Module 5: Sample Lesson Plans in Mathematics

Users:
All personnel at school level

Objectives of this Module:
Module 5 comprises sample lesson plans of challenging topics in Mathematics. The module also provides a concise explanation of challenging topics at the beginning of the module. It briefly discusses the identification of challenging topics.

All the sample lesson plans are in accordance with the Ministry of Education (MOE) MATHEMATICS SYLLABUS FOR PRIMARY SCHOOL in Ghana.

The module has 2 types of sample lesson plans, type A and type B. Sample lesson plans of Type A consist of 5 parts: lesson overview, lesson plan, teaching hints, use of chalkboard and English as a teaching tool. On the other hand, sample lesson plans of Type B consist of 2 parts only: lesson plan and English as a teaching tool.

The lesson overview is made up of introduction, objectives of the topic and the lesson. Relevant Previous Knowledge (R.P.K.) and details about the class. “Introduction” illustrates the importance and relevance of the lesson to a real life. All the “objectives” are taken from the syllabus. “R.P.K.” states relevant previous knowledge that pupils are expected to have. “Details about the class” describes the current situation of the class in terms of pupils’ general information, academic progress, interests and attitude towards the subject. Further explanation about these can be found in Module 4 (4. Lesson Plan).

The lesson plan (sometimes also called lesson note) is included both Type A and Type B. The format of the lesson plan is the same as the standard lesson plan that Ghana Education Service (GES) provides.

The sample lesson plans of Type A also contain “lesson plan with teaching hints” on the next page of the standard lesson plan. The lesson plan with teaching hints is the same as the standard lesson plan on the previous page except for showing the speech blobs (rounded rectangular shapes) on the lesson plan. The speech blobs suggest where each of the teaching hints can be used.

The teaching hints provide suggested teaching approaches. It is designed that each of the teaching hints elaborates how to deliver a particular teaching activity (e.g. introduction, Activity 1,2…) in the development of a lesson. Because many of these teaching activities are linked with the core points of the lesson, successful delivery of the teaching activity should lead to a sound understanding of the core points.

The teaching hints deal with mainly general teaching approaches and questioning skills for particular teaching activities. The general teaching approaches describe how the teacher can lead pupils to the core points through the activities. When giving some mathematical activities in a classroom, the teaching approach explains how to conduct the activities, paying special attention to the process skills of Mathematics. The questioning skills should also help the teacher to facilitate pupils to reach a good understanding of the core points. It is recommended that teachers develop better teaching approaches and questions for the lesson and other lessons once they get the sense of the teaching hints discussed.

The use of chalkboard shows a suggested chalkboard plan. Well-organized chalkboard helps pupils understand what they are learning in the lesson. Teachers need to consider how to use and organize chalkboard, and this part can help them consider their planning chalkboard.
The section of **English as a teaching tool** suggests effective use of English language in the Mathematics lessons. The section gives example usages of English at particular activities. By using the actual content of the sample lessons, it helps pupils to understand Mathematics content better. It should be noted that a section of Module 4 highlights the use of English language as a teaching tool for other subjects, with a general and rather theoretical explanation of the use of it.

Use of Modules 5 for SBI/CBI demonstration activity (lesson)

CL and teachers can simply use some of the sample lesson plans for their SBI/CBI. They can also develop their own lesson plan of a challenging topic using one of the samples as a basis. Once CL and teachers have become familiar with the sample lesson plans and their teaching and learning strategies, it is strongly recommended that CL and teachers start creating their own lesson plans of challenging topics.

Adding Lesson Plans developed by CL and teachers

Module 5 should be built-up by adding more sample lesson plans. CL and teachers must be encouraged to develop these lesson plans. CL and teachers have opportunities to develop lesson plans of challenging topics when preparing their SBI/CBI. Besides, CL can improve lesson plans when discussing the challenging topics with other CLs in CL Sourcebook Training.

Some of the lesson plans developed by CL and teachers will be added to the modules.

Table of Content:

Identification of Challenging Topics	3
Sample Lesson Plans (TYPE A)	4
Lesson 1: Primary 6 Multiply a Fraction by a Fraction	5
1. Lesson Overview	5
2. Lesson Plan	7
3. Teaching Hints	11
4. The Use of Chalkboard	15
5. English as a Teaching Tool	16
Appendix (Additional activity)	17

Lesson 2: Primary 4: Measurement of Area	19
1. Lesson Overview	19
2. Lesson Plan	21
3. Teaching Hints	25
4. The Use of Chalkboard	30
5. English as a Teaching Tool	31

Appendix (Finding the Area of a rectangle) | 32 |

Sample Lesson Plans (TYPE B)	34
Lesson 3: Primary 5 Investigation with Numbers – Triangular Numbers	35
1. Lesson Plan	35
2. English as a Teaching Tool	37
Lesson 4: Primary 5 Shape and Space-Angles	39
1. Lesson Plan	39
2. English as a Teaching Tool	41

Appendix (Interlocking Circles) | 42 |

Lesson 5: Primary 5 Collecting and Handling Data	44
1. Lesson Plan	44
2. English as a Teaching Tool	46

Appendix | 47 |
Identification of Challenging Topics

Introduction
Some teachers in primary schools think that some topics are difficult or challenging to teach. They call the topics challenging topics. The teachers claim that the topics require subject teachers or specialists to teach them. However, with adequate preparation, teaching these topics should not be problematic. It is a matter of preparation not qualification. A little bit of extra effort and time to prepare a lesson makes a big difference and helps teachers to improve their lessons greatly.
This section provides some useful information about challenging topics for CLs and teachers. It helps to identify challenging topics.

Challenging Topics in Mathematics
The following are some examples of challenging topics in Mathematics. These are based on opinions gathered from serving teachers at the primary school level.

Operation of Fractions, Measurement of Area, Investigation with Numbers, Shape and Space, Collecting and Handling Data

It seems that the reasons why teachers perceive some topics as challenging vary from teacher to teacher. However, some typical reasons are identifiable. For example, one of the reasons is that challenging topics are seen to be abstract because they are not seen in real life situations. Another reason can be that challenging topics lack relevant curriculum materials that teachers can use as resource materials. The following are some of the reasons some teachers gave for regarding certain topics as challenging.

- The tendency to teach the topics in abstract.
- The lack of basic knowledge in Mathematics by teachers.
- Absence of relevant materials (TLMs) in the initial stages/introductory stage of the topics
- Reluctance of some teachers to use the relevant curriculum materials and other references in preparation and delivery of the topics.
- Unwillingness on the part of the teachers to approach colleagues with expert knowledge on the content and methodology of Mathematics.
- The lack of relation between Mathematics and the pupils’ environment or everyday life.
- The lack of practical activities (little involvement of pupils).
- Insufficient exercises given to pupils to practise.
- Negative attitudes towards Mathematics, as a result of Mathematics phobia.
- Large class size which does not make it possible for activities to be smoothly carried out.

Summary
The challenging topics are seen to be abstract in nature. Besides, there are no teaching/learning materials and relevant curriculum materials to support teachers to teach such topics. Some teachers don’t use appropriate teaching methodology, and large class size makes the use of the activity method of teaching difficult.

These problems can be overcome by adopting good strategies in the teaching/learning processes.

The fundamental principle that underlies the In-Service Training (INSET) programme is that teachers learn effectively through sharing, implementation and discussion of a lesson with their colleagues. Thus, the CL and teachers should utilize the opportunities for lesson implementation and post-lesson discussion at SBI/CBI and CL sourcebook training to treat challenging topics.
Sample Lesson Plans (TYPE A)

Lesson 1: Multiply a Fraction by a Fraction (Primary 6)

1. Lesson overview
2. Lesson plan
3. Teaching hints
4. The Use of Chalkboard
5. English as a teaching tool

Lesson 2: Measurement of Area (Primary 4)

1. Lesson overview
2. Lesson plan
3. Teaching hints
4. The Use of Chalkboard
5. English as a teaching tool
Lesson 1: Primary 6 Multiply a Fraction by a Fraction

1. Lesson Overview

Introduction

Multiplication of fractions is one of the most difficult topics at the primary level, not only for pupils but also for teachers. The reason seems to be that it is taught just by rote learning (memorizing the formula of the multiplication) without understanding the meaning of multiplication of fractions based on their experiences or contexts in everyday life.

