

Papua New Guinea Department of Education

From the People of Japan

'FREE ISSUE NOT FOR SALE'

Issued free to schools by the Department of Education

First Edition

Published in 2020 by the Department of Education, Papua New Guinea.

© Copyright 2020, Department of Education, Papua New Guinea.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted by any form or by any means of electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher.

ISBN 978-9980-905-23-9

Acknowledgements

The Grade 5 Science Teacher's Manual was developed by the Curriculum Development Division in partnership with the Science specialists from Japan through the **Project for Improving the Quality of Mathematics and Science Education** known as **QUIS-ME Project**.

The Science curriculum officers, textbook writers, pilot teachers from NCD and Central Provinces and the Subject Curriculum Group (SCG) are acknowledged for their contribution in writing, piloting and validating this textbook.

The Curriculum Panel (CP) members, members of the Subject Advisory Committee (SAC) and the Basic Education Board of Studies (BEBoS) are also acknowledged for their advice, recommendation and endorsement of this Teacher's Manual.

A special acknowledgement is given to the People and the Government of Japan for the partnership and support in funding and expertise through Japan International Cooperation Agency (JICA) - QUIS-ME Project with Curriculum Development Division (CDD).

Science Teacher's Manual

Grade 5

Papua New Guinea Department of Education

Table of Contents

Content

Page Number

Secretary's I	Message	. I
How to use ⁻	Teacher's Manual	. 11
Chapter 1.	Energy in Food	. 1
Chapter 2	Force and Machine	. 12
Chapter 3.	Weather and Seasons	. 30
Chapter 4.	New Matter	. 46
Chapter 5.	Three States of Matter	. 58
Chapter 6.	Reproduction and Heredity in Animals	. 72
Chapter 7.	Electricity 2	. 86
Chapter 8.	Rocks, Minerals and Fossils	102
Chapter 9.	Habitat and Adaptation	122
Chapter 10.	Plant Growth	152
Chapter 11.	Heat	174

Science Tool Box	196
Glossary	202
Basic Science Instruments	208
Teacher's Manual Development Committees	210

Secretary's Message

Dear Teacher,

Teaching and learning of Science is a challenge. It is my pleasure to inform all Grade 5 Teachers in Primary Schools that a scoped and sequenced content-based curriculum resource material, the Teacher's Manual has been developed. The resource material will assist with the delivery of quality, effective and meaningful Science lessons to all grade 5 students in the country. The Teacher's Manual addresses areas of what to teach, how to teach and what to measure (assess). It is user friendly and reflects PNG contexts in daily situations to help students acquire key concepts.

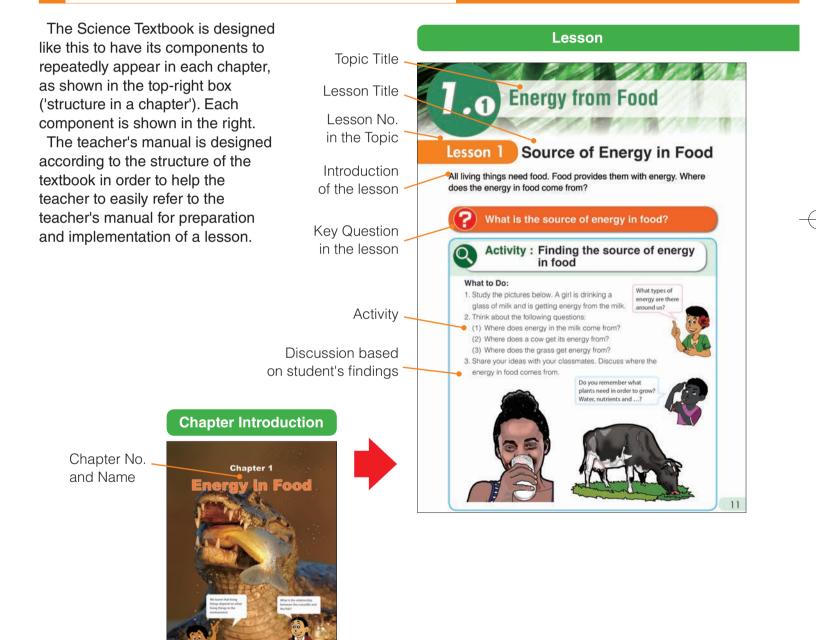
Science is a very interesting and enjoyable subject if taught well. This Grade 5 Teacher's Manual contains very interesting student activities with clear and precise step by step lesson flows for all lessons and teacher notes to assist teachers understand the science concepts for each lesson. These concepts are expanded from the Grades 3-5 Science syllabus to the textbook.

The Teacher's Manual is self-explanatory and provides suitable teaching and learning contents for teachers. It details the teaching and learning strategies, content, concepts and plans in order to achieve the intended purpose of the science lessons prescribed in the National Science Textbook. The lessons are aimed at preparing and shaping young scientists and equipping them with the relevant scientific skills for the 21st century.

This teacher resource was produced by the National Department of Education, in partnership with JICA our partners in global education. The development of these teacher and student materials took three years (2016-2019). I commend all personnel involved; science experts from Japan and the department's very own curriculum officers and textbook writers for the excellent work done.

Teachers are encouraged to use this Teacher's Manual as the main tool to effectively deliver the content of the textbook and other relevant resources such as science equipment recommended to generate creative teaching and interactive learning.

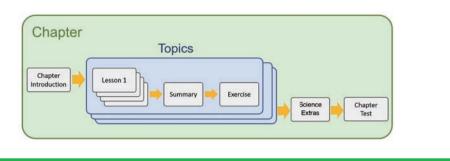
I approve this Grade 5 Science Teacher's Manual to be used in all primary schools throughout Papua New Guinea.

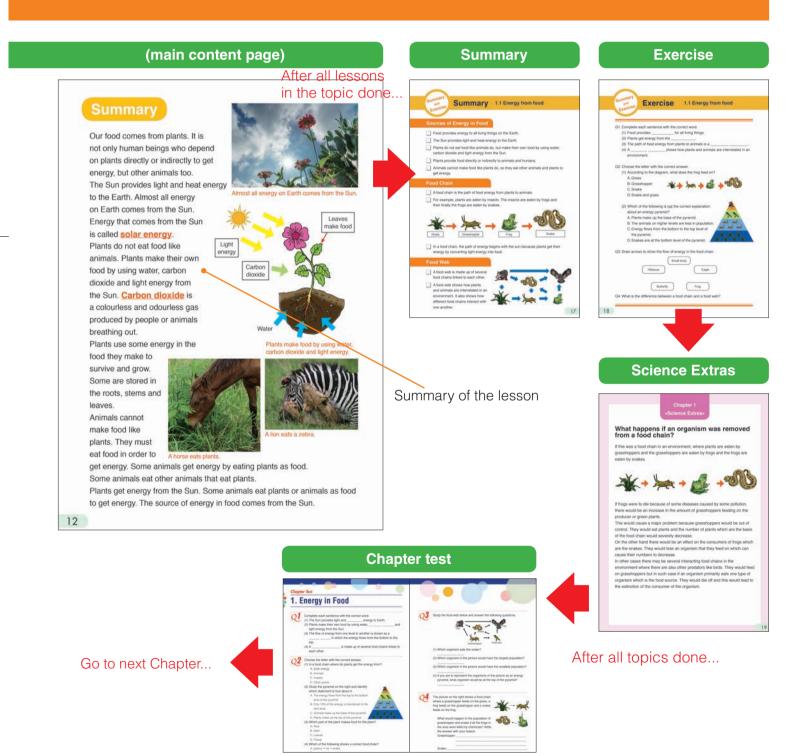

. Uke Kombra, PhD Secretary for Education

1. How to use the Teacher's Manual

Teacher's Manual has been developed for teachers to teach learning contents to their students more effectively with using the National Science Textbook. As for the features of this Teacher's Manual, its contents correspond to that in the textbook according to the Grades 3-5 Science Syllabus. The syllabus sets the national standards that are taught by teachers in the classroom that all students should acquire throughout the country, regardless of the context. These standards outlined in the syllabus are reflected in this teacher's manual. Therefore, information in this teacher's manual will help teachers to prepare lesson plans and to conduct lessons in line with the syllabus.

Firstly, the composition of the textbook is introduced, then, the components in this teacher's manual are introduced in the following section.


1.1 Composition of Science textbook



Structure in a chapter

The Science Textbook consists of several chapters based on learning contents according to the syllabus. All chapters have regular components as shown in the diagram below.

- 1. Chapter Introduction
- 2. Main content pages
- 3. Summary
- 4. Exercise
- 5. Science Extras
- 6. Chapter test

1.2 Main contents in the Teacher's Manual

The main content in this Teacher's Manual has eight components: Basic lesson information, Lesson objectives, Assessment, Preparation, Lesson flow, Teacher's note, Sample Blackboard Plan and a reduced textbook page.

