Introducing Vietnam's Emission Reduction Target (NDC) & Preliminary Findings and Recommendations of

the Low Carbon Technology Assessment

MONRE/DMHCC JICA SPI-NAMA/ Low Carbon Technology Assessment

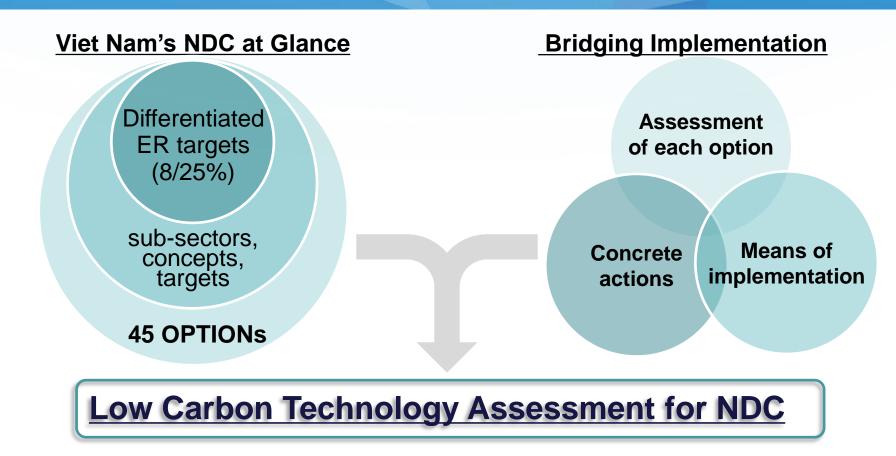
13th May, 2017

Table of Contents

1. Objectives

of the LC technologies for the NDC Sectors and the F-gas seThree expected outputs in SPI-NAMA / LC-Tech

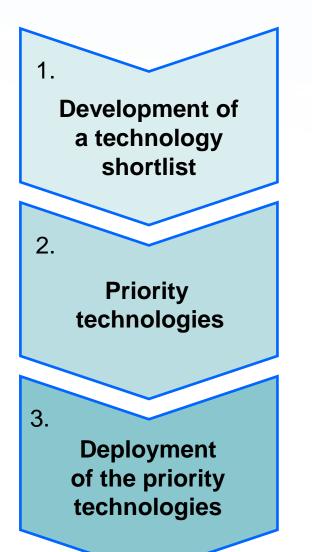
2. Mitigation options in (I)NDC and its implementation


3. Development of LC technical list

- 3-1. Technical sheet ctor (HFC refrigerant)
- 3-2. Development of the LC technology list relevant to the (I)NDC
- 3-3. Examples from Energy, Transport and F-gas sector

4. Criteria for evaluation to be identified by stakeholder consultation

5. Steps forward to NDC implementation


1. Objectives

Objectives

- 1. Identifying and Assessing Low Carbon Technologies applicable to each mitigation option of INDC & F-gas (HFC)
- 2. Explores concrete Opportunities for Technology Transfer / Deployment

1. Three expected outputs in SPI-NAMA / LC-Tech

JICA study team for the SPI-NAMA/low carbon technology assessment developed the **technology shortlist** corresponding to the Viet Nam's NDC.

Priority technologies in each sector will be identified after evaluations, using criteria built consensus by the multiple stakeholders.

Deployment of the priority technologies will be supported.

2. Mitigation options in (I)NDC and its implementation

INDC

A national climate change action strategy aiming to GHG emission reduction

Energy (Transport)

- 17 options are identified, 10 options from Energy efficiency and industry, 7 options from Power generation, 3 options from transport sector.
- It reflects National Target Programme on Energy Efficiency (2006), Law on Economical and Efficient Use of Energy (2010) as well as the Power Development Master Plan No. VII (2011).

Agriculture

- 11 out of 15 options are higher priority.
- It mainly consist of crop production subsector related activities, followed by irrigation, livestock and fisheries subsectors.