In this section, we are going to see a sample lesson plan on multiplication of fractions which attempts to help pupils at Primary 6 understand the meaning of multiplying two fractions relating to the concept of the area of a rectangle.

General Objectives of the Topic (Operations on Fractions in Primary 6)

The pupil will be able to:

- add or subtract two given fractions with different denominators
- find the result of multiplying two given fractions
- find the result of dividing a given whole number by a given fraction.
- solve word problems using 4 operations (addition, subtraction, multiplication, division) of fractions.

Specific Objectives of the Lesson (Multiply a fraction by a fraction)

By the end of the lesson, pupils will be able to:

- multiply two given fractions
- solve word/story problem involving multiplication of fractions

<table>
<thead>
<tr>
<th>Class</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary 2</td>
<td>Unit 2.8: Fractions</td>
</tr>
<tr>
<td>Primary 3</td>
<td>Unit 3.4: Fractions I</td>
</tr>
<tr>
<td></td>
<td>Unit 3.11: Fractions II</td>
</tr>
<tr>
<td>Primary 4</td>
<td>Unit 4.6: Fractions I</td>
</tr>
<tr>
<td></td>
<td>Unit 4.9: Fractions II</td>
</tr>
<tr>
<td>Primary 5</td>
<td>Unit 5.11: Operations on Fractions</td>
</tr>
<tr>
<td>Primary 6</td>
<td>Unit 6.2: Operations on Fractions</td>
</tr>
<tr>
<td></td>
<td>6.2.7 Multiply a fraction by a fraction (The lesson plan is for this unit!)</td>
</tr>
</tbody>
</table>

Relevant Previous Knowledge (R.P.K.)

(Topics covered in various classes)

Primary 2

- 1/2 (one-half) and 1/4 (a quarter or one-fourth)

Primary 3

- halves, fourths, eighths, thirds, and sixths
- comparing fractions
fractions on the number line

Primary 4

- writing different names for a fraction
- comparing unit fractions
- relating a fraction to the division of a whole number by a counting number
- addition and subtraction of fractions with different denominators
- relating decimal names to tenths and hundredths and locating them on the number line
- relating decimal names and percentage to hundredths

Primary 5

- multiplying a whole number by a fraction
- finding a fraction of a given whole number
- dividing a fraction by a counting number
- renaming simple fractions as tenths and hundredths and writing their decimal names
- comparing two fractions with different denominators
- changing simple fractions to hundredths and writing their percentage names, and vice versa

Primary 6

- ordering three fractions according to size in ascending or descending order
- addition and subtraction of fractions with different denominators

However, the teacher should not assume that all pupils in the class have a good understanding of the above. It is always important to pay attention to the individual needs of pupils

Details about the Class

The “Details about the Class” explains the current situation of the class in terms of pupils’ general information, academic progress, interests in the subject and attitude towards the subject.

(Refer to 4.1.3. Details About the Class of Module 4 for further explanation.)

(This is an example)

The class consists of 30 pupils (16 are boys and 14 are girls). In a previous investigation on pupils’ attitude toward Mathematics, 9 pupils answered that they liked Mathematics, 9 answered in the negative. A readiness test indicated that 3 pupils could give the meaning of fractions. They could also add and subtract two given fractions including those with different denominators. It was also found that 12 pupils could add and subtract two fractions if the denominators are the same, but could not if they are different. Among the rest of the pupils, 3 could not order fractions. Also 12 pupils were able to perform calculations involving multiplication of fractions.

Half of the pupils could appreciate the value of Mathematics and have a positive attitude toward its study.
2. Lesson Plan

MULTIPLY A FRACTION BY A FRACTION

<table>
<thead>
<tr>
<th>DATE/DAY/TIME/DURATION</th>
<th>TOPIC/SUB-TOPIC</th>
<th>OBJECTIVE(S)</th>
<th>R.P.K.</th>
<th>TEACHING/LEARNING MATERIALS</th>
<th>KEYWORDS/VOCABULARY LIST</th>
<th>TEACHER/LEARNER ACTIVITIES</th>
<th>CORE POINTS</th>
<th>EVALUATION/EXERCISE REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Oct. 2006</td>
<td>UNIT 6.2</td>
<td>OBJECTIVE(S)</td>
<td></td>
<td>TLMs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tuesday</td>
<td>TOPIC: Operations of fractions</td>
<td>By the end of the lesson, the pupil will be able to:</td>
<td></td>
<td>Cut-out shapes</td>
<td>Keywords/Vocabulary List: Fraction, Denominator, Numerator</td>
<td>INTRODUCTION (5min):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00am - 11:00am</td>
<td>SUB-TOPIC: Multiply a fraction by a fraction</td>
<td>1. Multiply two fractions using the idea of area of a rectangle</td>
<td></td>
<td>Teacher gives pupils the following problem.</td>
<td>Teacher gives pupils square sheets of paper to represent the plot of land.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 minutes</td>
<td></td>
<td></td>
<td></td>
<td>2. Multiply a fraction by a fraction</td>
<td>Mr. Adamu had a plot of land in the shape of a square of side 1 km. Fati’s father bought $\frac{1}{3}$ (*1) of the land and gave $\frac{1}{2}$ (*2) of it to Fati. We want to find out the fraction of the plot Fati got.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R.P.K.</td>
<td>Pupils can multiply fractions by whole numbers</td>
<td>Core Point 1 (Area) (=\text{(Length)} \times \text{(Width)})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2 (7min)
Teacher guides pupils to fold the paper into 3 equal parts vertically and shade a third of it.

Step 3 (10 min)
Teacher guides pupils to fold the sheet again horizontally into halves and shade one half of it in another way.

Step 4 (5min)
Pupils identify the rejoin with double shading as Fati’s portion of the plot that is $\frac{1}{2}$ of $\frac{1}{3}$.

Step 5 (5 min)
Teacher gives another similar problem as in Step 1.

In this step, (1) is $\frac{3}{4}$ and (2) is $\frac{2}{3}$.

Step 6 (10 min)
Pupils fold the square sheet to solve the second problem.

Step 7 (10 min)
Teacher asks the pupils to count and describe the meaning of the numerator and the denominator of the answer.

CONCLUSION (5 min):
Teacher and the pupils reach the conclusion on how to calculate the multiplication of two fractions.

Core Point 2
\[\frac{1}{2} \times \frac{1}{3} \]
Find the result of multiplying two given fractions

Core Point 3
\[\frac{2}{3} \times \frac{3}{4} \]
Find the result of multiplying two given fractions

Core Point 4
\[\frac{2}{3} \times \frac{3}{4} = \frac{2}{3} \times \frac{3}{4} \]
In multiplying, find the product of the numerators and divide by the product of the denominators.
Lesson Plan with Hints

The lesson plan below shows speech blobs (rounded rectangular shapes) that indicate hints for the teaching approach. The hints for the teaching approach deal with specific skills in the lesson delivery and they are explained in detail on the following pages. The position of each balloon indicates where each of the hints can be used.

<table>
<thead>
<tr>
<th>DATE/DAY/TIME/DURATION</th>
<th>TOPIC/SUB-TOPIC</th>
<th>OBJECTIVE(S)</th>
<th>R.P.K.</th>
<th>TEACHING/LEARNING MATERIALS</th>
<th>KEYWORDS/VOCABULARY LIST</th>
<th>TEACHER/LEARNER ACTIVITIES</th>
<th>CORE POINTS</th>
<th>EVALUATION/EXERCISE REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Oct. 2006 Tuesday</td>
<td>UNIT 6.2</td>
<td>OBJECTIVE(S)</td>
<td></td>
<td>TLMs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:00am - 11:00am 60 minutes</td>
<td>TOPIC: Operations of fractions</td>
<td>By the end of the lesson, the pupil will be able to:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUB-TOPIC: Multiply a fraction by a fraction</td>
<td>1. Multiply two fractions using the idea of area of a rectangle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>INTRODUCTION (5min):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Teacher gives pupils the following problem.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mr. Adamu had a plot of land in the shape of a square of side 1 km. Fati’s father bought (\frac{1}{3}) ((^*1)) of the land and gave (\frac{1}{2}) ((^*2)) of it to Fati. We want to find out the fraction of the plot Fati got.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACTIVITIES:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Step 1 (3min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Teacher gives pupils square sheets of paper to represent the plot of land.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

> Core Point 1

(Area) = (Length) \(\div \) (Width)

Hints for **Introduction**

Hints for **Step 1**

Area

Length

Width
Step 2 (7 min)
Teacher guides pupils to fold the paper into 3 equal parts vertically and shade a third of it.