Basic lesson information Preparation Basic information such as name of the unit, Materials and apparatuses recommended for use in the lesson are shown. chapter and topic for the lesson is shown. In addition, numbering (numerical code) and total number of lessons in the chapter are also shown to make teaching easier. otal lesson No: 1 / 87 Topic : 1.1 Energy from Food Textbook page: 11 - 12 Lesson Tit Source of Energy in Food Textbook page of the lesson Corresponding textbook page number is 1 1 2 1 Introduction (5 min.) Recap Grade 4 Chapter 1 'Living Things in the Drivingment' by asking: 1.0 **Energy from Food** shown at the center. The numbers in red circle Construction of asking: Of Where do plants and animals get their, energy from to survive? Animals get energy from the toed they ex-and plants get energy from the sun to the their own food. on the page correspond to the 'Lesson Flow' to Source of Energy in Food O AL iving things need food. Food provides the s the energy in food come from? show where the content is in the lesson flow. ts to think of the so 00 Q:Why do we eat food? Where does energy in food come from? Introduce the key question Activity : Finding the so in food **Teacher's Notes** What is the source of energy in food? Activity (25 min.) Organise students into pairs. Explain the steps of the activity. Allow students to study the pictures and the questions in the textbook. Refer students to what the characters are saying Supplementary information useful for teaching, such as background knowledge and more 0 for their investigation. Ask students to discuss their findings in their detailed explanations, are introduced. In case of materials or equipment not O Discussion for findings (20 min.) Ask students to present their findings from the accessible nationwide, the alternatives are activity. Write their findings on the blackboard. mentioned and instructions on how to improvise are provided. Teacher's Notes In Grade 4 chapter 1 'Living things in the environment', state get energy from the food they eat and how plants get w of Energy through Plants and Animals s are food producers. They make food during photosy ut phot d the energy from ake their own for ical energy stored in the food they make during ril nergy is passed to other organisms through the food cha ree of Energy in Animals and Human nimals and humans get energy from the food they eat. or an organism to be recognised as a living thing, it mus-

The lesson flow should be followed in line with the concept of the textbook: Introduction

In the introduction, teacher makes students review the previous lesson to connect the new lesson through the key question. An example of the introduction is shown in the lesson flow.

2 Showing a key guestion

The key question is closely related to the core or main points of the lesson including the new knowledge, new concepts and new skills. The teacher delivers the key question by using the review of the previous lesson or a new phenomena at the beginning of a new lesson. In this particular lesson, students try to answer the key question by guessing or predicting based on their experiences.

gy from the root uncy can ised as a living thing, it must take in ene gy directly from the sunlight. They must

3 Activity

The activity is delivered to examine their guess and prediction to the key question. In some lessons, the teacher may deliver the activity without students' prediction or hypothesis. These two different ways are dependent on the lesson content. Activities are carried out by a group, individually or done by teacher's demonstration, which is dependent on the availability of the materials and contexts of the lesson topics. Teacher allows students to have enough time to do the activity.

Lesson Flow

A lesson flow includes several teaching points. The main components are:
1. Introduction, 2. Key question, 3. Activity, 4. Discussion and 5. Summary.
Lesson flow in some lessons contains additional information like "Result" or "Challenge", according to the content of the lesson in the textbook.

Lesson Objectives Objectives capturing the main knowledge and skills in the lesson are provided in the textbook. Lesson Ob will be able to: nergy in food. itate that plants use solar energy to m state that animals get energy from pla icinate in activity with curie Facilitate active student discussion points. Q: Where do we get most of our energy from? (From the food we eat.) Q: From where do plants get energy to make their food? (From the sun.) <u>Ω:How does the energy from the sun helps</u> <u>plants2</u> (Plants use the light energy from sun, carbondioxide and water to main the n food.) Q:How does energy pass from animals which don't eat plants? (They get energy from the animals that eat plants. Example: A frog eats a grasshopper who eats grass.) Conclude the discussions. Aurmary (10 min.) sk students to open their textbooks to th ummary page and explain. ummarise today's lesson on the blackbo of these environments environment. se questions as re does the sour ce of energy for plants Q: Where do animals get their energy from to survive? : How do plants make their own fo sk students to copy the notes on the to their exercise books. 12 Sample Blackboard Plan of Energy in Food

Assessment

Teacher should reflect own lesson along this criteria through the lesson. The three components of knowledge, thinking skills, attitude & values are also indicated in the teacher's manual.

'Knowledge' means new concepts, new findings and their relationships. 'Thinking skills' means scientific process skills, which contain observing, measuring, inferring, classifying, predicting and communicating.

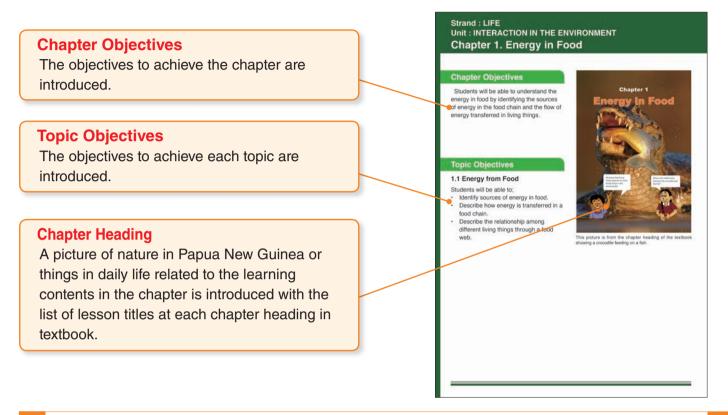
'Attitude and Value' means the interests, curiosities and respect for nature and recognition on the importance and usefulness of the content.

Refer to Teachers Guide for detail information.

Sample Blackboard Plan

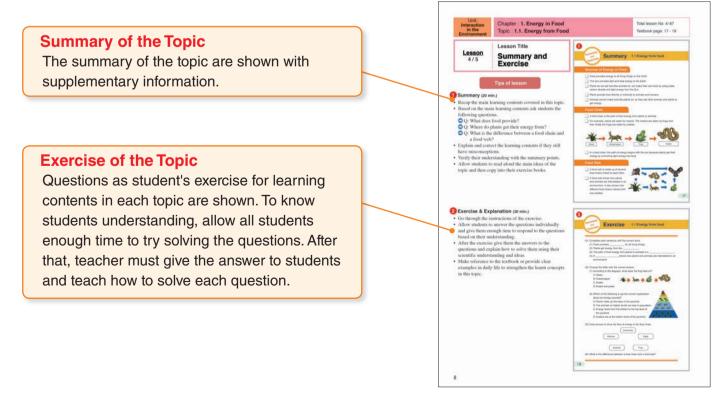
A sample of blackboard of lesson notes writing is introduced. Contents of the blackboard sample are equivalent to the main teaching points of the lesson and can be utilised as a guide. In the sample blackboard plan, examples of the results in the activity and expected student's answers are written in coloured words.

4 Discussion


In the discussion part, the teacher allows students to present their results or findings from the activity and to share with all other students. The teacher allows time to students to think and seek the answers for the key question by using the results or findings in the activity. The teacher must verify the results to the students to avoid misconceptions. In the case, for Grade 5, some of the results in the activity would be same as the conclusion of the lesson.

5 Summary

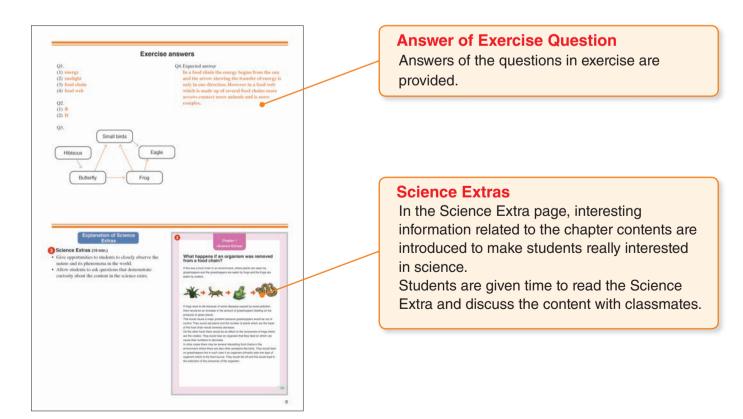
The summary confirms the core points of the lesson. The teacher asks questions shown in the teacher's manuals as summative assessment to students in order to confirm if they have acquired the main knowledge and skills in the lesson. The summary points may be the students' findings or results in the discussion part of the textbook which the teacher would facilitate and direct students.


1.3 Chapter Introduction in Teacher's Manual

In the beginning of a chapter, the necessary information for the chapter such as chapter and topic objectives, linkages of the learning contents with other chapters and grades and a list of lessons are introduced. Student's prior knowledge learned in previous lesson or grade or experiences through their daily lives are also provided.