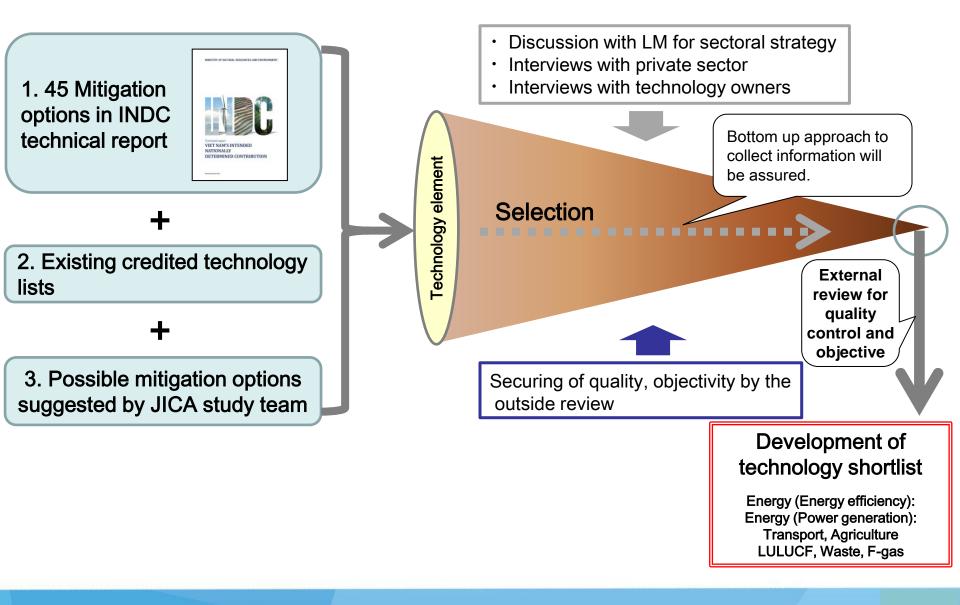
LULUCF

- 9 options including protection national/coastal forest, plantation of coastal forest, national forest regeneration are described.
- It reflects the goal that Viet Nam will reduce its GHG emissions by 8% by 2030 compared to the BAU scenario.

Waste

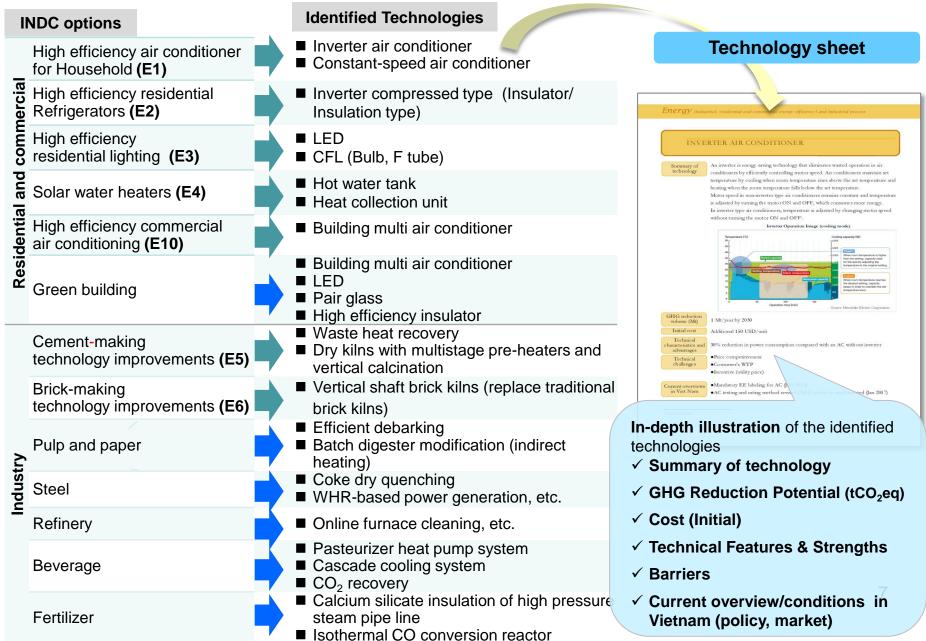
- 4 options are identified namely organic fertilizer production, landfill gas recovery, recycling of solid waste and anaerobic treatment of organic solid waste.
- Mitigation measures are identified in the policy document of the waste sector in Viet Nam, i.e. "Decision No.2149/QD-TTg".

F-gas


Added!

• F-gas sector is not included in the INDC, yet it has high potential for GHG emission reduction.

• There is no regulation is developed in Viet Nam.


