, land levelling work, and drainage network and flood control as well must be considered to avoid stagnation of water flow.

(2) Social environmental aspects

The project site is located close to Juba city, high demand on food supply is expected due to its large population. Certain private agricultural development have been implemented or planned in / around project site according to the communities. Chinese farmland has been operated near northern side of the project site. Rejaf East is expected to raise a potential on investment for not only

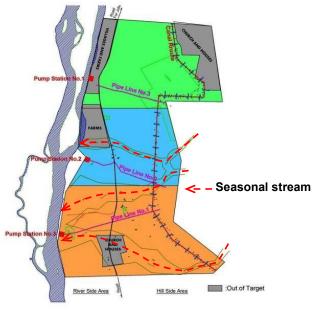
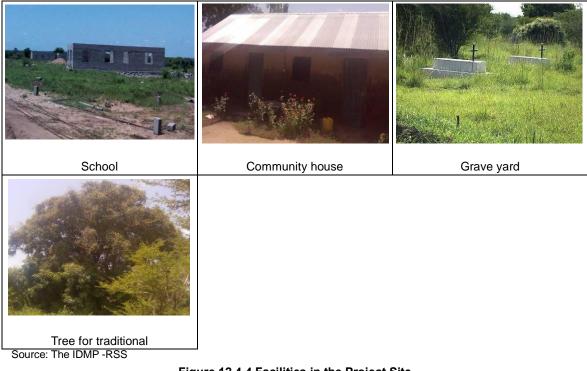


Figure 12.4.3 Tracks of Seasonal Stream


agriculture but also housing, commercial zone, etc. Consistency and harmonization with those plans will be key issue for project implementation.

The project site is tenured under three communities, namely Guduge, Migiri and Mogoro. Dominant livelihood of those communities is farming and fishery, but certain people work in Juba for side businesses.

Community has experienced irrigated agriculture, and small scale of pump irrigation facilities exist along the White Nile River. It, therefore, is expected for the community to easily adopt a new irrigation system introduced by the project.

Small scale of farmlands and residential areas are dotted in the terrain between right bank of the river and the Rejaf Road. A church is built in the southern part belonging to Mugoro Community, certain dense area and buildings are observed around the church. A school is under re-construction. According to the communities, they were caught in battles under the past civil war. Therefore many grave yards are scattered in the project site.

Floods occurred near the river bank, but have rarely spread in the proposed command area. No historical / cultural heritage was confirmed, while certain number of trees and stones, which are for traditional ceremonies, are scattered.

Figure 12.4.4 Facilities in the Project Site

12.5 Evaluation of the Impact

(1) Overall evaluation

According to the preliminary survey, major impacts can be described as follows:

- (1) Land possession, resettlement (negative impact);
- (2) Living and livelihood (negative / positive impact);
- (3) Local economy (positive impact);

- (4) Land use (negative impact), and
- (3) Local conflict (negative impact).

The most considerable impacts will be caused by land possession. The project site is tenured under the three communities; however some of areas are invested by private sectors. There are many community farmland dotted in the western side and along Rejaf Road, private as well as public farmlands (called õprison farmö) are also operated. Considerable number of land owner ship is issued without documented records. Due to close location from Juba city, land potential is quite high, it was informed that private housing had been progressed. It is possible to raise demand of land development because of close location to Juba city. Those situations cause complicated land holding. Careful consideration, therefore, is important.

It is expected to raise agricultural production by the project which can benefit to the communities. Also demand on construction materials, tools / equipment, job opportunity may give positive impacts to the communities in terms of improvement of living condition and livelihood. On the other hand, existing agricultural activities as well as community houses, social infrastructures, etc. must be obstructed by the project construction works. It can lead decrease of their income and raise conflict among communities and other vested interests. Proper compensation plan as well as resettlement plan will be required.

Most of the communities are farmer with side jobs, so decree of benefits may vary depending how much they concentrate with farming. Therefore fair allocation of benefit and proper compensation must be considered.

(2) Results of scoping

Results of scoping are summarised in Table 12.5.1.

	Table 12.5.1 Results of Scoping							
E	invironmental Items	Pre- construction	Construction	Operation	Summary of Impact			
Pollution	Air Pollution	D	-C	-C	Construction works and operation of pump may generate exhaust gas, it can be controlled by moderate measures.			
	Water Pollution	D	-C	-B	Construction works may generate turbid water, e.g., but it can be controlled by moderate measures. Storage of oil, hazardous waste must be properly managed. Use of pesticide and fertilizers need proper rules.			
	Waste	-C	-C	-C	Construction waste will be considerable.			
	Soil/Sediment Contamination	D	-C	-C	Though polluted water can contaminate soil / sediment, it can be controlled by moderate measures.			
	Noise and Vibration	-C	-C	-C	Construction works and operation of pump may generate noise, however its scale may not significant, and it can be controlled by moderate measures.			
	Odour	D	D	D	No certain odour is anticipated.			
Natural	Protected Areas	D	D	D	There are no protected areas adjacent the project site.			
Za	Ecosystem	-C	-C	+C	No proper studies have been conducted, therefore level of impacts are not identified.			

Table 12.5.1 Results of Scoping

E	nvironmental Items	Pre- construction	Construction	Operation	Summary of Impact
					It may be less possibility of endangered / rare species because the site is close to high population area.
	Hydrology	-C	-C	D	Due to topographic feature, possible floods may expand near river side; most of the command area will be rarely affected. On the other hand, seasonal stream should not be blocked.
	Topography and Geology	D	D	D	No certain impacts are anticipated.
	Subsidence / Erosion	D	-C	D	Risk of erosion during construction phase can be controlled by proper and moderate measures.
	Global Warming	D	D	-C	No impact on global warming is anticipated.
	Landscape	D	D	D	There is no activity to affect landscape.
	Resettlement	-B	-B	D	Project site is potential on population increasing and urbanization because it is adjacent to Juba city.
	Living and Livelihood	-B	-B	+B	Land occupancies in command area may affect existing communitys living condition, livelihood as well. While recruitment and job opportunity are the most expected benefits.
	Local Economy	D	+B	+A	Construction works require provision of material, tools /equipment, man power, etc. Agricultural production can raise local economy.
nent	Historical / Cultural Heritage	-C	D	D	A church is observed in the southern area under Mugoro Community.
Social Environment	Land Use	-C	-B	-B	Due to close location from Juba city, land use potential is high. Consistency and harmonization with land use plan / development is important to be considered. Those situations can lead social conflict among the communities.
	Vulnerable Groups	D	D	-C	Possible adverse impacts are child labour, unfair allocation of benefit, etc.
	Local Conflict	-C	-B	-B	Improper allocation of project benefit, inconsistency with other development / plan can raise conflict.
	Water Use / Right	-C	-C	-C	Use of water newly provided by irrigation shall need a rule to mitigate conflict.
	Social Infrastructure / Services	-C	-C	D	Local grave yards are scattered in the project site.
	Infectious Diseases	D	D	D	Mosquito bleeding in water area (canals, etc.) can be very limited.

 +/-A: Significant positive/negative impact is expected.
 +/-B: Positive/negative impact is expected to some extent.
 +/-C: Extent of positive/negative impact is unknown (Examination is needed. Impacts may become clear as study progresses.) D : No impact is expected.

12.6 Conclusions and Recommendations

(1) Conclusions

Conclusions are:

The most significant impacts are related to land possession. The command area occupies • large land. Considerable parts of the project site have been used for community farmlands, private farmlands as well. Residential zones have spread in the project site.

- Land holding is complicated. Therefore careful consensus building, a study to identify condition of land use and land title, and proper plans for resettlement / compensation are important.
- It is expected to improve communityøs livelihood, local economy through increase of agricultural production. On the other hand, obstruction on existing land use, agricultural works by project construction can lead social conflict. In addition, careful consideration with other further projects related to land use / land possession is important.
- Pollutions related to air, water, noise, etc. can be controlled by moderate measures.
- The project is expected to effectively contribute to improvement of agricultural production.

(2) Recommendations

Recommendations are:

- Further study in order to identify land use, location of community houses and other facilities is required.
- Existing or further planned land development, investment shall be investigated.
- Though impacts on ecosystem are expected small, this condition has been hardly studied. Therefore appropriate scientific survey is recommended.
- Though workshops were conducted under the IDMP, public consultation with the communities is useful to know their opinions, concerns etc., in order to take consensus building among them, and to formulate adequate compensation plan.
- Fare allocation of the project benefit among stakeholders is important. In the same manner, adequate compensation plan must be given in order to avoid social conflict.
- Further certain environmental assessment will be required in a feasibility study, e.g. The following survey methods are recommendable:

Survey Items	Possible Methods	Points to be surveyed					
Air pollution	 Check of quality of 	 Possible affected areas 					
	construction equipment and	especially sensitive zone					
	pump in terms of prevention from	 Selection of environmentally 					
	exhaust gas	friendly equipment with proper					
	 Site survey on location of 	maintenance					
	possible sensitive zones against						
	air pollution such as residential						
	area, school zone, etc.						
Water pollution	 Measure of current water 	 Possible water pollution 					
	quality	source and affected area					
	- Examine of possible pollution	 Farming plan in terms of use 					
	sources by the project	of chemicals					
Waste	 Investigation of possible 	 Location of possible disposal 					
	disposal site for construction	site					
	waste	 Types of waste 					
	 Estimation approximate waste 	 Procedure / rules of storage 					
	volume	and disposal of waste					

Table 12.6.1 Recommended Survey Methods for Further Study

Survey Items	Possible Methods	Points to be surveyed
Soil / sediment	- Examine of possible water	- Same as water pollution+
contamination	pollution sources by the project	
Noise and vibration	- Check of quality of	 Possible affected areas
	construction equipment and	especially sensitive zone
	pump in terms of prevention from	- Selection of environmentally
	noise / vibration	friendly equipment with proper
	- Site survey on possible	maintenance
	sensitive zones against noise /	- Pump operation schedule
	vibration such as residential area,	Fump operation schedule
Facevetam	school zone, etc. - Interview with local	- Wild life corridor
Ecosystem		
	communities	- Wildlife habitats
	- Direct observation on wildlife	- Forest, plantation, e.g.
	habitats, migration, etc.	
	- Trap survey	
Hydrology	 Historical records of floods 	- Condition of water body in
	- Site reconnaissance on water	rainy season
	body condition	- Historical records of floods
Subsidence /	 Historical records of 	- Location of possible erosion
erosion	subsidence / erosion	site
Resettlement	 Survey on land use, land 	 Number and location of
	status, land ownership, etc.	houses / facilities likely to be
	 Estimation of land and asset 	relocated
	price	 Agreement on the project
	 Public consultation for 	 Resettlement plan
	consensus building	
Living and	 Investigation of community 	 Existing land use,
livelihood	living condition and livelihood	development plans
	 Interview with communities 	 Possible job opportunities by
		the project in both construction
		and operation phases
Local economy	 Investigation of local 	 Possible materials, equipment
	economic profile	for the project
	 Investigation of future plans, 	 Possibility of procurement in
	developments, investments	local
Land use	- Survey on land use, land	- Land map describing houses,
	status, land ownership	facilities, land use, etc.
	 Investigation of land use plan 	 Existing and/or further land
	- Public consultation	use plan
Local conflict	 Investigation of job profile, 	- Community profile, job profile
	income level and sources	 Consensus building among
	- Public consultation	communities
		- Compensation plan
Water use / right	- Investigation of water use /	- Status of water use, legal
	right	status on water right
	- Public consultation	 Consensus building among
		communities
Social	- Site survey on location of	- Location of infrastructure
infrastructures /	social infrastructures	 Location of grave yards
services	- Interview with local	- Existing and/or further
	communities, etc.	infrastructure development plan
	oommunii	

CHAPTER 13 PROJECT EVALUATION

13.1 Outline of the Project Area

The irrigation development project in Jebel Lado located in CE will serve water to totaling 960 ha of target field. The project will develop the present unused land and the existing farmland into large farming fields with irrigation. The project will furnish the infrastructures to introduce a irrigated agriculture, leading to increase farming income for the farmer beneficiaries. Following are the outline of the site.

Outline of Project (Rejaf East):

Location:Just southeast of Juba CityProject area:960 haLand Holding:Ave. 1.8 ha/household (6.0 members/household)

13.2 Farming Plan

(1) Cropping pattern

Around the site in Rejaf East, major crops are maize and sorghum, and vegetables are grown as cash crops, such as okra. The crops to be grown in the project area will be represented by maize, tomato, groundnut, jewsøs mallow, okra and eggplant. In the project, the cropping intensity is expected to increase by the improvement of farming conditions, compared to the current cropping intensity. Considering the situation of existing areas, whose cropping intensity is estimated around 80 %, the intensity in the project is assumed to be 192 %.

(2) Irrigation system

Irrigation water is taken from the Nile by pumps and transported through pipelines. The pumped water is sent to high places and will be delivered to each field by gravity.

13.3 Basic Assumptions for Economic Analysis

Upon conducting the economic analysis, following assumptions are set:

Financial prices of farming commodities are based on the results of Agriculture and Socioeconomic Survey in May 2015.

Financial prices are converted into economic prices using Standard Conversion Factor (SCF) of 0.90 and Labor Conversion Factor (LCF) of 0.45 ($0.5 \times$ SCF). Transfer payments are eliminated in converting economic price. Next table shows the summary of financial and economic prices.

Foreign exchange rate of 1 US = 2.95 SSP is applied, which is the current official exchange rate.

Cash flow analysis was conducted with 30 years since there is no significant replacement cost which will influence the economic efficiency and present value of cash flow. Values after 30 years will become very low as the influence in calculation is considered very little.

			Financial	Conversion	Economic	
No.	Description	Unit	Price (SSP)	Factor	Price (SSP)	Remarks
A.	Agriculture Product		(881)		(321)	
-	- Maize	kg	3.70	-	3.05	Estimated by import parity price
	- Sorghum	kg	4.20	-	3.44	- do -
	- Cassava	kg	5.00	-	3.94	- do -
	- Common bean	kg	4.60	_	3.89	- do -
	- Groundnut	kg	3.90	_	3.20	- do -
	- Sesame	kg	4.80	-	3.92	- do -
	- Okra	kg	9.10	-	7.04	- do -
_	- Tomato	kg	4.30	-	3.41	- do -
	- Jew's mallow	kg	4.50	0.90	4.05	
	- Eggplant	kg	11.10	-	8.55	Estimated by import parity price
3.	Farm Input	_				
1	Conventional Seed					
	- Maize	kg	11.90	0.90	10.71	
	- Sorghum	kg	7.00	0.90	6.30	
	- Cassava	kg	10.00	0.90	9.00	
	- Common bean	kg	11.00	0.90	9.90	
	- Groundnut	kg	17.50	0.90	15.75	
	- Sesame	kg	12.40	0.90	11.16	
	- Okra	fed	125.40	0.90	112.86	
2	Improved Seed					
_	- Maize	kg	14.00	0.90	12.60	
	- Tomato	kg	500.00	0.90	450.00	
	- Groundnut	kg	16.00	0.90	14.40	
_	- Jew's mallow	kg	200.00	0.90	180.00	
	- Okra	kg	500.00	0.90	450.00	
	- Eggplant	kg	534.00	0.90	480.60	
3	Fertilizer	_				
-	- DAP	kg	12.25	0.90	11.03	
	- Urea	kg	11.75	0.90	10.58	
	- CAN	kg	12.00	0.90	10.80	
	- NPK	kg	12.00	0.90	11.03	
	- Foliar (liquid)	lit	70.00	0.90	63.00	
4	Agro Chemical					
-	- Pesticdes (insecticide)	lit	85.00	0.90	76.50	
	- Fungicide	lit	107.00	0.90	96.30	
	- Agro-chemicals, Okra	fed	128.00	0.90	115.20	
5	Labor					
3	- Family Labor	m*d	50.0	0.45	22.5	
	- Hired Labor	m*d	50.0	0.45	22.5	
6	Equipment					
-	- Tractor rental	ha	476.19	0.90	428.57	
	- Sprayer	ha	100.00	0.90	90.00	
	- Transportation	time	22.20	0.90	19.98	
7	Others					
	- Sack / Box	piece	7.50	0.90	6.75	

Table 13.3.1 Financial and Economic Price of Agricultural Produces/Inputs

Source: Agriculture and Socioeconomic Survey, 2015

13.4 Project Cost

(1) Project cost at financial price

The project cost of Rejaf East at financial price is estimated 23 million US\$ or 24 thousand US\$/ha. Next table summarizes the project cost at financial price.

Item	US\$/ha	Ha	Total (,000US\$)					
1. Direct Construction Cost	14,602	960	14,018					
2. Indirect Construction Cost	6,571		6,308					
Sub-total	21,173		20,326					
3. Administration (4%)	847		813					
4. Consultant Fee (5%)	1,058		1,016					
5. Physical Contingency (5%)	1,058		1,016					
Total	24,136		23,171					
Source: IDMP TT								

Table 13.4.1 Summary	of Project Cost at Financial Price

Source: IDMP-TT

(2) Project cost at economic price

Project cost at financial price was categorized into foreign currency portion (F/C), local currency portion (L/C) and transfer payments such as taxes. Local currency portion was further divided into skilled labor, unskilled labor, and others. Relevant conversion factors (CF) were applied for respective categories of cost to estimate the project cost at economic price. The project cost at economic price was, then, estimated at 20 million US\$ or 21 thousand US\$ per ha. Next table shows the estimation of the project cost at economic price.

ltem	Financial Cost (,000US\$)	CF	F/C 1.00 ②	Skilled Labor 0.90 ③	L/C Unskilled Labor 0.45 ④	Others (SCF) 0.90 (5)	Tax 0.00 ⑥	Conversion Factor ⑦ Sum(②~⑥)	Economic Cost (,000US\$) ⑧=①*⑦
Direct Construction		%	<u>e</u> 60.0	10.0	~	10.0	0.0	Sum(@ ** (0)	
Cost	14,018	CF×%	0.600	0.090	0.090	0.090	0.000	0.870	12,196
Indirect		%	60.0	10.0	20.0	10.0	0.0		
Construction Cost	6,308	CF×%	0.600	0.090	0.090	0.090	0.000	0.870	5,488
Administration		%	60.0	10.0	20.0	10.0	0.0		
	813	CF×%	0.600	0.090	0.090	0.090	0.000	0.870	707
Consultant Fee		%	60.0	35.0	5.0	0.0	0.0		
Consultant rec	1,016	CFx%	0.600	0.315	0.023	0.000	0.000	0.938	953
Physical		%	60.0	10.0	20.0	10.0	0.0		
Contingency	1,016	CF×%	0.600	0.090	0.090	0.090	0.000	0.870	884
Total	23,171								20,228

Table 13.4.2 Estimation of Project Cost at Economic Price

Source: IDMP-TT

13.5 Project Benefits

(1) Category of benefits

Though benefits with the project of the site Wau is the yield by new cultivation, the expected benefits compared with existing farming in surrounding area of the site will be as follows:

- Increase of crop yield by irrigation
- Increase of cropping intensity
- Reduction of farming cost by increasing farming efficiency

(2) Project benefits at financial price

Based on the estimations of net benefit (gross output ó production cost including family labor value), the net incremental incomes were calculated. Next table is the summary of the net incremental income. Total net incremental income was estimated at 16,076 thousand US\$ or 16,746 US\$/ha.

Without Project						With Project							
Crop	Area	Gross output	Production cost	Net Be	enefit	Area	Gross output	Production cost	Net Be	enefit	Incr	ement	
	(ha)	(000US\$)	(000US\$)	(000US\$)	(US\$/ha)	(ha)	(000US\$)	(000US\$)	(000US\$)	(US\$/ha)	(000US\$)	(US\$/ha)	
	1	2	3	4=2-3	5=4/1	6	$\overline{\mathcal{O}}$	8	9=7-8	10=9/6	1)=9-4	12=11/6or1	
Maize	34.54	29.07	82.73	-53.66	-1,554	364.80	1,372.64	1,550.71	-178.07	-488	-124.41	-341	
Sorghum	11.33	14.26	33.54	-19.28	-1,702	-	-	-	-	-	19.28	1,702	
Cassava	5.72	15.17	16.75	-1.58	-276	-	-	-	-	-	1.58	276	
Common bean	1.98	1.08	8.79	-7.71	-3,896	-	-	-	-	-	7.71	3,896	
Groundnut	11.00	11.42	39.19	-27.78	-2,525	163.20	655.90	768.58	-112.68	-690	-84.90	-520	
Sesame	0.33	0.26	0.82	-0.56	-1,704	-	-	-	-	-	0.56	1,704	
Okra	22.44	75.66	53.88	21.78	971	393.60	3,642.47	2,513.70	1,128.76	2,868	1,106.98	2,812	
Tomato	-	-	-	-	-	364.80	5,849.17	2,856.57	2,992.60	8,203	2,992.60	8,203	
Jew's mallow	-	-	-	-	-	163.20	1,127.74	872.12	255.62	1,566	255.62	1,566	
Eggplant	-	-	-	-	-	393.60	14,661.93	2,760.67	11,901.26	30,237	11,901.26	30,237	
Total	87.34	146.91	235.70	-88.79	-92	1,843.20	27,309.84	11,322.35	15,987.49	16,654	16,076.29	16,746	

Table 13.5.1 Summary of Net Incremental Income at Financial Price

(3) Project benefits at economic price

Project benefits at financial price were converted into the ones at economic prices, using conversion factors and import party prices as it has been mentioned. For economic analysis, incremental benefit (count family labor as cost) also will be considered, since economic analysis stands on the viewpoint of the national economy to examine the efficiency of resources use in the country.

Next table shows the summary of farm benefit at economic price. Total incremental benefit was estimated at 5,348 thousand US\$ or 2,061 US\$/ha.

Table 13.5.2 Summary of Economic Incremental Benefits

Net Bennefit: G	let Bennefit: Gross output – Production cost including family labor value											
			Without Pro	ect					With Project	ct		
Crop	Area	Gross output	Production cost	Net Be	enefit	Area	Gross output	Production cost	Net Be	enefit	Inci	rement
	(ha)	(000US\$)	(000US\$)	(000US\$)	(US\$/ha)	(ha)	(000US\$)	(000US\$)	(000US\$)	(US\$/ha)	(000US\$)	(US\$/ha)
	1	2	3	4=2-3	5=4/1	6	\bigcirc	8	9=7-8	10=9/6	1)=9-4	12=11/6or1
Maize	34.54	23.96	28.44	-4.48	-130	364.80	1,131.50	849.55	281.95	773	286.43	785
Sorghum	11.33	11.68	11.17	0.51	45	-	-	-	-	-	-0.51	-45
Cassava	5.72	11.96	5.95	6.01	1,050	-	-	-	-	-	-6.01	-1,050
Common bean	1.98	0.91	2.90	-1.99	-1,003	-	-	-	-	-	1.99	1,003
Groundnut	11.00	9.37	13.70	-4.33	-394	163.20	538.17	412.04	126.13	773	130.47	799
Sesame	0.33	0.21	0.28	-0.07	-218	-	-	-	-	-	0.07	218
Okra	22.44	58.53	20.79	37.75	1,682	393.60	2,817.91	1,541.04	1,276.87	3,244	1,239.12	3,148
Tomato	-	-	-	-	-	364.80	4,638.52	1,618.72	3,019.80	8,278	3,019.80	8,278
Jew's mallow	-	-	-	-	-	163.20	1,014.97	523.77	491.19	3,010	491.19	3,010
Eggplant	-	-	-	-	-	393.60	11,293.65	1,849.25	9,444.40	23,995	9,444.40	
Total	87.34	116.62	83.22	33.40	35	1,843.20	21,434.72	6,794.38	14,640.34	15,250	14,606.94	15,216

Source: IDMP-TT

. .

13.6 Project Evaluation

(1) Cash flows of cost and benefit

Following is the proposed cash flow of investment (project cost) and the benefits accruing from the investment:

Investment (Project Cost):

Construction:	Construction including survey, examination, etc. will be implemented in the first and second year.
O & M:	Annual Operation and Maintenance (O&M) cost excluding the fuel of the pump is assumed 5 % of the total construction cost. The fuel cost of the pumping is estimated at 1,511 thousand US\$/year.
Replacement:	The introduced suction pump has to be replaced in the 21st year after 20 years of service life. Other irrigation facilities have durability of more than 30 years.

Benefit:

Crop production: Benefit will start fully realizing three years after implementation of planned farming, namely from the fourth year of cultivation. It is assumed that 60 %, 70 %, 80 % and 90 % of the full benefit will be achieved in the first, the second, the third and the fourth year respectively.

(2) Financial analysis

With the costs and benefits at financial price, here we apply financial internal rate of return (FIRR) and financial net present value (FNPV) and cost-benefit ratio (B/C) for examining the efficiency of the investment. To estimate FNPV, discount rate of 8.83 % was applied, which is average of short-term lending interest rates of commercial banks in January - March 2015.

Family labour in this analysis is counted as cost for we stand on the viewpoint of private enterprise (farm household as a firm), all the inputs should be counted as cost; namely, net incremental benefit will be applied for the analysis.

The FIRR and FNPV and B/C are calculated at 36.8 %, 85,454 thousand US\$ and 2.92 respectively. The FIRR is over the interest rate of 8.83 %, the FNPV is over zero and the B/C is over 1.00. Therefore, it can be said the project is financially viable.

(3) Economic evaluation

With the economic costs and benefits estimated above, the Economic Internal Rate of Return (EIRR) is calculated. Cash flow is same with the one of the financial analysis. The EIRR was calculated at 38.0 %. Opportunity cost of capital in RSS is considered around 7.5 %, therefore, it can be said that the project is economically feasible. Economic net present value (ENPV) discounted at the rate of 7.5 % was calculated at 94,807 thousand US\$. The B/C discounted at 7.5 % was 3.18.

CHAPTER 14 CONCLUSION AND RECOMMENDATIONS

Project evaluation shows that the project is economically feasible and also financially viable. In terms of the selection of crops, the most profitable crop among the planned crops is eggplant. It seems that eggplant cultivation has high demand in the market and can take high yield as well as tomato. However, the farmerøs selling price per kg of eggplant is more than double of tomato. Tomato is also considered to be a good introducing crop though it is not so high profit, compared to eggplant.

Beneficiary farmers in Rejaf East can bring their produce easily to market in Juba: however, there is hard competition with imports from neighboring countries. Staple and quasi-staple crops, such as maize, groundnut, etc., are not proper crops in agriculture in suburban areas since they can be produced in other wider areas more efficiently and conveyed to town markets. But small amount of those production are necessary for self/ community consumption.