1.4 Summary and Exercise / Science Extras in Teacher's Manual

Summary and Exercise are inserted at the end of each topic, and column is inserted at the end of each chapter.


Observing our Environment		Living Things in the F Environment	- Energy in Food	J		
and other anir	hich animals mals. ways in whic	depend on plants	Grade 5 - Habitat and Adaptation	- Paths of	de 6 Energy	
eaching C	Overviev	<u>x</u>				
his chapter co	Lesson No.	lessons, each lesson Lesson Title and		Content standard	Textbook	
	1	Source of Energy in Food What is the source of energy		in syllabus	page number 11 - 12	
	2	Food Chains How does energy flow thro		51.5	13 - 14	
Food	3	Food Webs How do living things in an each other?			15 - 16	
	- 4	Summary and Exercise, Scie	moe Extra		17 - 19	
Chapter Test	. 5	Chapter Test	•		20 - 21	

Related Learning Contents

In the Syllabus, key learning contents are scoped and sequenced across all grades, from elementary to grade 12. <u>The main learning</u> <u>contents of a chapter links to that in other</u> <u>chapters including other grades from 3 to 6 are</u> <u>outlined as a concept map</u>. Content in a chapter of a grade is necessary to be taught which links the contents to be learned in the same grade or the next grade. The concept map will help the teachers to visualise such a scope and sequence to teach in the classroom.

Teaching Overview

Topic, lesson titles and key questions, lesson number in the chapter, textbook page number and numerical code of related content standards written in the syllabus are introduced in this list.

2. How to deliver a Science Lesson

Both the Textbook and the Teacher's Manual work hand in hand to deliver a meaningful and successful lesson. However, there are important things to consider before lessons are taught. Teacher should consider:

- 1. Having a Textbook and Teacher Manual on hand.
- 2. Knowing what was the previous and the next day's lesson contents before delivering the current lesson.
- 3. Preparing teaching materials prior to the lesson.
- 4. Reading the Lesson Objectives and

understanding it very well.

- 5. Reading and understanding the Teacher's notes to have some background content knowledge of the lesson before teaching.
- 6. Following the sequence of the lesson carefully and consult the sample blackboard plan to confirm the lesson flow and notes.
- 7. Studying carefully the sample blackboard plan.

3. What to consider while presenting the lesson

Teacher should always consider the points mentioned above to help present the lesson effectively to the students. Everything that the teacher needs to know prior to the lesson is clearly written in the Teacher's Manual. Therefore, the teacher will have the manual while delivering the lesson because the reduced size of the textbook is inserted in the manual to help guide and follow with the class.

At the beginning of each lesson, all lessons have a key question that students are asked to think about ways on how to find out. Teachers will also realise that it encourages Problem Solving approach (Textbook pages 8 to 9) through the lesson. Teachers must be mindful that student's presentation of their findings is very rare and special. While doing problem solving, some findings presented may result in some misconceptions. However, when such arises consider those opinions or findings and always direct their attention back to the main focus of the lesson to flow with everyone in the class so that they learn and understand.

In several lessons, basic science instruments such as a thermometer, compass, tape measure and simple electric circuit are required. For Grade 5 students, teachers must assist them to master how to use the instruments to develop their manipulative skills.

Concept of problem solving approach in the layout of students textbook (pages 8 to 9)

4. What to do during Lesson Preparation

1. Yearly Overview (Page X to XI)

The Yearly overview for Grade 5 Science lessons provides the links to the syllabus. The annual overview shows strand, unit, chapter, topics and lesson titles. The time allocation for each lesson in Science is recognised as a double period of 60 minutes (30 minutes x 2 lessons).

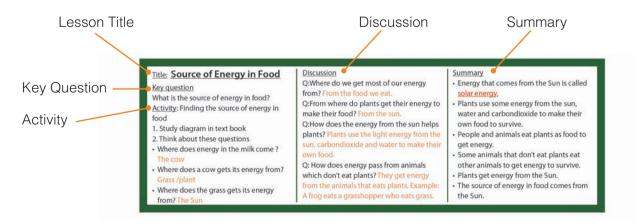
2. Read Teacher's Manual

Information for teaching is introduced in the manual and teachers should read and understand the components of the teacher's manual as follows; lesson objectives, assessments, preparation, lesson flow, teacher's notes and sample blackboard.

3. Test the activity

Before the lesson, a teacher has to prepare the necessary materials and equipment written in the teacher's manual. In addition, it is essential for teachers to do a trial of the activity involving an experiment before the lesson. Conditions such as temperature, humidity, materials and equipment used in the lesson may vary. If teachers are able to find that the result obtained differ or is incorrect, then they should be aware of how to adjust the ways of presenting the activity. The success of the lesson depends entirely on how well a teacher prepares and facilitates students learning to be concrete and effective.

4. Prepare Blackboard Plan


After understanding the lesson contents, the teacher prepares the blackboard plans shown in the Teacher's Manual. The effective use of blackboard is important for student-friendly lessons because students can easily take notes.

5. How to use blackboard

The common practice for the teachers utilising the blackboard is dividing it into sections for each subject. The Blackboard is an important teaching tool for teachers when utilised well. Therefore, in this Teacher's Manual it introduces the strategy for enhancing the effectiveness of blackboards for improving student learning.

 To start a lesson, utilise the blackboard from the top left-hand corner of the blackboard to the right, top to the bottom chronologically as done in the Sample Blackboard Plan. The utilisation of the blackboard will accommodate the components of the blackboard plan below.

- Encourage students to come out to the board to display their ideas and findings by writing and explaining what they have.
- 3. Allow students sufficient time to copy what you wrote before you erase it.

Sample Blackboard Plan

6. Yearly Overview

Yearly overview is designed purposely for the systematic flow of the grade content. It is helpful in the preparation of the yearly program to effectively plan for teaching. The strands, 'Life', 'Physical Science' and 'Earth and Space' are core strands of science in the syllabus.

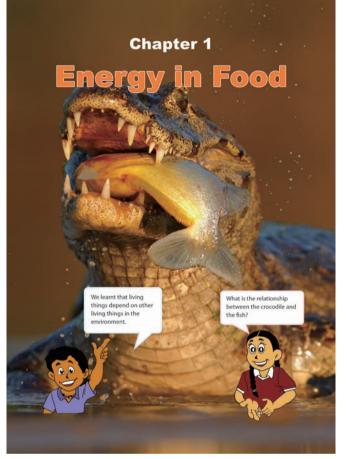
STRAND	UNIT	Chapter	Торіс	Term	No	LESSON in Chap.	Lesson Titles	Page Number		
		1. Energy in Food	1.1 Energy from Food		1	1	Source of Energy in Food	2		
	INTERACTION IN			-	2	2	Food Chains	4		
LIFE	THE				3	3	Food Webs	6		
	ENVIRONMENT				4	4	Summary and Exercise	8		
					5	5	Chapter Test	10		
			2.1 Change in Motion		6	1	Change in Speed	14		
					7	2	Change in Direction	16		
				-	8	3	Summary and Exercise	18		
PHYSICAL	FORCE AND	2. Fores and Mashing			9	4	Lifiting a Load Using a Lever 1	20		
SCIENCE	MOTION	2. Force and Machine		TEDMA	10	5	Lifiting a Load Using a Lever 2	22		
			2.2 Regularity of Levers	TERM 1	11	6	Law of Lever to Balance	24		
					12	7	Summary and Exercise	26		
					13	8	Chapter Test	28		
				1	14	1	Types of Clouds	32		
			3.1 Observing Clouds		15	2	Weather Forecast	34		
			_	- · ·	16	3	Summary and Exercise	36		
EARTH AND	EARTH AND SPACE CLIMATE	3. Weather and Seasons	3.2 Seasons		17	4	Seasons	38		
SPACE					18	5	Seasonal Changes and Living things	40		
					19	6	Summary and Exercise	42		
					20	7	Chapter Test	44		
					21	1	How to tell a Chemical Change	48		
		4. New Matter	4.1 Common Chemical Changes	-	22	2	Rusting	50		
PHYSICAL	MATTER				23	3	Chemical Changes in Daily Life	52		
SCIENCE					24	4	Summary and Exercise	54		
					25	5	Chapter Test	56		
						-	26	1	Shape of The Three States of Matter	60
							27	2	Volme of Three States of Matter	62
PHYSICAL			5.4 Droportion of Three		28	3	Change in State of Matter 1: Solid and Liquid	64		
SCIENCE	MATTER	5. Three States of Matter	5.1 Properties of Three States of Matter		29	4	Change in State of Matter 2: Liquid and Gas	66		
					30	5	Summary and Exercise	68		
					31	6	Chapter Test	70		
				-	32	1	Reproduction in Fish	74		
				TERM 2	33	2	Human Reproductive System	76		
		C. Descendustion and	C.4. Descendustion and		34	3	Reproduction in Human	78		
LIFE	ANIMALS	 Reproduction and Heredity in Animals 	6.1 Reproduction and Heredity		35	4	From Parents to Young	80		
					36	5	Summary and Exercise	82		
					37	6	Chapter Test	84		
				-	38	1	Direction of Electric Current	88		
					39	2	Series and Parallel Circuit	90		
					40	3	Comparing Series and Palallel Circuits	90		
PHYSICAL	ENERGY	7. Electricity 2	7.1 Electrical Circuit		40	4		92		
SCIENCE	LINENGI				41	4 5	Circuit Components and their Symbols	94		
						5	Daily Use of Electric Circuit			
					43		Summary and Exercise	98		
				44	7	Chapter Test	100			

Chapters are arranged in sequential order from the first to the last. Each chapter contains one or more topics. The lesson number in the chapter is given to each lesson according to the students' textbook. Each lesson is recommended to be conducted as double periods (60 minutes). Finally, the page numbers are attached to each lesson to easily identify the lesson titles for planning and teaching.