Step 3 (10 min)
Teacher guides pupils to fold it into two halves and shade one half of it.

Step 4 (5 min)
Pupils identify the rejoin with double shading as Fati’s portion of the plot that is $\frac{1}{2}$ of $\frac{1}{3}$.

Step 5 (5 min)
Teacher gives another similar problem as in Step 1.
In this step, (*1) is $\frac{3}{4}$ and (*2) is $\frac{2}{3}$.

Step 6 (10 min)
Pupils fold the square sheet to solve the second problem.

Hints for

Step 6

Hints for

Step 7

Step 7 (10 min)
Teacher asks the pupils to find the product of the numerator and the denominator.

Conclusion (5 min).
Teacher and the pupils reach the conclusion on how to calculate the multiplication of two fractions.

Core Point 2
Find the result of multiplying two given fractions

Core Point 3
Find the result of multiplying two given fractions

Core Point 4
In multiplying, find the product of the numerators and divide by the product of the denominators.
3. Teaching Hints

The discussion that follows is the suggested teaching approaches for presenting the lesson whose lesson plan can be found on the previous page.

Hints for Introduction

Questioning of Skills for Introduction

By way of introduction, the teacher can ask questions that check the pupils’ R.P.K.

Example

T) “Given the length and the width of a rectangle, how do you calculate the area?”
T) “If you are given half of 6 square kilometres, how do you calculate the area you are given?”

Hint for Step 1: For the first core question:

Mr. Adamu had a plot of land in the shape of a square of side 1 km. Fati’s father bought \(\frac{1}{3} \) (*1) of the land and gave \(\frac{1}{2} \) (*2) of it to Fati. We want to find out the fraction of

The teacher asks for the intermediate answer from the pupils, that is \(\frac{1}{2} \times \frac{1}{3} \). In this step, it is enough for the pupils to understand that the operation on the two numbers must be multiplication.

Approach to Step 1

In the previous lesson, pupils learned multiplication of a fraction by a whole number

E.g. \(\frac{1}{2} \) of 8 = \(\frac{1}{2} \times 8 = \frac{8}{2} = 4 \)

By recalling this step, let the pupils notice that \(\frac{1}{2} \) of \(\frac{1}{3} \) is \(\frac{1}{2} \times \frac{1}{3} \).

Questioning Skills for Step 1

After presenting the first main question, that is, “how many square kilometres of the land did Fati get?” the teacher asks:

Example

T) In stead of the number 6, Fati was given \(\frac{1}{3} \) square kilometres.

“How do you calculate the area?”
Hints for Step 4 Let the pupils notice that the denominator of the answer is 6 and the numerator of the answer is 1.

Approach to Step 4

(1) The teacher demonstrates paper folding and shading to get \(\frac{1}{2} \times \frac{1}{3} \) as follows

Step 1
Fold into three equal parts and shade one part.

Step 2
Fold the shaded part into two equal parts and shade one of the two equal parts.

Step 3
Compare the double shaded part to the original whole.

(2) Pupils will follow the above step and consider the meaning of the shaded part.

Questioning Skills for Step 4

After demonstrating how to fold the paper, the teacher asks pupils:

Example

T) “Can you shade the part that Fati was given?”
T) “What is the fraction that describes the given part in relation to the whole area?”
T) “What is the denominator of \(\frac{1}{6} \)?”
T) “What is the numerator of \(\frac{1}{6} \)?”
Hints for Step 6 For the second core question:

Mr. Adarnu had a plot of land in the shape of a square of side 1 km. Fati’s father bought \(\frac{3}{4} \) of the land and gave \(\frac{2}{3} \) of it to Fati. We want to find out the fraction of the plot Fati got.

Let the pupils notice that

1. the intermediate answer is \(\frac{2}{3} \times \frac{3}{4} \)

2. the denominator of the answer is 12 and the numerator of the answer is 6.

Approach to Step 6

Let the pupils fold a sheet of paper to get \(\frac{2}{3} \times \frac{3}{4} \).

Questioning Skills for Step 6

When the pupils finish the second main activity, the teacher asks:

Example

T) “Can you shade the part where Fati was given?”

T) “What is the fraction that describes the given part in relation to the whole area?”

T) “What is the denominator of \(\frac{6}{12} \)?”

T) “What is the numerator of \(\frac{6}{12} \)?”
Hints for Step 7:

Questioning Skills for Step 7

To confirm the number which appeared in the solution, the teacher asks:

Example

T) “How many individual parts are there in the area of the first question?”
T) "How many individual parts are there in the area of the second question?"
T) “Is there any relation between the denominator and the individual parts?”

Hints for Conclusion:

Let the pupils realize that the multiplication of two given fractions is equal to a fraction whose numerator is the multiplication of the two numerators of the given fractions, and denominator is the multiplication of the two denominators of the given fractions.

Approach to Conclusion

1) The teacher confirms that \(\frac{1}{2} \times \frac{1}{3} = \frac{1}{6} \) and \(\frac{2}{3} \times \frac{3}{4} = \frac{6}{12} \)

2) The teacher asks the pupils what is the relation between the numerator and the denominator in each case.

3) The pupils discuss the above question.

4) The teacher summarizes the ideas and concludes that \(\frac{\square}{\square} \times \frac{\square}{\square} = \frac{\square}{\square} \times \frac{\square}{\square} \).

Questioning Skills for Conclusion

To conclude the way of calculating the multiplication of two given fractions, after writing symbols \(\frac{\square}{\square} \times \frac{\square}{\square} = \) on the blackboard, the teacher asks:

Example

T) “What is the symbol on the top of the fraction on the right hand side?"

In other words,
T) “How do you calculate the number on the top of the fraction on the right hand side? “
T) “How do you calculate the number below the line?”
4. The Use of Chalkboard

A sample layout of chalkboard writing is shown below.

3/Oct/06 Multiplication of fractions

Mr. Adamu had a plot of land in a square shape of 1 km. Fati’s father bought \(\frac{1}{3} \) of the land and gave \(\frac{1}{2} \) of it to Fati. We want to find out the fraction of the plot Fati got.

\[
\frac{1}{2} \times \frac{1}{3} = \frac{1}{6}
\]

Mr. Adamu had a plot of land in a square shape of 1 km. Fati’s father bought \(\frac{3}{4} \) of the land and gave \(\frac{2}{3} \) of it to Fati. We want to find out the fraction of the plot Fati got.

\[
\frac{2}{3} \times \frac{3}{4} = \frac{6}{12}
\]

Conclusion

\[
\frac{1}{2} \times \frac{1}{3} = \frac{1}{2 \times 3}
\]

\[
\frac{2}{3} \times \frac{3}{4} = \frac{2 \times 3}{3 \times 4}
\]

Conclusion/today’s summary

\[
\frac{0}{0} \times \frac{0}{0} = \frac{0}{0} \times \frac{0}{0}
\]
5. English as a Teaching Tool

In Class 4 the pupils will have been introduced to the following FRACTION WORDS and SYMBOLS:

Table 2: Fraction words and symbols

<table>
<thead>
<tr>
<th>Numerator/ denominator</th>
<th>Whole</th>
<th>Part</th>
<th>bigger than: ></th>
<th>less than: <</th>
<th>ascending order</th>
<th>descending order</th>
<th>largest</th>
<th>smallest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fourths</td>
<td>thirds</td>
<td>sixths</td>
<td>twelfths</td>
<td>tenths</td>
<td>half</td>
<td>quarter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(in the topic Fractions I and Fractions II) (in the topic Measuring Time)

They will also need to read the written numeral “ninth” in the pupils’ book.

Simple definitions are given in the pupils' book. The teacher should ensure that the pupils learn and understand the written definitions. To help the pupils the teacher can display a wall chart showing the key words and their definitions as given in the pupil’s book:

In Class 5 the pupils use the same FRACTION WORDS as they used in Class 4 and they revise the concepts covered in Class 4.

In Class 6 the section on fractions uses the following terms which will have to be reviewed with the pupils.