APPENDIX - 1

FACILITY PLAN AND DESIGN

CHAPTER 1 GENERAL

1.1 Outline of Main Facilities

Main facilities planed in Rejaf East shemea are as follows,

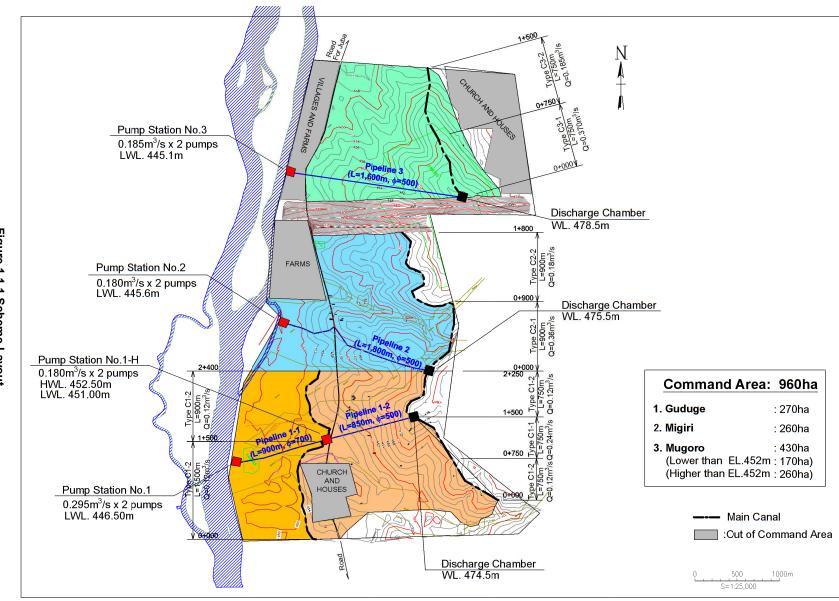
- Command area: A=960ha
- Pump station: 4 place
- Main Irrigation Canal: riverside L= 2.4km, hillside L=5.6km
- Irrigation and Drainage Facilities iin command area: 1 L.S

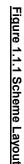
Secondary canal, Tertiary canal, Feeder canal, Drainage, Road, Road crossing,

Distribution gate, Water measurement facilities, etc.

Pump station is planned by each community because of the difficulty of consensus among three (3) communities. Pump facility are operated through the year for farming, withdrawing from Bahr el Jebel.

1.2 Command Area


Command area is located from the right bank of Bahr el Jebel toward the hillside of almost 2km distance. The terrain between riverside and Rajaf Road is flat of ground level about EL.450m, and many small irrigation farms are scattered along the river. The area of more EL.452m is featured as undulate hillside. The land gradient shows around 2.0% toward the west from the east.


Also the terrain of hillside is complicated, and many bushes, trees and grasses dominate in the site. Pump station site has some big trees. In the pipe line and canal line, the conditions are almost same as the command area.

Pump station site is located beside Bahr el Jebel. The land is almost bare and some trees are shown. In the pipe line and canal line, there are community road among some small communities, bushes and trees etc. along the line.

In addition, on the route of the pipeline No.1, the additional pump station called No.1-H is planned near the Rajaf road to convey the irrigation water to the hillside farms in the view of the reduce the total head of pump and the economic efficiency.

- To reduce the total head of pump contributes to save the engine power,
- To reduce the discharge in the pipeline contributes to make the pipe diameter to small size, and
- To raise the economic efficiency due to the above matters.

ANN9-3: APP1/RE-2

CHAPTER 2 PUMP STATION

2.1 Location and River Water Level

(1) River Water Level

The pump stations are located at the right of Bahr el Jebel. The water level measured in the survey work at the pump station on 3rd June 2015 is shown in the Table 2.1.1 and Figure 2.1.1. According to the water level record at Juba gauge station which is comparatively near to the pump station, the range of water level fluctuation is observed among 2.04m water depth as shown in the Figure 2.1.2.

Low Water Level (LWL) required in pump design of Bahr el Jebel is assumed at the about 0.5m lower down the river observed water level, and High Water Level (HWL) also assumed at the plus 2.0m with LWL.

	River Water Level	Design Low Water Level	Design High Water	
Pump Station Number	Observed (WL.m)	(LWL.m)	Level (HWL.m)	
No.1	446.96	446.50	448.50	
No.2	446.06	445.60	447.60	
No.3	445.59	445.10	447.10	

Table 2.1.1 Water Level of Bahr el Jebel at Pump Station location

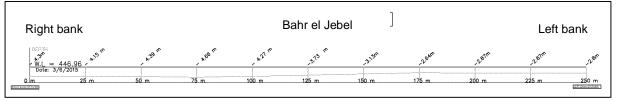


Figure 2.1.1 River Cross Section at Pump Station No.1

(2) Pump Station at Hillside

Pump station No.1 is planned to irrigate the low riverside farms and convey the irrigation water to the hillside farms. In particular on the route of the pipeline No.1, the additional pump station called No.1-H is planned near the Rajaf road to convey the irrigation water to the hillside farms in the view of the reduce the total head of pump and the economic efficiency.

- To reduce the total head of pump contributes to save the engine power,
- To reduce the discharge in the pipeline contributes to make the pipe diameter to small size, and
- To raise the economic efficiency due to the above matters.

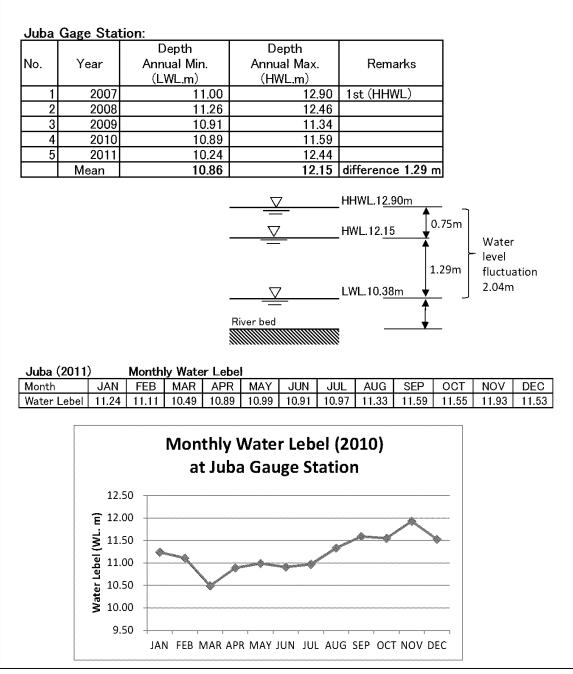


Figure 2.1.2 Juba Gauge Station

2.2 Pump Facilities

(1) Pump type and number of pump

For the pump type, the horizontal centrifugal and double suction is adopted as it is commonly used with high suction efficiency.

The unit capacity (Discharge) of per pump varies depending on the planned number of pumps to be equipped for a scheme. In order to operate the pumps effectively and to minimize the running cost in

conformity with the fluctuating supply demands, a combination of pumps with different capacities can be considered possible, however, it is judged to be more advantageous to apply a certain number of pumps with the same capacity taking into such viewpoints as 1) reducing of pump procurement cost, 2) possible equalization in running pumps and 3) need for harmonious collaboration of pump operation with the pump equipment.

As for the discharge control by pumps, the most simple, common and effective manner by the numbers of pumps run shall be employed. The manner has been practiced for a considerable period with which much fluctuating monthly water demands can be managed by adjusting the operation hours of pumps in addition to the control on the number of units run. In this case, the more the number of pumps, with higher efficiency the pumps can be operated to meet the fluctuating demands. However, this is not always the effective case due to the larger requirement of land space for the station and further causing more complicated piping works leading to higher construction cost as well as land acquisition cost.

Therefore the two (2) same capacity pumps are planned to provide at the site. According to the õDesign Pump Facilities Technical Document (Japan)ö, the pump diameter (ϕ) is determined as follows based on the pump capacity.

Pump station No.1: 0.295 m^3 /s (unit capacity) × 2 set = 0.59 m^3 /s, ϕ 350mm Pump station No.1-H: 0.180 m^3 /s (unit capacity) × 2 set = 0.36 m^3 /s, ϕ 300mm Pump station No.2: 0.180 m^3 /s (unit capacity) × 2 set = 0.36 m^3 /s, ϕ 300mm Pump station No.3: 0.185 m^3 /s (unit capacity) × 2 set = 0.37 m^3 /s, ϕ 300mm

Table 2.2.1 Water Requirement (m³/s)

Pump Station	Farm Area	Plannting	Irrigable		Water Requirement (m3/s)										
Number	(ha)	Ratio	Area (ha)	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Station No.1	170	0.96	163	0.49	0.28	0.11	0.26	0.30	0.36	0.33	0.13	0.00	0.19	0.49	0.59
Station No.1-H	260	0.96	250	0.30	0.17	0.06	0.16	0.18	0.22	0.20	0.08	0.00	0.12	0.30	0.36
Station No.2	260	0.96	250	0.30	0.17	0.06	0.16	0.18	0.22	0.20	0.08	0.00	0.12	0.30	0.36
Station No.3	270	0.96	259	0.31	0.17	0.07	0.17	0.19	0.23	0.21	0.08	0.00	0.12	0.31	0.37

(2) Total head of pump

1) Designed water level for pump (Suction and discharge)

The suction water level for pump is determined based on the water levels of Bahr el Jebel. The pump operation is planned throughout the year in accordance with farming plan, and the planned suction water level shall be fixed based on the record of lowest water level at the site. On the other hand, the planned pump discharge level is to be fixed with the high water level in the irrigation canal which is obtained from the site survey result.

2) Actual head

The actual head is given as the difference between the discharge water level and the suction water

level and calculated as in the followings.

Calculation of actual head

Ha = DWL ó LWL Where, Ha : Actual head (m) DWL : Discharge water level (m) LWL : Suction water level (m)

3) Calculation of total head

The total head is obtained by adding various losses in pipes to the actual head and calculated by using the following formula.

Calculation formula for the total head

 $H = Ha + H1 = (DWL-LWL) + hf + fn \cdot V^2/2g$

Where, H : Total head (m) : Actual head Ha H1 : Total head loss (m) DWL: Discharge water level (m) LWL : Suction water level (m) hf : Friction head loss of pipes (m) : Coefficient of various friction loss fn V : Velocity (m/s) : Gravity acceleration $(m/s^2) = 9.8 (m/s^2)$ G

Friction Loss Calculation of the pipe aligned in the pump station by Darcy • Weisbach

 $h_f = \cdot (L/D) \cdot V^2/2g$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot Darcy \cdot Weisbach formula$

- : Coefficient of friction ; normal steal pipe = $\{0.0144+9.5/(1000 \cdot \sqrt{V})\} \cdot 1.5$
- L : Length of pipe (suction & discharge) (m)
- D : Pipe Diameter corresponding to Pipe Length L (m)

Friction Loss Calculation of the pipe aligned at outside of the pump station by Hazen • Williams

 $h_f = 10.666 \cdot \{Q^{1.85} \cdot (C^{1.85} \cdot D^{4.87})\} \cdot L \cdot \cdot \cdot Hazen \cdot Williams$

- Q : discharge (m^3/s)
- C : Velocity Coefficient; Steal Pipe (No Coating) C=100
- D : Diameter (m)
- L : Length of Pipeline (m)

The calculation results of pipe losses around the pump and the total head are as shown in the Table 2.2.2.

(3) Rating point of pumps

The rating point for planning of pump is to be fixed in a way that the designed discharge will flow by the maximum pump lift within the actual pump operation range.

Pump Station	Planned Discharge of Pump (m3/s/unit)	Planned Total Head (m)
Station No.1	0.295	14.0
Station No.1-H	0.180	35.0
Station No.2	0.180	50.0
Station No.3	0.185	53.0

Table 2.2.3 Rating point of pumps

(4) Number of revolution, installation position and design point of pumps

For the pump facilities, in future design stage, the examination is necessary to design the facilities to be operated safely against the possible cavitation in any range of pump running through analyzing varieties of pump installation positions, number of revolutions and design points in all cases.

					Pump Station		
	Site	Unit	No.1	No.1-H	No.2	No.3	Remarks
Pump capacity		(m ³ /s)	0.59	0.36	0.36	0.37	provided with 2 pumps
1.Actual head (ha)	Design Intake water level	LWL(m)	446.5	451.5	445.6	445.1	
	Design outlet water level	DWL(m)	452.5	475.0	475.5	478.5	
	Actual head (ha)	(m)	6.00	23.50	29.90	33.40	
2.Friction head loss							
(1)Suction pipe	Q	(m ³ /s)	0.295	0.180	0.180	0.185	per pump
	Pipe	(Steel	Steel	Steel	Steel	
	Diameter(D)	(mm)	350	300	300	300	
	Length(L)	(m)	12.0	30.0	30.0	30.0	
	Flow coefficient(C)		100	100	100	100	
	Water velocity(V)	(m/s)	3.07	2.55	2.55	2.62	V=Q/(π/4•(D/1000) ²), 0.3m/s≦V≦2.0r
	Friction head loss(fs)	(m)	0.44	0.94	0.94	0.99	hf=10.67 · (Q ^{1.85} · C ^{-1.85} · D ^{-4.87}) ·
(2)Delivery pipe1	Q	(m ³ /s)	0.295	0.180	0.180	0.185	
	Pipe	(,)	Steel	Steel	Steel	Steel	
	Diameter(D)	(mm)	350	300	300	300	
	Length(L)	(m)	7.0	10.0	10.0	10.0	
	Flow coefficient(C)	. ,	100	100	100	100	
	Water velocity(V)	(m/s)	3.07	2.55	2.55	2.62	
	Friction head loss(fs)	(m)	0.26	0.31	0.31	0.33	hf=10.67 • (Q ^{1.85 •} C ^{-1.85} • D ^{-4.87}) •
(3)Delivery pipe2	, ,	(m ³ /s)	0.590	0.360	0.360	0.370	
())))	Pipe	(Steel	Steel	Steel	Steel	
	Diameter(D)	(mm)	700	500	500	500	
	Length(L)	(m)	900.0	850.0	1800.0	1600.0	
	Flow coefficient(C)	()	100	100	100	100	
	Water velocity(V)	(m/s)	1.53	1.83	1.83		V=Q/(π/4•(D/1000) ²), 0.3m/s≦V≦2.0r
	Friction head loss(fs)	(m)	4.10	7.99	16.93	15 83	hf=10.67 • (Q ^{1.85} · C ^{-1.85} • D ^{-4.87}) •
(4)Total Friction lo	. ,	(m)	4.80	9.24	18,18	17.15	
B.Partial head loss		()					
(1)Check valve		(Nos.)	2	2	2	2	
	Diameter(D)	(mm)	350	300	300	300	
	Water velocity(V)	(m/s)	3.07	2.55	2.55	2.62	
	Coefficient of valve loss(fcv)	(1100)	0.96	0.90	0.90	0.90	
	Check valve loss(hcv)	(m)	0.92	0.60	0.60		hcv=fcv·V²/2g
(2)Sluice valve		(Nos.)	2	2	2	2	11cv-1cv v /2g
	Diameter(D)	(mm)	350	300	300	300	
	Water velocity(V)	(m/s)	3.07	2.55	2.55	2.62	
	Coefficient of valve loss(fsv)	(1103)	0.44	0.33	0.33	0.33	
	Sluice valve loss(hsv)	(m)	0.44	0.33	0.22		hsv=fsv·V²/2g
(3)90°elbow		(Nos.)	2	2	2	2	insv-isv v /2g
(0)00 0000	Diameter(D)	(mm)	350	300	300	300	
	Water velocity(V)	(m/s)	3.07	2.55	2.55	2.62	
	Coefficient of elbow loss(fbe)	(11/3)	1.10	1.10	1.10	1.10	
	90°elbow loss(hbe)	(m)	1.06	0.73	0.73		hbe=fbe·V²/2g
(4)T Interflow		(Nos.)	1	1		1	inbe-ibe v izg
(=) i internow	Diameter(D)	(mm)	700	600	500	600	
	Water velocity(V)	(m/s)	1.53	1.83	1.83	1.88	
	Coefficient of elbow loss(f13)	(110-57	0.65	0.65	0.65	0.65	
	T Interflow loss(hbe)	(m)	0.03	0.85	0.65		h13=f13·V ² /2g
(5)Remnant head			700	500	500	500	n 13=r13·V /2g
(o)rtennidik nedu	Water velocity(V)	(mm) (m/s)	1.53	1.83	1.83	1.88	
		(m/s)					
	Coefficient of head loss(fo)	(100)	1.00	1.00	1.00	1.00	
(P)Tetc?	Remnant velocity head(Lo)	(m)	0.12	A CONTRACTOR OF CONTRACTOR	0.17	0.18	
	Particial head loss(Lp)	(m)	2.60	1.83	1.83	1.93	
I.Head loss(hf)	Total	(m)	7.40	11.07	20.01	19.08	1
5.Total head(H)	H=ha+hf	(m)	13.40	34.57	49.91	52.48	
					Contraction of the Contraction of the	Constant Constant Constant Constant	4

Table 2.2.2	Pipe losses and total head of each station

(5) Pump shaft power and planned diesel engine output

No electricity is in the pump station site. Therefore the diesel engine is adapted for the pump operation. The pump shaft power required can be calculated with the following formula.

Formula for Pump Shaft Power

 $L = 0.163 \cdot Q \cdot H \cdot /(/100)$

L: Pump shaft power (kW)

Q: Discharge (m³/min)

- H: Total head (m)
- : Unit weight of water; 1.0 (kgf/l)
- : Pump efficiency (%); 78 % at design point for centrifugal pump

The planned diesel engine output is estimated with the following, where, the power transfer efficiency and allowance are added on the basic pump shaft power.

Formula for diesel engine output

 $\mathbf{P} = \mathbf{L} \cdot (\mathbf{1} + \mathbf{A}) / \mathbf{t}$

- P: Planned diesel engine output (kW)
- L: Pump shaft power (kW)
- A : Allowance (0.15 for the case of diesel engine)
- t : Transfer efficiency (Fixed at 1.0 as direct jointing is applied)

As the power source, diesel engine shall be adopted and standard type is planned in view of the compatibility. The diesel engine capacities is calculated as follows.

Pump Station	Power Shaft Power (kw)	Diesel Engine Output (kw)
Station No.1	49.3	57
Station No.1-H	79.0	91
Station No.2	112.8	130
Station No.3	122.9	141

Table 2.2.4 Pump Efficiency of Centrifugal Pump

Discharge (m ³ /min)	Diameter (mm)	Specific Speed (Ns)						
		160	250	400	630			
4.0	200	0.710	0.720	0.720	0.710			
6.3	250	0.740	0.750	0.750	0.740			
10	300	0.770	0.780	0.780	0.770			
16	350	0.810	0.820	0.820	0.810			
20	400	0.815	0.825	0.825	0.815			

Table 2.2.5 Pump Efficiency of Centrifugal Pump

25	450	0.825	0.835	0.835	0.825
32	500	0.830	0.840	0.840	0.830
40	600	0.840	0.850	0.850	0.840
63	700	0.850	0.860	0.860	0.850
85	800	0.855	0.865	0.865	0.855
100	900	0.860	0.870	0.870	0.860
130	1000	0.860	0.870	0.870	0.860
160	1200	0.865	0.875	0.875	0.865

Source: Design Pump Facilities Technical Document (Japan)

(6) Valves around the pump

1) Sluice valve on discharge side

At the time of starting the pump operation, there will be an inhalation of air as caused by the vacuum pump running. To shut this air, a valve is necessary to be provided.

2) Check valve

In case of main pump shut-down in a condition the discharge valve opened due to the sudden power cut etc, a check valve is needed on the discharge side to stop the pumped water to counter to pump equipment.

2.3 Pump Building

(1) Style of building

Pump station building is constructed for the purpose to protect the equipment and O&M works from winds and rains, and the structure and layout shall be of percolation-proof from outer and inner basin as well as rain water.

The style of the building is in general to be determined in consideration of the kinds and types of pump and in connection with the suction sump. Water level fluctuation in the River Jur is quite large and therefore the building is planned as a single-floor type located at the basement at the level where pump operation can be made without cavitation even with the low water level.

(2) Pump room

The plan of pump room shall be decided mainly by the alignment of pumps. The alignment shall be considered in a way that pumps may satisfy various hydraulic conditions required by pump operation and also attention be paid on daily operation, inspection and maintenance to be made easily and safely.

Under the subject project, double-suction pump is to be introduced and the linear alignment shall be adopted where hydraulic condition is the best without having eccentric flow. In the case of linear alignment, the length of building becomes a little longer in the right angle direction to the pumped water flow, however, there is no problem in the required land lot for construction. The length between beams of the pump room shall be calculated by adding the suction and discharge pipe lengths on the dimensions of the space between each of flange face, assuming that such major equipment as pumps, valves, enginew and etc be hanged vertically by the overhead crane. While the length of building (Right angle direction to the flow) shall be determined so that the required space for effective O&M works could be secured around the pumps and motors under the concept of safety first. Further, the height of the building may be determined taking into consideration the height of hanging required for installation as well as O&M works for the equipment in the pump room.

Based on the considerations as above, the plan and section of pump station building are planned as shown in the Figure 2.3.1.

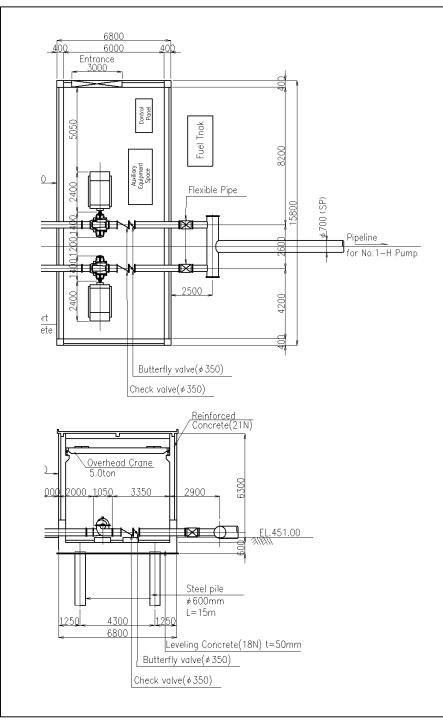


Figure 2.3.1 Plan and Section of Pump Station Building

(2) Structure of building

The structure type of pump station building shall be of reinforced concrete which is superior in the characteristics of fire-proofing, durability and anti-wind, though concrete blocks shall be used for the wall body on ground.

(3) Foundation work

As the types of foundation works for pump station building, there are spread foundation, pile foundation and caisson foundation and the selection shall be made on considerations on the ground condition, characteristics of the upper structure, construction period as well as the economic aspect. Generally, the spread foundation is adopted for the case of about 2 m depth to the bearing stratum and the pile foundation for the depth longer than 5 m.

For reference, the log of boring at pump station is shown in the Figure 2.3.2, Figure 2.3.3, Figure 2.3.4 and Figure 2.3.5.

<u>Pump station No.1 and No.2</u>: According to the log of boring PB-01 and PB-02, the geological condition are shown the medium dense and it is not suitable for the spread foundation. It is recommended to adopt the pile foundation in future design stage through the additional geological investigation for clarifying the very dense layer.

<u>Pump station No.3</u>: According to the log of boring PB-03, the geological condition are shown the loose dense of the 3m depth and it is not suitable for the spread foundation. It is recommended to adopt the replacement foundation that remove away the loose soil and back fill by the suitable soil with the adequate compaction manner.

<u>Pump station No.1-H</u>: According to the log of boring RB-01 near the pump station but the distance of about 1km far, the geological condition are shown the high dense and it is suitable for the spread foundation. However, it is recommended to carry out the additional geological investigation for clarifying the geological conditions at the site.

٦

Drilling m Drilling	ethod: Rotary (- 3rd of June/2015 Logged by	; T.T.A		5'-24''N & 31- 36'-02''E
depth(m)		description of Strata	SPT N	SPT N' (corrected)	bearing value(kN/m2)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6 6.5 7 7.5 8	SAND	Loose dark brown slightly silty slightly clayey SAND (SW)	8	22	200
2 2.5	SAND	Medium dense dark brown silty SAND (SM)	23	34	250
3.5	Clayey SAND	Stiff Dark grey silty clayey SAND (SC)	9	17	150
4	Clayey SILT	Stiff dark grey sandy clayey SILT (MC)	8	11	100
5 5.5 6	Silty SAND	Firm dark grey Clayey silty SAND (SM)	6	8	90
6.5	Silty SAND	Loose grey silty SAND (SM)	9	10	95
7.5	Silty SAND	Stiff Dark gray clayey silty SAND (SM)	11	15	150
8.5 9 9.5 10	GNEISS	Dark grey slight to moderately weathered & jointed GNEISS		refusal	10000
Project Consultant Contractor	SANYU Cor				/ & Soil Mechanical Investigati

Figure 2.3.2 Log of Boring (PB-01) at pump station No.1

Project Consultant	SANYU Consultants Inc							
Contractor		Amare & Families Consulting Engineers (SS) Co Ltd						
depth(m)	Legend	Legend description of Strata SPT N SPT N'(corrected) bear. value (kN/m2)						
$\begin{array}{c} 0 \\ 0.5 \\ 1 \\ 1.5 \\ 2 \\ 2.5 \\ 3 \\ 3.5 \\ 4 \\ 4.5 \\ 5 \\ 5.5 \\ 6 \\ 6.5 \\ 7 \\ 7.5 \\ 8 \\ 8.5 \end{array}$	clayey SILT	Firm grey sandy Clayey SILT (MC)	8	12	110			
2 2.5	Clayey SAND	Loose gray silty clayey SAND (SC)	9	13	95			
3	SAND	Medium dense gray well graded SAND (SW)	18	25	220			
4 4.5	SAND	Loose gray poorly graded SAND (SP)	4	5	70			
5 5.5	SAND	Medium dense gray well graded SAND (SW)	14	14	150			
6.5	SAND	Medium dense gray well graded SAND (SW)	21	19	160			
7 7.5	SAND	Medium dense gray well graded SAND (SW)	23	17	160			
8.5 9 9.5 10	GNEISS	dark&grey slightly weathered &jointed GNEISS			10000			
	ethod Rotary	drilling Mobile B 30 Core Drilling Date Logged by 6.5mts b.g.s.	Coordinate 4th of June/ T.T.A	4 - 46 - 03N 2015	&31-36-18			

Figure 2.3.3 Log of Boring (PB-02) at pump station No.2

Coordinat Date Logged b G.W.L.	5th of Ju				
depth(m)	Legend	descrition of Strata	SPT N	SPT N'(corrected)	Bear val/kN/m
0 0.5 1 1.5 2	Clayey SAND	Loose dark gray slightly silty Clayey SAND (SC)	7	11	90
2.5	SAND	Loose gray well graded SAND (SW)	4	6	80
3 	decomposed bed rock	decomposed bed rock recovered as very dense grey silty gravely SAND	refusal		600
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5.5 6 6 6.5 7 7.5 8 8.5 9 9.5 10	GNEISS	dark gray slight to moderately weathered and jointed GNEISS	refusal		10000
Project Consultant Contractor	Drilling method Rotary Cor	3H diameter(mm) 115	Soil Mechanical Investigatio	nWorks Drilling equip	ment Rotary drilling N

Figure 2.3.4 Log of Boring (PB-03) at pump station No.3

Project Consultant Contractor	Irrigation Development Mas Drilling method Rotary SANYU Consultants Inc BH ID RB01 Amare & Families Consultir	ster Plan (IDMP): Rejaf-East Geologic Core Drilling BH diameter(mm) 115 ng Engineers (SS) Co Ltd	al Survey & Soil Mechanical Inve	estigationWorks Drilling	equipiment Rotary drilling M
depth(m)	Legend	description of strata	SPT N	SPT N'(corrected)	bear.value(kN/m2
0.4 0.8 1.2 1.6	SAND	Dense gray well graded SAND (SW)	44	50	400
2 2.4 2.8	Well graded SAND	Medium dense gray well graded SAND (SW)	22	33	300
3.2	Gravely SAND	Very dense grey slightly silty gravely SAND	canceled (due to refusal)		600
4 	GEISS	dark grey moderately weathered & jointed / sheared GNEISS	canceled (due to refusal)		10000
Coordir Date Logged G.W.L.	6th c by T.T.A	-56N & 31-36-40E of June/2015 A encountered			

Figure 2.3.5 Log of Boring (RB-01) near pump station No.1-H

2.4 Riverbank Protection

(1) Installation range

For the river bank of Bahr el Jebel, there is no protection works provided in general, and there can be seen some parts eroded by the river flow with higher velocity during the floods. The pump station sites are located on the gentle curve line river bank but not on the water colliding river bank. Due to the possible erosion by river flow, however, the suction pipe embedded underground might be exposed and the safety of the pipe could be endangered with the trashes/drifts clinched. This requires the riverbank protection works for attaining sustainable operation of the pump station. The extent of the riverbank protection shall cover 20 m each of both upstream and downstream directions from the center of suction pipe considering the position of suction pipe embedded. Also for connecting the riverbank protection with the present bank, 2 m width space shall be secured.