STRAND	UNIT	Chapter	Торіс	Term	No	LESSON in Chap.	Lesson Titles	Page Number										
					45	1	Rocks	104										
			8.1 Rocks and Minerals		46	2	Minerals	106										
					47	3	Types of Rock	108										
				-	48	4	Uses of Rocks and Minerals	110										
EARTH AND SPACE		 Rocks, Minerals and Fossils 			49	5	Summary and Exercise	112										
OFROE		1 000110			50	6	A Fossil	114										
			8.2 Fossils		51	7	Learning from Fossils	116										
			0.2 FUSSIIS		52	8	Summary and Exercise	118										
					53	9	Chapter Test	120										
				1	54	1	Habitats	124										
					55	2	Freshwater Habitat	126										
				TERM 3	56	3	Ocean Habitat	128										
			9.1 Habitats		57	4	Rainforest Habitat	130										
					58	5	Grassland Habitat	132										
					59	6	Habitats Changes	134										
	INTERACTION IN				60	7	Summary and Exercise	136										
LIFE	LIFE THE ENVIRONMENT	9. Habitat and Adaptation	9.2 Adaptations		61	8	What is Adaptation?	138										
					62	9	Adaptations to Habitats	140										
					63	10	Camouflage	142										
					64	11	Mimicry	144										
					65	12	Behavioural Adaptation	146										
					66	13	Summary and Exercise	148										
					67	14	Chapter Test	150										
					68	1	Inside of a Seed	154										
					10.1 Needs for Seed					69	2	Conditions for Germination 1: Water	156					
			10.1 Needs for Seed Germination															
					71	4	Conditions for Germination 3: Temperature	160										
		10. Plant Growth			72	5	Summary and Exercise	162										
LIFE	PLANTS			1	73	6	Conditions for Plant Growth 1: Water	164										
					74	7	Conditions for Plant Growth 2: Light	166										
			10.2 Needs for Plant Growth		75	8	Conditions for Plant Growth 3: Fertiliser	168										
					76	9	Summary and Exercise	170										
					77	10	Chapter Test	172										
				TERM 4	78	1	What is Heat?	176										
					79	2	Source of Heat	178										
			11.1 Properties of Heat		80	3	Uses of Heat	180										
					81	4	Temperature	182										
PHYSICAL					82	5	Summary and Exercise	184										
SCIENCE	ENERGY	11. Heat		1	83	6	Heat Transfer 1: Conduction	186										
					84	7	Heat Transfer 2: Convection	188										
			11.2 Heat Transfer		85	8	Heat Transfer 3: Radiation	190										
					86	9	Summary and Exercise	192										
					87	10	Chapter Test	194										

Strand : LIFE Unit : INTERACTION IN THE ENVIRONMENT Chapter 1. Energy in Food

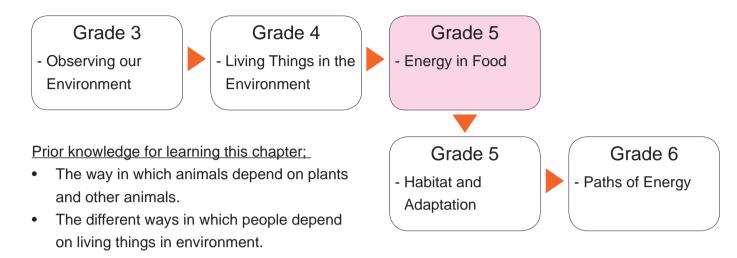
Chapter Objectives


Students will be able to understand the energy in food by identifying the sources of energy in the food chain and the flow of energy transferred in living things.

Topic Objectives

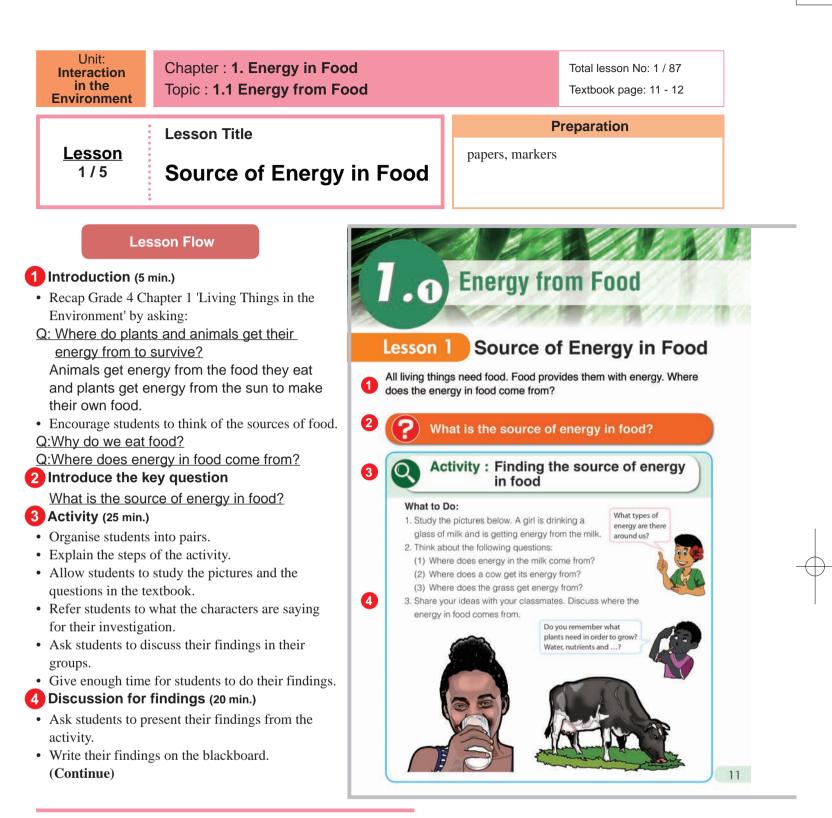
1.1 Energy from Food

Students will be able to;


- Identify sources of energy in food.
- Describe how energy is transferred in a food chain.
- Describe the relationship among different living things through a food web.

This picture is from the chapter heading of the textbook showing a crocodile feeding on a fish.

Related Learning Contents


The learning contents in this chapter connect to the following chapters.

Teaching Overview

This chapter consists of 5 lessons, each lesson is a double period.

Торіс	Lesson No.	Lesson Title and Key Question	Content standard in syllabus	Textbook page number
	1	Source of Energy in Food What is the source of energy in food?		11 - 12
1.1 Energy from	2	Food Chains How does energy flow through food?		13 - 14
Food	3	Food Webs How do living things in an environment interact with each other?	5.1.5	15 - 16
	4	Summary and Exercise, Science Extra		17 - 19
Chapter Test	5	Chapter Test		20 - 21

Teacher's Notes

In Grade 4 chapter 1 'Living things in the environment', students learnt about the basic needs of plants and animals, where animals get energy from the food they eat and how plants get energy from making their own food using sunlight, water and air. **The Flow of Energy through Plants and Animals**

- Plants are food producers. They make food during photosynthesis.Refer to teachers note in Grade 4 Chapter 1, Lesson 1 for information about photosynthesis.
- Plants need the energy from the sun light, carbondioxide that is exhaled from humans and animals and water taken in from roots to make their own food.
- Plants can convert light energy from the sun into chemical energy stored in the food they make during photosynesis. This energy is passed to other organisms through the food chain.

Source of Energy in Animals and Human

- Animals and humans get energy from the food they eat.
- For an organism to be recognised as a living thing, it must take in energy and use it to sustain life.
- Animals cannot produce energy directly from the sunlight. They must eat plants or other animals to acquire energy.
- 2

Lesson Objectives

- Students will be able to:
- Identify sources of energy in food.
- Explain how plants use energy from the sun.
- Describe how animals get energy to survive.
- Participate in activity with curiosity.