Provide information on low carbon technology Implementation

3-1. Technical sheet of the LC technologies for the NDC Sectors and the F-gas sector (HFC refrigerant)

3-2 Development of the LC technology list relevant to the (I)NDC

Identifying Low Carbon Technologies for Each NDC Options

3-3 LC technical sheet - examples from Energy (Energy Efficiency) sector Air conditioner with Inverter

Summary of technology	 controlling motor speed. Motor speed in non-invand temperature is adjust consumes more energy. In inverter type air con changing motor speed with the speed wit	tion in air conditioners by efficiently erter type air conditioners remains constant ed by turning the motor ON and OFF, which ditioners, temperature is adjusted by hout turning the motor ON and OFF. consumption compared with an AC without	
GHG reductions	1 MtCO ₂ /year by 2030	45 - 3,500 Point 1 40 3,000 When room temperature is higher	
Initial cost	Additional 150 USD/unit	35 30 30 30 30 30 30 30 30 30 30 30 30 30	
Pros and cons	 (Pros) 30% reduction in power consumption compared with an AC without inverter. (Cons) Price competitiveness, C (utility price) 	Consumer's willingness to Pay, incentive	

3-3.Transport: Overview of LC technology

Mode Shift

• Passenger mode shift (E8), freight mode shift (E9)

Energy Efficiency

• Road, railway, inland waterway and maritime, aviation

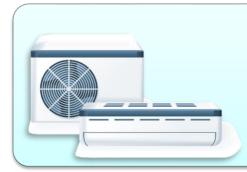
Fuel switching

• Biofuel (E7), gaseous fuel, electricity

* E7, E8, E9 indicate mitigation option number in the INDC report

9

3-3. LC technical sheet - examples from transport sector Urban railway (Metro, LRT, monorail, AGT)


Summary of technology	 Metro, LRT, tram, monorail, AGT, etc. Promote modal shift from passenger cars, etc. More efficient than private cars, buses, etc., in terms of GHG emissions. Related technologies: Light weight vehicle, VVVF inverter, regenerative braking system. 	
GHG reductions	38,267 tCO ₂ /year (Hanoi Line 1), 41,579 tCO ₂ /year (Hanoi Line 2), 88,678 tCO ₂ /year (HCMC Line 1)* * JCM/BOCM FS report: Promotion of Modal Shift from Road-based Transport to Mass Rapid Transit (MRT) System, Mitsubishi Research Institute, 2013.	
Initial cost	1,455 million USD(Hanoi Line 1), 1,363 million USD (Hanoi Line 2), 2,182 million USD (HCMC Line 1)*	
Pros and cons	 (Pros) High capacity, high speed, less travel time, travel time reliability, fewer accidents, less local air pollutants. (Cons) National/local plans, land acquisition, environmental/ social impact assessments, long planning/ construction period, higher investment cost 	10

3-3. F-gas: Overview of LC technology

F-gas destruction

F-gas destruction at cement kiln

Change refrigerant

- Air conditioner household sector
- Air conditioner commercial sector
- Car air conditioner
- Refrigerator household sector
- Refrigerator commercial sector

Maintenance

Leakage inspection and maintenance

3-3. LC technical sheet - examples from F-gas sector **Destruction of F-gas at cement kiln**