(2) Structure type

The structure of mortar masonry retaining wall by using natural stones shall be adopted for the protection works, considering the gentle slope of 1:2.0, safety against the effect of water flow, availability of required materials, other viewpoints including landscape evaluation, economy and easiness in construction etc. For the connecting work with the present riverbank and protection work for embankment slope, gabion works with high flexibility shall be adopted.

(3) Foundation

In order to average the variable velocity distributions during the suction, it is necessary to secure sufficient space for the head of suction pipe. Also, it is preferable to provide structures to fix the suction pipe so as to protect the suction pipe with considerable length exposed from various actions/effects by the river flow. In view of the above considerations, retaining wall of plain concrete which will satisfy the both requirements as discussed shall be provided for the foundation portion for the riverbank protection works around the suction pipe.

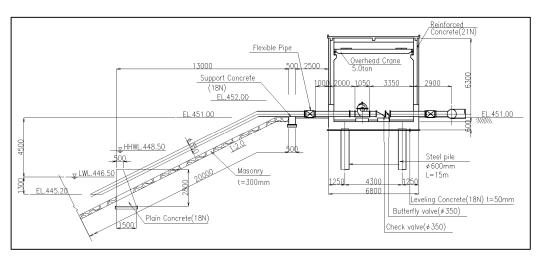


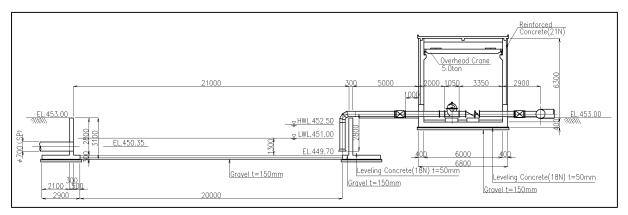
Figure 2.4.1 Plan and Section of Pump Station Building (Profile)

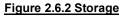
2.5 Storage for Pump Station No.1-H

(1) Required Capacity of Storage

Storage structure is required to store and convey the irrigation water for the hillside farms at the outlet of pipeline in the vicinity of Rajaf road. The capacity of storage (V) is determined at more than $650m^3$ to ensure the half an hour volume of the pump No.1-H capacity $0.36m^3$ /s of 2 set.

 $V = 0.36 \text{m}^3/\text{s} \times 30 \text{min} \times 60 = 648 \text{m}^3$

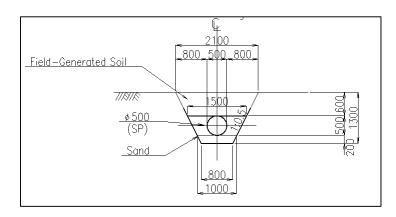

(2) Design Water Level


High Water Level (HWL) is determined at 452.50m based on the existing ground level at the site. Also Low Water Level (LWL) is assumed at 451.00m, considering the effective water depth of 1.5m.

In case of the effective water depth of 1.5m, the length of one side is determined at 21m. Therefore, the capacity results to 662m3 finally, and it is satisfied with the required capacity.

(3) Structure Type

The structure type shall be of firm reinforced concrete or masonry with mortal to avoid the water leakage.


2.6 Pipeline

2.6.1 Typical Section

The irrigation water lifted by the pump is carried to the discharge chamber, which is located at the intermediate point of the irrigation canal, through the pipeline of 500mm diameter in case of the pipeline No.2, No3 and No.1-H. The pipe diameter is to be so determined that the flow velocity inside pipe would be in the range of 1.5-2.5 m/s in general considering such factors as protection of turbulent flow and sedimentation as well as economy.

Pipeline Number	Diameter (mm)	Section Area (m ²)	Discharge (m ³ /s)	Velocity (m/s)
Station No.1	700	0.385	0.59	1.53
Station No.1-H	500	0.196	0.360	1.83
Station No.2	500	0.196	0.360	1.83
Station No.3	500	0.196	0.37	1.88

Table 2.6.1 Pipeline Dimensions

Figure 2.6.1Typical Section of Pipeline No.1

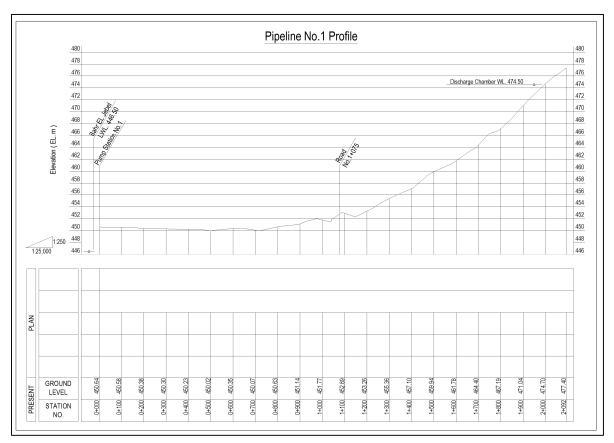
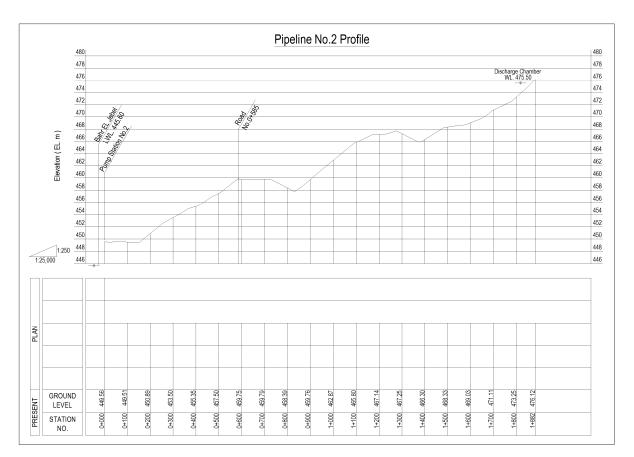



Figure 2.6.2 Profile of Pipeline No.1

Figure 2.6.3 Profile of Pipeline No.2

Pipeline No.3 Profile

The pipeline No.3 profile was made a survey in accordance with the Technical Specification of the Contract. However, it was clarified that the surveyed route was not appropriate for the pipeline route because of the vicinity of the deep valley after checking the survey profile. Therefore, it is necessary to survey the new route of pipeline No.3 in the future design stage.

2.6.2 Discharge Chamber

The discharge chamber is to dissipate the flow from discharge pipe, change the flow direction and divert the flow to the downstream canal so that the pressure fluctuation accompanying the sudden change of flow quantity as caused by the start and stop of pump operation can be absorbed in the chamber as the change of water level in the chamber.

In the discharge chamber, tractive force will occur due to the disturbance of flow and the high velocity. Therefore, the structure shall be of firm reinforced concrete type.

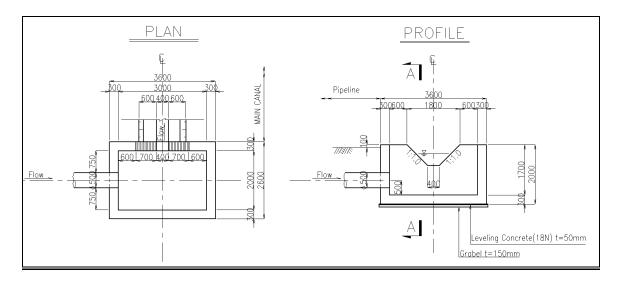


Figure 2.6.2 Discharge Chamber (reference)

CHAPTER 3 MAIN CANAL

3.1 Location

Main canal shall be planned to conduct the irrigation water from the discharge chamber at the end of pipeline to the command area. Main canals are planned at both riverside and hillside, which are flat and undulate respectively. Because of the difficulty of consensus among the communities, Main canals are planned by each community show in the Table 3.1.1.

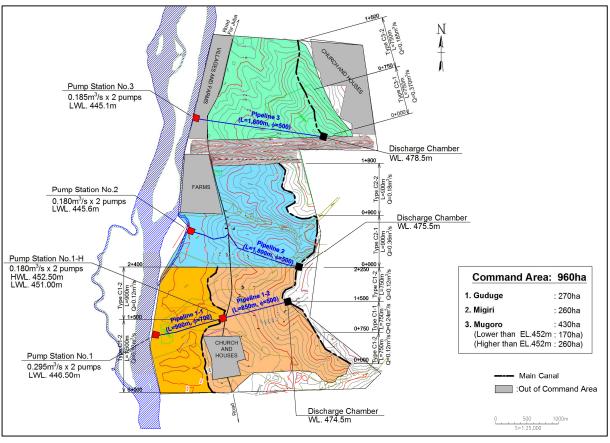


Figure 3.1.1 Scheme layout

The station number, length, and design discharge of each section is shown in the Table 3.1.1

Table 3.1.1 Main canal						
Туре	Length (m)	Design Discharge (m3/s)	Remarks			
Area of Pump Station No.1 & No.1-H	2.400					
C1-1	750	0.24				
C1-2	3,900	0.12				
Area of Pump Station No.2	1.800					
C2-1	900	0.36				
C2-2	900	0.18				
Area of Pump Station No.3	1.500					
C3-1	750	0.37				
C3-2	750	0.185				

3.2 Design Discharge

Unit water requirement was estimated at 1.43 l/s/ha, depending on the calculation of the water requirement.

Design discharge is estimated by the method that the unit water requirement multiples the subject area.

 $Q = q \times A \times p$

Where, Q: Design irrigation discharge (m^3/s)

q: Unit water requirement (0.00143 m³/s/ha)

A: Subject area (ha)

p: Planting Ratio (96%)

Design discharge of main canal is determined based on the water requirement of pump station irrigable area.

Туре	Area (ha)	Planting Ratio	Unit W.R.	Design Discharge (m3/s)
			(m3/s/ha)	
Area of Pump Station No.1	430			0.59
Lower than EL.452m	170	0.96	0.00143	0.23
Hillside (No.1-H)	260	0.96	0.00143	0.36
Area of Pump Station No.2	260	0.96	0.00143	0.36
Area of Pump Station No.3	270	0.96	0.00143	0.37
Total	960			

Table 3.2.1 Design Discharge for Main canal

3.3 Examination Method of Canal Capacity

Main canal is designed of the plain concrete lining, considering hydraulic characteristics, conveyance efficiency, durability, and maintenance. The required function of canal is to convey the irrigation water properly with the required water level and water volume supplied from the pump station. The volume of the required water is determined based on the irrigation area or each irrigation blocks as divided by the regulator. The size of the cross section is planned by the volume of the required water with Manning formula as follows.

 $Q = A \cdot V$

where, Q: Discharge (m³/sec)

A: Flow Area (m^2)

V : Average flow velocity (m/sec);

Mannings formula : $V=1/n \, \cdot \, R^{2/3} \, \cdot \, I^{1/2}$

n : Roughness coefficient, for concrete lining canals : n = 0.015

R : Hydraulic radius (m)

I : Hydraulic gradient

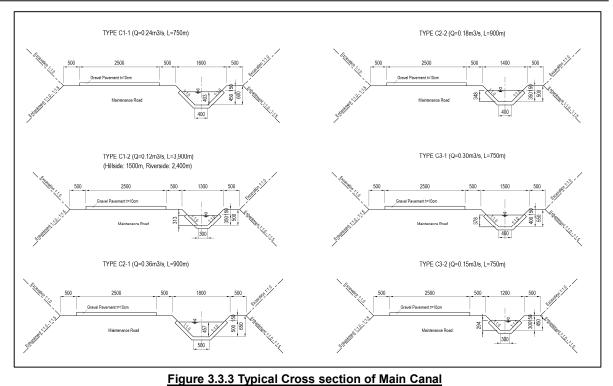
Therefore the examination method for the canal capacity will apply the followings.

• Firstly, calculate the required water volume for the each irrigation block at schemes

•Secondly, examine the required size of the cross section to discharge for the above water volume

As for the detail method in examining the size of the existing canal section and required size of the canal section, it will be carried out as follows.

- 1. The canal bed slope, bank slope and bed width are estimated for each section of canal, then the target cross section is selected from each irrigation blocks
- 2. The clearance of the water level is decided by referring Japanese Design book in which the following calculation formula is shown, and the clearance should be higher than the calculated figure.


 $Fb=0.05d+ \cdot hv+hw$

- Fb : clearance (m)
- d : depth of the design discharge
- hv : velocity head (m)
 - : conversion coefficient from velocity head to static head. (generally it is $0.5 \sim 1.0$)
- hw : clearance for the waving of water surface. (generally it is $0.10 \sim 0.15$ cm)

Table 5.5.1 Calculation of Main Canal Section							
Items		C1-1	C1-2	C2-1	C2-2	C3-1	C3-2
Design discharge	$Q(m^3/s)$	0.24	0.12	0.36	0.18	0.37	0.185
Width of canal bed	B (m)	0.40	0.30	0.50	0.40	0.40	0.30
Water depth	d (m)	0.403	0.313	0.457	0.348	0.384	0.299
Bank slope	1:N	1.0	1.0	1.0	1.0	1.0	1.0
Cross-sectional area of flow	A (m)	0.324	0.192	0.437	0.260	0.301	0.1796
Wetted perimeter	P (m)	1.540	1.185	1.793	1.384	1.486	1.146
Hydraulic mean depth	R (m)	0.210	0.162	0.244	0.188	0.203	0.156
Coefficient of roughness	n	0.015	0.015	0.015	0.015	0.015	0.015
Canal bed slope	I (%)	0.10	0.10	0.10	0.10	0.286	0.286
Mean velocity	V (m/s)	0.746	0.626	0.823	0.691	1.229	1.034
Velocity head	hv (m)	0.028	0.020	0.035	0.024	0.077	0.055
Free board	Fb (m)	0.196	0.187	0.193	0.152	0.216	0.201
Height of canal	Н	0.60	0.50	0.65	0.50	0.60	0.50

Table 3.3.1 Calculation of Main Canal Section

Canal section is shown in the Figure 3.3.1.

3.4 Relative structures

In general the relative structures such as diversion gate, canal spillway, drop, water measurement facilities, cross culvert and siphon etc. are required in the canal system if necessary. They shall be designed considered the canal system and the terrain around canal in the future design stage.

Reference: Minimum / Maximum allowable velocity

For reference, the Canal works guideline published in Japan shows the minimum / maximum allowable velocity as follows. It is recommended to take a caution for them in canal design.

6.1.1 Minimum allowable velocity

Object discharge Object discharges in studying the minimum allowable velocity are as shown in Table 6.1.1.

 Table 6.1.1
 Object discharges in studying the minimum allowable velocity

Type of canal	Object discharges
Irrigation canal	Most frequent discharge (the discharge which occurs most times in the pentad mean discharge unit through out the water conveyance period of the canal)
Drainage canal	Discharge to study the low water revetment, etc. (1-year or 2-year probability discharge)

(2) Minimum allowable velocity

It is appropriate that the minimum allowable velocity would not be below the velocity under the object discharge flow condition. However, when the velocity is below the minimum allowable velocity out of necessity, the structure and management system that are capable of maintaining drainage function of the canal shall be provided.

Also, the minimum allowable flow velocities shall follow values provided in Table 6.1.2.

Table 6.1.2 Minimum allowable flow velocities

Condition of canal	Minimum allowable velocity
Canal where concerns regarding deposition of floating sediment do exist.	0.45 - 0.90 m/s
Canal where concerns regarding overgrowth of water weed do exist.	0.70 m/s
Note: The minimum allowable velocity shall be determine	ned by the grain size of floating sedi

6.1.2 Maximum allowable velocity

(1) Object discharge

Object discharges in studying the maximum allowable velocity are as shown in Table 6.1.3.

T-11-010	Object discharges in studying the maximum allowable velocity
Ianienia	Uniect discharges in stridving the maximum audwanie velocity
10010 0.1.0	object discharges history hig die hitshinkalitatio waste verooley

Type of canal	Object discharges
Inigation canal	Planned maximum flow discharge
Drainage canal	Discharge to study the low water revetment, etc. (1-year or 2-year probability discharge) 185 day water discharge or firm drainage discharge during inigation season

(2) Maximum allowable velocity

The maximum allowable velocity involves uncertainties because it significantly varies depending on the material constituting the canal. Therefore, judgments have to be exercised based on experiences and other case examples. Based on materials and thickness of the members of the canal and the inside surface of the canal structure, those values shown in Table 6.1.4 are considered as approximate limiting values.

Type of material	Velocity (m/s)	Classification	Velocity (m/s)
Sandy soil	0.45	Thick concrete (approximately 18 cm)	3.00
Sandy loam	0.60	Thin concrete (approximately 10 cm)	1.50
Loam	0.70	Asphalt	1.00
Clayey loam	0.90	Block cavity wall (buttness pier less than 30 cm)	1.50
Clay	1.00	Block cavity wall (buttress pier 30 cm or larger)	2.00
Sandy clay	1.20	Block mortar masoniy	2.50
Soft rock	2.00	Reinforced concrete pipe	3.00
Semi-hard rock	2.50	Steel pipe, ductile cast iron pipe	5.00
		Petrochemical products group (polyvinyl chloride pipe, reinforced plastic composite tube)	5.00
Hard rock	3.00	Reinforced concrete secondary product canal (excluding fence culvert)	3.00

Table 6.1.4	Maximum	allowable	velocity
-------------	---------	-----------	----------

Notes: 1. The maximum allowable velocity is a value determined mainly by structural durability of the material of the caral structure against scour and wear. Specifically when a velocity close to the maximum allowable velocity value is used, it is necessary to study the hydraulic stability (especially regarding waves, water level rise at the cross section transition point, air entrapment in pipes, etc.).

2. Maximum allowable velocities for structures such as wasteways/spillways that are part of the canal and convey temporary flows shall be equal to or less than 1.5 times of values listed in the table above.

3. In cases of drainage carals, the value equal to or less than 1.5 times of values in this table shall be applied to discharges (1-year or 2-year probability discharge) to study the low water revetment. However, such value shall not also exceed values in this table at the time of 185-day water discharge or firm drainage discharge during intigation season. Additionally, this table is not applicable to cases where appropriate erosion protections such as bed protection, etc., are provided for the subject facility in areas such as chutes, steep slope drainage carals, etc., or where structural members are reinforced by means such as increasing correct thickness or reinforcing bars, or where the drainage canal is as large as a river. In such cases, the maximum allowable flow velocities shall be determined by referring to the structure and topography/geology of the subject caral as well as similar case examples.

4. The maximum allowable flow velocities for cast in place concrete structures whose member thickness is 13 cm or larger shall be 3.0 m/s or less.

Also, values of thick concrete or thin concrete in the above table may be applied to the maximum allowable flow velocities for plain concrete structures and for thickness between 10 cm and 18 cm, the value may be determined by proportional distribution

5. In case of increasing the covering thickness, according to the standard of the U.S. Reclamation Bureau, regarding structures where the velocity exceeds 3.0.m/s, the structural durability can be secured by adding 1.5 cm of covering thickness to the value shown in Table 7.8.34, and by increasing the thickness by 1.5 cm every time the velocity is increased by 3.0 m/s.

CHAPTER 4 IRRIGATION AND DRAINAGE SYSTEM IN FARMLANDS

4.1 Outline of Command Area

The command area is comprised of three (3) communities and the pump station is panned by each community. The terrain between riverside and Rajaf Road is flat of ground level about EL.450m, and many small irrigation farms are scattered along the river. The area of more than EL.452m is featured as undulate hillside. The land gradient shows around 2.0% toward the west from the east.

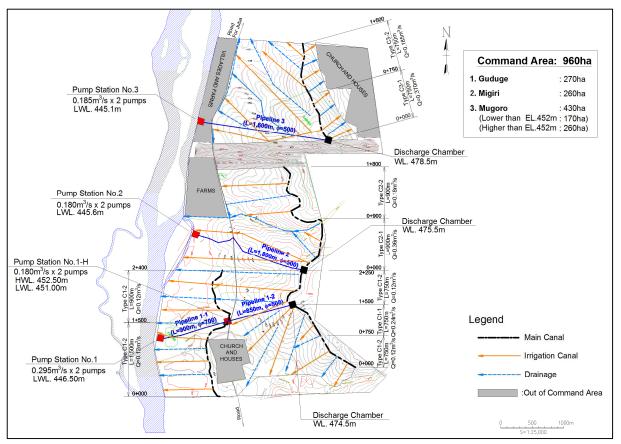


Figure 4.1.1 Scheme Layout

The major facilities such as the secondary canal, drainage and road are generally arranged from hillside toward riverside. The tertiary canal is planned to branch off from the secondary canal, also the feeder canal is planned to branch off from the tertiary canal for the distributing the irrigation water to the furrows. The canal is made of the earth because of a small size.

The drainage is allocated between the both secondary canals. The surplus water from tertiary canal and farm flows down to the drainage. The drainage is planned to be the earth canal.

The road used for farming and maintenance for facilities shall be planned along the secondary canal and tertiary canal. The road crossing is placed at the crossing point between the canal and road.

The length of furrow from 40m to 100m is assumed based on the soil survey results conducted in command area and Table 4.1.1 shown below. That survey results that the soil classification is mainly sandy loam or loam.

Soil	Root zone depth	One-time irrigation	Maximum furrow
5011	(m)	volume (mm)	length (m)
Sandy soil	40	16	4
Volcanic ash soil	40	44	29
Sandy loam	40	34	36
Loam	40	38	99
Clay	40	44	121

Table 4.1.1 Example of Maximum Furrow Length of Different Soil

Note: Furrow inclination is 10%

Source: Engineering Manual for Irrigation & Drainage, Upland Irrigation (1990), The Japanese Institute of Irrigation and Drainage

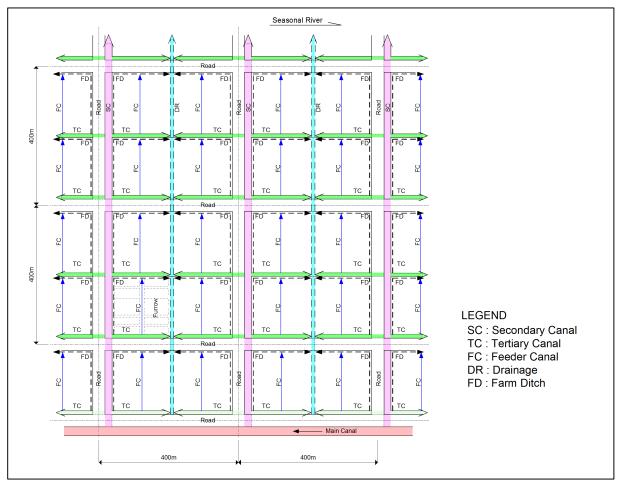


Figure 4.1.2 Layout of Irrigation and drainage Facilities in Command Area

4.2 Design Discharge of Canal and Drainage

4.2.1 Irrigation Canal

Unit water requirement was estimated at 1.43 l/s/ha (0.00143m³/s/ha), depending on the calculation of water requirement.

Design discharge is estimated by the method that the unit water requirement multiples the subject area.

 $Q = q \times A$

Where, Q: Design irrigation discharge (m^3/s)

q: Unit water requirement (0.00143 m³/s/ha)

A: Subject area (ha)

- Secondary canal: $Q = 0.12m^3/s$ (=0.00143 × averagely 80ha)
- Tertiary canal and Feeder canal: $Q = 0.023 \text{ m}^3/\text{s}$ (=0.00143×16ha)

4.2.2 Drainage

Unit area drainage discharge was estimated at 0.045m3/s/ha, depending on the calculation results as below.

Return period T=5 year: outflow Q= $60.4m^3/s$ (catchment area A= $13.3km^2$)

Unit area drainage discharge: $q = Q/A = 4.5 \text{ m}^3/\text{s/km}^2 = 0.045 \text{m}^3/\text{s/ha}$

Design discharge is estimated by the method that the unit water requirement multiples the subject area.

 $Q = q \times A$

Where, Q: Design drainage discharge (m^3/s)

q: Unit area drainage discharge $(0.0095 \text{ m}^3/\text{s/ha})$

A: Subject area (ha)

- Drainage : $Q=3.78m^3/s$ (=0.045× averagely 84ha)
- Farm ditch: $Q = 0.090 \text{ m}^3/\text{s}$ (=0.045 × averagely 2ha)

Unit area drainage discharge (5 year return period)

·Rainfall intension

$$r_t = \frac{R_{24}}{24} \cdot \left(\frac{24}{t}\right)^{2/3}$$
 Mononobe equation

 r_t : Average effective rainfall intensity in t time (mm/hr) = r_e

 R_{24} : 24 hours rainfall (94.4 mm for 5 year return period)

t: Rain fall duration or period of flood concentration (= 1 hr)

$$r_t = \frac{R_{24}}{24} \cdot \left(\frac{24}{t}\right)^{2/3} = \frac{94.4}{24} \cdot \left(\frac{24}{1}\right)^{2/3} = 32.7$$

ÉRational formula

$$Q_{p} = \frac{1}{3.6} \cdot r_{e} \cdot A$$

where:

 Q_p : peak flood discharge (m³/s)

- A: catchment area $(13.3 \text{ km}^2) \rightarrow 1330 \text{ha}$
- r_e: average effective rainfall intensive in the catchment within the lag time of flood (32.7 mm/hr) $r_e = f_p \cdot r_t = 0.5 \times r_t$

$$Q_p = \frac{1}{3.6} \times 0.5 \times 32.7 \times 13.3 = 60.4 (m^3/s)$$

Therefore, Unit area drainage discharge: $q = 60.4 \text{m}^3/\text{s} / 1330 \text{ha} = 0.045 \text{ m}^3/\text{s/ha}$

Table 4.2. T Annual Maximum Nannan in Suba							
Year	(mm)	Year	(mm)	Year	(mm)	Year	(mm)
1970	66.7	1981	66.5	1992	52.0	2003	missing
1971	86.7	1982	131.8	1993	115.0	2004	missing
1972	46.4	1983	71.7	1994	106.5	2005	68.0
1973	64.0	1984	81.0	1995	55.0	2006	95.0
1974	68.5	1985	87.9	1996	70.0	2007	73.5
1975	88.3	1986	67.5	1997	75.5	2008	62.0
1976	83.9	1987	80.0	1998	59.0	2009	67.2
1977	41.0	1988	137.5	1999	119.5	2010	60.0
1978	82.9	1989	74.5	2000	66.8	2011	73.0
1979	107.0	1990	111.5	2001	61.2	-	-
1980	68.2	1991	51.5	2002	76.0	-	-

Table 4.2.1 Annual Maximum Rainfall in Juba

Table 4.2.2 Return Period Probability

Return Period T Year	ζ	1/a・ζ	Average Y+1/a・ζ	X+b	Return Period Probability (m3⁄s) X
2	0	0	1.7718	59.1326	74.4
5	0.5951	0.12644	1.8983	79.1167	94.4
10	0.9062	0.19254	1.9643	92.1229	107.4
20	1.1631	0.24710	2.0189	104.4552	119.7
30	1.2967	0.27551	2.0473	111.5160	126.8
50	1.4520	0.30851	2.0803	120.3189	135.6
100	1.6450	0.34951	2.1213	132.2333	147.5
200	1.8215	0.38702	2.1588	144.1590	159.5
500	2.0350	0.43238	2.2042	160.0310	175.3
1000	2.1850	0.46425	2.2361	172.2165	187.5

4.3 Examination Method of Canal Capacity

All of canals in the command area are designed of the earth canal, considering the economical reason. The required function of canal is to convey the irrigation water properly with the required water level and water volume supplied from the pump station. The volume of the required water is determined based on the irrigation area or each irrigation blocks as divided by the regulator. The size of the cross section is planned by the volume of the required water with Manning formula as follows.