Assessment

- Students are able to:
- Describe sources of energy for plants and animals.
- State that plants use solar energy to make food.
- State that animals get energy from plants and other animals by eating.
- Enjoy finding out where energy in the food comes from.

Summary

Our food comes from plants. It is not only human beings who depend on plants directly or indirectly to get energy, but other animals too. The Sun provides light and heat energy to the Earth. Almost all energy on Earth comes from the Sun.

Energy that comes from the Sun is called solar energy. Plants do not eat food like animals. Plants make their own food by using water, carbon dioxide and light energy from the Sun. Carbon dioxide is a colourless and odourless gas

produced by people or animals breathing out.

Plants use some energy in the

food they make to survive and grow. Some are stored in the roots, stems and leaves. Animals cannot make food like plants. They must eat food in order to

Leaves Light

get energy. Some animals get energy by eating plants as food. Some animals eat other animals that eat plants.

Plants get energy from the Sun. Some animals eat plants or animals as food to get energy. The source of energy in food comes from the Sun.

12

Sample Blackboard Plan

Title: Source of Energy in Food

Key question

What is the source of energy in food? Activity: Finding the source of energy in food

- 1. Study diagram in text book
- 2. Think about these questions • Where does energy in the milk come ?
- The cow
- Where does a cow gets its energy from?
- Where does the grass gets its energy
- from? The Sur

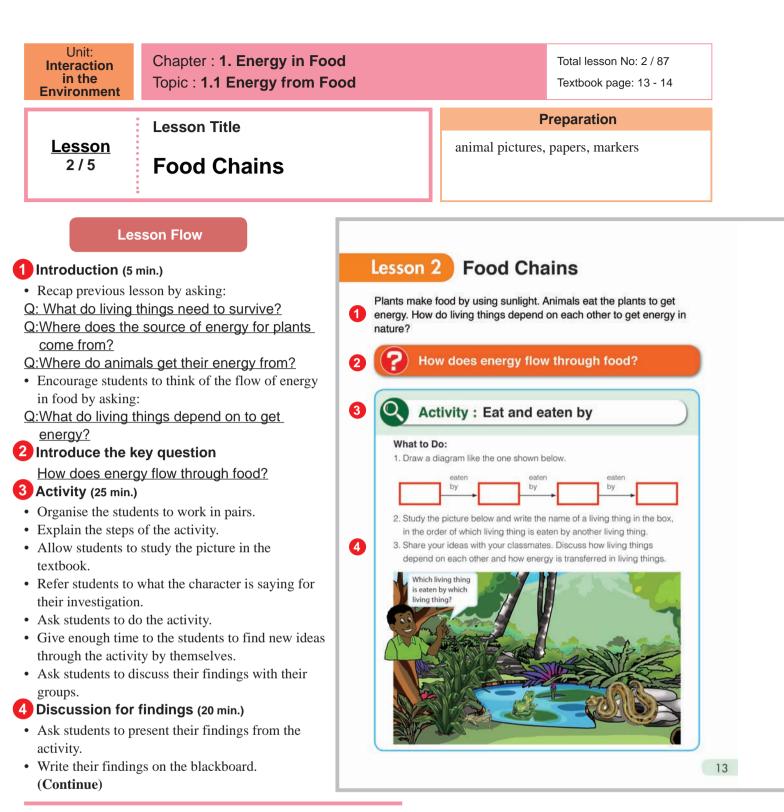
Discussion

Q:Where do we get most of our energy from? From the food we eat.

Q:From where do plants get their energy to make their food? From the sun. Q:How does the energy from the sun helps

plants? Plants use the light energy from the sun, carbondioxide and water to make their own food

Q: How does energy pass from animals which don't eat plants? They get energy from the animals that eats plants. Example: A frog eats a grasshopper who eats grass.


Summary

- Energy that comes from the Sun is called solar energy.
- Plants use some energy from the sun, water and carbondioxide to make their own food to survive.
- People and animals eat plants as food to get energy.
- Some animals that don't eat plants eat other animals to get energy to survive.
- Plants get energy from the Sun.
- The source of energy in food comes from the Sun.

- Facilitate active students' discussions.
- Confirm the findings with the students.
- **Based on their findings**, ask these questions as discussion points.
- Q: Where do we get most of our energy from? (From the food we eat.)
- Q: From where do plants get energy to make their food? (From the sun.)
- Q:How does the energy from the sun helps plants? (Plants use the light energy from the sun, carbondioxide and water to make their own food.)
- Q:How does energy pass from animals which don't eat plants? (They get energy from the animals that eat plants. Example: A frog eats a grasshopper who eats grass.)
- Conclude the discussions.

Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: Where does the source of energy for plants come from?
 - Q: Where do animals get their energy from to survive?
 - Q: How do plants make their own food?
- Ask students to copy the notes on the blackboard into their exercise books.

Teacher's Notes

- A food chain will be taught in Grade 6 Chapter 1, lesson 2 'Food Chains in Different Environment'. In this lesson, students will identify food chains in different environment. In addition, students will learn about food web which is the combination of various food chains. This lesson is the foundation of Grade 6 Chapter 1, refer to these lessons prior to teaching this lesson.
- A food chain describes how different organisms eat each other, starting out with a plant and ending with an animal. Food chain in ecology is the sequence of transfers of matter and energy in the form of food from organism to organism. Food chains intertwine locally into a food web because most organisms consume more than one type of animal or plant. Plants, which convert solar energy to food by photosynthesis are the primary food source. In a predator chain, a plant-eating animal is eaten by a flesh-eating animal.
- Every living plant and animal must have energy to survive. Plants rely on the soil, water and the sun for energy. Animals rely on plants as well as other animals for energy.
- In an ecosystem, plants and animals all depend on each other to live. Scientists sometimes describe this dependence using a food chain or a food web.
- 4

Lesson Objectives

Students will be able to:

Result

eaten by".

and to the snake.

Summary

- Recognise how energy flows through food.
- Explain the meaning of a food chain.
- Appreciate the importance of living things in their environment.

We found out that grass is eaten by the grasshopper. The grasshopper is

eaten by the frog and the frog is eaten by the snake. The arrow means "is

Energy in food is transferred from the grass, to the grasshopper, to the from

Plants and animals are linked by the energy they need. For example, plants

are eaten by insects. The insects are eaten by frogs and then finally the frogs are eaten by snakes. At each link, energy is being transferred from plants to

animals. The path of food energy from the plants to animals is called a food

chain. In a food chain, the energy flow begins with the Sun because plants

get their energy by converting solar energy into food. Food chains only go in

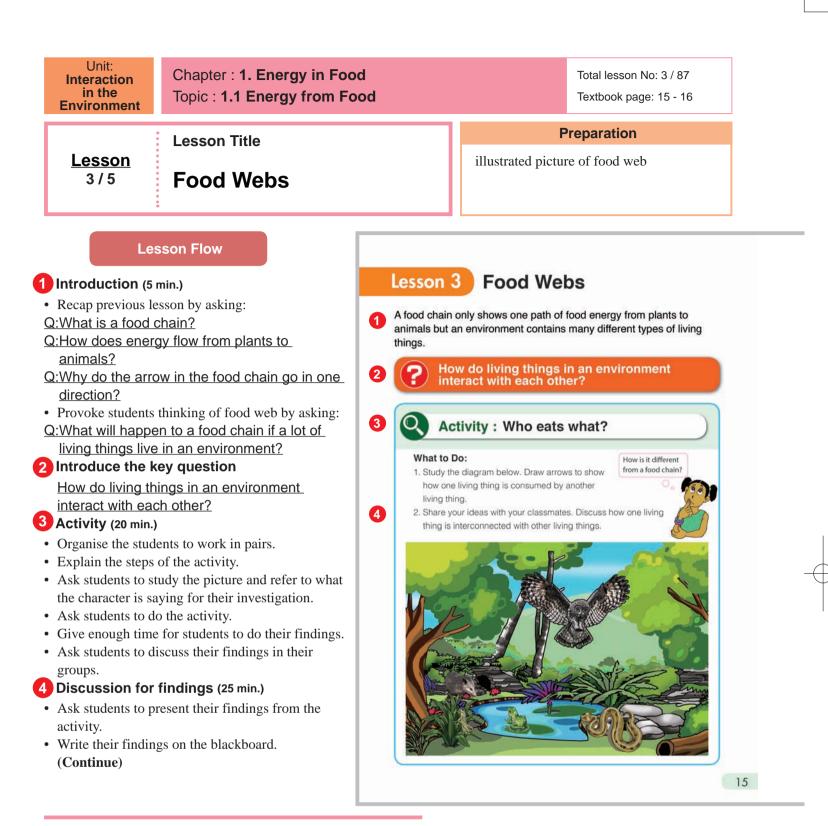
How many examples of food chains can you give?