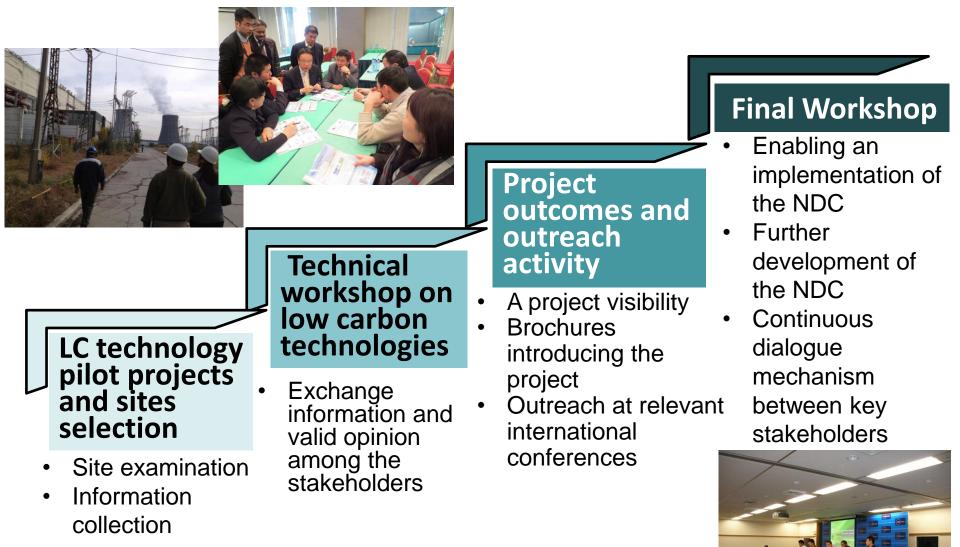
Summary of technology	 A number of destruction methods of F-gas, such as rotary kiln method, waste combustion method, etc. Holcim Vietnam (cement factory) has pilot project experience of F-gas destruction with cement kiln method. 3 steps for F-gas destruction: (1) recovery of refrigerant, (2) refilling and transport of F-gas cylinders, and (3) thermal destruction at destruction site. 	
GHG reductions	Decomposition of over 99.9% of F-gas.	
Initial cost	Low (Requires attachment cost of pipes and flowmeters for sending F-gas to cement kiln.)	
Pros and cons	 (Pros) Utilize existing facilities of cement kiln. (Cons) Secure collection and transport of F-gas to destruction site is essential to implement project. 	

fppt.com

4. Criteria for evaluation to be identified by stakeholder consultation

Criteria suggested by JICA study team

- Economic performance
- GHG reduction impact
- Easiness of applying /operationalization
- Other environment impacts(positive/negative)
- Vietnamese context


Criteria suggested by LMs and stakeholders

- Energy (EE): (ex) Timeframe
- Energy (PG): (ex) Interests of technology user
- Transport: (ex) Implementation cycle
- Agriculture: (ex) End-user
- LULUCF: (ex) Biodiversity
- Waste: (ex) Cooperation with municipalities
- F-gas: (ex) Tendency of consumption

Sector specific criteria Evaluation

Priority technologies

5. Steps forward to NDC implementation (SPI-NAMA)

Thank you for your attention

Contents of event

Objectives

- Inform national GHG emission reduction target of Vietnam and Government's effort and in preparation for NDC implementation;
- Identify how technology options, devices, facilities could contribute to GHG emission reduction target of Vietnam
- Identifying possible avenues for Private Sector's engagement in Vietnam's NDC implementation;

Participants

Government officials (MONRE, DONRE), Policy makers, Academic, Private sectors

Co-organizers ■ MONRE/DMHCC, VCCI/VBCSD, JICA

Outline of this event

Opening Remarks	MONRE/DMHCC VCCI/VBCSD, JICA
Photo Session	
PRESENTATION 1:	MONRE/DMHCC
Introducing Vietnam's Emission Reduction Target (NDC) and Preliminary Findings and Recommendations of the Low Carbon Technology Assessment	JICA SPI-NAMA
PRESENTATION 2:	Climate Change
Introducing Municipality Effort for Climate Actions – Ho Chi Minh City's Climate Change Action Plan 2017-2020 and opportunities	Bureau, Ho Chi Minh City
PRESENTATION 3:	ISPONRE
Recommendation for evidence-based Research to Sophisticate and facilitate low	
emission sustainable development (Comparative assessment of mitigation planning at municipality of Vietnam)	
PRESENTATION 4:	Daikin Vietnam
Case studies and lessons from LC technology deployment and GHG emission	
reduction efforts by private sector	
Q & A	
Coffee Break and Networking	
Roundtable Dialogue:	Co-Facilitators:
Short presentations by Panelist:	IMHEN, ISPONRE and
Case Studies and Lessons from LC Technology Deployment and GHG Emission	JICA SPI-NAMA
Reduction Efforts	
Financing options for CC mitigation in Vietnam (5 min each)	
Key Guiding Questions (Key Discussion Points)	
	17

Key Guiding Questions (Key Discussion Points)

- What is benefit/incentive for private sector to participate in climate national/regional measures?
- What are the available finance sources for CC implementation?
- What is major barrier to access to appropriate financial scheme?
- How can we mobilize appropriate cooperation among ministries, development partner, private sector and NGO?