 $Q = A \cdot V$

where, Q: Discharge (m³/sec)

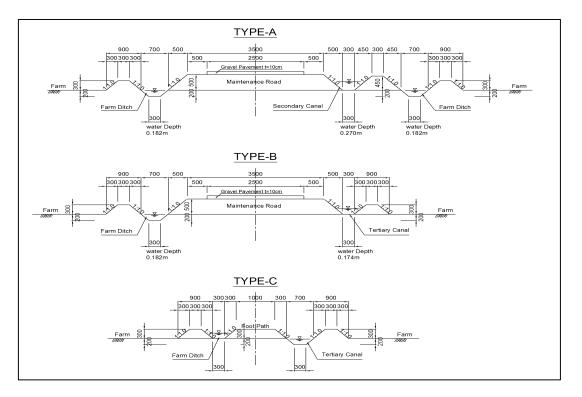
- A : Flow Area (m^2)
- V : Average flow velocity (m/sec); Manningø formula : $V = 1/n \cdot R^{2/3} \cdot I^{1/2}$
- n : Roughness coefficient, for concrete lining canals : n=0.015 and for earth canals : n=0.025
- R : Hydraulic radius (m)
- I : Hydraulic gradient

Therefore the examination method for the canal capacity will apply the followings.

·Firstly, calculate the required water volume for the each irrigation block at schemes

•Secondly, examine the required size of the cross section to discharge for the above water volume

As for the detail method in examining the size of the existing canal section and required size of the canal section, it will be carried out as follows.


- 1. The canal bed slope, bank slope and bed width are estimated for each section of canal, then the target cross section is selected from each irrigation blocks
- 2. The clearance of the water level is decided by referring Japanese Design book in which the following calculation formula is shown, and the clearance should be higher than the calculated figure.

 $Fb=0.05d+ \cdot hv+hw$

- Fb : clearance (m)
- d : depth of the design discharge
- hv : velocity head (m)
 - : conversion coefficient from velocity head to static head. (generally it is $0.5 \sim 1.0$)
- hw : clearance for the waving of water surface. (generally it is $0.10 \sim 0.15$ cm)

ltems		Secondary	Tertiary	Feeder	Farm
		canal	canal	canal	ditch
Design discharge	Q (m³/s)	0.12	0.023	0.023	0.090
Width of canal bed	B (m)	0.30	0.30	0.30	0.30
Water depth	d (m)	0.270	0.174	0.092	0.182
Bank slope	1:N	1.0	1.0	1.0	1.0
Cross-sectional area of flow	A (m)	0.154	0.082	0.036	0.088
Wetted perimeter	P (m)	1.064	0.792	0.560	0.815
Hydraulic mean depth	R (m)	0.145	0.104	0.064	0.108
Coefficient of roughness	n	0.025	0.025	0.025	0.025
Canal bed slope	I (%)	0.50	0.10	1.0	1.0
Mean velocity	V (m/s)	0.780	0.279	0.642	0.907
Velocity head	hv (m)	0.031	0.004	0.021	0.042
Free board	Fb (m)	0.180	0.126	0.203	0.168
Height of canal	H (m)	0.45	0.30	0.30	0.35

Table 4.3.1 Calculation of Irrigation Canal Section and Farm ditch

4.4 Furrow Irrigation methods

Surface irrigation methods are in general classified to four (4) methods. In this Jebel Lado area, the furrow irrigation methods are adequate depending on the conditions of the terrain and soil characteristic.

Surface Irrigation Methods

1) Furrow irrigation methods

The method irrigates plant roots by water permeated from the side of the furrow. Supply channels are arranged at certain intervals between the moderately sloped furrow, and cause a fixed amount of water to flow. Water is retained for the minimum necessary time to secure water depth downstream to supply sufficient water to the roots, while upstream where water is retained for

an excessive time, water penetration loss to the deeper layer cannot be avoided. The irrigation efficiency is influenced by geographical features, intake rate, furrow length, and discharge amount. To make a uniform slope of a furrow, construction is required.

2) Border irrigation methods

The field is divided into bands by low boundary ridges, and sloped to cause water to flow as a thin laminar flow. The deep layer penetration loss and irrigation efficiency are similar to those of the furrow irrigation method. Compared with the furrow irrigation method, it requires less labor force; whereas it requires greater amount of water and as the limitation factor is the slope, land levelling over a wider area is indispensable. It is often used for irrigation pasture land.

3) Contour ditch irrigation methods

A ditch to introduce water is prepared with a slope of 1/1000 along the contour line, and water is supplied from the turnout provided at the ditch. The method is applicable even on relatively irregular land, but the irrigation efficiency is low.

4) Basin irrigation methods

According to this method, farm land will be flatten and enclosed by ridges. The irrigation water will be conveyed through canals or pipelines to irrigate the farm land intermittently.

4.5 Relative structures

In general the relative structures such as diversion gate, drop, water measurement facilities, cross culvert and siphon etc. are required in the canal system if necessary. They shall be designed considered the canal system and the terrain around canal in the future design stage.

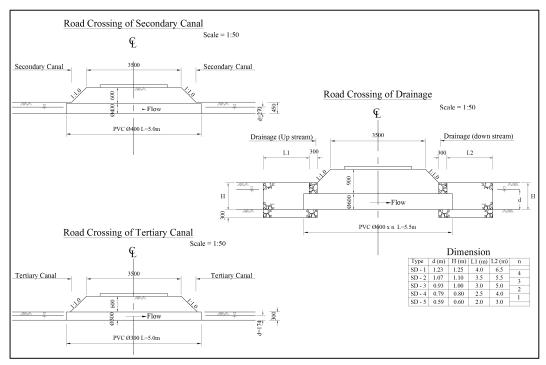
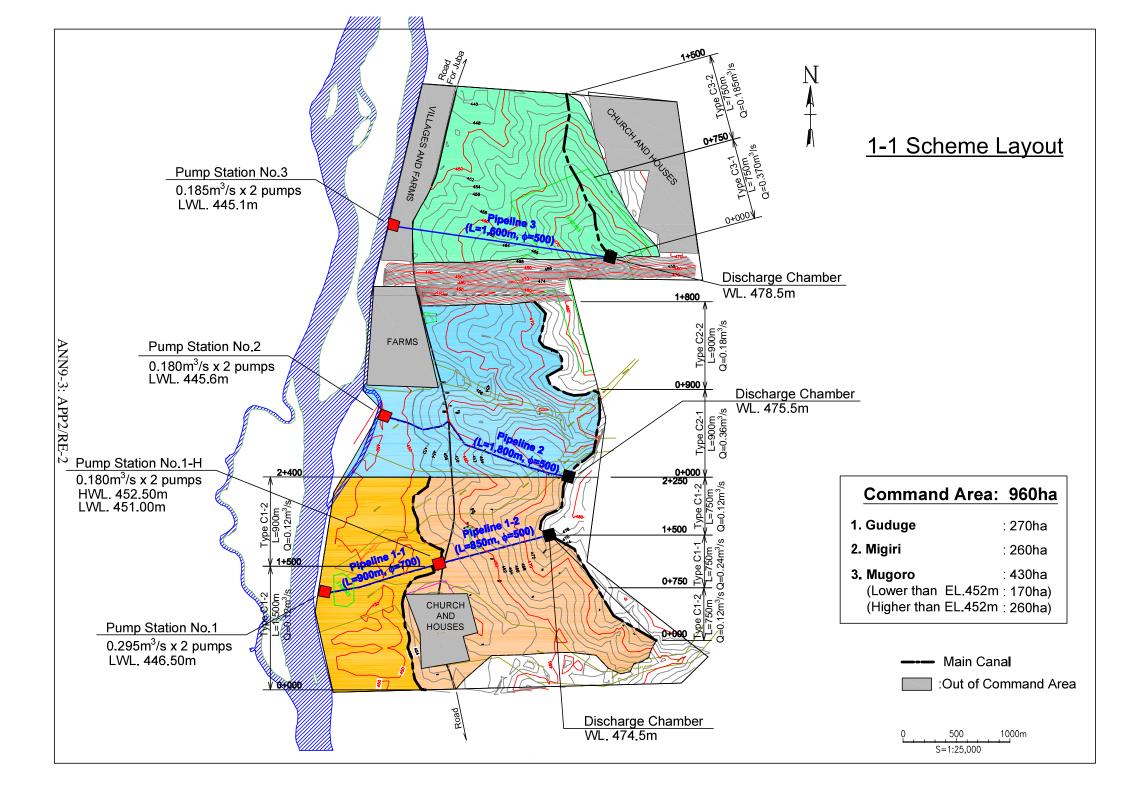


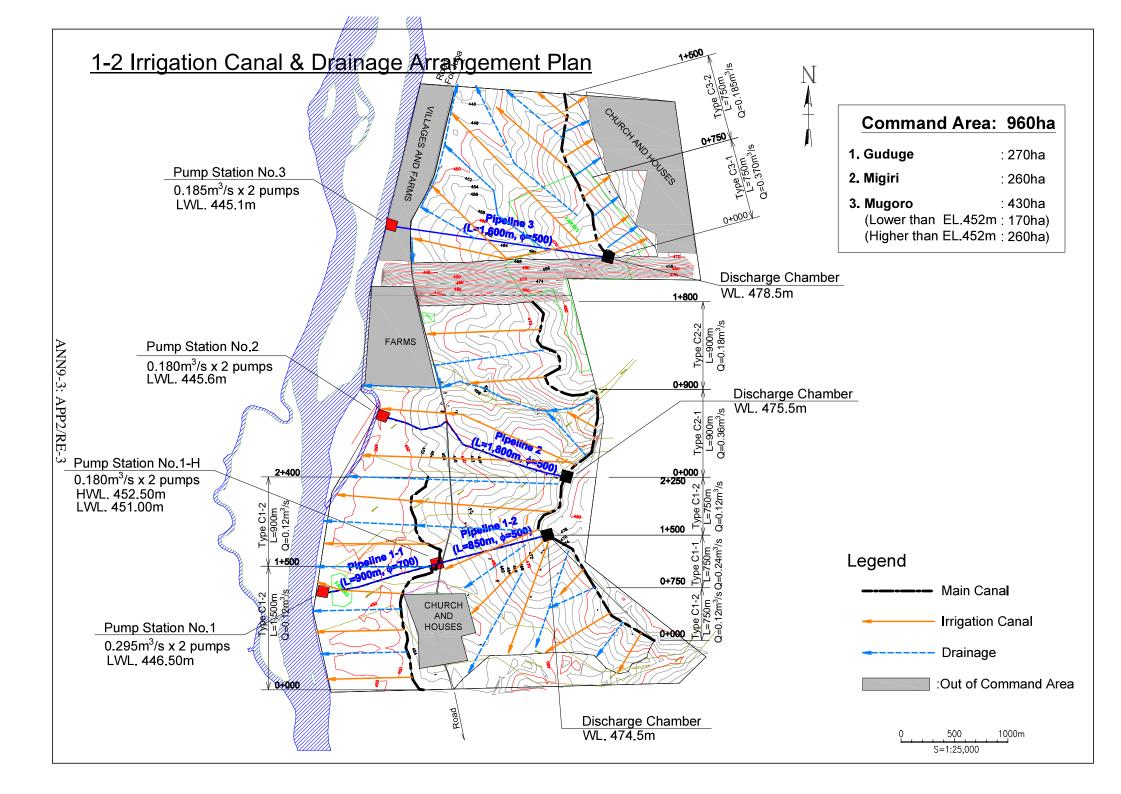
Figure 9.3 Typical Cross section of Road Crossing in Command Area

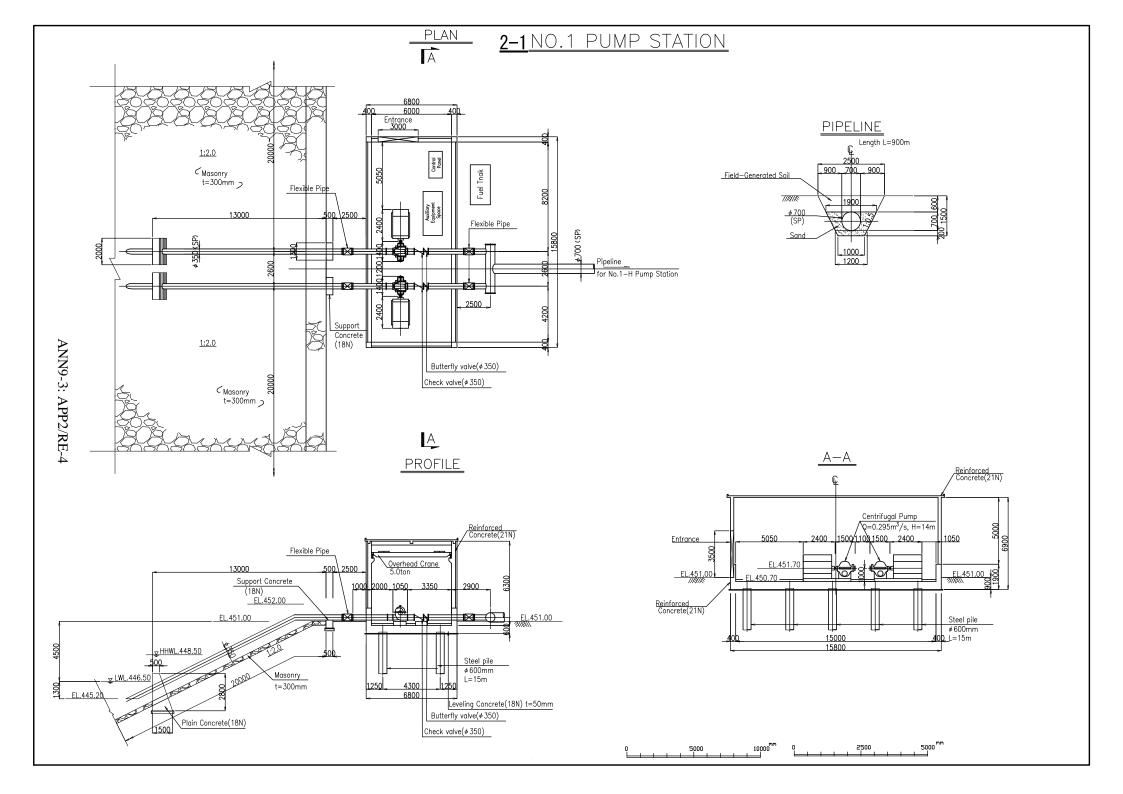
4.6 Recommendation

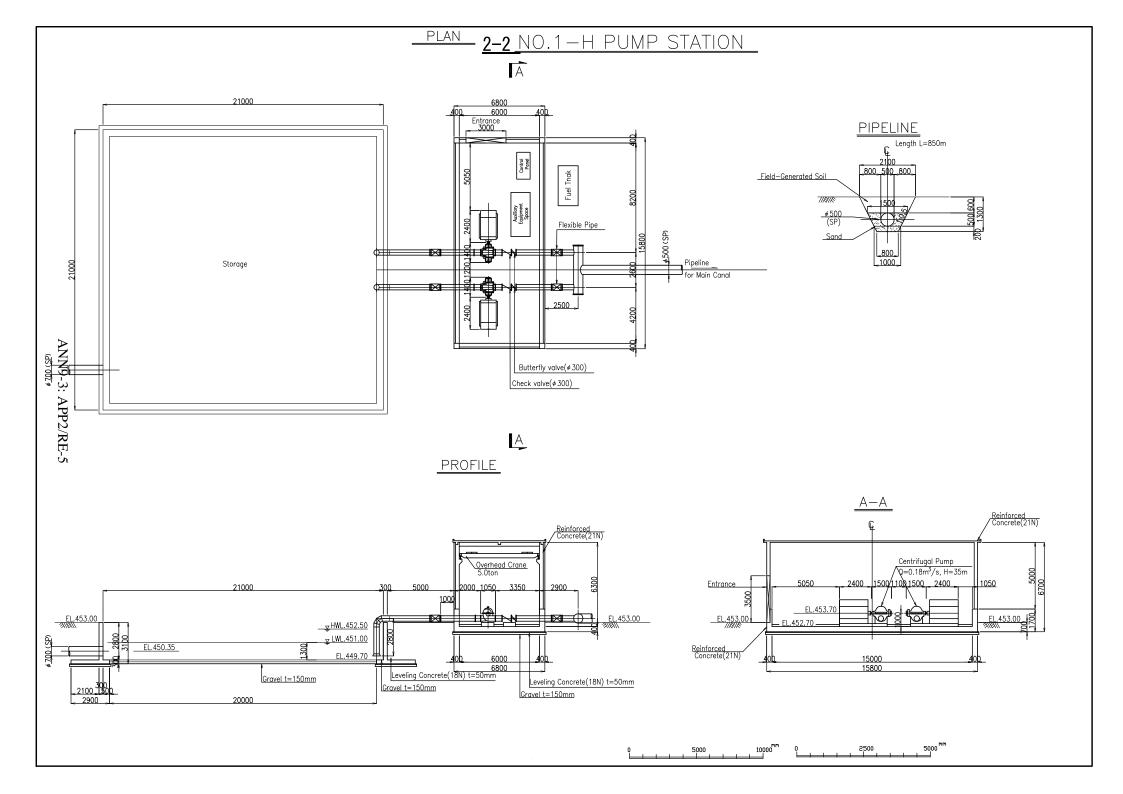
(1) Investigation for Intake Rate

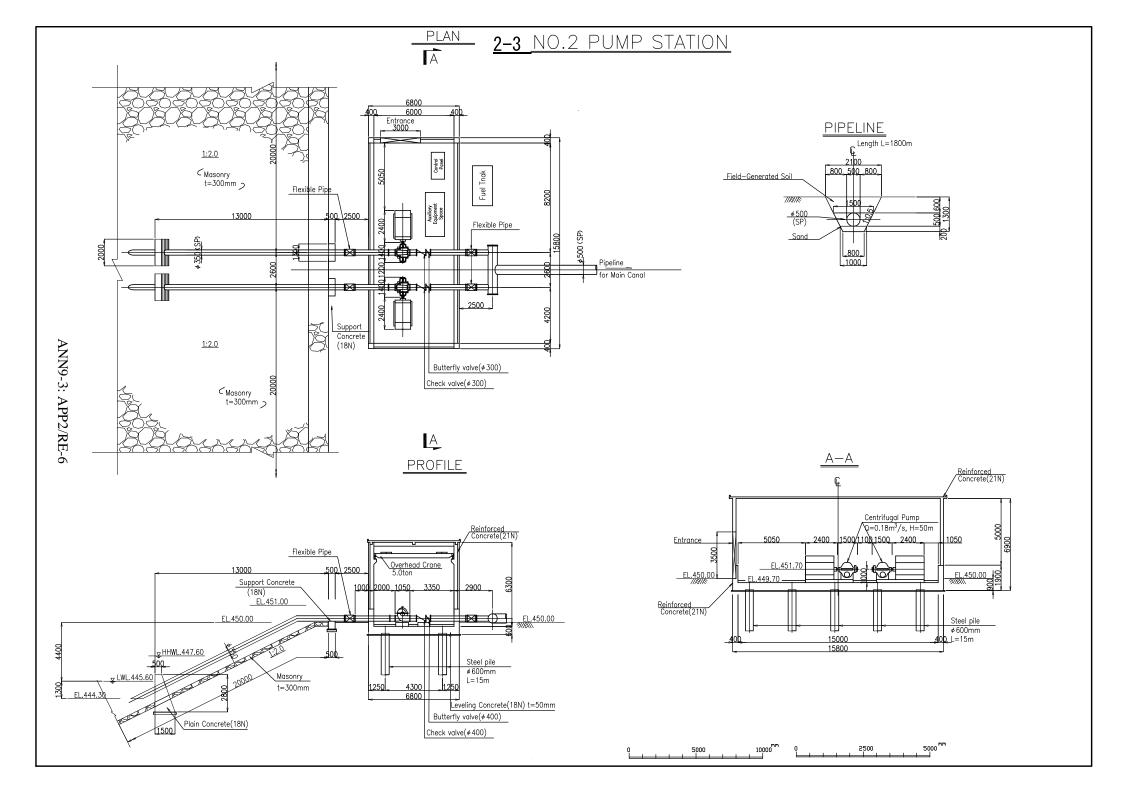
In the future design stage, more investigation is required to carry out the design of upland. For example, the intake rate is very important factor to make a plan of irrigation system. The intake rate is the rate for irrigation water or rainwater infiltration into soil under the specific conditions, and generally measurement in term of mm/hr. As an index of water permeability in unsaturated soil, it is an important factor to be considered in deciding the irrigation method and the appropriate irrigation intensity for upland irrigation. The intake rate is measured either by the cylinder intake rate or by the furrow intake rate, depending on the purpose of the measurement. For furrow irrigation, the intake rate is measured by the furrow intake rate.

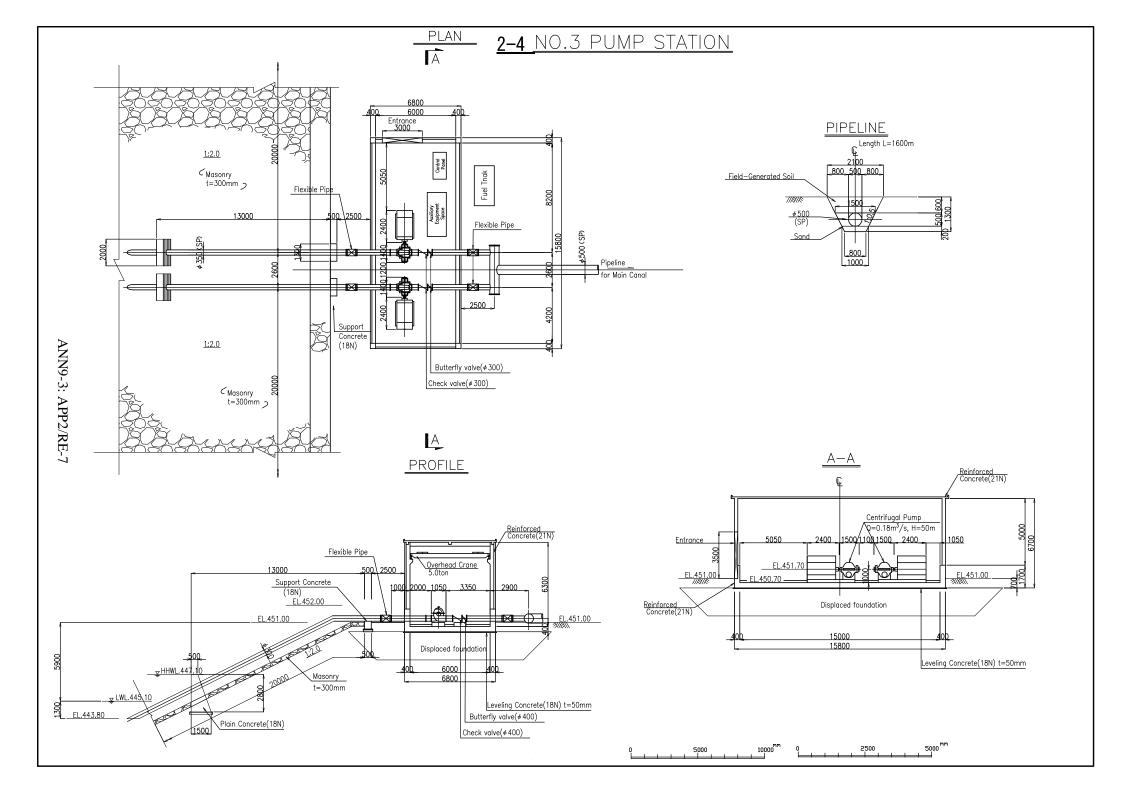

(2) Drainage Arrangement Plan

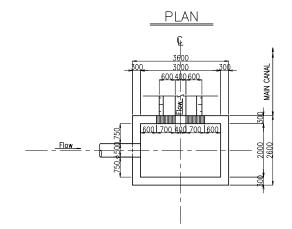

It is necessary to investigate and survey the existing drainage routes and system in the site through the interview to the villagers and the site investigation, before planning the drainage arrangement. After that, the irrigation canal arrangement would be planned on the map.