Assessment

- Students are able to:
- Draw the flow of energy from plants to animals in consideration of the relationship between 'eat' and 'be eaten by'
- State the definition of food chain.
- Express the importance of living things in their environment.
 - Facilitate active students' discussions
 - Confirm the findings with the students.
 - **Based on their findings**, ask these questions as discussion points.
 - <u>Q:Why does a grasshopper feed on plants/</u> grass? (To get food or energy to survive.)
 - <u>Q:How do animals get energy?</u> (By eating other animals and plants to get energy.)
 - <u>Q:Where do plants get their energy from?</u> (From the sun.)
 - <u>Q:What do the arrows in the diagram</u> <u>represent?</u> (It shows the relationship between 'eat' and 'eaten by'.)
 - Q:Why do the arrows in the food chain go in one direction? (Because it shows the natural way of living things feeding for survival and how energy flows.)
 - <u>Q:How does the energy flow through food?</u> (Energy in food flow from plants to other animals. Living things 'eat' or 'be eaten by' other living things, etc...)
 - Conclude the discussions.
 - 5 Summary (10 min.)
 - Ask students to open their textbooks to the summary page and explain.
 - Summarise today's lesson on the blackboard.
 - Ask these questions as assessment: Q:What is a food chain? Q:How does energy in food flow through? Q:What is the sources of energy in food chain?
 Ask students to copy the notes on the blackboard
 - into their exercise books.

one direction. The arrow shows the direction of energy flow. Image: state of the stream of

 Q: How do animals get energy? By eating other animals and plants to get energy.


Q: Where do plants get their energy from? The sun. Q: What do the arrows in the diagram represent? It shows the relationship between 'eat' and 'eaten by'.

Q: Why do the arrows in the food chain go in one direction? Because it shows the natural way of living things feeding for survival and how energy flows. Q: How does the energy flow through food? Energy in food flow from plant to other animasl, living things 'eat' or 'be eaten by' other living things.

<u>Summary</u>

 A <u>Food Chain</u> is the path of food energy from the plants to animals.
 The Sun → Flower

- A food chain shows energy flow from
- the sun to plants and then to animals.A food chain only goes in one direction.

Teacher's Notes

- A food web will be taught in Grade 6 Chapter 1, lesson 3 'Food Webs in Different Environment'. In this lesson, student will understand that a food web varies in different environments. Teachers are requested to refer to them prior to this lesson.
- A food web is the interconnection of food chains. We can find several food chains in a food web diagram in the textbook, for example:

 $Grass \rightarrow Rat \rightarrow Owl$ $Grass \rightarrow Rat \rightarrow Snake \rightarrow Owl$

 $Grass \rightarrow Grassphopper \rightarrow Frog \rightarrow Owl$

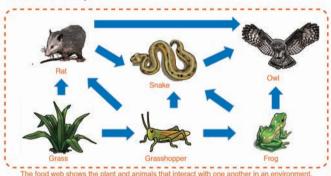
 $Grass \rightarrow Grassphopper \rightarrow Frog \rightarrow Snake \rightarrow Owl$

- $Grass \rightarrow Grassphopper \rightarrow Rat \rightarrow Snake \rightarrow Owl$
- An energy or trophic pyramid illustrates ecological relations among creatures. The first level (level 1) is plants, then herbivores (level 2), followed by primary prediators (level 3) and secondary prediators (level 4). Prediators are also called carnivores.

Lesson Objectives

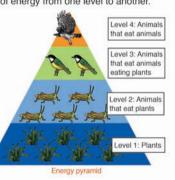
- Students will be able to:
- Understand what a food web is.
- Describe a food web.
- Explain what an energy pyramid is.

Assessment


Students are able to:

5

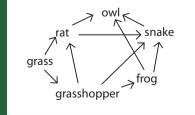
- State what a food web is by relating to food chains.
- Draw a food web to connect all living things in an environment.
- State the relationship between the amount of energy and the population of living things in an energy pyramid.


Summary

Most plants and animals are part of several food chains. For example, plants may be eaten by a caterpillar, a cow or some other animals. Snakes may eat a rat, a frog or some other animals. To represent these relationships we use a food web. A <u>food web</u> is made up of several food chains linked to each other. A food web shows how plants and animals are interrelated in an environment. It also shows how different food chains interact with one another and overlap.

An energy pyramid shows the flow of energy from one level to another.

Energy flows from the bottom to the top level of the pyramid. Only about 10 percent of the energy is transferred to the next level. Plants make up the base of the energy pyramid. The higher we go up the pyramid, the amount of energy available for use is less and the population of living things or organisms decreases.



16

Sample Blackboard Plan

Title: Food Webs

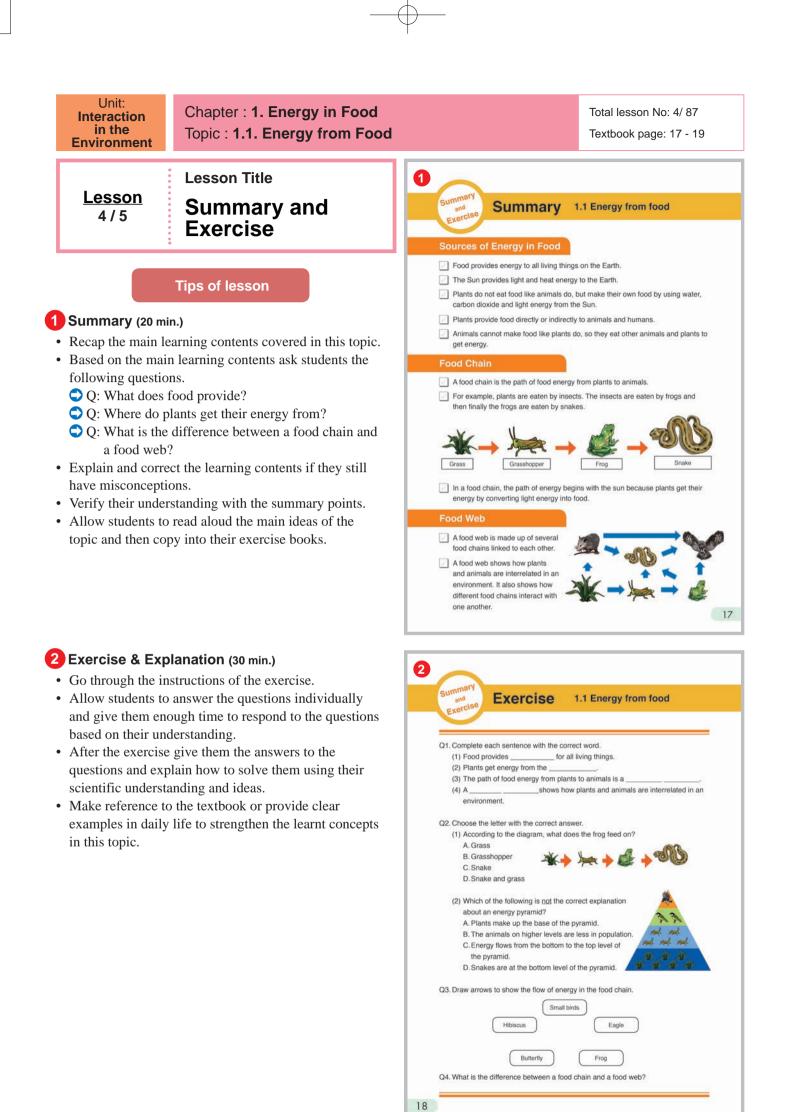
<u>Key question</u> : How do living things in an environment interact with each other? <u>Activity</u>: Who eats what.

<u>Discussion</u>

Q: Which animals eat grass? Rat and grasshopper. Q:What animals does a snake eat? Rat, grasshopper and frog.

Q:Which animal is eaten by an owl? Rat, snake and frog.

Q:How many food chains can you find in this picture? More than 5 food chains. Q:Can you guess which living thing would have the most and least population in the environment? Grass is the most, owl is the least.


- Facilitate active students' discussions.
- Confirm the findings with the students.
- **Based on their findings**, ask these questions as discussion points.
- Q:Which animals eat grass? (Rat and grasshopper.)
- <u>Q:What animals does a snake eat?</u> (Rat, grasshopper and frog.)
- <u>Q:Which animal is eaten by an owl?</u> (Rat, snake and frog.)
- <u>Q:How many food chains can you find in this</u> <u>picture?</u> (More than 5 food chains.)
- Q:Can you guess which living thing would have the most and least population in the environment? (Grass is the most, owl is the least.)
- Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment: Q:What is a food web?
 - Q:How are a food web and a food chain different?
 - Q:What is an energy pyramid?
 - Q:Explain the relationship between the amount of energy and the population of living things in an energy pyramid.
- Ask students to copy the notes on the blackboard into their exercise books.

