

TNA & Technology Action Plan (TAP):

Experiences, lesson learned and Barrier Analysis from Thailand energy sector

Wongkot Wongsapai Chiang Mai University, Thailand

Inception Workshop for Low Carbon Technology Assessment "Enabling Implementation of INDC/Paris Agreement in Vietnam"

September, 27th 2016

Common,

but differentiated responsibilities and respective capabilities

Precautionary... cost effective

Since 1995, Parties under UNFCCC have considered how to enhance climate technology development and transfer

To support enhanced action on *climate change*

On NAMAs (Pledged Dec 9th, 2014) for energy & transport sector Period: Now to 2020 *Plan to reduce its GHG by* **7%** (*domestically supported = 24 Mt-CO*₂*eq*) to **20%** (*from domestically + internationally supported = 74 Mt-CO*₂*eq*) *below the business-as-usual (BAU) level by 2020.*

On iNDC (submitted Oct 1st, 2015) for economy wide Period 2020-2030 Intends to reduce its greenhouse gas emissions by 20 % from the projected business-as-usual (BAU) level by 2030. (BAU = 555 Mt-CO₂eq in 2030, Target = 111 Mt-CO₂eq)

TNA and TAP Timeline for Thailand

TNA countries & Thai structure and institutional

Participating countries

TNA Phase I countries

TNA Phase I supported 36 countries between 2009 and 2013. TNA reports were submitted by 11 countries in Africa and Middle East, 13 countries in Asia and Eastern Europe, and 8 in Latin America and Caribbean. These countries were:

including Vietnam and Thailand

Source: Thailand NDE by Surachai Sathitkunarut (2016)

TNA & TAP Processes for Thailand

Framework TNA and TAP-Energy in 2012

Env	ironmental plan	Comparison : Thailand and the world				
		Condition: 2°C & 450 ppm				
Sources	Details					
ONEP	-National Climate change plan					
ОТР	-National transport plan	from past and Analysis TNA				
Industry	-National Industry plan	energy activity conclusion				
	Economic plan					
Sources	Details					
NESDB	-National Economic plan					
		Technology Need				
	Energy plan	assessment and TAP (Mitigation)				
Sources	Details	 Suggested measures 				
loEnergy	 Policy & Strategy plan Provincial plan 	Suggested TAP				
PPO DEDE GAT 1EA	 Power Development Plan (PDP) Energy efficiency plan (EEP) 	Existing TAP (adjusted) New TAP (best practices from other countries)				
'EA	 Alternative energy development plan (AEDP) 	6				

TNA Technology selection

34

techno

Energy Technology Consideration in Thai TNA

4 parts	Power Supp	ly and	Transforma	tion;
---------	------------	--------	------------	-------

Renewable energy (based on AEDP);

Energy efficiency (based on EEP);

logies Other technology (CCS and smart grid)

Renewable energy

- Solar energy (2)
- Wind energy (1)
- Hydro energy (1)
- MSW (3)
- Biofuels (3)
- Hydrogen (-)
- Biomass (2)
- Biogas (3)
- CNG (1)

Energy efficiency

- Cross-sector
- Industry (4)
- Commercial (2)
- Residential (2)
- Transport (3)

Energy supply

- Power generation/ district cooling (3)
- Oil refinery (1)
- Gas separation (1)
 - **Other technology**
- CCS and Smart grid
- Multi-criteria analysis by above sub-sector

•

۲

 Scoring made by energy group experts via meeting and computer system (delphi)

TNA Criteria setting for Energy sector

The Readiness

(If ready = 5 : If NOT ready = 1)

• The Impact

(If big impact = 5 : Least impact = 1)

Criteria	(a) Assessment (from 1 to 5)	(b) Weight	(c) = (A)*(B) Point
<u>Readiness</u>			
(1) Policy infrastructure including regulatory	5	0.1	0.5
(2) Benefit and cost	5	0.1	0.5
(3) Short-term trend	5	0.1	0.5
(4) Management infrastructure	5	0.1	0.5
(5) Possibility of domestically based production	5	0.2	1
(6) Stakeholder and social acceptance	5	0.2	1
(7) Current technology situation in Thailand (if ready=1)	5	0.1	0.5
(8) Current tech. situation in developed countries (if			
ready = 5)	5	0.1	0.5
<u>Impact</u>			
(9) Other impacts (social, economic and environment)	5	0.5	2.5
(10) Estimated GHG mitigation of technology	5	0.5	2.5
Grand total score			10