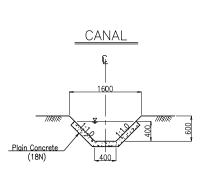

APPENDIX - 2

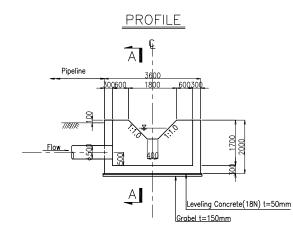

DRAWINGS

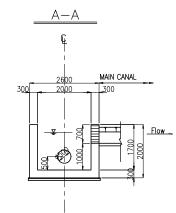

No.	Name of Drawing	Sheet		
1. Irrigation Plan				
1-1	Scheme Layout	1		
1-2	Irrigation Canal and Drainage Arrangement Plan	1		
2. Pump Sta	ation			
2-1	No.1 Pump Staion	1		
2-2	No.1-H Pump Staion	1		
2-3	No.2 Pump Staion	1		
2-4	No.3 Pump Staion	1		
2-5	Discharge Chamber	1		
3. Pipeline				
3-1	Pipelime No.1Profile	1		
3-2	Pipelime No.2 Profile	1		
3-3	Pipelime No.3 Profile	1		
4. Main Irrigation Canal				
4-1	Typical Cross Section of Main Canal	1		
	Total	11		



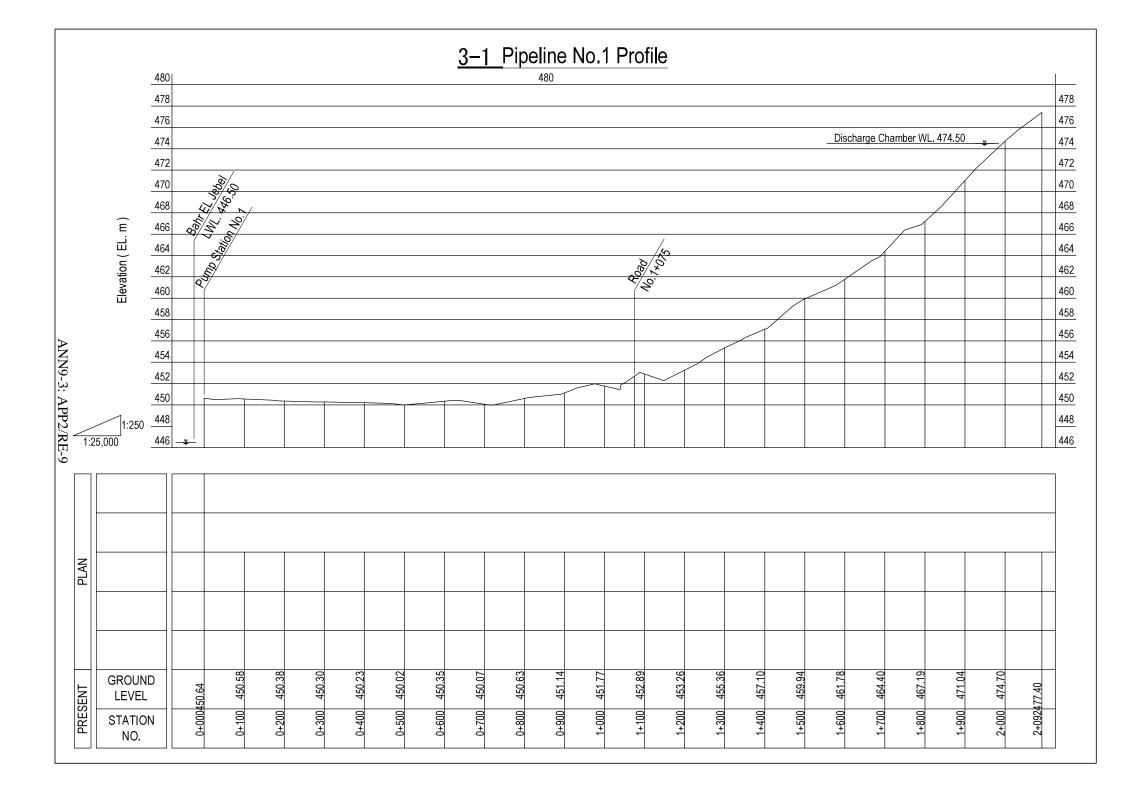


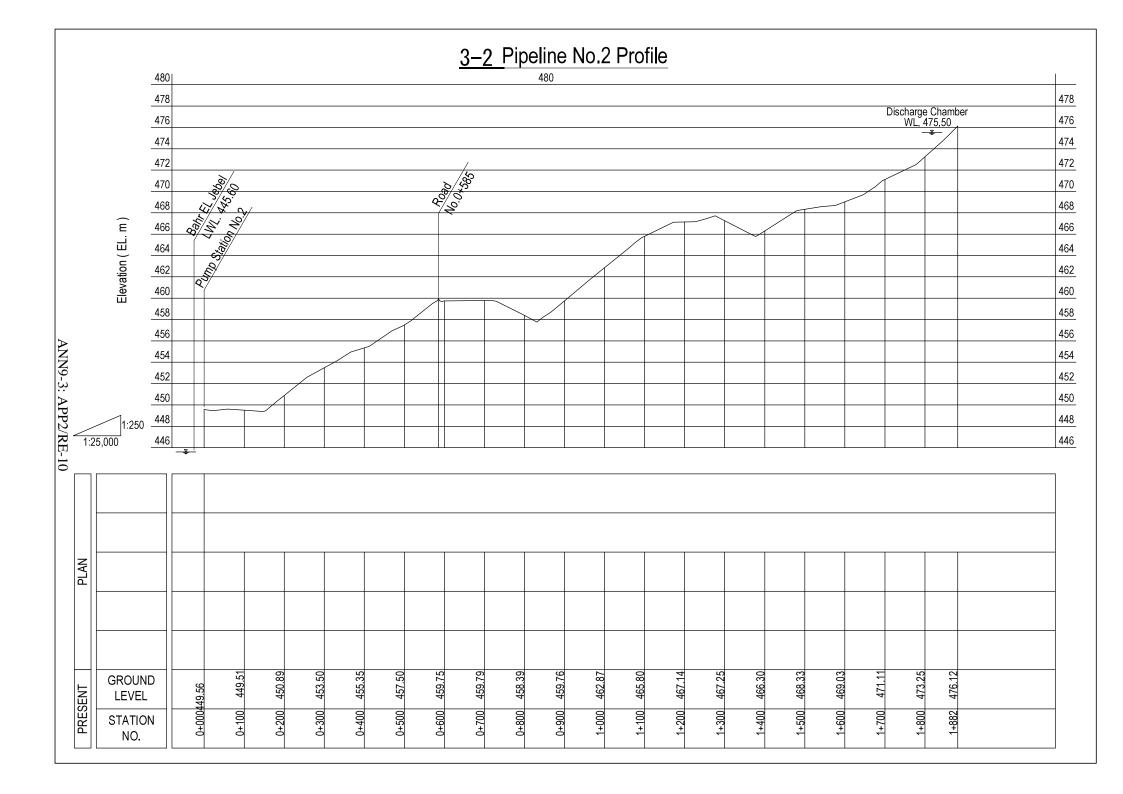


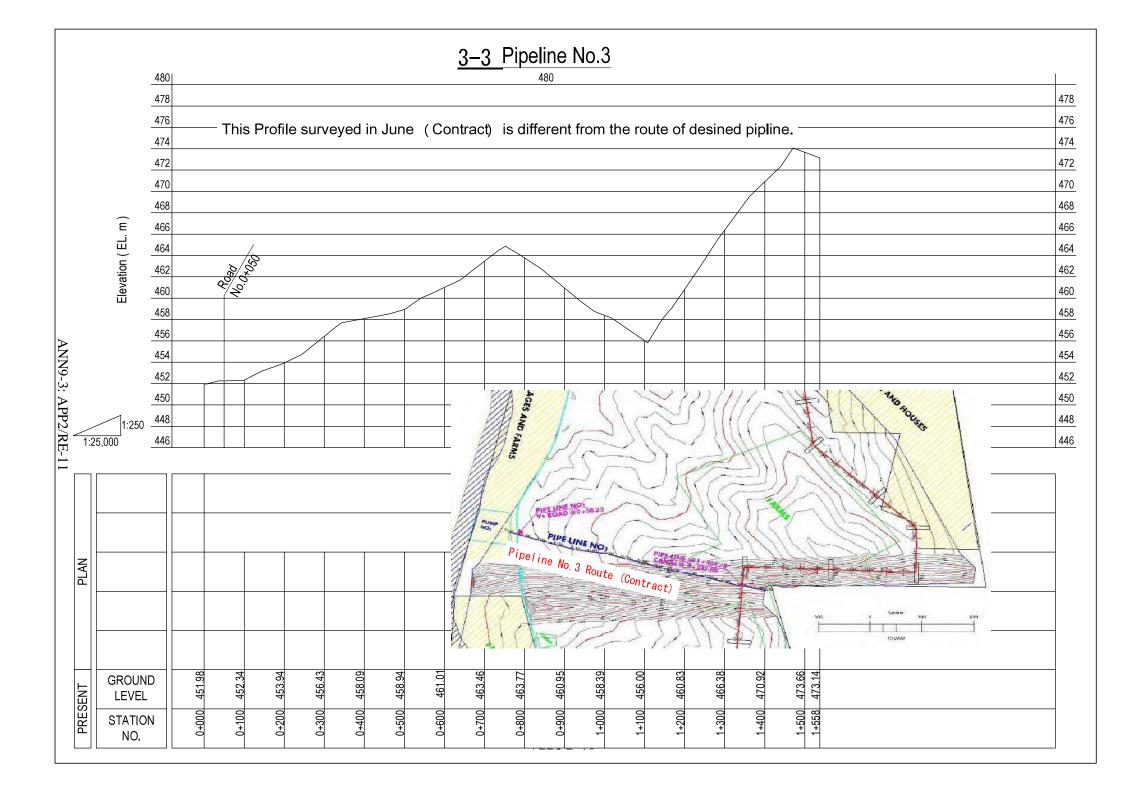




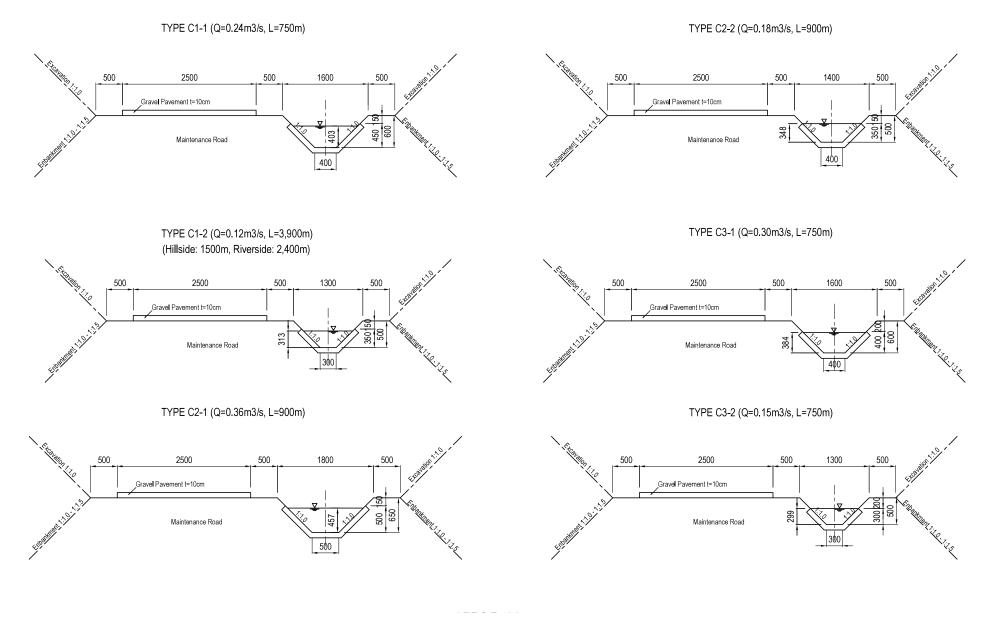
2-5_DISCHARGE CHAMBER







2500 5000^{mm}


ANN9-3: APP2/RE-8

<u>4–1</u> Typical Cross Section

ANN9-3: APP2/RE-12

APPENDIX - 3

PROJECT INVESTMENT COST

3.1 Project Investment Cost

	Project Cost		23	million USS	5	
No.	Work Description	Unit	Quantity	Price (1000 US\$)	Total (1000 US\$)	
1. Wo	rks					
1-1.	Pump Station	LS.	1	4,418	4,418	
1-2.	Pipeline Work	LS.	1	2,450	2,450	
1-3.	Main Irrigation Canal	LS.	1	1,390	1,390	
1-4.	Facilities in Command Area	ha	960	6.0	5,760	
				Total	14,018	
	Direct Constru	uction	Cost (A)		14,018	
	Indirect Construction Cost		6,308			
		1	$\mathbf{C} = \mathbf{A} + \mathbf{B}$			
			$C \neq 40()$	01		
	Adminiostratio				813	
	Consultant Fe Physical Contingend	e(E =	$\frac{C * 5\%}{C * 5\%}$		<u> </u>	
	r hysical Contingent	<u>су (г —</u>	<u>· C · 3 /0)</u>		1,010	
	Grand Total Cost	$\mathbf{F} = \mathbf{C}$	+ D + E)	<u> </u>	23,171	
			Í		23,000	
					(*1000 US\$)	
				EC (60%)	12 900	
				FC. (60%)	13,800 9,200	
				LC. (40%)	9,200 (*1000 US\$)	
		ha	23 million US	S\$ / 960ha =	24,000	
					(US\$)	
		I				

Rejaf East Irrigation Scheme

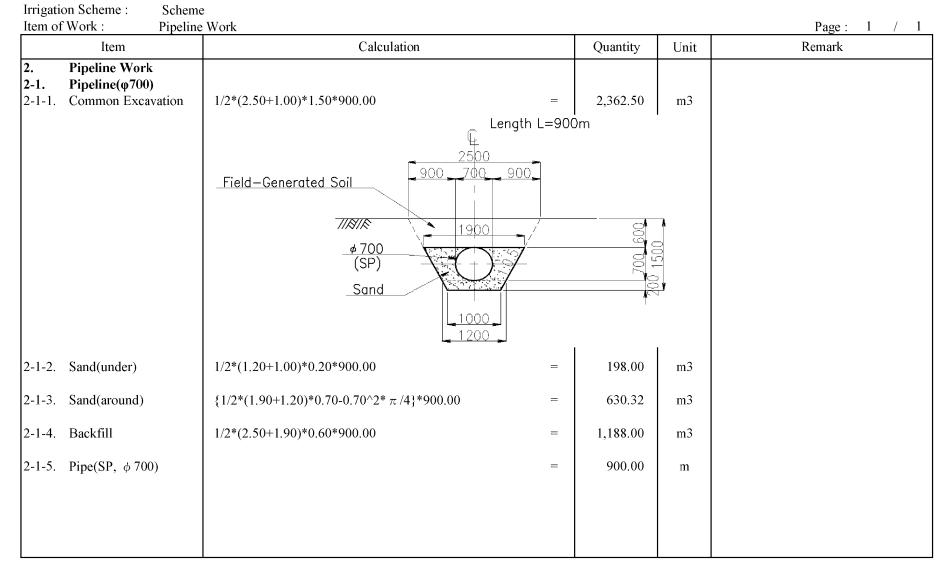
3.2 Pumping Station & Pipeline Works

Pump Statoin & Pipeline Works			6.9	million US\$		
No.	Work Description	Unit	Quantity	Price (1000 US\$)	Total (1000 US\$)	
No.1 Pu	imp Station (Mugoro)					
1.	Pump Building	LS.	1	309	309	
2.	Pump Equipment	LS.	1	784	784	
3.	Slop Protectioon	LS.	1	44	44	
4.	Pipelin Work (\$\phi\$ 700, L=900m)	LS.	1	507	507	
				Sub-total	1,644	
No.1-H	Pump Station (Mugoro)					
1.	Pump Building	LS.	1	305	305	
2.	Pump Equipment	LS.	1	669	669	
3.	Storage	LS.	1	152	152	
4.	Pipelin Work (\$ 500, L=850m)	LS.	1	377	377	
5.	Discharge Chamber	LS.	1	18	18	
				Sub-total	1,521	
No.2 P	ump Station (Migiri)					
1.	Pump Building	LS.	1	309	309	
2.	Pump Equipment	LS.	1	724	724	
3.	Slop Protectioon	LS.	1	44	44	
4.	Pipelin Work (\$ 500, L=1800m)	LS.	1	799	799	
5.	Discharge Chamber	LS.	1	18	18	
				Sub-total	1,894	
No.3 Pı	imp Station (Guduge)					
1.	Pump Building	LS.	1	314	314	
	Pump Equipment	LS.	1	719	720	
3.	Slop Protectioon	LS.	1	44	44	
4.	Pipelin Work (\$ 500, L=1600m)	LS.	1	713	713	
	Discharge Chamber	LS.	1	18	18	
				Sub-total	1,809	
				Total	6,868	
					,	
				Pump Station	4,418	
				Pipeline Work	2,450	
		-				

Rejaf-East Irrigation Scheme

ANN9-3: APP3/RE-2

3.2 (1) Pump No.1 Station and Pipeline Works


	No.1 Pump Statoin & Pipeline Works		1.6	million U	S\$
No.	Work Description	Unit	Quantity	Unit Price (US\$)	Total (US\$)
1. No.1	Pump Station Work				
1-1.	Pump Building(No.1)				
1-1-1.	Common Excavation	m3	368	10.0	3,675
1-1-2.	Leveling Concrete	m3	6	350.0	1,960
1-1-3.	Backfill	m3	265	11.0	2,918
1-1-4.	Building	m2	107	2,800.0	300,832
				Sub total	309,385
1-2.	Pump Eqipment				
1-2-1	Pump Facilities (Pump, Engne & Auxiliary equipment)	nos	2	250,000.0	500,000
1-2-2.	Pipe(SP, 350)	m	49	240.0	11,683
1-2-3.	Control Panel	nos	1	86,500.0	86,500
1-2-4.	Overhead Crane(5ton)	nos	1	77,900.0	77,900
1-2-5.	Butterfly valve(350)	nos	2	15,000.0	30,000
1-2-6.	Check valve(350)	nos	2	13,000.0	26,000
1-2-7.	Flexible tube(350)	nos	4	3,800.0	15,200
1-2-8.	Steel pile(600, L=15m)	nos	10	3,600.0	36,000
				Sub total	783,283
1-3.	Slope protection				
1-3-1.	Masonry	m3	256	140.0	35,784
1-3-2.	Support Concrete (18N)	m3	12	350.0	4,193
1-3-3.	Leveling Concrete	m3	1	350.0	350
1-3-4.	Gravel	m3	1	50.0	72
1-2-5.	Temporary Works (River Close) 10% of above sum	L.S	1		4,000
				Sub total	44,399
2. Pipe	line Work				,
2-1.	Pipe line (\u03c6700)				
2-1-1.	Common Excavation	m3	2,363	10.0	23,625
2-1-2.	Sand(under)	m3	198	24.0	4,752
2-1-3.	Sand(around)	m3	630	24.0	15,128
2-1-4.	Backfill	m3	1,188	11.0	13,068
2-1-5.	Pipe(SP, 700)	m	900	500.0	450,000
				Sub total	506,573
			Direct cost	Total	1,643,640
			Pump Statio	n	1,137,067
			Pipeline		506,573
					,
			1		
			1		

Rejaf East Irrigation Scheme

Item		Calculation		Quantity	Unit	Remark
Pump Stati 1. Pump Buil 1-1. Common E	ding(No.1) xcavation 1/2*(7.80*1	6.80+9.20*18.20)*0.60+(7.00*16.00 00+2.60+20.00)*0.3	(0*0.20) = 111.94 = 255.60 367.54	367.54	m3	

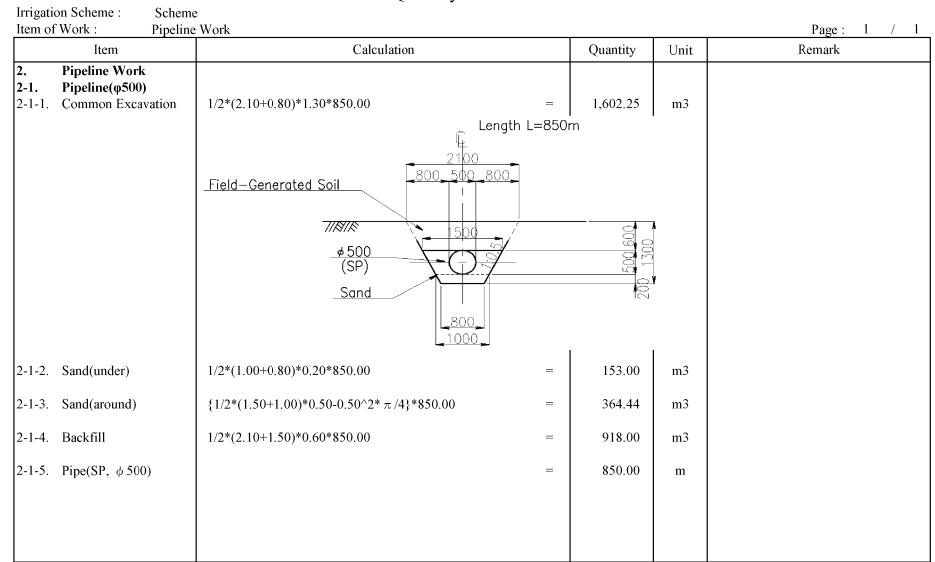
	Item	Calculation		Quantity	Unit	Remark
-1-2.	Leveling Concrete	7.00*16.00*0.05	_	5.60	m3	
-1-3.	Backfill	367.54-5.60-(6.80*15.80*0.90)	=	265.24	m3	
-1-4.	Ū.	6.80*15.80	=	107.44	m2	
- 2. -2-1	Pump EquipmentPump Facilities (Pump, E	Engne & Auxiliary equipment)		2.00	nos	
-2-2.	Pipe(SP, ϕ 350)	2*(13.64+3.55+3.00+0.60+3.55)	=	48.68	m	φ350、SP
-2-3.	Control Panel			1.00	nos	
-2-4.	Overhead Crane(5ton)			1.00	nos	
-2-5.	Butterfly valve(φ 350)			2.00	nos	
-2-6.	Check valve(o350)			2.00	nos	
-2-7.	Flexible tube(φ 350)			4.00	nos	
-2-8.	Steel pile(ϕ 600, L=15m)	2*5		10.00	nos	
- 3. -3-1.	Slope protection Masonry	20.00*(20.00+2.6+20.00)*0.30		255.60	m3	
-3-2.	Support Concrete (18N)	2*{1/2*(0.50+1.50)*2.80*2.00} 2*(0.50*0.60*1.30)	= 11.20 = 0.78 11.20		_	
			11.98	11.98	m3	
-3-3.	Leveling Concrete	2*(1.70*2.20*0.05+0.70*1.50*0.05)	=	0.48	m3	
-3-4.	Gravel	2*(1.70*2.20*0.15+0.70*1.50*0.15)	=	1.44	m3	

RSS, MEDIWR, Water Sector, Irrigation Development Master Plan (IDMP)

3.2 (2) Pump No.1-H Station and Pipeline Works

Rejaf East Irrigation Scheme

	No.1-H Pump Statoin & Pipeline Works		1.5	million US\$		
No.	Work Description	Unit	Quantity	Unit Price (US\$)	Total (US\$)	
1. No.1	-H Pump Station Work					
1-1.	Pump Building(No.1-H)					
1-1-1.	Common Excavation	m3	127	10.0	1,269	
1-1-2.	Leveling Concrete	m3	6	350.0	1,960	
1-1-3.	Gravel	m3	17	50.0	840	
1-1-4.	Backfill	m3	29	11.0	322	
1-1-5.	Building	m2	107	2,800.0	300,832	
				Sub total	305,223	
1-2.	Pump Eqipment					
1-2-1.	Pump Facilities (Pump, Engne & Auxiliary equipment)	nos	2	220,000.0	440,000	
1-2-2.	Pipe(SP, 300)	m	26	220.0	5,764	
1-2-3.	Control Panel	nos	1	86,500.0	86,500	
1-2-4.	Overhead Crane(5ton)	nos	1	77,900.0	77,900	
1-2-5.	Butterfly valve(300)	nos	2	13,000.0	26,000	
1-2-6.	Check valve(300)	nos	2	10,000.0	20,000	
1-2-7.	Flexible tube(300)	nos	4	3,100.0	12,400	
				Sub total	668,564	
1-3.	Storage					
1-3-1.	Common Excavation	m3	3,418	10.0	34,182	
1-3-2.	Leveling Concrete	m3	11	350.0	3,903	
1-3-3.	Gravel	m3	93	50.0	4,673	
1-3-4.	Backfill	m3	1,652	11.0	18,177	
1-3-5.	Reinforced Concrete	m3	206	440.0	90,596	
				Sub total	151,531	
2. Pipe	line Work					
2-1.	Pipeline(ϕ 500)					
2-1-1.	Common Excavation	m3	1,602	10.0	16,023	
2-1-2.	Sand(under)	m3	153	21.2	3,244	
2-1-3.	Sand(around)	m3	364	21.2	7,726	
2-1-4.	Backfill	m3	918	11.0	10,098	
2-1-5.	Pipe(SP, 500)	m	850	400.0	340,000	
				Sub total	377,091	
2-2.	Discharge Chamber					
2-2-1.	Common Excavation	m3	375	10.0	3,751	
2-2-2.	Leveling Concrete	m3	1	350.0	448	
2-2-3.	Gravel	m3	4	50.0	192	
2-2-4.	Backfill	m3	243	11.0	2,676	
2-2-5.	Reinforced Concrete	m3	26	440.0	11,238	
				Sub total	18,305	
			Direct cost	Total	1,520,714	
			Pump Statio	on	618,745	
		1	Pipeline		901,969	


Item	Calculation	Quantity	Unit	Remark
Building(No.1-H) $1/2^{*}(7.80^{*}16.80^{+}9.20^{*}18.20)^{*}0.70^{+}(7.00^{*}16.00^{*}0.20) = 126.$	87		
			m3	
	• Station Work • Building(No.1-H non Excavation	b Building(No.1-H) non Excavation $1/2^{*}(7.80^{*}16.80^{+}9.20^{*}18.20)^{*}0.70^{+}(7.00^{*}16.00^{*}0.20) = 126.$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} \textbf{Duilding(No.1-H)} \\ \textbf{mon Excavation} \\ 1/2^{*}(7.80^{*}16.80^{+}9.20^{*}18.20)^{*}0.70^{+}(7.00^{*}16.00^{*}0.20) \\ = 126.87 \\ \end{array}$

Annex 9-3 - Appendix 3: Project Investment Cost_Rejaf East

	Item	Calculation		Quantity	Unit	Remark
1-1-2.	Leveling Concrete	7.00*16.00*0.05	=	5.60	m3	
1-1-3.	Gravel	7.00*16.00*0.15	=	16.80	m3	
-1-4.	Backfill	126.87-5.60-16.80-(6.80*15.80*0.70)	=	29.26	m3	
1-1-5.	e	6.80*15.80	=	107.44	m2	
l -2. l-2-1.	Pump Building(No.1-H Pump Facilities (Pump, I) Engne & Auxiliary equipment)		2.00	nos	
1-2-2.	Pipe(SP, ϕ 300)	2*(3.30+3.50+3.00+0.60+2.70)	=	26.20	m	φ300、SP
1-2-3.	Control Panel			1.00	nos	
1-2-4.	Overhead Crane(5ton)			1.00	nos	
1-2-5.	Butterfly valve(ϕ 300)			2.00	nos	
1-2-6.	Check valve(q300)			2.00	nos	
1-2-7.	Flexible tube(φ 300)			4.00	nos	
1-3. 1-3-1.	Storage Common Excavation	1/2*(34.00*34.00+26.8*26.80)*3.60+(24.80*24.80-19.80*19	9.80)*0.20	3,418.23	m3	
1-3-2.	Leveling Concrete	(24.80*24.80-19.80*19.80)*0.05	=	11.15	m3	
I - 3-3.	Gravel	(24.80*24.80-19.80*19.80)*0.15+20.00*20.00*0.15	=	93.45	m3	
1-3-4.	Backfill	3,418.23-11.15-93.45-205.90-(21.00*21.00*3.30)	=	1,652.43	m3	

RSS, MEDIWR, Water Sector, Irrigation Development Master Plan (IDMP)

Item
m of Work : Pump S Item 3-5. Reinforced Concrete

Item	Calculation		Quantity	Unit	Remark
Discharge Chamber V 2. Discharge Chamber			275.12	2	
2-1. Common Excavation	1/2*((7.30*4.90)+(14.4*12.0))*3.55+(6.3*3.9*0.20)		375.13	m3	
2-2. Leveling Concrete	6.4*4.0*0.05		1.28	m3	
2-3. Gravel	6.4*4.0*0.15	-	3.84	m3	
2-4. Backfill	375.13-7.3*4.9*3.55-6.3*3.9*0.2	=	243.23	m3	
2-5. Reinforced Concrete	Base $6.6^{*}3.9^{*}0.35$ = Wall 1 $3.9^{*}3.0^{*}0.35^{*}2$ = Wall 2 $5.6^{*}3.0^{*}0.35^{*}2$ = South c $-1.0^{*}1.25$ = North c $-0.9^{*}1.15$ = Pipe $-1/4^{*}3.14^{*}1.2^{*}2$ =	9.01 8.19 11.76 -1.25 -1.04 -1.13 25.54	25.54	m3	