Summary

- A <u>food web</u> is made up of several connected food chains together.
- A food web shows:
- How plant and animals are interrelated in an environment.
- How different food chains interact with one another and overlap.
- An <u>energy pyramid</u> shows the flow of energy from one level to another.
- The higher we go up the pyramid, the amount of energy available for use is less and the population of living things decreases.

Q1. (1) energy (2) sunlight (3) food chain (4) food web Q2. (1) B (2) D Q3. Small birds Eagle

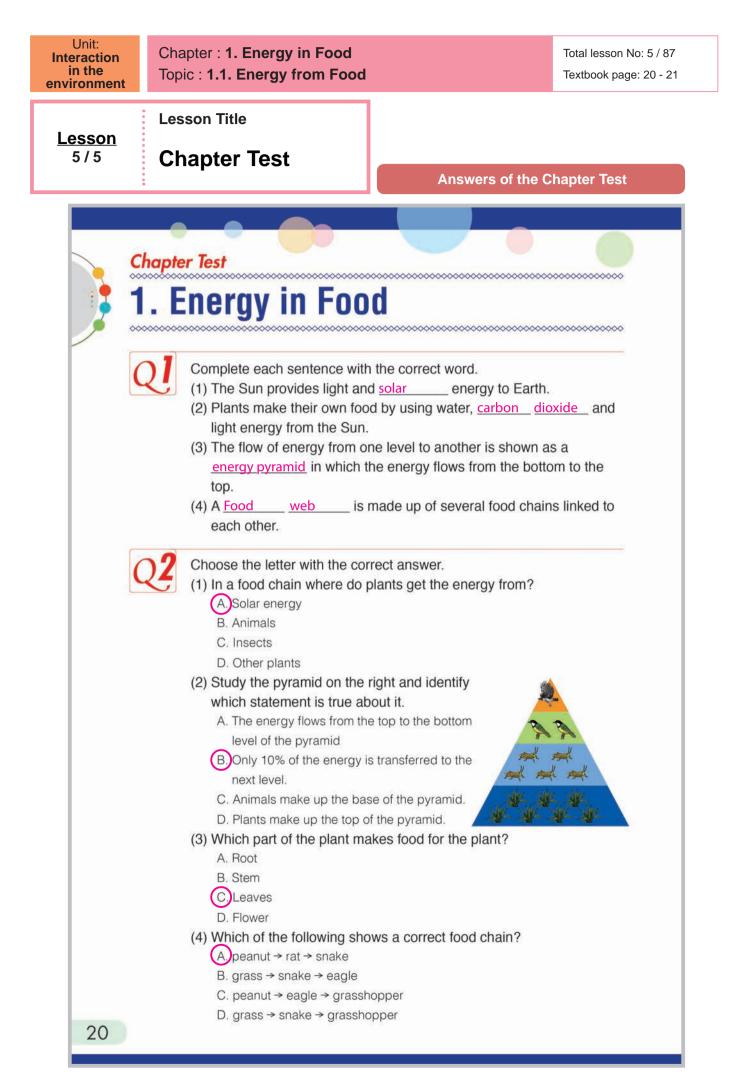
Exercise answers

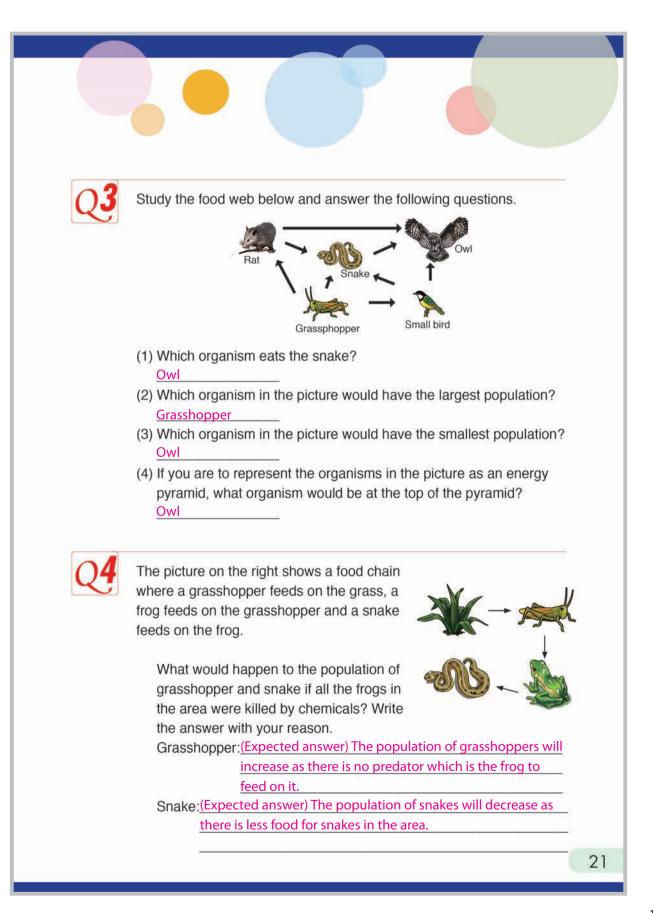
Q4. Expected answer

In a food chain the energy begins from the sun and the arrow showing the transfer of energy is only in one direction. However in a food web which is made up of several food chains more arrows connect more animals and is more complex.

Explanation of Science Extras

Frog


3 Science Extras (10 min.)


Butterfly

- Give opportunities to students to closely observe the nature and its phenomena in the world.
- Allow students to ask questions that demonstrate curiosity about the content in the science extra.

3 What happens if an organism was removed from a food chain? If this was a food chain in an environment, where plants are eaten by grasshoppers and the grasshoppers are eaten by frogs and the frogs are eaten by snakes. If frogs were to die because of some diseases caused by some pollution, there would be an increase in the amount of grasshoppers feeding on the producer or green plants. This would cause a major problem because grasshoppers would be out of control. They would eat plants and the number of plants which are the basis of the food chain would severely decrease. On the other hand there would be an effect on the consumers of frogs which are the snakes. They would lose an organism that they feed on which can cause their numbers to decrease. In other cases there may be several interacting food chains in the environment where there are also other predators like birds. They would feed on grasshoppers but in such case if an organism primarily eats one type of organism which is the food source. They would die off and this would lead to the extinction of the consumer of the organism.

19

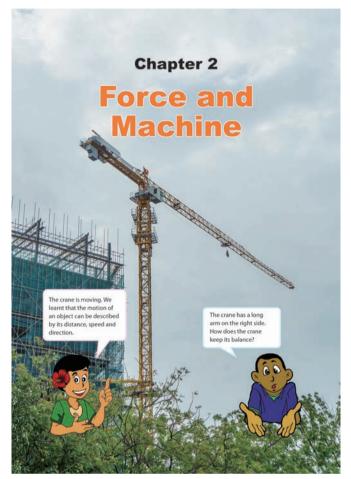
Strand :PHYSICAL SCIENCE Unit : FORCE AND MOTION Chapter 2. Force and Machine

Chapter Objectives

Students will be able to understand how force changes the speed and direction of an object through simple experiments. Students will also be able to understand how an object can be lifted with less effort by using a lever and the law of balancing a lever.

Topic Objectives

2.1 Change in Motion


Students will be able to;

- Describe that a force can change the speed of an object to accelerate or decelerate.
- Explain gravity as the force that changes the direction of the ball thrown in the air.

2.2 Regularity of Levers

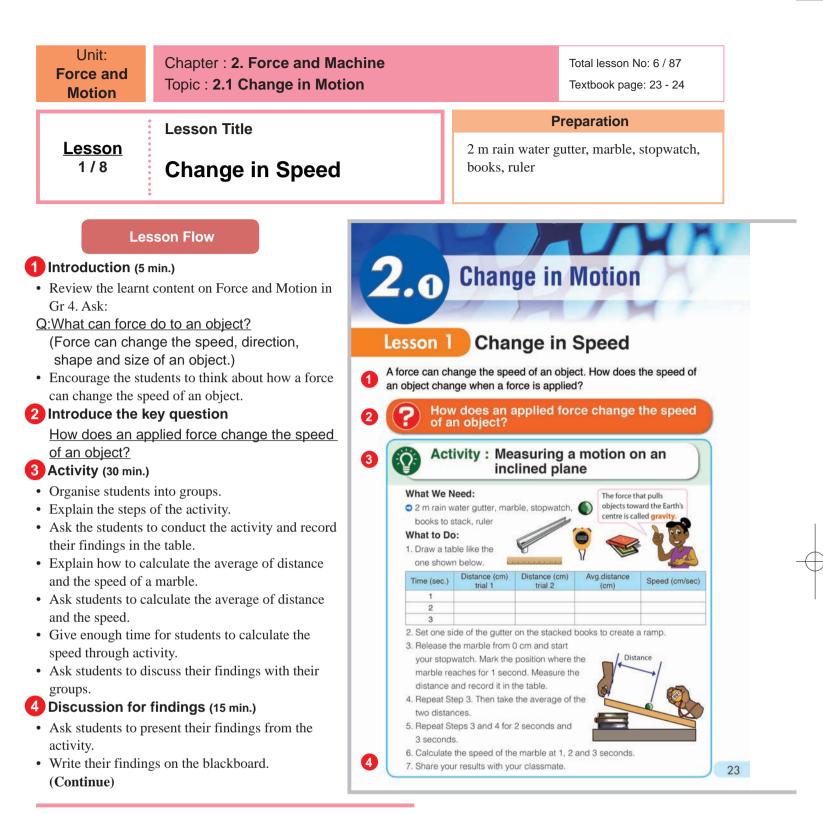
Students will be able to;


- Explain that lesser effort is needed to lift the load, when the effort is applied further away from the fulcrum.
- Explain that lesser effort is needed to lift the load, when the object is placed at a shorter distance from the fulcrum.
- Identify that a lever is balanced when the product of the weight and distance from the fulcrum on the left arm is the same as the one on the right arm.