TNA Results of technology prioritization

		ccs 2 nd g	en	Waste	Hi-efficiency			Technology	Readiness	Impact	Total
	5	biofu	els	Electricity	Combustion	Smart Grid		Smart Grid	3.8	5.0	8.8
								Combustion	3.6	5.0	8.6
		PV Solar Biomass Electric and Mass Transport				Waste Electric	3.5	5.0	8.5		
	4.5 -							2 nd gen biofuels	3.2	5.0	8.2
			Building Envelop	Solar Thermal and Biomass Thermal	Solar Thermal	4.1	4.0	8.1			
pac	4 -						_	Biomass Thermal	4.1	4.0	8.1
<u></u>					-			ccs	3.0	5.0	8.0
			Lighting District Cool		ct Cooling	oling Hi-eff Motor		Mass Transport	3.5	4.5	8.0
	3.5 -						Biomass Electric	3.5	4.5	8.0	
							PV Solar	3.4	4.5	7.9	
	3 -	-						Building Envelop	3.6	4.0	7.6
	:	3	3.3	3. Read i	⁶ iness	3.9	4.2	Motor and Drives	3.8	3.5	7.3
	🔷 Ren	newable Energy	Energy Ef	ficiency 🔺	Energy Supply	Other Energy Sector		District Cooling	3.6	3.5	7.1
								Lighting	3.5	3.5	7.0
						Energy Supply	Ren	ewable Energy Er	ergy Efficiency	Other Ene	ergy Sector

TNA Results of technology prioritization

- (a) Energy supply
- Smart grid
- (b) Renewable energy technology
- Waste to power (power generation)
- Second generation biofuels
- (c) Energy efficiency improvement
- Fuel Combustion in industry sector (Large and small scale)
- (d) Other
- Carbon Capture & Storage (CCS)

TNA technologies are in all Thai energy levels

- Fossil energy (coal gas oil others)
- Renewable energy (Solar, wind, biomass, biogas,
- 2 **MSW**, biofuels) 5

- Power generation (fossil: Thermal, CCGT, diesel) (renewable: Gasification, Thermal)
- Oil refinery
- Gas separation plant (GSP)
- Heat generation/District cooliing
- Energy planning
- Energy (power) transmission
- Energy distribution
- Petroleum/gas transport
- Operation & Maintenance

Smart grid
 Waste-to-power
 Efficient Burner
 CCS
 2nd Gen biofuel

3

- Energy demand forecast
- Electricity consumption (motors and drives, air compressor, air conditioning, etc.)
- Fuel consumption (transport)
- Thermal energy consumption (boiler, burner)
- Energy management system (control system)

TNA Prioritized Technologies: 4 sectors

After TNA, then Technology Action Plan (TAP)

Source: UNEP Risøe center

Major barriers in each prioritized technology have to be considered by experts and policy makers, in short-, medium- and long-term period;

Technology and technical

- Define clearly on our technology gap;
- Import or domestic production including intellectual property rights;
- Transfer period

Finance

- Marginal abatement cost (MAC) curve should be prepared during TNA;
- Seeking international supported in short run and establishment of domestic financial scheme would be real solution in the long run

Policy and Regulatory including institutional framework

- Each prioritized technology should have "clear" policy/plan or roadmap with tangible national target and should deploy in appropriate time;
- Some technologies require new institutional framework and international standards such as CCS, smart grid, EVs;

Capacity building

- Covering related working level (working, engineer, management)
- Networking is very important btw. each technology stakeholder

- TNA is our personal identity and finding
 - Only you would know your real needs along with time period
- Climate change technologies with high cost, but high impact on GHG mitigation, should be focused in TNA and TAP
 - But have to consider in realistic and tangible technologies
- Further technology transfer should request to CTCN (Climate Technology Center & Network) under UNEP and UNIDO
 - However, international supported projects for "post-TNA & TAP" may not fast and easy, as we thought
- Domestic supported is very important in the long run, by setting up the special financial mechanism for supporting/deploy the technologies listed by TNA&TAP and deploy
 - Institutional framework and regulatory
 - Long term government fund (with specific objectives)
 - Measuring, Reporting, and Verification (MRV) have to be considered

Alone we can do so little; TOGETHER we can do so much : Helen Keller

ETE ที่ ศูนย์วิจัยเทคโนโลยีพลังงานเพื่อสิ่งแวดล้อม

Strong!

คณะอิศอกรรมศาสตร์ มหาอิทยาลัยเชียงใหม่ Energy Technology for Environment Research center (ETE)

Wongkot Wongsapai wongkot@eng.cmu.ac.th