3.2 (3) Pump No.2 Station and Pipeline Works

No.2 Pump Statoin & Pipeline Works			1.9	million US\$		
No.	Work Description	Unit	Quantity	Unit Price (US\$)	Total (US\$)	
1. No.2	Pump Station Work					
1-1.	Pump Building(No.2)					
1-1-1.	Common Excavation	m3	368	10.0	3,675	
1-1-2.	Leveling Concrete	m3	6	350.0	1,960	
1-1-3.	Backfill	m3	265	11.0	2,918	
1-1-4.	Building	m2	107	2,800.0	300,832	
				Sub total	309,385	
1-2.	Pump Equipment					
1-2-1.	Pump Facilities (Pump, Engne & Auxiliary equipment)	nos	2	220,000.0	440,000	
1-2-2.	Pipe(SP, 300)	m	50	240.0	12,055	
1-2-3.	Control Panel	nos	1	86,500.0	86,500	
1-2-4.	Overhead Crane(5ton)	nos	1	77,900.0	77,900	
1-2-5.	Butterfly valve(350)	nos	2	15,000.0	30,000	
1-2-6.	Check valve(350)	nos	2	13,000.0	26,000	
1-2-7.	Flexible tube(350)	nos	4	3,800.0	15,200	
1-2-8.	Steel pile(600, L=15m)	nos	10	3,600.0	36,000	
				Sub total	723,655	
1-3.	Slope protection					
1-3-1.	Masonry	m3	256	140.0	35,784	
1-3-2.	Support Concrete (18N)	m3	12	350.0	4,193	
1-3-3.	Leveling Concrete	m3	1	350.0	350	
1-3-4.	Gravel	m3	1	50.0	72	
1-2-5.	Temporary Works (River Close) 10% of above sum	L.S	1		4,000	
				Sub total	44,399	
2. Pipel	ine Work				,	
2-1.	Pipeline(q500)					
2-1-1.	Common Excavation	m3	3,393	10.0	33,930	
2-1-2.	Sand(under)	m3	324	21.2	6,869	
2-1-3.	Sand(around)	m3	772	21.2	16,361	
2-1-4.	Backfill	m3	1,944	11.0	21,384	
2-1-5.	Pipe(SP, 500)	m	1,800	400.0	720,000	
			,	Sub total	798,544	
2-2.	Discharge Chamber					
2-2-1.	Common Excavation	m3	375	10.00	3,751	
2-2-2.	Leveling Concrete	m3	1	140.0	179	
2-2-3.	Gravel	m3	4	50.00	192	
2-2-4.	Backfill	m3	243	11.00	2,676	
2-2-5.	Reinforced Concrete	m3	26	440.00	11,238	
				Sub total	18,036	
		1		240 10441	10,000	
<u> </u>		1	Direct cost	Total	1,894,019	
		+	Pump Statio		1,077,439	
		+	Pipeline		816,580	

Rejaf East Irrigation Scheme

ANN9-3: APP3/RE-13

em of Work : Pump S Item	tation Work Calculation	Quantity	Unit	Page : 1 / Remark
Pump Station Work 1. Pump Building(No.2) 1-1. Common Excavation	$\frac{1/2^{*}(7.80^{*}16.80+9.20^{*}18.20)^{*}0.60^{+}(7.00^{*}16.00^{*}0.20)}{20.00^{*}(20.00+2.60+20.00)^{*}0.30} = \frac{111.94}{255.60}$	367.54	m3	

	Item	Calculation			Quantity	Unit	Remark
-1-2.	Leveling Concrete	7.00*16.00*0.05		=	5.60	m3	
-1-3.	Backfill	367.54-5.60-(6.80*15.80*0.90)		=	265.24	m3	
-1-4.	Building	6.80*15.80		-	107.44	m2	
-2. -2-1.	Pump EquipmentPump Facilities (Pump, E	Engne & Auxiliary equipment)			2.00	nos	
-2-2.	Pipe(SP, ϕ 300)	2*(15.876+1.70+3.25+0.60+3.69)		=	50.23	m	φ350、SP
-2-3.	Control Panel				1.00	nos	
-2-4.	Overhead Crane(5ton)				1.00	nos	
-2-5.	Butterfly valve(q350)				2.00	nos	
-2-6.	Check valve(φ 350)				2.00	nos	
-2-7.	Flexible tube(φ 350)				4.00	nos	
-2-8.	Steel pile(ϕ 600, L=15m)	2*5			10.00	nos	
-3. -3-1.	Slope protection Masonry	20.00*(20.00+2.60+20.00)*0.30			255.60	m3	
-3-2.	Support Concrete (18N)	2*{1/2*(0.50+1.50)*2.80*2.00} 2*(0.50*0.60*1.30)	=	11.20 0.78	11.02		
				11.98	11.98	m3	
-3-3.	Leveling Concrete	2*(1.70*2.20*0.05+0.70*1.50*0.05)		=	0.48	m3	
-3-4.	Gravel	2*(1.70*2.20*0.15+0.70*1.50*0.15)		=	1.44	m3	

	tion Scheme : Scheme of Work : Pipeline	Work				Page : 1 / 1
	Item	Calculation		Quantity	Unit	Remark
2. 2-1. 2-1-1.	Pipeline Work Pipeline(φ500) . Common Excavation	1/2*(2.10+0.80)*1.30*1800.00	=	3,393.00	m3	
		Field-Generated Soil	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 600 202 1300		
2-1-2	. Sand(under)	1/2*(1.00+0.80)*0.20*1800.00	=	324.00	m3	
2-1-3	Sand(around)	$\{1/2*(1.50+1.00)*0.50-0.50^2* \pi/4\}*1800.00$	=	771.75	m3	
2-1-4	Backfill	1/2*(2.10+1.50)*0.60*1800.00	=	1,944.00	m3	
2-1-5	Pipe(SP, ϕ 500)		=	1,800.00	m	

	Item	ge Chamber Work Calculation		Quantity	Unit	Page : 1 / Remark
2-2. 2-2-1.	Discharge Chamber Common Excavation	1/2*((7.30*4.90)+(14.4*12.0))*3.55+(6.3*3.9*0.20)	=	375.13	m3	
2-2-2.	Leveling Concrete	6.4*4.0*0.05	=	1.28	m3	
2-2-3.	Gravel	6.4*4.0*0.15	=	3.84	m3	
2-2-4.	Backfill	375.13-7.3*4.9*3.55-6.3*3.9*0.2	=	243.23	m3	
2-2-5.	Reinforced Concrete	Base $6.6^{*}3.9^{*}0.35$ = Wall 1 $3.9^{*}3.0^{*}0.35^{*}2$ = Wall 2 $5.6^{*}3.0^{*}0.35^{*}2$ = South c $-1.0^{*}1.25$ = North c $-0.9^{*}1.15$ = Pipe $-1/4^{*}3.14^{*}1.2^{2}$ =	9.01 8.19 11.76 -1.25 -1.04 -1.13 25.54	25.54	m3	

3.2 (4) Pump No.3 Station and Pipeline Works

	No.3 Pump Statoin & Pipeline Works		1.8	million U	S \$
No.	Work Description	Unit	Quantity	Unit Price (US\$)	Total (US\$)
1. No.3	B Pump Station Work				
1-1.	Pump Building(No.3)				
1-1-1.	Common Excavation	m3	903	10.0	9,029
1-1-2.	Leveling Concrete	m3	6	350.0	1,960
1-1-3.	Backfill	m3	216	11.0	2,377
1-1-4.	Building	m2	107	2,800.0	300,832
				Sub total	314,198
1-2.	Pump Equipment				
1-2-1.	Pump Facilities (Pump, Engne & Auxiliary equipment)	nos	2	220,000.0	440,000
1-2-2.	Pipe(SP, 300)	m	55	240.0	13,234
1-2-3.	Control Panel	nos	1	86,500.0	86,500
1-2-4.	Overhead Crane(5ton)	nos	1	77,900.0	77,900
1-2-5.	Butterfly valve(350)	nos	2	15,000.0	30,000
1-2-6.	Check valve(350)	nos	2	13,000.0	26,000
1-2-7.	Flexible tube(350)	nos	4	3,800.0	15,200
1-2-8.	Displaced foundation	m3	612	50.0	30,582
				Sub total	719,416
1-3.	Slope protection				
1-3-1.	Masonry	m3	256	140.0	35,784
1-3-2.	Support Concrete (18N)	m3	12	350.0	4,193
1-3-3.	Leveling Concrete	m3	1	350.0	350
1-3-4.	Gravel	m3	1	50.0	72
1-2-5.	Temporary Works (River Close) 10% of above sum	L.S	1		4,000
				Sub total	44,399
2. Pipe	line Work				
2-1.	Pipeline(ϕ 500)				
2-1-1.	Common Excavation	m3	3,016	10.0	30,160
2-1-2.	Sand(under)	m3	288	24.0	6,912
2-1-3.	Sand(around)	m3	686	24.0	16,464
2-1-4.	Backfill	m3	1,728	11.0	19,008
2-1-5.	Pipe(SP, 500)	m	1,600	400.0	640,000
				Sub total	712,544
2-2.	Discharge Chamber				
2-2-1.	Common Excavation	m3	375	10.00	3,751
2-2-2.	Leveling Concrete	m3	1	350.0	448
2-2-3.	Gravel	m3	4	50.00	192
2-2-4.	Backfill	m3	243	11.00	2,676
2-2-5.	Reinforced Concrete	m3	26	440.00	11,238
				Sub total	18,305
			Direct cost	Total	1,808,862
			Pump Statio		1,078,013
		-	Pipeline		730,849

Rejaf East Irrigation Scheme

ANN9-3: APP3/RE-18

	Item	Calculation		Quantity	Unit	Remark
- 1. -1-1.	Pump Station Work Pump Building(No.3) Common Excavation	1/2*(11.00*20.00+16.60*25.60)*2.80	= 902.94	902.94	m3	
1-1.	Common Excavation	1/2*(11.00*20.00+16.60*25.60)*2.80	= 902.94	902.94	m3	

	Item	Calculation		Quantity	Unit	Remark
-1-2.	Leveling Concrete	7.00*16.00*0.05	=	5.60	m3	
-1-3.	Backfill	902.94-(6.80*15.80*0.70)-611.63	=	216.10	m3	
-1-4. -2.	Building Pump Equipment	6.80*15.80	=	107.44	m2	
-2-1.		Engne & Auxiliary equipment)		2.00	nos	
-2-2.	Pipe(SP, ϕ 300)	2*(16.771+3.55+3.30+0.60+3.35)	=	55.14	m	φ300、SP
-2-3.	Control Panel			1.00	nos	
-2-4.	Overhead Crane(5ton)			1.00	nos	
-2-5.	Butterfly valve(q350)			2.00	nos	
-2-6.	Check valve(φ 350)			2.00	nos	
-2-7.	Flexible tube(φ 350)			4.00	nos	
-2-8.	Displaced foundation	1/2*(11.00*20.00+15.20*24.20)*2.10-(7.00*16.00*	0.05)	611.63	m3	
- 3. -3-1.	Slope protection Masonry	20.00*(20.00+2.60+20.00)*0.30		255.60	m3	
-3-2.	Support Concrete (18N)		= 11.20 = 0.78			
			11.98	11.98	m3	
-3-3.	Leveling Concrete	2*(1.70*2.20*0.05+0.70*1.50*0.05)	=	0.48	m3	
-3-4.	Gravel	2*(1.70*2.20*0.15+0.70*1.50*0.15)	=	1.44	m3	

	Item	Calculation		Quantity	Unit	Remark
2. 2-1. 2-1-1.	Pipeline Work Pipeline(φ500) Common Excavation	1/2*(2.10+0.80)*1.30*1600.00	=	3,016.00	m3	
		Field-Generated Soil	-	200 600 200 600 1300	k 1	
2-1-2.	Sand(under)	1/2*(1.00+0.80)*0.20*1600.00	=	288.00	m3	
2-1-3.	Sand(around)	$\{1/2*(1.50+1.00)*0.50-0.50^2*\pi/4\}*1600.00$	=	686.00	m3	
2-1-4.	Backfill	1/2*(2.10+1.50)*0.60*1600.00	=	1,728.00	m3	
2-1-5.	Pipe(SP, φ 500)		=	1,600.00	m	

Item of Wo	Item	ge Chamber Work Calculation			Quantity	Unit	Page : 1 / Remark
2-2-1. Co	scharge Chamber ommon Excavation veling Concrete	1/2*((7.30*4.90)+(14.4*12.0))*3.55+(6.3*3.9*(6.4*4.0*0.05	0.20)	=	375.13 1.28	m3 m3	
2-2-3. Gr	avel	6.4*4.0*0.15			3.84	m3	
2-2-4. Ba	ckfill	375.13-7.3*4.9*3.55-6.3*3.9*0.2			243.23	m3	
2-2-5. Re	inforced Concrete	Base 6.6*3.9*0.35 Wall 1 3.9*3.0*0.35*2 Wall 2 5.6*3.0*0.35*2 South c -1.0*1.25 North c -0.9*1.15 Pipe -1/4*3.14*1.2^2		9.01 8.19 11.76 -1.25 -1.04 -1.13 25.54	25.54	m3	

3.3 Main Irrigation Canal Works

	Main Irrigation Canal Works		1.4	million US	5\$
No.	Work Description	Unit	Quantity	Unit Price (US\$)	Total (US\$)
1. TYP	<u>E C1-1</u>				
1-1. Pro	eparatory Work				
1-1-1.	Site Clearing (Cutting & Clearing of Grass, Bushes)	ha	0.5	11,900.0	5,950
	*Average width of excavation x Canal length			Sub total	5,950
1-2. Ea	rth Work				
1-2-1.	Excavation of Surface Soil (200mm Depth)	m3	858	8.0	6,864
1-2-2.	Excavation for Common Soil	m3	265	10.0	2,650
1-2-3.	Spreading (Bulldozer)	m3	1,869	13.0	24,297
1-2-4.	Embankment with Compaction	m3	1,869	14.0	26,166
1-2-5.	Soil (Banking Material)	m3	1,604	7.6	12,190
1-2-6.	Hauling by Dump Truck (Banking Material)	m3	1,604	9.0	14,436
1-2-7.	Aggregate, Crushed, 2-4cm (Gravel Pavement)	m3	188	50.0	9,400
1-2-8.	Spreading of Aggregate (Bulldozer)	m3	188	13.0	2,444
				Sub total	98,447
1-3. Ca	nal Work (Main Canal)				
1-3-1.	Class 18 Concrete (include Form Work)	m3	132	350.0	46,200
				Sub total	46,200
1-4. Ca	nal Structure (Main Canal)				
1-4-1.	Turnout (Slide Gate, B=0.3m, H=0.3m)	unit	4	220.0	880
				Sub total	880
				Total	151,477
2. TYP	<u>E C1-2</u>				
2-1. Pr	eparatory Work				
2-1-1.	Site Clearing (Cutting & Clearing of Grass, Bushes)	ha	2.5	11,900.0	29,750
	*Average width of excavation x Canal length			Sub total	29,750
2-2. Ea	rth Work				
2-2-1.	Excavation of Surface Soil (200mm Depth)	m3	4,150	8.0	33,200
2-2-2.	Excavation for Common Soil	m3	1,221	10.0	12,210
2-2-3.	Spreading (Bulldozer)	m3	7,566	13.0	98,358
2-2-4.	Embankment with Compaction	m3	7,566	14.0	105,924
2-2-5.	Soil (Banking Material)	m3	6,345	7.6	48,222
2-2-6.	Hauling by Dump Truck (Banking Material)	m3	6,345	9.0	57,105
2-2-7.	Aggregate, Crushed, 2-4cm (Gravel Pavement)	m3	975	50.0	48,750
2-2-8.	Spreading of Aggregate (Bulldozer)	m3	975	13.0	12,675
				Sub total	416,444
2-3. Ca	nal Work (Main Canal)				
2-3-1.	Class 18 Concrete (include Form Work)	m3	534	350.0	186,900
				Sub total	186,900
2-4. Ca	nal Structure (Main Canal)				
2-4-1.	Turnout (Slide Gate, B=0.3m, H=0.3m)	unit	21	220.0	4,620
				Sub total	4,620
				Total	637,714

Rejaf East Irrigation Scheme

ANN9-3: APP3/RE-23

3. TYPE	C C 2-1				
	paratory Work				
3-1-1.	Site Clearing (Cutting & Clearing of Grass, Bushes)	ha	0.7	11,900.0	8,330
511.	*Average width of excavation x Canal length	nu	0.7	Sub total	8,330
3-2. Ear	th Work				0,000
3-2-1.	Excavation of Surface Soil (200mm Depth)	m3	1,066	8.0	8,528
3-2-2.	Excavation for Common Soil	m3	354	10.0	3,540
	Spreading (Bulldozer)	m3	2,504	13.0	32,552
	Embankment with Compaction	m3	2,504	14.0	35,056
3-2-5.	Soil (Banking Material)	m3	2,150	7.6	16,340
3-2-6.	Hauling by Dump Truck (Banking Material)	m3	2,150	9.0	19,350
3-2-7.	Aggregate, Crushed, 2-4cm (Gravel Pavement)	m3	225	50.0	11,250
3-2-8.	Spreading of Aggregate (Bulldozer)	m3	225	13.0	2,925
				Sub total	129,541
3-3. Cai	nal Work (Main Canal)				,
3-3-1.	Class 18 Concrete (include Form Work)	m3	180	350.0	63,000
				Sub total	63,000
3-4. Cai	nal Structure (Main Canal)				,
3-4-1.	Turnout (Slide Gate, B=0.3m, H=0.3m)	unit	5	220.0	1,100
				Sub total	1,100
				Total	201,971
4. TYPE	E C2-2				-
4-1. Pre	paratory Work				
4-1-1.	Site Clearing (Cutting & Clearing of Grass, Bushes)	ha	0.6	11,900.0	7,140
	*Average width of excavation x Canal length			Sub total	7,140
4-2. Ear	th Work				
4-2-1.	Excavation of Surface Soil (200mm Depth)	m3	958	8.0	7,664
4-2-2.	Excavation for Common Soil	m3	318	10.0	3,180
4-2-3.	Spreading (Bulldozer)	m3	1,746	13.0	22,698
4-2-4.	Embankment with Compaction	m3	1,746	14.0	24,444
4-2-5.	Soil (Banking Material)	m3	1,428	7.6	10,853
4-2-6.	Hauling by Dump Truck (Banking Material)	m3	1,428	9.0	12,852
4-2-7.	Aggregate, Crushed, 2-4cm (Gravel Pavement)	m3	225	50.0	11,250
4-2-8.	Spreading of Aggregate (Bulldozer)	m3	225	13.0	2,925
				Sub total	95,866
4-3. Ca	nal Work (Main Canal)				
4-3-1.	Class 18 Concrete (include Form Work)	m3	132	350.0	46,200
				Sub total	46,200
4-4. Ca	nal Structure (Main Canal)				
4-4-1.	Turnout (Slide Gate, B=0.3m, H=0.3m)	unit	5	220.0	1,100
				Sub total	1,100
				Total	150,306
5. TYPE	<u>C C3-1</u>				
5-1. Pre	paratory Work				
5-1-1.	Site Clearing (Cutting & Clearing of Grass, Bushes)	ha	0.5	11,900.0	5,950
	*Average width of excavation x Canal length			Sub total	5,950
5-2. Ear	th Work				
5-2-1.	Excavation of Surface Soil (200mm Depth)	m3	828	8.0	6,624
1	Excavation for Common Soil	m3	265	10.0	2,650

	I		· · · ·	······,	
5-2-3.	Spreading (Bulldozer)	m3	1,658	13.0	21,554
5-2-4.	Embankment with Compaction	m3	1,658	14.0	23,212
5-2-5.	Soil (Banking Material)	m3	1,393	7.6	10,587
5-2-6.	Hauling by Dump Truck (Banking Material)	m3	1,393	9.0	12,537
5-2-7.	Aggregate, Crushed, 2-4cm (Gravel Pavement)	m3	188	50.0	9,400
5-2-8.	Spreading of Aggregate (Bulldozer)	m3	188	13.0	2,444
				Sub total	89,008
5-3. Ca	nal Work (Main Canal)				
5-3-1.	Class 18 Concrete (include Form Work)	m3	121	350.0	42,350
				Sub total	42,350
5-4. Ca	nal Structure (Main Canal)				
5-4-1.	Turnout (Slide Gate, B=0.3m, H=0.3m)	unit	4	220.0	880
				Sub total	880
				Total	138,188
6. TYP	E C3-2				
6-1. Pro	eparatory Work				
6-1-1.	Site Clearing (Cutting & Clearing of Grass, Bushes)	ha	0.5	11,900.0	5,950
	*Average width of excavation x Canal length			Sub total	5,950
6-2. Ea	rth Work				
6-2-1.	Excavation of Surface Soil (200mm Depth)	m3	768	8.0	6,144
6-2-2.	Excavation for Common Soil	m3	235	10.0	2,350
6-2-3.	Spreading (Bulldozer)	m3	1,259	13.0	16,367
6-2-4.	Embankment with Compaction	m3	1,259	14.0	17,626
6-2-5.	Soil (Banking Material)	m3	1,024	7.6	7,782
6-2-6.	Hauling by Dump Truck (Banking Material)	m3	1,024	9.0	9,216
6-2-7.	Aggregate, Crushed, 2-4cm (Gravel Pavement)	m3	188	50.0	9,400
6-2-8.	Spreading of Aggregate (Bulldozer)	m3	188	13.0	2,444
				Sub total	71,329
6-3. Ca	nal Work (Main Canal)				
6-3-1.	Class 18 Concrete (include Form Work)	m3	92	350.0	32,200
				Sub total	32,200
6-4. Ca	nal Structure (Main Canal)				
6-4-1.	Turnout (Slide Gate, B=0.3m, H=0.3m)	unit	4	220.0	880
				Sub total	880
				Total	110,359
	Direct Co	nstruction	Cost (A)	1	,390,015
					(US\$
Irrigation	•) Canal Length) Canal Length	• •	750.00 m 3,900.00 m	

 (1) Canal Length Type C1-1=
 750.00 m

 (2) Canal Length Type C1-2=
 3,900.00 m

 (3) Canal Length Type C2-1=
 900.00 m

 (4) Canal Length Type C2-2=
 900.00 m

 (5) Canal Length Type C3-1=
 750.00

 (6) Canal Length Type C3-2=
 750.00

 Total
 7,950.00 m

Item of Work : Main				Page : 1 /
Item	Calculation	Quantity	Unit	Remark
1, TYPE C1-1	T			Γ
1-1. Preparatory Work				
1-1-1. Site Clearing	Width Length 6.9 x 750 / 10000	0.5	ha	
1-2. Earth Work	0.9 X 750 7 10000	0.0	па	
1-2. Earth work				
1-2-1. Stripping	Section(1) Section(2) Length ($0.872 + 0.272$) x 750	858	m3	
1-2-1. Suppling	(0.872 · 0.272)X 750	0.0	mo	
	Section Length			
1-2-2. Excavation	0.353 x 750	265	m3	
1-2-3. Embankment	Section(1) Section(2) Length ($1.996 + 0.496$) x 750	1,869	m3	
	$(1.996 + 0.496) \times 750$	1,009	ШЭ	
	Section Length			
1-2-4. Gravel Pavement	2.5 x 0.1 x 750	188	m3	
1-3. Canal Works				
	Section Length			
1-3-1. Concrete Lining	0.176 x 750	132	m3	
2. TYPE C1-1				
2-1. Preparatory Work				
	Width Length			
2-1-1. Site Clearing	6.5 x 3900 / 10000	2.5	ha	
2-2. Earth Work				
	Section(1) Section(2) Length		•	
2-2-1. Stripping	$(0.832 + 0.232) \times 3900$	4,150	m3	

Item of Work : Main Item	Canal Calculation	Quantity	Unit	Page : 2 / Remark
nem	Calculation	Quantity	Unit	Kemark
	Section Length			
2-2-2. Excavation	0.313 x 3900	1,221	m3	
2-2-3. Embankment	Section(1) Section(2) Length			
	$(1.57 + 0.37) \times 3900$	7,566	m3	
	Section Length	075	2	
2-2-4. Gravel Pavement	2.5 x 0.1 x 3900	975	m3	
2-3. Canal Works	Section Length			
2-3-1. Concrete Lining	$\begin{array}{c} 0.137 \text{x} 3900 \end{array}$	534	m3	
3. TYPE C2-1				
3-1. Preparatory Work	Width Length			
	Width Length 7.3 x 900 / 10000	0.7	ha	
3-1. Preparatory Work3-1-1. Site Clearing3-2. Earth Work	6	0.7	ha	
3-1-1. Site Clearing 3-2. Earth Work	7.3 x 900 / 10000 Section(1) Section(2) Length			
3-1-1. Site Clearing	7.3 x 900 / 10000	0.7 1,066	ha m3	
3-1-1. Site Clearing3-2. Earth Work3-2-1. Stripping	7.3 x 900 / 10000 Section(1) Section(2) Length ($0.892 + 0.292$) x 900 Section Length	1,066	m3	
3-1-1. Site Clearing 3-2. Earth Work	7.3 x 900 / 10000 Section(1) Section(2) Length ($0.892 + 0.292$) x 900			
3-1-1. Site Clearing3-2. Earth Work3-2-1. Stripping	$7.3 \times 900 / 10000$ Section(1) Section(2) Length (0.892 + 0.292) x 900 Section Length 0.393 x 900 Section(1) Section(2) Length	1,066 354	m3	
 3-1-1. Site Clearing 3-2. Earth Work 3-2-1. Stripping 3-2-2. Excavation 	7.3 x 900 / 10000 Section(1) Section(2) Length ($0.892 + 0.292$) x 900 Section Length 0.393×900	1,066	m3	
 3-1-1. Site Clearing 3-2. Earth Work 3-2-1. Stripping 3-2-2. Excavation 	$7.3 \times 900 / 10000$ Section(1) Section(2) Length (0.892 + 0.292) x 900 Section Length 0.393 x 900 Section(1) Section(2) Length	1,066 354	m3 m3	

Item	Calculation	Quantity	Unit	Page : 3 / . it Remark		
item		Quantity	Ome	rtemark		
3-3. Canal Works						
3-3-1. Concrete Lining	Section Length 0.2 x 900	180	m3			
5-5-1. Concrete Lining	0.2 X 900	100				
4. TYPE C2-2						
4-1. Preparatory Work						
4-1-1. Site Clearing	Width Length 6.6 x 900 / 10000	0.6	ha			
4-2. Earth Work						
	Section(1) Section(2) Length					
4-2-1. Stripping	$(0.832 + 0.232) \times 900$	958	m3			
	Section Length					
4-2-2. Excavation	0.353 x 900	318	m3			
4-2-3. Embankment	Section(1) Section(2) Length					
	$(1.57 + 0.37) \times 900$	1,746	m3			
	Section Length					
4-2-4. Gravel Pavement	2.5 x 0.1 x 900	225	m3			
4-3. Canal Works						
4-3-1. Concrete Lining	Section Length 0.147 x 900	132	m3			
2	0.147 X 900	132				
5. TYPE C3-1			1	T		
5-1. Preparatory Work						
5-1-1. Site Clearing	Width Length 6.8 x 750 / 10000	0.5	ha			

Item	Calculation	Quantity	Unit	Remark
5-2. Earth Work				
	Section(1) Section(2) Length			
5-2-1. Stripping	(0.852 + 0.252 $)$ x 750	828	m3	
	Section Length			
5-2-2. Excavation	0.353 x 750	265	m3	
5-2-3. Embankment	Section(1) Section(2) Length			
	$(1.78 + 0.43) \times 750$	1,658	m3	
	Section Length			
5-2-4. Gravel Pavement	2.5 x 0.1 x 750	188	m3	
5-3. Canal Works				
	Section Length			
5-3-1. Concrete Lining	0.161 x 750	121	m3	
6. TYPE C3-2			<u> </u>	
6-1. Preparatory Work				
	Width Length	0.5		
6-1-1. Site Clearing	6.3 x 750 / 10000	0.5	ha	
6-2. Earth Work				
6-2-1. Stripping	Section(1) Section(2) Length ($0.812 + 0.212$) x 750	768	m3	
0-2-1. Sulpping	$(0.012 + 0.212) \times +50$	700	111.5	
	Section Length			
6-2-2. Excavation	0.313 x 750	235	m3	
6-2-3. Embankment	Section(1) Section(2) Length ($1.364 + 0.314$) x 750	1,259	m3	
		1,200		