Table 3: List of the terms which will have to be reviewed with pupils

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCF</td>
<td>Abbreviation for Highest Common Factor</td>
</tr>
<tr>
<td>Halves</td>
<td>Irregular spelling</td>
</tr>
<tr>
<td>Product</td>
<td>Word Problems eg. find the product of $\frac{3}{5}$ and $\frac{10}{12}$</td>
</tr>
<tr>
<td>One quarter is the same as one fourth</td>
<td>Equivalent terms</td>
</tr>
</tbody>
</table>

The teacher should remind the pupils of the following definitions by displaying a chart on the classroom wall for ready reference:

Table 4: List of the definitions related to Fraction

<table>
<thead>
<tr>
<th>MATHEMATICS DEFINITIONS – FRACTIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A fraction is a part of a whole</td>
<td>5</td>
</tr>
<tr>
<td>The numerator is the number at the top of the fraction</td>
<td>E.g. the numerator is 5 and the denominator is 6</td>
</tr>
<tr>
<td>The denominator is the number below the line</td>
<td>$\frac{5}{6}$ of $12 = 10$</td>
</tr>
<tr>
<td>“of” means “x”</td>
<td>$\frac{5}{6} \cdot 12 = 10$</td>
</tr>
<tr>
<td>HCF means Highest Common Factor</td>
<td>The HCF of 12 and 3 is 3</td>
</tr>
<tr>
<td></td>
<td>3 = 1 \div 3</td>
</tr>
<tr>
<td></td>
<td>So: $\frac{1 \times 3}{3 \times 4} = \frac{3}{12}$</td>
</tr>
</tbody>
</table>
Appendix (Additional activity)

Activity 1

For a model of \(\frac{1}{2} \), fold and shade a rectangular sheet of paper.

(a) ![Diagram](image1)

Step 1 Fold in half vertically

Step 2 Shade one part

(b) ![Diagram](image2)

Step 1 Fold in half horizontally

Step 2 Shade one part

(c) ![Diagram](image3)

Step 1 Fold in half diagonally

Step 2 Shade one part

Activity 2

(1) Calculate \(2 \times \frac{1}{2} \).

![Diagram](image4)

Step 1
Shade \(\frac{1}{2} \) of each of two sheets of papers.

Step 2
Put the two shaded part together.

Step 3
Two halves is 1.

(2) Calculate \(\frac{1}{2} \times 2 \).
Step 1
Shade two sheets of paper and put them together to represent 2.

Step 2
Divide it into two equal parts.

Step 3
One shaded part represents 1.
Lesson 2: Primary 4: Measurement of Area

1. Lesson Overview

Introduction

When a farmer wants to farm, he/she takes many things into consideration, particularly, land available to him/her. The building contractor also considers the building plot at his/her disposal. Similarly, in the home, parents also consider the size of their rooms when they are laying beds for their children to sleep on. In our educational institutions, when admitting students into a class, we consider the amount of space in the classroom. When we talk about amount of surface an object possesses, then the concept of area is established.

Area therefore is the amount of surface an object has. It is measured in square units.

General Objectives of the Topic (Measurement of Length and Area in Primary 4)

The pupil will be able to

- measure lengths of line segments in centimetres.
- estimate and verify the lengths of given line segments.
- add measures of lengths in metres and centimetres.
- find the perimeter of given rectangular and circular shapes.
- write lengths given in metres and centimetres using decimal notation.

Specific Objectives of the Lesson (Area of a Square or Rectangular region)

By the end of the lesson, pupils will be able to

- make squares and rectangles using small square tiles (cut-outs).
- find the number of unit squares that will cover a square/rectangular region.

<table>
<thead>
<tr>
<th>Class</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary 1</td>
<td>Unit 1.12: Measurement of Length, Capacity and Mass</td>
</tr>
<tr>
<td>Primary 2</td>
<td>Unit 2.5: Measurement of Length, Capacity and Mass</td>
</tr>
<tr>
<td>Primary 3</td>
<td>Unit 3.6: Measurement of Capacity and Weight</td>
</tr>
<tr>
<td>Primary 4</td>
<td>Unit 4.10: Measurement of Length and Area 4.10.7 Find the number of unit squares that will cover a square/rectangular region (The lesson plan is for this unit!)</td>
</tr>
<tr>
<td>Primary 5</td>
<td>Unit 5.5: Measurement of Length, Mass and Capacity Unit 5.9: Area and Volume</td>
</tr>
<tr>
<td>Primary 6</td>
<td>Unit 6.6: Measurement of Length, Capacity and Mass Unit 6.12: Measurement of Area and Volume</td>
</tr>
</tbody>
</table>
Relevant Previous Knowledge (R.P.K)

(Topics covered in various classes)

Primary 1
- comparing the lengths and heights of various objects that cannot be put side by side.

Primary 2
- measuring and stating the lengths of given distance/heights in metres,
- estimating the lengths of given distances/heights in metres.

Primary 3
- estimating the capacity of containers in litres,
- identifying objects which are heavier or lighter than 1 kilogram,
- estimating the weight of object in kilograms.

Primary 4
- finding lengths of given segments in centimetres,
- estimating the lengths of line segments,
- finding the total lengths of two or more given measures,
- finding the perimeters of given rectangular and circular shapes,
- writing given lengths in decimal notation.

However, the teacher should not assume that all pupils in the class have a good understanding of the above. It is always important to pay attention to the individual needs of pupils.

Details About the Class: (This is an Example)

(Refer to Module 4: 4.1.3. “Details about the Class” for further explanation.)

The class consists of 25 pupils (11 are boys and 14 are girls). In a previous investigation, 5 pupils answered that they like mathematics, 5 answered in the negative. A readiness test indicated that 18 pupils could give the meaning of length. They could find the total lengths of two given measures. Among the rest of the pupils, 4 could not measure the lengths of given segments in centimetres. Almost half of the pupils are likely to think that if the perimeter of a rectangle is greater, then the area is greater.

Half of the pupils can appreciate the value of Mathematics and have a positive attitude towards its study.
Lesson Plan

MEASUREMENT OF AREA

SUBJECT: Mathematics
REFERENCES: Ghana Mathematic Series, Pupil’s Book Four (Ghana Publishing Corporation)
CLASS: Primary 4
DETAILS ABOUT THE CLASS: 10 pupils (40%) can understand the lengths well, but 3 pupils (12%) cannot.

<table>
<thead>
<tr>
<th>DATE/DAY/TIME/DURATION</th>
<th>TOPIC/SUB-TOPIC</th>
<th>OBJECTIVE(S)</th>
<th>TEACHING/LEARNING MATERIALS</th>
<th>KEYWORDS/VOCABULARY LIST</th>
<th>TEACHER/LEARNER ACTIVITIES</th>
<th>CORE POINTS</th>
<th>EVALUATION/EXERCISE REMARKS</th>
</tr>
</thead>
</table>
| Oct. 4 2006 Wednesday 9:00am - 10:00am 60 minutes | UNIT 4.10
TOPIC: Measurement of Length and Area
SUB-TOPIC: Calculating Area | OBJECTIVE(S)
By the end of the lesson, the pupil will be able to:
1. make rectangles and squares using small square tiles (cut-outs).
2. find the number of unit squares that will cover a square/rectangular region.
R.P.K.
Measuring Area pp.105-107 | TLMs:
Cut-outs or Small squares, Sheets
Keywords/Vocabulary List:
Length, width, area, long, wide | INTRODUCTION (10 min):
Teacher introduces the lesson by telling a story relating to area (e.g., land, plantation, etc.)
Story: A farmer walked around his 2 plantations whose shapes are rectangular and said, “I have found the perimeters of my 2 plantations to be the same, so I will harvest the same amount of maize from each of them”
ACTIVITIES:
Step 1 (5 min)
Pupils make 5 or 6 groups. Teacher gives a sheet on which 4 rectangles have been printed with A, B, C, D, and smaller square cut-outs of 1cm by 1cm to each group. | Core Point 1
Teacher prepares 4 or 5 sheets and plenty of cut-outs. | Remarks:
Pupils are not supposed to be introduced the unit “cm²” until P5 where they learn area with the unit “cm²” |
<table>
<thead>
<tr>
<th>Figure</th>
<th>Total no. of squares</th>
<th>No. of squares on the longer side</th>
<th>No. of squares on the shorter side</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 2 (15 min)
Pupils cover the rectangles with the smaller square cut-outs of 1 cm by 1 cm.

Step 3 (15 min)
Pupils complete the table on the chalkboard:

Pupils find the relationship between the total number of squares and the numbers of squares on the sides of the rectangle.

CONCLUSION (15 min):
The teacher introduces the concept of area by summarizing the pupils' findings and explains the conclusion.

Core Point 2
Pupils activity
(Pupils try to cover the rectangles without holes and count the squares)

Core Point 3
Total No of squares
= No. of squares on the longer side × No. of squares on the shorter side

Find the number of cut-outs that fill a given region.

Indicate number of unit squares that will cover a given rectangular region.

Core Point 4
(Area)
=(Length) × (Width)

Find the relationship in the figure
Lesson Plan with Hints

The lesson plan below shows speech blobs (rounded rectangular shapes) that indicate hints for the teaching approach. The hints for the teaching approach deal with specific skills in the lesson delivery and they are explained in detail on the following pages. The position of each balloon indicates where each of the hints can be used.

<table>
<thead>
<tr>
<th>DATE/DAY/TIME/DURATION</th>
<th>TOPIC/SUB-TOPIC</th>
<th>OBJECTIVE(S) R.P.K.</th>
<th>TEACHING/LEARNING MATERIALS</th>
<th>KEYWORDS/VOCABULARY LIST</th>
<th>TEACHER/LEARNER ACTIVITIES</th>
<th>CORE POINTS</th>
<th>EVALUATION/EXERCISE</th>
<th>REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 4 2006</td>
<td>UNIT 4.10</td>
<td>OBJECTIVE(S)</td>
<td>TLMs:</td>
<td>Keywords/Vocabulary List</td>
<td></td>
<td></td>
<td></td>
<td>Remarks</td>
</tr>
<tr>
<td>Wednesday</td>
<td>TOPIC: Measurement of Length and Area</td>
<td>By the end of the lesson, the pupil will be able to:</td>
<td>Cut-outs or Small squares, Strips</td>
<td>Length, width, area, long.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:00am - 10:00am</td>
<td>SUB-TOPIC: Calculating Area</td>
<td>1. make rectangles and squares using small square tiles (cut-outs).</td>
<td>INTRODUCTION (10 min):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Remarks</td>
</tr>
<tr>
<td>60 minutes</td>
<td>R.P.K. Measuring Area pp.105-107</td>
<td>2. find the number of unit squares that will cover a square/rectangular region.</td>
<td>Teacher introduces the lesson by telling a story relating to area (e.g., land, plantation, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pupils are not supposed to be introduced the unit “cm²” until P5 where they learn area with the unit “cm²”</td>
</tr>
</tbody>
</table>

Hints for Introduction

Story: A farmer walked around his 2 plantations whose shapes are rectangular and said, “I have found the perimeters of my 2 plantations to be the same, so I will harvest the same amount of maize from each of them”

Hints for Step 1

Core Point 1

Teacher prepares 4 or 5 sheets and plenty of cut-outs.
Hints for Conclusion

CONCLUSION (15 min):
The teacher introduces the concept of area by summarizing the pupils' findings and explains the conclusion.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Total no. of squares</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Find the number of cut-outs that fill a given region.

Find the relationship in the figure.
3. Teaching Hints

Hints for Introduction

Introductory Questioning of Skills

By way of introduction, the teacher can ask questions that will check the pupil’s R.P.K. based on the following story:

Story (1) A farmer walked around his 2 plantations whose shapes are rectangular and said, “I have found the perimeters of my 2 plantations to be the same, so I will harvest the same amount of maize from each of them”

Or

Story (2) A farmer walked around his 2 plantations whose shapes are rectangular and said “I have measured the perimeters of my 2 plantations and found that the perimeter of the plantation located in the east is greater than the one in the west, so I will harvest the larger amount from the plantation in the east.”

Example

T) “Given a rectangle, how do you measure the perimeter?”
T) “Given 2 rectangles, if one has a longer perimeter does it necessarily make the area bigger?”
T) “Is the farmer’s idea correct?”

After hearing the pupils’ responses, the teacher states that the correct answers will become clear in the lesson.

Hints for Step 1:

For each group, the teacher prepares 4 or 5 sheets of paper on which 4 rectangles are drawn and labelled A, B, C, D; the teacher also prepares smaller square cut-outs of 1cm by 1cm in advance. The pupils are then organized into groups of 5 or 6.

Approach to Step 1

The teacher prepares 4 or 5 sheets of paper and many square cut-outs of 1cm by 1cm as follows:
Hints for Step 2:

Let the pupils cover the rectangles with the square cut-outs of 1cm by 1cm without leaving any spaces or holes.

Approach to Step 2

It is valuable for each group to cover all the rectangles, however this is likely to take a long time. The teacher should be flexible. For example, if the class consists of 24 pupils organized into 4 groups, then the teacher lets one group cover the rectangles A & B while other groups concentrate on different rectangles, etc.

After covering the rectangles, let the pupils count the number of squares and write the result on the sheet.

While the pupils work, the teacher draws the following table on the chalkboard.

<table>
<thead>
<tr>
<th>Table 6: Table for the investigation of the area of rectangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>D</td>
</tr>
</tbody>
</table>
Hints for Step 3:

1. Let the groups complete the above table.
2. Let the pupils find the relation between the total number of squares and the number of squares on the sides of the rectangle.

Approach to Step 3

1. Use Table 2 to fill in the numbers.
2. Let the pupils see the relationship between length, width and area.
3. The teacher draws a diagram if necessary, as follows:

 ![Diagram](image)

Questioning Skills for Step 3

1) After the group activity, the teacher asks each group to fill out Table2 on the chalkboard:

 Note: This is the first time the words “wide” and “width” are used in the pupils’ book. (See English as a Teaching Tool)

 Example

 T) How many small squares cover shape A?
 T) How many small squares wide is rectangle A?
 (or How many small squares are there on the shorter side?)
 T) How many small squares long is rectangle A?
 (or How many small squares are there on the longer side?)

2) Using Table 2, the teacher asks the pupils:
Example

T) Is there any relationship between the 3 numbers, 18, 6 and 3?
 (20, 4 and 5, etc.)
T) Can you tell the relationship the 3 numbers in every rectangle has?

3) If the pupils find the relation, the teacher asks for the reason. If not, then the teacher explains Figure 3 and asks for the reason.
Example

T) Can you explain the reason why you choose multiplication to get the total number of small squares?
 If the answer is yes,
 T) Could you try to explain it?

Hints for Conclusion:

The teacher, in summarizing the pupils’ findings, introduces the concepts of length, width and area.

Approach to Conclusion

1) Using Figure 3, the teacher explains $18 = 6 \times 3$, that is,
2) The teacher confirms with the pupils that:
Total No. of squares=No. of squares on the longer side × No. of squares on the shorter side.

3) The teacher introduces the new mathematical terms and concludes the lesson by stating the formula: AREA of a rectangle = LENGTH × WIDTH

Questioning Skills for Conclusion

The teacher asks for the perimeters of the rectangle A and B (resp. B and D), and then asks for the answer to the initial *story(1)* (resp. *story(2)*).

T) How long is the perimeter of the rectangle A?
T) How long is the perimeter of the rectangle B?
T) How many small squares cover A and B?
T) Was the statement of the farmer correct?
4. The Use of Chalkboard

A sample layout of chalkboard writing is shown below.

<table>
<thead>
<tr>
<th>Figure</th>
<th>Total no. of squares</th>
<th>No. of squares on the longer side</th>
<th>No. of squares on the shorter side</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A)

\[
\begin{array}{c}
A) \\
\text{Total No. of squares} = \text{No. of squares on the longer side} \\
\times \text{No. of squares on the shorter side}
\end{array}
\]

\[
\begin{array}{c}
B) 20 = 5 \times 4 \\
C) 14 = 7 \times 2 \\
D) 16 = 8 \times 2
\end{array}
\]

Conclusion

\[
\text{(Area)} = (\text{Length}) \times (\text{Width})
\]
5. English as a Teaching Tool

The pupils will have learned that area can be measured by counting the total number of squares that cover a regular shape (square or rectangle). In this lesson they learn, through deduction, how to calculate area by counting the number of squares in the length and width of the shape and multiplying the two numbers.