Irrigation Scheme : Rejaf E Item of Work : Main C	ast Irrigation Scheme anal			Page: 5 / 5
Item	Calculation	Quantity	Unit	Remark
6-2-4. Gravel Pavement 6-3. Canal Works	Section Length 2.5 x 0.1 x 750	188	m3	
6-3-1. Concrete Lining	Section Length 0.123 x 750	92	m3	

APPENDIX - 4

OPERATION AND MAINTENANCE PLAN COST

4.1 Unit Cost of Personnel Expenses (SSP/month)

Department	Staffing and Specialization	Grade	Basic Pay (SSP per Month)	Average Pay (SSP per Month)	Accom. Allo. (SSP per Month)	Cost of Living Allo. (SSP per Month)	Respon. Allo.	Represen. Allo. (SSP per Month)	Job Specific (SSP per Month)	Gross Pay (SSP per Month)	Pension Contri. (5%of Gross)	Income Tax: 10% of (Gross-300- Pension)	Net Pay
1. Management	Manager (Irrigation/Dam Eng.)	3	1,625/2,00	1,813	1,800	75	88	88	810	4,674	234	414	4,026
staff	Deputy Manager (Electromechanical Eng.)	4	1525/1714	1620	1200	75	75	75	730	3,775	189	329	3258
	Senior Accountant	7	1188/1388	1,288	630	63			650	2,631	132	220	2280
	Assistant Accountant	9	925/1125	1,025	630	50			450	2,155	108	175	1873
	Cooperative/Marketing Officer	8	1075/1200	1,138	630	50			580	2,398	120	198	2080
	Asst. Cooperative/Marketing Officer	9	925/1125	1,025	630	50			450	2,155	108	175	1873
	Tariff Collector (Book-keeper)	12	375/440	408	450	38			400	1,296	65	93	1138
	Messenger/Guard/Driver	13	313/378	346	450	38			390	1,224	61	86	1077
2. Irrigation/Dam	Senior Irri./Dam Eng. (Dam/Pump)	7	1188/1388	1,288	630	63			650	2,631	132	220	2280
Operations and Maintenance	Electro-mechanical Eng.	8	1075/1200	1,138	630	50			580	2,398	120	198	2080
Maintenance	Planning and Bugeting Officer	8	1075/1200	1,138	630	50			580	2,398	120	198	2080
	Asst. Irrigation/Dam Eng.	9	925/1125	1,025	630	50			450	2,155	108	175	1873
	Asst. Planning and Bugeting Officer	9	925/1125	1,025	630	50			450	2,155	108	175	1873
	Irrigation Technician	10	825/950	888	450	38			440	1,816	91	142	1582
	Pump operator	11	500/565	533	450	38			410	1,431	72	106	1254
	Irrigation Water Control Gate Operator	11	500/565	533	450	38			410	1,431	72	106	1254
	Facilities' Guards	11	500/565	533	450	38			410	1,431	72	106	1254
3. Farm Level	Senior Agronomist	7	1188/1388	1,288	630	63			650	2,631	132	220	2280
Operations	Agronomist	8	1075/1200	1,138	630	50			580	2,398	120	198	2080
	Agricultural Engineer	8	1075/1200	1,138	630	50			580	2,398	120	198	2080
	Asst. Agricultural Engineer	9	925/1125	1,025	630	50			450	2,155	108	175	1873
	Extension Worker	10	825/950	888	450	38			440	1,816	91	142	1582
	Tractor Operator	11	500/565	533	450	38			410	1,431	72	106	1254
	Asst. Tractor Operator	13	313/378	346	450	38			390	1,224	61	86	1077
4. Processing	Rice mill operator	10	825/950	888	450	38			440	1,816	91	142	1582
Operations	Asst. Rice mill operator	11	500/565	533	450	38			410	1,431	72	106	1254
Total per month				24,540	16,140	1,257	163	163	13,190	55,453	2,773	4,488	48,192
Total per year				294,474	193,680	15,084	1,956	1,956	158,280	665,430	33,272	53,856	578,303

ANN9-3: APP4/RE-1

4.2 Annual Personnel Expenses (SSP/year)

			Rejaf East Irrigation Scheme				
Department	Required Staff and Specialization	Grade	Prposed Number of Staff	Salary Budget (Gross in SSP)			
Management staff	Manager (Irrigation/Dam Eng.)	3	1	4,674			
	Deputy Manager (Electromechanical Eng.)	4	1	3,775			
	Senior Accountant	7	1	2,631			
	Cooperative/Marketing Officer	8	1	2,155			
	Assistant Accountant	9	1	2,398			
	Asst. Cooperative/Marketing Officer	9	1	2,155			
	Tariff Collector	12	2	1,296			
	Messenger/Guard/Driver	13	6	1,224			
Irrigation/Dam	Senior Irri./Dam Eng, (Dam/Pump)	7	1	2,631			
Operations and	Electromechanical Eng.	8	1	2,398			
Maintenance	Planning and Bugeting Officer	8	1	2,398			
	Asst. Irrigation/Dam Eng.	9	1	2,155			
	Asst. Planning and Bugeting Officer	9	1	2,155			
	Irrigation Technician	10	2	1,816			
	Pump operator	11	2	1,431			
	Irrigation Water Control Gate Operator	11	2	1,431			
	Facilities' Guards	11	4	1,431			
FarmLevel	Senior Agronomist	7	1	2,631			
Operations	Agronomist	8	1	2,398			
	Agricultural Engineer	8	1	2,398			
	Asst. Agricultural Engineer	9	1	2,155			
	Extension Worker	10	2	1,816			
	Tractor Operator	11	1	1,431			
	Asst. Tractor Operator	13	1	1,224			
Processing	Rice mill operator	10	0	0			
Operations	Asst. Rice mill operator	11	0	0			
Total per month			37	52,206			
Total per year				626,472			

Note: W = Wau, JL = Jebel Lado and RE = Rejaf East

4.3 Equipment and Machinery Investment Cost

		Unit Cost	Depreciation	Depreciation	Rejaf East l	rrigation Scheme
Cost Item	Grade/Spec	(SSP/unit) /a	Schedule /b	Cost /c	Number	Cost (SSP/year)
Equipment/Machineries						
Motor Grader	220HP (John Deere)	2,141,480	15	128,500	1	128,500
Backhoe Loader	422F (Caterpillar)	953,304	15	57,200	1	57,200
Wheel Loaders	938H (Caterpillar)	2,030,952	15	121,900	1	121,900
Dump Truck	6 × 4 18CUM (Caterpillar)	863,500	15	51,800	1	51,800
Motor Bike		10,000	10	900	2	1,800
Tractor /d	75HP, 4WD (John Deere)	203,786	10	18,300	5	91,500
Attachment (plough)	3-disc (John Deere)	27,632	10	2,500	5	12,500
Attachment (harrow)	20-disc manually operated (John	43,175	10	3,900	5	19,500
Attachment (levellers)		3,600	10	300	5	1,500
Attachment (sprayer)	400ml, 8M (John Deere)	46,974	10	4,200	5	21,000
Attachment (fertilizer distributor)		13,816	10	1,200	5	6,000
Attachment (trailer)	5 tonne (John Deere)	58,718	10	5,300	5	26,500
Combine Harvester		81,000	10	7,300	3	21,900
Working machines (Workshop)						
Pick-pu Track	Single Cabine (4DW)	20,900	10	1,900	2	3,800
Portable Generator	240V Capacity	112,545	8	12,700	2	25,400
Nattery Charger	72V Chapacity	500	8	100	2	200
Generator	Perkins Type 1500RPM 150 kVA (380- 54\\415V)	357,441	8	40,200	1	40,200
Lathe Machine	Universal High Precision	54,600	8	6,100	1	6,100
Power Saw		6,400	5	1,200	1	1,200
Welding Machine	Arc	2,700	5	500	2	1,000
Welding Machine	Acetylene Gas Welding	1,800	5	300	2	600
Power Drill	Portable Heavy Duty Hand Drill	500	5	100	1	100
Rice Mill						
Rice Mill	2.0t/hr	409,500	15	24,600		
Grain Threshing Machine	Vicon Type 1 tonne/hr	7,300	15	400		
Drying Machine		36,400	15	2,200		
Warehouse		41,000	15	2,500		
Total		,			58	640,200
Nata a / Dria a mustationa ana aktair			(Ostan: III.a.)		Dahah Ilitai	,=••

Note: a/ Price quotations are obtained from Lonagro South Sudan Ltd. (Jhon Deere), Ezentus (Catepillar), and Aweil Irrigation Rehabilitation Project.

b/ Depreciation schedule is quoted from water supply project in Sounth Asia.

c/10% of residual value is taken into account in estimation of depreciation cost.

4.4 Equipment and Machinery O&M Cost

Backhoe Loader 90HP 953,304 9,530 1 Wheel Loaders 80HP 2,030,952 20,310 1 2 Dump Truck 160HP 863,500 8,640 1 1 Motor Bike 10,000 100 2 1 2 Tractor /d 75HP, 4WD 203,786 2,040 5 2 Attachment (plough) 3-disc 27,632 280 5 Attachment (levellers) 3-disc 27,632 280 5 Attachment (levellers) 3.600 40 5 5 Attachment (sprayer) 400ml, 8M 46,974 470 5 Attachment (fertilizer distributor) 13,816 140 5 Attachment (trailer) 5 tonne 58,718 590 5 Combine Harvester 81,000 810 3 3 Working machines (Workshop) 2 2 2 2 Pick-pu Track Single Cabine (4DW) 20,900 210 2	-
Motor Grader 150-160HP 2,141,480 21,410 1 2 Backhoe Loader 90HP 953,304 9,530 1 1 2 Backhoe Loaders 80HP 2,030,952 20,310 1 2 Dump Truck 160HP 863,500 8,640 1 1 Motor Bike 10,000 100 2 1 1 2 Tractor /d 75HP, 4WD 203,786 2,040 5 1 Attachment (plough) 3-disc 27,632 280 5 1 Attachment (levellers) 3-disc 27,632 280 5 1 Attachment (sprayer) 400ml, 8M 46,974 470 5 1 3 1 1 3 1 1 3 1 1 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>9,530 0,310 8,640 200 0,200 1,400</td>	9,530 0,310 8,640 200 0,200 1,400
Backhoe Loader 90HP 953,304 9,530 1 Wheel Loaders 80HP 2,030,952 20,310 1 2 Dump Truck 160HP 863,500 8,640 1 1 Motor Bike 10,000 100 2 1 2 Tractor /d 75HP, 4WD 203,786 2,040 5 2 Attachment (plough) 3-disc 27,632 280 5 Attachment (levellers) 3-disc 27,632 280 5 Attachment (levellers) 3,600 40 5 Attachment (sprayer) 400ml, 8M 46,974 470 5 Attachment (fertilizer distributor) 13,816 140 5 Attachment (trailer) 5 tonne 58,718 590 5 Combine Harvester 81,000 810 3 3 Working machines (Workshop) 2 2 2 2 Prick-pu Track Single Cabine (4DW) 20,900 210 2 <tr< td=""><td>9,530 0,310 8,640 200 0,200 1,400</td></tr<>	9,530 0,310 8,640 200 0,200 1,400
Wheel Loaders 80HP 2,030,952 20,310 1 Dump Truck 160HP 863,500 8,640 1 Motor Bike 10,000 100 2 Tractor /d 75HP, 4WD 203,786 2,040 5 Attachment (plough) 3-disc 27,632 280 5 Attachment (levellers) 3-disc 27,632 280 5 Attachment (levellers) 3,600 40 5 44 Attachment (sprayer) 400ml, 8M 46,974 470 5 Attachment (ferilizer distributor) 13,816 140 5 44 Attachment (freilizer distributor) 5 tonne 58,718 590 5 Combine Harvester 81,000 810 3 400 3 400 2 400 2 400 2 400 2 400 5 400 5 400 5 400 5 400 5 400 5 400 5 400 <	0,310 8,640 200 0,200 1,400
Dump Truck 160HP 863,500 8,640 1 Motor Bike 10,000 100 2 Tractor /d 75HP, 4WD 203,786 2,040 5 Attachment (plough) 3-disc 27,632 280 5 Attachment (harrow) 20-disc manually operated 43,175 430 5 Attachment (levellers) 3,600 40 5 440 Attachment (sprayer) 400ml, 8M 46,974 470 5 Attachment (fertilizer distributor) 13,816 140 5 Attachment (trailer) 5 tonne 58,718 590 5 Combine Harvester 81,000 810 3 9 Pick-pu Track Single Cabine (4DW) 20,900 210 2 Portable Generator 240V Capacity 112,545 1,130 2 Battery Charger 72V Chapacity 500 10 2 Generator Perkins Type 1500RPM 150 kVA (380-54\l\415V) 357,441 3,570 1	8,640 200 0,200 1,400
Motor Bike 10,000 100 2 Tractor /d 75HP, 4WD 203,786 2,040 5 Attachment (plough) 3-disc 27,632 280 5 Attachment (harrow) 20-disc manually operated 43,175 430 5 Attachment (levellers) 3,600 40 5 Attachment (sprayer) 400ml, 8M 46,974 470 5 Attachment (fertilizer distributor) 13,816 140 5 Attachment (railer) 5 tonne 58,718 590 5 Combine Harvester 81,000 810 3 9 Pick-pu Track Single Cabine (4DW) 20,900 210 2 Portable Generator 240V Capacity 112,545 1,130 2 Battery Charger 72V Chapacity 500 10 2 Generator Perkins Type 1500RPM 150 kVA (380-54\\(415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	200 0,200 1,400
Tractor/d 75HP, 4WD 203,786 2,040 5 Attachment (plough) 3-disc 27,632 280 5 Attachment (harrow) 20-disc manually operated 43,175 430 5 Attachment (levellers) 3,600 40 5 5 Attachment (levellers) 3,600 40 5 5 Attachment (sprayer) 400ml, 8M 46,974 470 5 Attachment (fertilizer distributor) 13,816 140 5 5 Attachment (trailer) 5 tonne 58,718 590 5 5 Combine Harvester 81,000 810 3 5 5 Pick-pu Track Single Cabine (4DW) 20,900 210 2 2 Portable Generator 240V Capacity 112,545 1,130 2 5 Battery Charger 72V Chapacity 500 10 2 5 Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 1 </td <td>0,200 1,400</td>	0,200 1,400
Attachment (plough) 3-disc 27,632 280 5 Attachment (harrow) 20-disc manually operated 43,175 430 5 Attachment (levellers) 3,600 40 5 5 Attachment (levellers) 400ml, 8M 46,974 470 5 Attachment (sprayer) 400ml, 8M 46,974 470 5 Attachment (fertilizer distributor) 13,816 140 5 Attachment (trailer) 5 tonne 58,718 590 5 Combine Harvester 81,000 810 3 Working machines (Workshop) 20,900 210 2 Portable Generator 240V Capacity 112,545 1,130 2 Battery Charger 72V Chapacity 500 10 2 Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	1,400
Attachment (harrow) 20-disc manually operated 43,175 430 5 Attachment (levellers) 3,600 40 5 Attachment (sprayer) 400ml, 8M 46,974 470 5 Attachment (fertilizer distributor) 13,816 140 5 Attachment (trailer) 5 tonne 58,718 590 5 Combine Harvester 81,000 810 3 3 Working machines (Workshop) 240V Capacity 112,545 1,130 2 Portable Generator 240V Capacity 112,545 1,130 2 2 Generator 72V Chapacity 500 10 2 2 Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	
Attachment (levellers) 3,600 40 5 Attachment (sprayer) 400ml, 8M 46,974 470 5 Attachment (fertilizer distributor) 13,816 140 5 Attachment (trailer) 5 tonne 58,718 590 5 Combine Harvester 81,000 810 3 Working machines (Workshop) 2 2 Pick-pu Track Single Cabine (4DW) 20,900 210 2 Portable Generator 240V Capacity 112,545 1,130 2 Battery Charger 72V Chapacity 500 10 2 Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	2,150
Attachment (sprayer) 400ml, 8M 46,974 470 5 Attachment (fertilizer distributor) 13,816 140 5 Attachment (fertilizer distributor) 5 tonne 58,718 590 5 Combine Harvester 81,000 810 3 Working machines (Workshop) Pick-pu Track Single Cabine (4DW) 20,900 210 2 Portable Generator 240V Capacity 112,545 1,130 2 Battery Charger 72V Chapacity 500 10 2 Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	,
Attachment (fertilizer distributor) 13,816 140 5 Attachment (trailer) 5 tonne 58,718 590 5 Combine Harvester 81,000 810 3 Working machines (Workshop) 20,900 210 2 Pick-pu Track Single Cabine (4DW) 20,900 210 2 Portable Generator 240V Capacity 112,545 1,130 2 Battery Charger 72V Chapacity 500 10 2 Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	200
Attachment (trailer) 5 tonne 58,718 590 5 Combine Harvester 81,000 810 3 Working machines (Workshop) 20,900 210 2 Pick-pu Track Single Cabine (4DW) 20,900 210 2 Portable Generator 240V Capacity 112,545 1,130 2 Battery Charger 72V Chapacity 500 10 2 Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	2,350
Combine Harvester 81,000 810 3 Working machines (Workshop) 810 3 3 3 Pick-pu Track Single Cabine (4DW) 20,900 210 2 Portable Generator 240V Capacity 112,545 1,130 2 Battery Charger 72V Chapacity 500 10 2 Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	700
Working machines (Workshop) Single Cabine (4DW) 20,900 210 2 Pick-pu Track Single Cabine (4DW) 20,900 210 2 Portable Generator 240V Capacity 112,545 1,130 2 Battery Charger 72V Chapacity 500 10 2 Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	2,950
Pick-pu Track Single Cabine (4DW) 20,900 210 2 Portable Generator 240V Capacity 112,545 1,130 2 Battery Charger 72V Chapacity 500 10 2 Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	2,430
Portable Generator 240V Capacity 112,545 1,130 2 Battery Charger 72V Chapacity 500 10 2 Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	
Battery Charger 72V Chapacity 500 10 2 Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	420
Generator Perkins Type 1500RPM 150 kVA (380-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	2,260
Generator 330-54\\415V) 357,441 3,570 1 Lathe Machine Universal High Precision 54,600 550 1	20
	3,570
Bewer Sev. 6 400 00 4	550
Power Saw 6,400 60 1	60
Welding Machine Arc 2,700 30 2	60
Welding Machine Acetylene Gas Welding 1,800 20 2	40
Power Drill Portable Heavy Duty Hand Drill 500 10 1	10
Rice Mill	
Rice Mill 1.0-2.0thr 409,500 4,100	_
Grain Threshing Machine Vicon Type 1 tonne/hr 7,300 70	\sim
Drying Machine 36,400 360	
Warehouse 41,000 410	\sim
Total 58 58	

Note: a/ Price quotations are obtained from Lonagro South Sudan Ltd. (Jhon Deere), Ezentus (Catepillar), and Aweil Irrigation Rehabilitation Project

b/ Depreciation schedule is quoted from water supply project in Sounth Asia.

c/ 10% of residual value is taken into account in estimation of depreciation cost.

4.5 Water Tariff Estimation

	Rejaf East Irrigation Scheme			
	Detail	SSP		
A. Project Cost (SSP)	USD 25,000,000	73,214,286		
B. Depreciation Cost (SSP/year)		8,698,067		
Project Facility	1,081,797	3,168,119		
Equipment and Machinary		640,200		
C. Annual O&M Cost (SSP/year)				
Personnel Expenses		626,472		
Pump Operation	USD 1,400,206	4,100,602		
Equipment and Machinary (1% of Procurement Cost)		89,460		
Maintenance Cost (0.1% of Project Cost)		73,214		
Sub-total (Annual Operation Cost)		4,889,748		
D. Irrigable Area (ha)		922		
Annual O&M Cost per Irrigable Area (SSP/ha)		5,303		
Minimum Area for Feeding Family (ha/HH/year) /a		0.42		
Number of Lot for Distribution (1lot = 1feddan = 0.42ha)		2,195		
E. Water Consumption (m ³ /season)	Total	20,444,535		
Crop 1	Maize	3,555,312		
Crop 2	Vegetables	3,079,545		
Crop 3	Groundnuts	13,809,678		
F. Water Tariff Estimation				
Area-based Pricing (SSP/lot, or SSP/feddan)		SSP 2,230 fd		
Volumetric Pricing 1 (SSP/m ³)	Total	SSP 0.24 m3		
Crop 1	Maize	SSP 1.38 m3		
Crop 2	Vegetables	SSP 1.59 m3		
Crop 3	Groundnuts	SSP 0.35 m3		
Volumetric Pricing 2 (SSP/season/feddan)				
Crop 1	869 ac	SSP 1,000 fd		
Crop 2	388 ac	SSP 1,900 fd		
Crop 3	2,195 ac	SSP 1,500 fd		
Volumetric Pricing 2 (SSP/season/ha)				
Crop 1	365 ha	SSP 2,300 ha		
Crop 2	163 ha	SSP 4,500 ha		
Crop 3	922 ha	SSP 3,600 ha		
Member's Fee (SSP/lot) /b		SSP 695 /ha		
Member's Fee (In Kind = Labor Work in days) /c		17 days/year		

Note: a/ Necessary area for feeding family members (7person/HH) by planting maize is estimated at 0.21ha. Planned yield of maize is 3t/ha.

b/ Members' fee is estimated by dividing number of lot into depreciation cost of equipment and machinary.

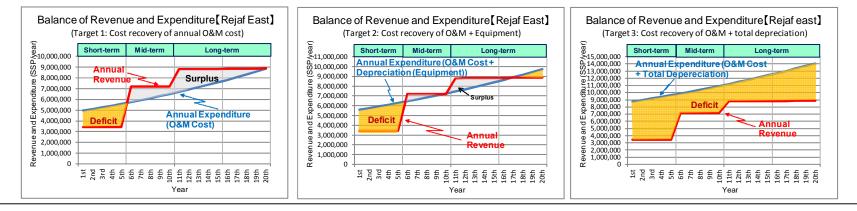
c/ In kind is equivalent to labor cost of SSP40/ha.

4.6 Affordability to Pay (ATP)

Term	Crops	Net Income /a (SSP/ha)	Cropped Area (ha)	Total Net Income (SSP/ha)	Affordability Rate (%)	AT P (SSP/ha)	Estimated ISF (SSP/ha)	ISF Adjustd (SSP/ha)
	Maize	4,699	346	1,625,854	3%	140	2,381	140
Short-term	Vegetable	265,470	746	198,040,620	3%	7,960	4,524	4,524
Short-term	Groundnuts	4,466	155	692,230	3%	130	3,571	130
	Weighted Average	160,673	1,247	200,358,704	3%	4,820	2,230	2,230
	Maize	4,699	0	0	5%	230	2,381	230
<id-term< td=""><td>Vegetable</td><td>265,470</td><td>1,748</td><td>464,041,560</td><td>5%</td><td>13,270</td><td>4,524</td><td>4,524</td></id-term<>	Vegetable	265,470	1,748	464,041,560	5%	13,270	4,524	4,524
<iu-term< td=""><td>Groundnuts</td><td>4,466</td><td>0</td><td>0</td><td>5%</td><td>220</td><td>3,571</td><td>220</td></iu-term<>	Groundnuts	4,466	0	0	5%	220	3,571	220
	Weighted Average	265,470	1,748	464,041,560	5%	13,270	2,230	2,230
	Maize	4,699	0	0	8%	380	2,381	380
Long form	Vegetable	265,470	1,748	464,041,560	8%	21,240	4,524	4,524
Long-term	Groundnuts	4,466	0	0	8%	360	3,571	360
	Weighted Average	265,470	1,748	464,041,560	8%	21,240	2,230	2,230

Note: a/ "Net income" is not cosidered in family labor cost.