This is the first time the words “wide” and “width” are used in the pupils’ book. The teacher should introduce these words carefully. The pupils need to understand and know how to use the words:

<table>
<thead>
<tr>
<th>New Vocabulary</th>
<th>Practice Sentences</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>length</td>
<td>long</td>
<td>Measure the length. How long is it?</td>
</tr>
<tr>
<td>width</td>
<td>wide</td>
<td>Measure the width. How wide is it?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The area of a rectangle equals length multiplied by width</td>
</tr>
<tr>
<td></td>
<td></td>
<td>area = length x width</td>
</tr>
</tbody>
</table>

This is a good opportunity for the pupils to understand by practising some simple phrases in English. They can practise these sentences in oral and written form. For example:

<table>
<thead>
<tr>
<th>Question/Instruction</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measure the length of rectangle A.</td>
<td>Rectangle A is small squares long.</td>
</tr>
<tr>
<td>How many small squares long is rectangle A?</td>
<td>Rectangle A is small squares long.</td>
</tr>
<tr>
<td>Measure the width of rectangle A.</td>
<td>Rectangle A is small squares wide.</td>
</tr>
<tr>
<td>How many small squares wide is rectangle A?</td>
<td>Rectangle A is small squares wide.</td>
</tr>
<tr>
<td>How many small squares cover the shape?</td>
<td>..... small squares cover the shape.</td>
</tr>
<tr>
<td>What is the area of the shape?</td>
<td>The area of the shape is small squares.</td>
</tr>
<tr>
<td>Multiply the length by the width.</td>
<td></td>
</tr>
</tbody>
</table>

Appendix (Finding the Area of a rectangle)

Activity 1

In groups, ask pupils to fit a rectangle with pieces of two types of squares, and to find the number of each type of squares in the rectangle.

One can come to realize the difference in the number of each type of squares, even though the same rectangle is used.

What brings out these differences?

This activity tells us the need to use standardized small square unit in measuring area.

Activity 2

Draw all possible rectangles with area 12cm² in Figure 1.

Figure 1
Activity 3

Draw different rectangles on a square grid of paper.

One can establish the relationship between the dimensions of squares and rectangular shapes and the total number of smaller squares they contain. See the example in Figure 2.

1. What is the total number of squares occupied by the rectangle? (42)
2. What are the length and the width of the rectangle in Figure 2? (7cm and 6cm)
3. Can a relationship been established between the total number of squares and the dimensions of the rectangle?

Activity 4

Find the area of the shaded portion in Figure 3.

Think about different approaches in (1), (2), (3) and (4).

\[
\begin{align*}
(1) & \quad 7 \cdot 4 + 8 \cdot 5 \\
(2) & \quad 4 \cdot 2 + 12 \cdot 5 \\
(3) & \quad 4 \cdot 2 + 5 \cdot 4 + 8 \cdot 5 \\
(4) & \quad 12 \cdot 7 - 8 \cdot 2
\end{align*}
\]

Figure 3
Sample Lesson Plans (TYPE B)

Lesson 3: Investigation with Numbers – Triangular Numbers (Primary 5)
1. Lesson plan
2. English as a teaching tool

Lesson 4: Shape and Space-Angles (Primary 5)
1. Lesson plan
2. English as a teaching tool

Lesson 5: Collecting and Handling Data (Primary 5)
1. Lesson plan
2. English as a teaching tool
Lesson 3: Primary 5

Investigation with Numbers – Triangular Numbers

1. Lesson Plan

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Oct. 2006 Tuesday 10:00am</td>
<td>Mathematics Primary 5</td>
<td>UNIT 5.15 TOPIC: Investigation with number SUB-TOPIC: Triangular numbers</td>
<td>OBJECTIVE(S): By the end of the lesson, the pupil will be able to; 1. find the pattern in triangular numbers up to the 10th number R.P.K. Pupils can add and subtract whole numbers.</td>
<td>TLMs: Bottle tops (to form figures) Keywords/Vocabulary List: Triangular number, Addition INTRODUCTION: Teacher introduces triangular numbers. ACTIVITIES: Step 1 Pupils form the triangular numbers of the pattern No.1-3 using bottle tops. Step 2 Teacher asks pupils to find the total number of the bottle tops of the pattern No.1-3. Step 3 Teacher asks pupils to predict the number of the bottle tops of the patterns No.4, 5 and 6 without using bottle tops.</td>
<td>Pattern No. 1 1 Pattern No. 2 1 2 3 Pattern No. 3 1 2 3 6</td>
</tr>
</tbody>
</table>
Step 4
Pupils investigate the pattern of triangular numbers using bottle tops.

Step 5
Pupils write their findings in the following table:

<table>
<thead>
<tr>
<th>Pattern No.</th>
<th>Total</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Step 6
Pupils present their own finding to other pupils in the classroom.

CONCLUSION:
Pupils describe the pattern of triangular numbers.
2. English as a Teaching Tool

In this lesson the pupils investigate patterns in triangular numbers by building up the sequence of numbers and then looking at their results.

The teacher will need to think carefully about what he/she will expect from the pupils in Step 6 of the lesson when pupils present their own findings to others and in the concluding part of the lesson when pupils describe the pattern of triangular numbers. It is in these two parts of the lesson that the pupils will need to be able to express their ideas orally through English language. Here are some ways in which teachers’ English as a teaching tool help develop the pupils’ use of language.

<table>
<thead>
<tr>
<th>Table 9: Ways of developing the pupils’ use of language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use simple language:</td>
</tr>
<tr>
<td>“What pattern can you see in the numbers?”</td>
</tr>
<tr>
<td>“Look at this pattern. What is the next number?”</td>
</tr>
<tr>
<td>“What is the previous number?”</td>
</tr>
<tr>
<td>“How do the numbers change?”</td>
</tr>
<tr>
<td>“What happens next?”</td>
</tr>
<tr>
<td>Help the children to answer in full sentences:</td>
</tr>
<tr>
<td>“The next number is 10”</td>
</tr>
<tr>
<td>“The previous number is 6”</td>
</tr>
<tr>
<td>“We add one more number each time.”</td>
</tr>
<tr>
<td>What answers do you expect from the pupils?</td>
</tr>
<tr>
<td>“Is there only one or more than one answer?”</td>
</tr>
<tr>
<td>“In this investigation there is more than one answer - see the Solution below.”</td>
</tr>
<tr>
<td>Lesson Conclusion</td>
</tr>
<tr>
<td>“One way to show the solutions is in written format which the children can read for oral practice.”</td>
</tr>
</tbody>
</table>

Solution
Unit 15. Investigation with Numbers: Triangular Numbers

Description of the Patterns of Numbers

(i) In the first column the numbers increase by one.
 We add 1 to get the next number in the pattern.
 1+1=2, 2+1=3, 3+1=4, 4+1=5

(ii) In the second column the number increases by the number written in the first column.
 For pattern number 4 we add 4 to the previous number. 6 + 4 = 10
 For pattern number 5 we add 5 to the previous number 10 + 5 = 15
 For pattern number 6 we add 6 to the previous number 15 + 6 = 21

(iii) In the third column we add all the numbers from 1 to the pattern number.
For pattern number 4 we add \(1+2+3+4 = 10\)
For pattern number 5 we add \(1+2+3+4+5 = 15\)
For pattern number 6 we add \(1+2+3+4+5+6 = 21\)

We can also show the solutions diagrammatically. Some pupils may prefer this and it can help them to describe the patterns orally.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\text{Pattern})</th>
<th>(\text{Description})</th>
<th>(\text{Result})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>2</td>
<td>(2+1)</td>
<td>(1) + (2)</td>
<td>((1) + 2)</td>
</tr>
<tr>
<td>3</td>
<td>(3+3)</td>
<td>(1) + (2) + (3)</td>
<td>((1 + 2) + 3)</td>
</tr>
<tr>
<td>4</td>
<td>(4+6)</td>
<td>(1) + (2) + (3) + (4)</td>
<td>((1 + 2 + 3) + 4)</td>
</tr>
<tr>
<td>5</td>
<td>(5+10)</td>
<td>(1) + (2) + (3) + (4) + (5)</td>
<td>((1 + 2 + 3 + 4) + 5)</td>
</tr>
<tr>
<td>6</td>
<td>(6+15)</td>
<td>(1) + (2) + (3) + (4) + (5) + (6)</td>
<td>((1 + 2 + 3 + 4 + 5) + 6)</td>
</tr>
</tbody>
</table>
Lesson 4: Primary 5