4.7 Cash Flow Analysis


			Short-term					Mid-term			Long-term									
	1st Year	2nd Year	3rd Year	4th Year	5th Year	6th Year	7th Year	8th Year	9th Year	10th Year	11th Year	12th Year	13th Year	14th Year	15th Year	16th Year	17th Year	18th Year	19th Year	20th Year
Revenue																				
Member Fee /a	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940	640,940
Irrigation Service Fee /b	3,714,167	3,714,167	3,714,167	3,714,167	3,714,167	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619
ISF Collection Rate	70%	70%	70%	70%	70%	80%	80%	80%	80%	80%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
Amount of ISF Collected	2,599,917	2,599,917	2,599,917	2,599,917	2,599,917	6,326,095	6,326,095	6,326,095	6,326,095	6,326,095	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619	7,907,619
Tractor Service Fee /c	174,800	180,638	186,672	192,906	199,350	206,008	212,888	219,999	227,347	234,940	242,787	250,896	259,276	267,936	276,885	286,133	295,690	305,566	315,772	326,319
Sub-total	3,415,657	3,421,495	3,427,528	3,433,763	3,440,206	7,173,043	7,179,924	7,187,034	7,194,382	7,201,976	8,791,346	8,799,455	8,807,835	8,816,495	8,825,444	8,834,692	8,844,249	8,854,125	8,864,331	8,874,878
Expemditure																				
Annual O&M Cost (SSP/year)																				
Personnel Expenses	679,500	690,848	702,385	714,115	726,040	738,165	750,493	763,026	775,768	788,724	801,895	815,287	828,902	842,745	856,819	871,128	885,676	900,466	915,504	930,793
Pump Operation	4,100,602	4,237,562	4,379,097	4,525,359	4,676,506	4,832,701	4,994,113	5,160,916	5,333,291	5,511,423	5,695,505	5,885,734	6,082,318	6,285,467	6,495,402	6,712,348	6,936,541	7,168,221	7,407,640	7,655,055
Equipment and Machinary (1% of Procurement Cost)	89,460	92,448	95,536	98,727	102,024	105,432	108,953	112,592	116,353	120,239	124,255	128,405	132,694	137,126	141,706	146,439	151,330	156,384	161,607	167,005
Maintenance Cost (0.1% of Project Cost)	73,214	74,437	75,680	76,944	78,229	79,535	80,864	82,214	83,587	84,983	86,402	87,845	89,312	90,803	92,320	93,862	95,429	97,023	98,643	100,290
Sub-total	4,942,776	5,095,295	5,252,697	5,415,144	5,582,799	5,755,833	5,934,422	6,118,748	6,308,999	6,505,368	6,708,057	6,917,271	7,133,226	7,356,142	7,586,246	7,823,776	8,068,975	8,322,095	8,583,394	8,853,144
Depreciation Cost (SSP/year)																				
Project Facility	3,168,119	3,221,026	3,274,818	3,329,507	3,385,110	3,441,641	3,499,116	3,557,552	3,616,963	3,677,366	3,738,778	3,801,216	3,864,696	3,929,236	3,994,855	4,061,569	4,129,397	4,198,358	4,268,470	4,339,754
Equipment and Machinary	640,200	650,891	661,761	672,813	684,049	695,472	707,087	718,895	,	743,107	755,516	768,134	780,961	794,003	807,263	820,745	834,451	848,386	862,554	876,959
Sub-total	3,808,319	3,871,918	3,936,579	4,002,320	4,069,158	4,137,113		4,276,447	1. 1	1 . 1 .	4,494,295	4,569,349	4,645,657	4,723,240	4,802,118	4,882,313	4,963,848	5,046,744	5,131,025	5,216,713
Annual O&M + Depreciation (Equipment)	5,582,976	5,746,186	5,914,459	6,087,956	6,266,848	6,451,305		6,837,643	1	7,248,475	7,463,573	7,685,405	7,914,187	8,150,145	8,393,510	8,644,521	8,903,426	9,170,481	9,445,949	9,730,103
Annual O&M + Depreciation (Total)	8,751,095	8,967,213	9,189,276	9,417,463	9,651,957	9,892,946	10,140,625	10,395,195	10,656,862	10,925,841	11,202,351	11,486,621	11,778,883	12,079,381	12,388,364	12,706,090	13,032,823	13,368,839	13,714,419	14,069,857
Balance /d																				
Target 1: Annual O&M Cost	-1,527,120	-1,673,800	-1,825,169	-1,981,381	-2,142,593	1,417,210	1,245,501	1,068,286	885,383	696,607	2,083,290	1,882,184	1,674,609	1,460,354	1,239,198	1,010,916	775,274	532,031	280,937	21,734
Subsidy (SSP/year)	1,527,120	1,673,800	1,825,169	1,981,381	2,142,593	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Subsidy(%)	31%	33%	35%	37%	38%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Target 2: Annual O&M Cost + Deprecoation (Equipment)	-2,167,320	-2,324,691	-2,486,930	-2,654,193	-2,826,641	721,738	538,415	349,391	154,483	-46,499	1,327,773	1,114,051	893,648	666,350	431,935	190,171	-59,177	-316,356	-581,618	-855,225
Subsidy (SSP/year)	2,167,320	2,324,691	2,486,930	2,654,193	2,826,641	-	-	-	-	46,499	-	-	-	-	-	-	59,177	316,356	581,618	855,225
Subsidy(%)	39%	40%	42%	44%	45%	0%	0%	0%	0%	1%	0%	0%	0%	0%	0%	0%	1%	3%	6%	9%
Target 3: Annual O&M Cost + Deprecoation (Total)	-5,335,439	-5,545,718	-5,761,748	-5,983,700	-6,211,751	-2,719,903	-2,960,702	-3,208,161	-3,462,480	-3,723,866	-2,411,005	-2,687,165	-2,971,048	-3,262,886	-3,562,920	-3,871,397	-4,188,574	-4,514,714	-4,850,088	-5,194,979
Subsidy(SSP/year)	5,335,439	5,545,718	5,761,748	5,983,700	6,211,751	2,719,903	2,960,702	3,208,161	3,462,480	3,723,866	2,411,005	2,687,165	2,971,048	3,262,886	3,562,920	3,871,397	4,188,574	4,514,714	4,850,088	5,194,979
Subsidy(%)	61%	62%	63%	64%	64%	27%	29%	31%	32%	34%	22%	23%	25%	27%	29%	30%	32%	34%	35%	37%

Note: a/ Member fee (fixed charge per year) is estimated by dividing procurment cost of equipment by number of lot (=1 feddan). In Wau, milling facility is excluded from the procurment cost.

b/ Irrigation service fee (ISF) is estimated by dividing total water consumption volume by each crops' water consumption volume in a season.

c/ Unit price of tractor service fee is SSP200/feddan, quoted from Socio-economic Survey conducted by IDMP-TT in 2015.

d/ Balance is estimated to cover annual O&M cost by revenue of the scheme.

ANN9-3: APP4/RE-7

APPENDIX - 5

ENVIRONMENTAL AND SOCIAL CONSIDERATIONS

Evaluation Sheet for Alternatives

Project Title: Irrigation Development in Rejaf East

Evaluation Method

Evaluation method	Evaluation criteria: 5: Exceptionally suitab	le, 4: Suitable, 3: Negligible/ Neutral					
	2: Not suggestible, 1: Suggest avoiding						
	Evaluation items						
	õPollutionö includes:	õAir Pollution ö, õWater Pollution ö, õWasteö, õSoil/Sediment					
		Contaminationö,					
		õNoise and Vibrationö, õOdourö, õGlobal Warmingö					
	õBiodiversityö includes:	õProtected Areasö õEcosystemö					
	õNature, disasters ö includes:	õHydrologyö, õTopography and Geologyö, õSubsidence / Erosionö,					
		, õLandscapeö					
	õLand occupies resettlement ö includes:	õResettlementö. õLand Useö					
	õSocial conflictö includes:	õVulnerable Groupsö, õWater Use / Rightsö					
	õLiving conditionö includes:	õLiving and Livelihood ö, õLocal Economy ö, õHistorical / Cultural					
		Heritageö					
		õSocial Infrastructure / Services ö, õInfectious Diseases ö					
	õEconomy, development ö means: contr	bution to economic improvement in the RSS					
	õConsistencyö means: consistency / ha	monization with the RSS policies					

Project Summary

	Alternative A		Zero option
Project Summary	Pump irrigation	No project	

Evaluation Valuation Items		Alternative A	Zero option
Natural	Average of a), b), c) (1)	2.7	3.0
Environment	a) Pollution	3 3	
	b) Ecosystem	2 3	
	c) Nature, disasters	3 3	
	Reason		
Social Environment	Average of a), b), c) (2)	2.3	3.0
	a) Land occupies, resettlement	2 3	
	b) Social conflict	2 3	
	c) Living condition	3 3	
	Reason		
Economy,	Average of a), b), c) (3)	4.5	3.0
development	a) Economy, development	5 3	
	b) Consistency	4 3	
	Reason		

Results

	Alternative A	Alternative B	Zero option
Total score $(1) + (2) + (3)$	9.5 9.0		
Ranking	1 2		
Overall	The project site has high land potential because of its by selling agricultural production.	s location adjacent Juba city. It is expected to generate	e cash income

Project Title: Irrigation Development in Rejaf East

Project Activity: Pre-construction

Land preparation

F	Environmental Items	Duration	Extent	Intens	sitv	Cumulati	ive	Reversible	Total Score (T)			
		a)	b)	c)	•	d)		e)	a)+b)+c)+d)+e)			
		Short: 1	Limited: 1	Small/Negli	igible: 1	Non-Cumulat	ive: 1	Reversible: 1	/ Rank			
		Medium: 2 Long: 3	Medium: 2 Wide: 3	Medium: 2 Big: 3		Cumulative:	3	Irreversible: 3	Rank			
			no: no impac		ive -: 1	negative	5	ineversible. 5				
		Rough indication for ranking: The score is rough value. Your judgement based on your										
		U U	experiences / knowledge will be reflected to the ranking.									
		-15 -1		-7	-6	+6	+7	+11	+12 +15			
		-A	-B	or -C	D	or ±C		+B or +C	+A			
	Air Pollution	-1	-1	-1		-1		-1	-5/D			
	Water Pollution	no	no	no		no		no	D			
tion	Waste	-1	-2	-1		-1		-1	-6/-C			
Pollution	Soil/Sediment Contamination	no	no	no		no		no	D			
	Noise and Vibration	-1	-1	-1		-1		-1	-5/-C			
	Odor	no	no	no		no		no	D			
	Protected Areas	no	no	no		no		no	D			
ent	Ecosystem	-1	-1	-1		-1		-1	-5/-C			
onme	Hydrology	-1	-1	-1		-1		-1	-5/-C			
Natural Environment	Topography and Geology	no	no	no		no		no	D			
atura	Subsidence / Erosion	no	no	no		no		no	D			
Ż	Global Warming	no	no	no		no		no	D			
	Landscape	no	no	no		no		no	D			
	Resettlement	-3	-1	-2		-1		-3	-10/-B			
	Living and Livelihood	-2	-1	-2		-1		-1	-7/-B			
	Local Economy	no	no	no		no		no	D			
Social Environment	Historical / Cultural Heritage	-1	-1	-1		-1		-1	-5/-C			
iviro	Land Use	-1	-1	-1		-1		-3	-7/-C			
ial Er	Vulnerable Groups	no	no	no		no		no	D			
Soci	Local Conflict	-1	-1	-1		-1		-1	-5/-C			
	Water Use / Right	-1	-1	-1		-1		-1	-5/-C			
	Social Infrastructure / Services	-1	-1	-1	-1		-1 -1 -1		-1		-5/-C	
	Infectious Diseases	no	no	no		no		no	D			
Ren	nark		site has been u al is high bec					zone has spread	1.			

Project Title: Irrigation Development in Rejaf East

Project Activity: Construction

Construction of pump station

Environmental Items		Duration a)	Extent b)	Intensit c)	-	Cumulativ d)		Reversible e)	Total Score (T) a)+b)+c)+d)+e)
		Short: 1	Limited: 1			Non-Cumulativ	ve: 1	Reversible: 1	/ Devile
		Medium: 2 Long: 3	Medium: 2 Wide: 3	Big: 3		Cumulative: 3		Irreversible: 3	Rank
			no: no impact,	+: positive	-: ne	gative		ineversible. 5	
			-	nking: The s	core is	s rough valu	e. Yo vill be	ur judgement reflected to the	based on your ranking.
		-15	-12 -11	-7	-6	+6	+7	+11 -	+12 +15
		-A		or -C		or ±C		B or +C	+A
	Air Pollution	-1	-1	-1		-1		-1	-5/-C
	Water Pollution	-1	-1	-1		-1		-1	-5/-C
tion	Waste	-1	-1	-1		-1		-1	-5/-C
Pollution	Soil/Sediment Contamination	no	no	no		no		no	D
	Noise and Vibration	-1	-1	-1		-1		-1	-5/-C
	Odor	no	no	no		no		no	D
	Protected Areas	no	no	no		no		no	D
ent	Ecosystem	-1	-1	-1		-1		-1	-5/-C
onme	Hydrology	-1	-1	-1		-1		-1	-5/-C
Natural Environment	Topography and Geology	no	no	no	no			no	D
atura	Subsidence / Erosion	no	no	no		no		no	D
Ž	Global Warming	no	no	no		no		no	D
	Landscape	no	no	no		no		no	D
	Resettlement	no	no	no		no		no	D
	Living and Livelihood	-1	-1	-1		-1		-1	-5/-C
	Local Economy	+1	+1	+1		+1		+1	+5/+C
nment	Historical / Cultural Heritage	no	no	no		no		no	D
Iviro	Land Use	no	no	no		no		no	D
Social Environ	Vulnerable Groups	no	no	no		no		no	D
Soci	Local Conflict	-1	-1	-1		-1		-1	-5/-C
	Water Use / Right	-1	-1	-1		-1		-1	-5/-C
	Social Infrastructure / Services	no	no	no		no		no	D
	Infectious Diseases	no	no	no		no		no	D
Ren	nark								

Project Title: Irrigation Development in Rejaf East

Project Activity: Construction

Installation of canal and pipe

E	Environmental Items	Duration	Extent	Intensity	Cumulative	Reversible	Total Score (T)
		a)	b)	c)	d)	e)	a)+b)+c)+d)+e)
		Short: 1	Limited: 1	Small/Negligible: 1	Non-Cumulative: 1	Reversible: 1	/
		Medium: 2	Medium: 2	Medium: 2			Rank
		Long: 3	Wide: 3	Big: 3	Cumulative: 3	Irreversible: 3	
			no: no impac	· •	negative		
		Rough indi	cation for r	anking: The score experiences	is rough value. Y s / knowledge will	our judgement be reflected to the total be	based on your ne ranking.
		-15 -	12 -11	-7 -6	+6 +7	+11	+12 +15
		-A			D or ±C	+B or +C	+12 +13 +A
	Air Pollution	-1	-1	-1	-1	-1	-5/-C
	Water Pollution	-1	-1	-1	-1	-1	-5/-C
ion	Waste	-1	-1	-1	-1	-1	-5/-C
Pollution	Soil/Sediment Contamination	no	no	no	no	no	D
	Noise and Vibration	-1	-1	-1	-1	-1	-5/-C
	Odor	no	no	no	no	no	D
	Protected Areas	no	no	no	no	no	D
ent	Ecosystem	-1	-1	-2	-1	-1	-6/-C
Natural Environment	Hydrology	-1	-1	-1	-1	-1	-5/-C
	Topography and Geology	no	no	no	no	no	D
	Subsidence / Erosion	no	no	no	no	no	D
Z	Global Warming	no	no	no	no	no	D
	Landscape	no	no	no	no	no	D
	Resettlement	-1	-1	-1	-1	-1	-5/-C
	Living and Livelihood	-1	-1	-1	-1	-1	-5/-C
	Local Economy	+1	+1	+2	+1	+1	+6/+C
Social Environment	Historical / Cultural Heritage	no	no	no	no	no	D
Jviro	Land Use	no	no	no	no	no	D
ial Ei	Vulnerable Groups	no	no	no	no	no	D
Soc	Local Conflict	-2	-1	-2	-1	-1	-7/-C
	Water Use / Right	no	no	no	no	no	D
	Social Infrastructure / Services	-1	-1	-1	-1	-1	-5/-C
	Infectious Diseases	no	no	no	no	no	D
Ren	nark						

Preliminary Scoping Check Sheet

Project Title: Irrigation Development in Rejaf East

Project Activity: Construction

```
Land clearance and leveling in command area
```

E	Environmental Items	Duration a)	Extent b)	Intensity c)	Cumulative d)	Reversible e)	Total Score (T) a)+b)+c)+d)+e)			
		Short: 1	Limited: 1	Small/Negligible: 1	Non-Cumulative: 1	Reversible: 1	/			
		Medium: 2	Medium: 2	Medium: 2			Rank			
		Long: 3	Wide: 3	Big: 3	Cumulative: 3	Irreversible: 3				
			no: no impac	t, +: positive -: 1	negative	•	•			
		Rough indication for ranking: The score is rough value. Your judgement based on your experiences / knowledge will be reflected to the ranking.								
		-15 -	12 -11	-7 -6	+6 +7	+11	+12 +15			
		-A				-B or +C	+12 +13 +A			
	Air Pollution	-1	-1	-2	-1	-1	-6/-C			
	Water Pollution	-1	-1	-2	-1	-1	-6/-C			
tion	Waste	-1	-1	-2	-1	-1	-6/-C			
Pollution	Soil/Sediment Contamination	-1	-1	-1	-1	-1	-5/-C			
	Noise and Vibration	-1	-1	-2	-1	-1	-6/-C			
	Odor	no	no	no	no	no	D			
	Protected Areas	no	no	no	no	no	D			
ant	Ecosystem	-3	-1	-2	-1	-3	-10/-C			
onme	Hydrology	-1	-1	-2	-1	-1	-6/-C			
Natural Environment	Topography and Geology	no	no	no	no	no	D			
atura	Subsidence / Erosion	-2	-1	-1	-1	-	-6/-C			
Ž	Global Warming	no	no	no	no	no	D			
	Landscape	no	no	no	no	no	D			
	Resettlement	-2	-1	-2	-1	-1	-7/-B			
	Living and Livelihood	-2	-1	-2	-1	-1	-7/-B			
	Local Economy	+2	+1	+1	+1	+1	+6/+B			
nment	Historical / Cultural Heritage	no	no	no	no	no	D			
ıviro	Land Use	-1	-1	-1	-1	-3	-7/-B			
Social Enviro	Vulnerable Groups	no	no	no	no	no	D			
Soci	Local Conflict	-2	-1	-2	-1	-1	-7/-B			
	Water Use / Right	-1	-1	-2	-1	-1	-6/-C			
	Social Infrastructure / Services	-1	-1	-1	-1	-1	-5/-C			
	Infectious Diseases	no	no	no	no	no	D			
Ren	nark	Existing agri	icultural produ	action can be obstruct	ed by construction wo	ork.				

Project Title: Irrigation Development in Rejaf East

Project Activity: Operation and Maintenance

Operation of pump

I	Environmental Items	Duration a)	Extent b)	Intensity c)	Cumulative d)	Reversible e)	Total Score (T) a)+b)+c)+d)+e)				
		Short: 1	Limited: 1	Small/Negligible: 1	Non-Cumulative: 1	Reversible: 1	a)+0)+c)+u)+e)				
		Medium: 2	Medium: 2	Medium: 2		reversione. r	Rank				
		Long: 3	Wide: 3	Big: 3	Cumulative: 3	Irreversible: 3					
			no: no impac	-	negative						
		Rough indication for ranking: The score is rough value. Your judgement based on your experiences / knowledge will be reflected to the ranking.									
		-15 -	12 -11	-7 -6	+6 +7	+11	+12 +15				
		-A	-E	B or -C	O or ±C	+B or +C	+A				
	Air Pollution	-1	-1	-2	-1	-1	-6/-C				
	Water Pollution	-1	-1	-2	-1	-1	-5/-C				
tion	Waste	no	no	no	no	no	D				
Pollution	Soil/Sediment Contamination	no	no	no	no	no	D				
	Noise and Vibration	-1	-1	-2	-1	-1	-6/-C				
	Odor	no	no	no	no	no	D				
	Protected Areas	no	no	no	no	no	D				
nt	Ecosystem	no	no	no	no	no	D				
onmei	Hydrology	no	no	no	no	no	D				
Natural Environment	Topography and Geology	no	no	no	no	no	D				
tural	Subsidence / Erosion	no	no	no	no	no	D				
Na	Global Warming	-1	-1	-1	-1	-1	-5/-C				
	Landscape	no	no	no	no	no	D				
	Resettlement	no	no	no	no	no	D				
	Living and Livelihood	no	no	no	no	no	D				
	Local Economy	no	no	no	no	no	D				
nment	Historical / Cultural Heritage	no	no	no	no	no	D				
viro	Land Use	no	no	no	no	no	D				
Social Enviro	Vulnerable Groups	no	no	no	no	no	D				
Soci	Local Conflict	no	no	no	no	no	D				
	Water Use / Right	-1	-1	-1	-1	-1	-5/-C				
	Social Infrastructure / Services	no	no	no	no	no	D				
	Infectious Diseases	no	no	no	no	no	D				
Ren	nark										

Project Title: Irrigation Development in Rejaf East

Project Activity: Operation and Maintenance

Farming

E	Environmental Items	Duration a)	Extent b)	Intensity c)	Cumulative d)	Reversible e)	Total Score (T) a)+b)+c)+d)+e)
		Short: 1	Limited: 1	Small/Negligible: 1	Non-Cumulative: 1	Reversible: 1	/
		Medium: 2	Medium: 2	Medium: 2			Rank
		Long: 3	Wide: 3	Big: 3	Cumulative: 3	Irreversible: 3	
			no: no impac	-	negative		
		Rough ind	ication for r	anking: The score experiences	is rough value. / knowledge will	Your judgement be reflected to the	t based on your ne ranking.
		-15	-12 -11	-7 -6	+6 +7	+11	+12 +15
		-A	-	B or -C	D or ±C	+B or +C	+A
	Air Pollution	no	no	no	no	no	D
	Water Pollution	-2	-2	-2	-1	-1	-8/-B
tion	Waste	-1	-1	-1	-1	-1	-5/-C
Pollution	Soil/Sediment Contamination	-1	-1	-1	-1	-1	-5/-C
	Noise and Vibration	no	no	no	no	no	D
	Odor	no	no	no	no	no	D
	Protected Areas	no	no	no	no	no	D
ent	Ecosystem	+2	+1	+1	+1	+3	+8/+C
onme	Hydrology	no	no	no	no	no	D
Natural Environment	Topography and Geology	no	no	no	no	no	D
atura	Subsidence / Erosion	no	no	no	no	no	D
Ż	Global Warming	no	no	no	no	no	D
	Landscape	no	no	no	no	no	D
	Resettlement	no	no	no	no	no	D
	Living and Livelihood	+3	+1	+2	+1	+3	+10/+B
	Local Economy	+3	+2	+3	+3	+3	+14/+A
Social Environment	Historical / Cultural Heritage	no	no	no	no	no	D
iviro	Land Use	-3	-2	-1	-1	-1	-8/-B
al Er	Vulnerable Groups	-1	-1	-1	-1	-1	-5/-C
Soci	Local Conflict	-2	-1	-2	-3	-1	-9/-B
	Water Use / Right	-1	-1	-1	-1	-1	-5/-C
	Social Infrastructure / Services	no	no	no	no	no	D
	Infectious Diseases	-1	-1	-1	-1	-1	-5/-C
Ren	nark	Agricultural Water / soil	production ca pollution may	in contribute to econo occur if pesticide, fe	omic improvement. rtilize is not properly	y used.	

Scoping Matrix

Project Title: Irrigation Development in Rejaf East

Enviro	nmental Parameters	Pre-cor	structio	o Construction						Operation & Maintenance							
		Land preparation		Construction of pump station	Installation of canals and pipe	Land clearance and levelling, in command area							Operation of pump	Farming			Overa 11
	Remark	positive A: Sign	e: +, ne nificant i	gative: - mpact is	expecte	d, B: I	Moderate	impact	is expect	ted, C:	Level of	f impact	unknow	n, D: N	No / negl	igible im	pact is
	Air Pollution	D	•	-C	-C	-C							-C	D			-C
	Water Pollution	D		-C	-C	-C							-C	-B			-C
tion	Waste	-C		-C	-C	-C							D	-C			-C
Pollution	Soil/Sediment Contamination	D		D	D	-C							D	-C			-C
	Noise and Vibration	-C		-C	-C	-C							-C	D			-C
	Odour	D		D	D	D							D	D			D
t	Protected Areas	D		D	D	D							D	D			D
ıral 1men	Ecosystem	-C		-C	-C	-C							D	+C			-C
Natural Environment	Hydrology	-C		-C	-C	-C							D	D			-C
Er	Topography and Geology	D		D	D	D							D	D			D

Enviror	nmental Parameters		Construction							Operation & Maintenance							
		and preparation	n	Construction of pump station	Installation of canals and pipe	Land clearance and levelling, in command area							Deration of pump	Farming			Overa 11
	Remark	positive A: Sig	e: +, ne nificant i	gative: - mpact is			Moderate	impact	is expect	ted, C:	Level of	f impact			No / negl	igible in	npact is
	Subsidence / Erosion	D		D	D	-C							D	D			-C
	Global Warming	D		D	D	D							-C	D			D
	Landscape	D		D	D	D							D	D			D

Scoping Matrix	Scop	ing	Ma	trix
-----------------------	------	-----	----	------

Envii	conmental Parameters	structio 1	Construction									Operation & Maintenance					
		Land preparation	-	Construction of pump station	Installation of canals and pipe	Land clearance and levelling, in command area							Operation of pump	Farming			Overa 11
	Remark	positive A: Sign	e: +, neg nificant i	gative: - mpact is	s expecte	d, B: 1	Moderate	impact	is expec	ted, C:	Level of	f impact	unknow	n, D: N	No / negli	gible in	pact is
	Resettlement	-B		D	-C	-B							D	D			-B
	Living and Livelihood	-B		-C	-C	-B							D	+B			+/-B
	Local Economy	D		+C	+C	+B							D	+A			+A
nent	Historical / Cultural Heritage	-C		D	D	D							D	D			D
ironr	Land Use	-C		D	D	-B							D	-B			-B
Env	Vulnerable Groups	D		D	D	D							D	-C			D
Social Environment	Local Conflict	-C		-C	-C	-B							D	-B			-B
<i>O</i> 2	Water Use / Right	-C		-C	D	-C							-C	-C			-C
	Social Infrastructure / Services	-C		D	-C	-C							D	D			-C
	Infectious Diseases	D		D	D	D							D	-C			D

Outline of Scoping Results

Project Title: Irrigation Development in Rejaf East

Type of Impact and	Score	Outline of Impact	Expected Mitigations	Study Items for EIA	Recommended Method
(1) Pollution					
Air pollution -C		- Exhaust gas generated by construction works and operation of pump	 Use low-emission equipment with proper maintenance 	 Air quality conditions Construction plan, pump operation plan 	 Check of quality of construction equipment and pump in terms of prevention from exhaust gas Site survey on location of possible sensitive zones against air pollution such as residential area, school zone, etc.
Water pollution, Soil / sediment contamination	-C	 Turbid water from construction site Oil leakage Pesticide and fertilizers in farming 	 Proper temporary drainage Storage of used oil Proper use of pesticide and fertilizers 	 Water quality conditions Farming plan in terms of use of chemicals 	 Measure of current water quality Examine of possible pollution sources by the project
Waste	-C	Construction wasteAgricultural waste	 Proper use of waste disposal site Proper waste storage Waste recycle, reuse and reduction 	Disposal siteWaste type	 Investigation of possible disposal site for construction waste Estimation approximate waste volume
Noise	-C	 Construction noise by equipment, truck, e.g. Noise form generator during pump operation 	 Noise barrier Select low-noise generator, equipment, truck, etc. Adjust construction time avoiding night time 	 Noise measurement Sensitive zone 	 Check of quality of construction equipment and pump in terms of prevention from noise / vibration Site survey on possible sensitive zones against noise / vibration such as residential area, school zone, etc.
(2) Natural Environme	ent			·	
Ecosystem	-C	 Wildlife habitats, feeding / nurturing area. Possibility may be low because of location in peri-urban of Juba city Secondary forest, plantation 	 Canal and pipeline route avoiding wildlife corridor 	 Location of wildlife habitats, feeding / nurturing area Forest, plantation 	 Interview with local communities Direct observation on wildlife habitats, migration, etc. Trap survey
Hydrology, Floods	-C	- Obstruction of water flow	Proper design of command areaFlood prevention	River water flowPossible flood prone area	Historical records of floodsCondition of water body in rainy season

Type of Impact and	Score	Outline of Impact	Expected Mitigations	Study Items for EIA	Recommended Method
(3) Social Environmen	nt				
Resettlement	-B	 Land occupation Proposed command area is mostly bare land with low production. 	 Agreement on resettlement with proper compensation plan 	Land usePublic consultationResettlement plan	 Survey on land use, land status, land ownership, etc. Estimation of land and asset price Public consultation for consensus building
Living and livelihood	+/- B	 Land occupation Job / business opportunity be construction works, farming Obstruction of existing activities during construction phase 	 Public announcement, consensus building Priority recruitment to local community Income recovery plan, compensation plan 	 Community and local job profile Public consultation 	 Investigation of community living condition and livelihood Interview with communities
Local economy	+A	 Job / business opportunity be construction works, farming 	 Priority procurement from local Proper farming plan to increase agricultural production 	 Business profile in local Expected agricultural production by the project 	 Investigation of local economic profile Investigation of future plans, developments, investments
Land use	-В	 Land occupancy Obstruction of existing business Inconsistence between other land use plans / projects 	 Consensus building Encourage alternative improvement 	 Existing and future land use plan Public consultation 	 Survey on land use, land status, land ownership Investigation of land use plan Public consultation
Local Conflict	-В	 Gap of benefits among communities Inconsistence between other plans / projects 	 Consensus building Income recovery plan Proper compensation 	Public consultationCompensation plan	 Investigation of job profile, income level and sources Public consultation
Water use / right	-C	- Increasing of water irrigated	Consensus buildingProper rules on fair water use	 Public consultation Legal status on water use / right 	 Investigation of water use / right Public consultation
Social Infrastructure / Services	-C	 Scattered grave yards in the project site 	 Proper design avoiding those facilities, relocation if possible and necessary 	Land useMapping	 Site survey on location of social infrastructures Interview with local communities, etc.

RSS, MEDIWR, Water Sector, Irrigation Development Master Plan (IDMP)