Shape and Space-Angles

1. Lesson Plan

<table>
<thead>
<tr>
<th>DATE/DAY/TIME/DURATION</th>
<th>TOPIC/SUB-TOPIC</th>
<th>OBJECTIVE(S)</th>
<th>R.P.K.</th>
<th>TEACHING/LEARNING MATERIALS</th>
<th>KEYWORDS/VOCABULARY LIST</th>
<th>TEACHER/LEARNER ACTIVITIES</th>
<th>CORE POINTS</th>
<th>EVALUATION/EXERCISE REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Oct. 2006 Tuesday</td>
<td>UNIT 5.6</td>
<td>OBJECTIVE(S)</td>
<td>By the end of the lesson, the pupil will be able to; state if an angle is greater or less than a right angle.</td>
<td>TLMs Interlocking Circles for Teacher Interlocking Circles for Pupils (Individually)</td>
<td>Keywords/Vocabulary List: Right angle</td>
<td>INTRODUCTION Teacher introduces the lesson by asking pupils about soldiers at a parade, drilling exercise: left turn, right turn etc. When the soldiers turn, their arrangement forms angles. ACTIVITIES Step 1 Teacher forms an angle from the interlocking circles. Step 2 Pupils describe the angle formed before the teacher mentions the name of the angle.</td>
<td></td>
<td>1. Pupils are given the desktop type of interlocking circles and teacher uses the blackboard type to form various angles.</td>
</tr>
</tbody>
</table>
Step 3
Pupils form the same angle with their interlocking circles.

Step 4
Teacher asks pupils to look around the classroom to see if the angle formed can be found anywhere.

Step 5
Teacher forms another angle and asks pupils to mention its name and describe it.

Step 6
Pupils also form the same angle with their interlocking circles.

Step 7
Pupils form two more angles, mention their names and describe them.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
</table>

CONCLUSION:
Teacher discusses with pupils the importance of angles to our daily life.
- We turn through an angle to talk to partners
- We open doors to have passage
- Architects use angles in their work. Etc.

In diagram A, the shaded circle indicates a “Right angle”. In diagram B, “Less than a right angle”, and in diagram C, “More than a right angle”.
2. English as a Teaching Tool

The pupils learn about right angles in Grade 4 and Grade 5. Here are some simple definitions for angles which the children can write in their exercise book with an illustration. They can use this as a reference for revision and to practise their English:

<table>
<thead>
<tr>
<th>Definitions of Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) The angle at each corner of a book is a right angle. We mark right angles like this.</td>
</tr>
<tr>
<td>2) The space between two straight lines that meet is called an angle.</td>
</tr>
<tr>
<td>3) An angle is formed when a straight line turns about a point.</td>
</tr>
<tr>
<td>4) The more the line turns, the greater the angle formed.</td>
</tr>
</tbody>
</table>

NOTE: In Grade 5, pupils study right angles, angles that are less than a right angle and angles that are more than a right angle. They do not use the words “acute angle” and “obtuse angle” until the secondary school grades.
Appendix (Interlocking Circles)

Teaching and learning materials (TLMs) are very important in the teaching/learning processes. They make teaching understandable, practical and interesting to the learner.

Today, we are to prepare “Interlocking Circles” which will help us to teach topics such as Angles, Parts of a circle, Fractions (Decimals and Percentages), and Bearing etc.

Interlocking circles are two equally cut out circles painted/shaded differently. They are both tilted at the centre and locked together. One of them is then kept fixed, while the other is made to be turning round.

The circles could be made from paper, cardboard, plywood and flat metals. (eg. Zinc)

INTERLOCKING CIRCLES USING MANILA CARD / CARDBOARD

(1) Chalkboard Size

Materials needed:
- Pencils and chalk
- Pairs of compasses (Chalkboard and Mathematical set size)
- 25cm and 1m rulers
- Cardboards, Manila Cards, Empty Cartons
- Pairs of scissors / Blade (Cutting materials)

Procedure
- Step 1: Draw a circle of radius 25 centimetres on each of the two cardboards
- Step 2: Use the pair of scissors to cut the radii (25cm) of the circles drawn.
- Step 3: Make a slit on the circles, the length should be the same as the radius of the circle.
- Step 4: Tilt the two circles at the centre and lock together. One of the circles should be fixed and the other circle made to be turning round

Preparation of interlocking circles

Teacher stands in front of the blackboard, with cardboard on the table.

- Step 1: Measure 25cm using the pair of compasses.
- Step 2: Locate the centre of the circle on the cardboard to avoid waste.
- Step 3: Draw two circles each of radius 25cm on different colour cardboards as shown in Figure 4 and 5.

![Figure 4](image1)

![Figure 5](image2)
Step 4: Cut along the radii of the circles as shown in Figure 6 and 7.

![Figure 6](image1.png) ![Figure 7](image2.png)

Step 5: Put the scales 0 degrees, 180 degrees, 270 degrees, and 360 degrees on the one of the circle as shown in Figure 9.

![Figure 8](image3.png) ![Figure 9](image4.png)

Step 6: Interlock the two circles as shown in Figure 10.

![Figure 10](image5.png)

(2) Desktop Size for pupils and students

The interlocking circles for pupils can be prepared like the one for teacher, changing the radius of the circle into around 7cm and more.

(3) Topics that can be taught using Interlocking Circles:

- Types of angles (acute, obtuse, reflex, right angle etc.)
- Parts of circles
- Fractions (Decimals and percentages)
- Bearings
Lesson 5: Primary 5
Collecting and Handling Data

1. Lesson Plan

<table>
<thead>
<tr>
<th>DATE/DAY/TIME/DURATION</th>
<th>TOPIC/SUB-TOPIC</th>
<th>OBJECTIVE(S) R.P.K.</th>
<th>TEACHING/LEARNING MATERIALS KEYWORDS/VOCABULARY LIST TEACHER/LEARNER ACTIVITIES</th>
<th>CORE POINTS</th>
<th>EVALUATION/EXERCISE REMARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Oct. 2006 Tuesday 10:00am -11:00am 60 minutes</td>
<td>UNIT 5.2 TOPIC Collecting and Handling Data SUB-TOPIC Constructing a pictograph</td>
<td>OBJECTIVE(S) By the end of the lesson, the pupil will be able to: 1. collect and sort data into shapes. 2. answer at least two questions correctly on the pictograph. 3. draw a frequency table. R.P.K. Pupils can count objects up to 500.</td>
<td>TLMs Empty milk tins, bottle tops, matchboxes Keywords/Vocabulary List: Pictograph INTRODUCTION: Ask a pupil to count all tables in the classroom, another to count the reading books, and record their findings. ACTIVITIES: Step 1 In pairs, pupils collect discrete objects, sort them into shapes and count them into groups. Step 2 Pupils record groups of numbers and compare them according to sizes. Step 3 Pupils present their arrangements of discrete objects to show a pictograph. E.g. Brands of</td>
<td>Objects of the same shapes are put in a group. Data collection including numerals. e.g. 11, 13, 24, etc. A pictograph is a type of graph in which simple motif (a)</td>
<td>1. Copy and arrange the data below in ascending order. 13, 11, 13, 24, 7, 13, 24. 2. Draw a pictograph to show the favourite drink</td>
</tr>
</tbody>
</table>
matchboxes used in pupils homes

Step 4
Teacher asks pupils to study the practical arrangement of discrete objects and design a statistical table to represent a given data. E.g. Favourite drinks of 20 pupils.

E.g.
A Pictograph of brands of Matchboxes

<table>
<thead>
<tr>
<th>Matchboxes</th>
<th>Strokes</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starry</td>
<td>///</td>
<td>3</td>
</tr>
<tr>
<td>Rainbow</td>
<td>###</td>
<td>5</td>
</tr>
<tr>
<td>Pottery</td>
<td>//</td>
<td>2</td>
</tr>
</tbody>
</table>

CONCLUSION:
Let pupils tell the class how data collection and recording was performed. Pupils answer questions on their friends’ favourite drinks in the frequency table.

symbol, picture or diagram) is used to represent a specific unit. A key is necessary to give the meaning of each motif on the pictograph.

of 20 pupils
Fanta- 4
Coke- 8
Sprite- 6
Pepsi- 2

3. From the pictograph Which drink did pupils like most?

4. From the pictograph, which of the drinks was not liked by pupils?

5. Draw a frequency table on the favourite drink of 20 pupils. Fanta- 4
Coke- 8
Sprite- 6
Pepsi- 2

6. Write down the number which shows the highest frequency
2. **English as a Teaching Tool**

In Class 5 the pupils will have learned to analyze information from frequency tables, block graphs and bar graphs. In Class 6 the pupils have to conduct their own survey and complete each stage of the survey including collecting and handling the data.

The teacher can introduce simple phrases for the pupils to use at each stage of the process. This provides a good opportunity to practice using English in real situations. For example, in conducting a survey of favourite drinks the teacher can introduce the following phrases for each stage:

Stage 1: Designing the Survey

The pupils can practice the following question and answer:

“What do you like to drink?” or “What is your favourite drink?”
“I like Fanta” or “My favourite drink is Fanta”

The teacher asks the pupils

“Make a list of the favourite drinks” or “Make a table of favourite drinks like this”.

[on the chalkboard]

<table>
<thead>
<tr>
<th>favourite drinks</th>
<th>tally / count</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fanta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

frequency means the number of times something occurs

Ask the children to suggest the list of words to write on the frequency table.

Write the definition of frequency to help the children to understand the concept of a frequency table.

Stage 2: Conducting the Survey

The pupils can use the same questions as above, this time making a tally mark on the frequency table as each answer is given.

Stage 3: Drawing the Block Graph

The teacher will need to give the pupils clear step-by-step instructions in English for them to draw the block graph correctly.

Stage 4: Analysing the Data

In small groups the pupils should practice asking each other simple questions about the survey results. The teacher can give them some suggestions, for example:

“What is your favourite drink?” - the pupil should answer with a sentence: “My favourite drink is ……”
“How many pupils like coke best” – the pupil answers: “….. pupils like coke best”
Appendix

1. Collecting data

Data can be obtained from experiments, studies, surveys, records, observation and/or participation, interviews, as well as other areas of research. In the classroom situation it is the responsibility of the teacher to make data collection as practical as possible. Pupils can be made to carry out a simple survey to collect data by using some or all of the following:

1. Days of the week pupils were born
2. The number of different types of bottle tops
3. Heights of pupils in a class
4. Favourite food of pupils
5. Monthly births at a given hospital
6. Rainfall patterns throughout the year
7. Weekly attendance of pupils in a class
8. Marks scored by pupils in a Mathematics test

2. Organising data

One way of organising data is by constructing a frequency table. A frequency table is a table containing items in an observed data and their corresponding frequencies. It could be heights, weights, ages of pupils/students or marks scored by pupils/students in a class.

3. Representing data

Data can be represented by diagrams for easy interpretation. They are Pictographs, Line graphs, Block graphs, Bar graphs, Pie charts and others.

1) Pictograph

This is a pictorial representation of data which uses pictures, symbols and/or diagrams to represent a specific unit. Pictograph uses a key.

2) Block graph

A block graph is a chart using a simple square or rectangle block for a unit to represent the data. In drawing a block graph;

1. the blocks must be of the same width
2. the space between the adjacent blocks must be of the same width
3. a block graph does not have a vertical axis, but a horizontal axis which represents the items
4. it has a key

The data can be collated in a 3-dimensional block chart using concrete materials like matchboxes, Cuisenaire rods, Multi-base Blocks (cubes) etc.

3) Bar graph

A bar graph is a chart that uses bars of equal width to represent data. In drawing any of the bar graphs;

1. the widths of bars must be the same
2. the distance between any two adjacent bars must be equal
3. the length of each bar is proportional to the number of items in that column

Activity 1

The shoe sizes of pupils in class were measured by a pupil as follows;

```
35, 37, 37, 35, 36, 36, 35, 38, 38, 38,
39, 38, 36, 36, 36, 40, 40, 37, 37, 37,
37, 41, 42, 37, 37, 37, 37, 38, 38, 38, 38.
```

Put this data on a frequency table

<table>
<thead>
<tr>
<th>Shoe size</th>
<th>Tally</th>
<th>Number of pupils</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>///</td>
<td>3</td>
</tr>
<tr>
<td>36</td>
<td>·</td>
<td>6</td>
</tr>
<tr>
<td>37</td>
<td>··</td>
<td>12</td>
</tr>
<tr>
<td>38</td>
<td>··</td>
<td>8</td>
</tr>
<tr>
<td>39</td>
<td>/</td>
<td>1</td>
</tr>
<tr>
<td>40</td>
<td>·</td>
<td>2</td>
</tr>
<tr>
<td>41</td>
<td>/</td>
<td>1</td>
</tr>
<tr>
<td>42</td>
<td>/</td>
<td>1</td>
</tr>
</tbody>
</table>

Step 1
Arrange the shoe sizes in order of magnitude.

Step 2
Take each figure in the raw data and insert a tally mark (/) against the size it falls. Note that every fifth tally mark is scored across the previous four.

Step 3
Total the tally marks to find the frequency of each size.

Activity 2

20 students in a class mentioned particular days of the week on which they were born. The result is shown in the table below.

<table>
<thead>
<tr>
<th>Day</th>
<th>Sunday</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students born</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Draw a pictogram for this data.

<table>
<thead>
<tr>
<th>Week</th>
<th>Students born on a particular day of the week</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunday</td>
<td>♀♀</td>
</tr>
<tr>
<td>Monday</td>
<td>♀♀</td>
</tr>
<tr>
<td>Tuesday</td>
<td>♀</td>
</tr>
<tr>
<td>Wednesday</td>
<td>♀♀♀♀♀♀♀</td>
</tr>
</tbody>
</table>
Activity 3

Draw a block graph to represent data in the table of Activity 2.

Students born on a particular day of the week

<table>
<thead>
<tr>
<th>Days of the week</th>
<th>Key:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sun</td>
<td>☄️</td>
<td></td>
</tr>
<tr>
<td>Mon</td>
<td>☄️</td>
<td></td>
</tr>
<tr>
<td>Tue</td>
<td>☄️</td>
<td></td>
</tr>
<tr>
<td>Wed</td>
<td>☄️рост</td>
<td></td>
</tr>
<tr>
<td>Thu</td>
<td>☄️рост</td>
<td></td>
</tr>
<tr>
<td>Fri</td>
<td>☄️</td>
<td></td>
</tr>
<tr>
<td>Sat</td>
<td>☄️</td>
<td></td>
</tr>
</tbody>
</table>

Activity 4

Draw a bar graph to represent data in the table of Activity 2.
Practice 1

The weights of forty (40) pupils in a class are as follows;

24, 28, 26, 25, 23, 22, 24, 28, 26, 27, 23, 28, 27,
30, 23, 22, 24, 28, 25, 29, 32, 25, 20, 26, 29, 21,
24, 24, 24, 31, 29, 25, 30, 27, 28, 25, 25, 23,

1. Construct a frequency table using the data given above.
2. How many pupils weigh 30kg?
3. What is the difference in weight between the lightest and the heaviest?

Practice 2

The following marks were scored by pupils in a Mathematics test

7, 6, 4, 5, 8, 6, 6, 6, 4, 9, 5, 6, 5, 4, 7, 6, 6
5, 8, 6, 5, 6, 6, 5, 2, 7, 7, 6, 5, 4, 8, 6, 5, 6

1. Represent the data on a frequency table.
2. How many students scored the highest mark?
3. Find the mark which occurred most frequently.

Practice 3

After a survey, pupils’ attendance at school was recorded as shown in the table below. Draw a vertical bar graph, using 2cm for the width of each bar and 1cm for the unit of attendance.

<table>
<thead>
<tr>
<th>Table 11: Attendance of pupils at school</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
</tr>
<tr>
<td>Attendance</td>
</tr>
</tbody>
</table>

Practice 4

The table below shows the distribution of weights and number of pupils in a class. Draw a horizontal bar graph to represent this distribution.

<table>
<thead>
<tr>
<th>Table 12: Distribution of masses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (kg)</td>
</tr>
<tr>
<td>Number of pupils</td>
</tr>
</tbody>
</table>