This picture is from the chapter heading of the textbook showing a crane at a construction site. The crane has a weight on the left side to keep it balanced.

Related Learning Contents

The learning contents in this chapter connect to the following chapters.


Prior knowledge for learning this chapter;

- Motion of an object is described by its distance, speed and direction and can be measured.
- There are six types of simple machines that can make work easier such as: inclined plane, pulleys, wheel and axle, wedge, screw and lever.

Teaching Overview

This chapter consists of 8 lessons, each lesson is a double period.

Торіс	Lesson No.	Lesson Title and Key Question	Content standard in syllabus	Textbook page number
	1	Change in Speed How does an applied force change the speed of an object?		23 - 24
2.1 Change in Motion	2	Change in Direction How does a force change the direction of a moving object?	-	25 - 26
	3	Summary and Exercise		27 - 28
	4	Lifting a Load Using a Lever: 1 How can we lift an object using a lever with less force?	5.2.3	29 - 30
2.2 Regularity of Levers	5	Lifting a Load Using a Lever: 2 How does the distance from a fulcrum to a load affect an effort?	-	31 - 32
	6	Law of Lever to Balance How can we balance a lever?	-	33 - 34
	7	Summary and Exercise, Science Extra		35 - 37
Chapter Test	8	Chapter Test		38 - 39

Teacher's Notes

Height (cm)	6	8	10
Time (s)	Dis	tance (cm)
0.5	4	5	6
1.0	10	20	25
1.5	34	45	56
2.0	60	80	100
2.5	94	125	156
3.0	135	180	225

• This is the reoccurrence of the very famous Galileo Galilei's experiment when he found the theory of free fall in the 17th century. It is recommended to set up the ramp with 6-10 cm height against 2 m long gutter for relevant observation.

• Table at left shows the relationship in theory between time and distance moved in a ramp with 6 cm, 8 cm and 10 cm height respectively. If the ramp is bent or the surface of the ramp is rough, the result may be significantly different from that in theory. Teachers are requested to check in advance if you can get similar values.

• If you cannot find a rainwater gutter, you can use a flat wooden plate instead. We recommend grooving the plate to make a track for the marble to roll down properly. Or you can use a cylinder shape object such as a spray can or a tin can instead of a marble so that you can keep the movement properly even on the flat surface.

• A tin can must have enough weight to roll down properly. In addition, a content of a can must be filled uniformly, as movement of contents inside of a can may disturb the rolling.

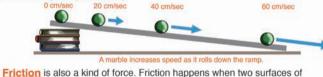
Lesson Objectives

Students will be able to:

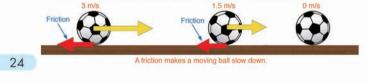
- Describe how the speed of an object changes when force is applied.
- Experiment the change in the speed of an object when force is applied.
- Set up the materials in the activity correctly.

Result

We found out that as the marble rolled down the ramp, it speeds up.


Time (sec.)	Distance (cm) trial 1	Distance (cm) trial 2	Avg. Distance (cm)	Speed (cm/sec)
1	19	21	20	20
2	82	78	80	40
3	185	175	180	60
Dis	scussion			1

Think about the following questions based on your results. 1. What type of force is exerted on the rolling marble?


2. How does the speed of the marble change when the force was applied?

Summary

A force can cause an object to speed up (accelerate) or slow down (decelerate). For example, gravity is the force that pulls one object toward another. When the marble rolls down the ramp, the force (gravity) is always exerted on the rolling marble. As the marble rolls down, it speeds up or increases speed (accelerate).

chiction is also a kind of force. Friction happens when two surfaces of objects rub against each other. When a ball is rolling on the ground, the force (friction) acts in the opposite direction to the movement of the rolling ball. The ball then decreases speed (decelerate) and finally stops.

Sample Blackboard Plan

<u>Title:</u>

Change in Speed

Key question How does an applied force change the speed of an object? Activity: Measuring a motion on an inclined

plane.

1
20
40
60

<u>Discussion</u>

Q: What type of force is exerted on the rolling marble? Gravity is the force exerted on the rolling marble. Q: How does the speed of the marble change when gravity is applied to it? The marble increases in speed during the roll down the ramp because the force of gravity is always pulling on it. Q: What is friction? A force that makes an object slow and stop when two surfaces of objects are rubbed against each other.

6

Assessment

Students are able to:

- Explain how gravity and friction change the speed of an object.
- Find out how gravity changes the speed of a ball by analysing the results of the experiment.
- Show eagerness to participate in finding the change in speed caused by a force.
 - Facilitate active students' discussions.
 - Confirm the findings with the students.
 - **Based on their findings,** ask these questions as discussion points.
 - Q:What type of force is exerted on the rolling marble? (Gravity is the force exerted on the rolling marble.)
 - Q:How does the speed of the marble change when the gravity is applied to it? (The marble increases in speed during the roll down the ramp because the force of gravity is always pulling on it.)
 - <u>Q:What is friction?</u> (A force that makes an object slow down and stop when two surfaces of objects are rubbed against each other.)
 - <u>Q:How does the speed of a ball change when</u> <u>a ball is rolling on the ground?</u> (The speed of the ball decreases.)
 - Conclude the discussions.

5 Summary (10 min.)

- Ask the student to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q:How does gravity change the speed of an object?
 - Q: How does the friction force change the speed of a moving object?
- Ask students to copy the notes on the blackboard into their exercise books.

Q: How does the speed of a ball change when a ball is rolling on the ground? The speed of the ball decreases. Summary

- A force can cause an object to speed up <u>(accelerate)</u> or slow down <u>(decelerate)</u>.
 Example:
- Gravity increases the speed of an object moving downwards.
- Friction acts in the opposite direction of the moving object and slows it down.

Teacher's Notes

- As the theory of free fall discovered by Galileo Galilei explained, the light object and the heavy object fall in the same time theoretically if there is no air. If you can prepare balls of different sizes and weights, the variety will assist students to clearly understand the movement of object in midair.
- However, in real life, very light objects like balloons can be easily blown by the wind and it may confuse students to summarise the key learning concepts. Teachers should prepare balls with enough weight such as a soccer ball, a basketball and a cricket ball. Indoor is preferable to avoid the influence of the wind. Turn off indoor fans if you have.

• Noise caused by the ball when it hits the floor may disturb the activity. Ask students to catch the ball.

• An object slows down as it goes up because of the pull of gravity on it. At some point in midair it changes direction and increases in speed as it falls back to the ground (towards the center of the earth). Guide students to focus on the point where and when the ball changes direction from up to downward direction and its momentum (speed upwards and downwards).

Lesson Objectives

Students will be able to:

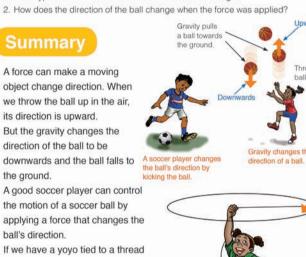
- Identify how a force changes the direction of an object.
- Observe the changes in the direction of an object when the force is applied.
- Experiment cooperatively in the activity.

Assessment

Students are able to:

- Explain how gravitational force changes the direction of an object.
- Find out how gravity changes the direction of a ball by observing the results of the activity.
- ٠ Cooperate with peers to identify the change in the direction caused by a force of gravity.

Result


We found out that as a ball went up in the air, the ball slowed down and its direction was upward. And then the ball stopped in the air. After that, the ball speeded up and its direction was downward as it fell toward the ground.

	How does it change?
Speed	The speed decreases when the ball goes up. Then it stops (Speed is 0). And then the speed increases.
Direction	The direction is upward when the ball goes up. The direction is downwards when the ball falls towards the ground.

Discussion

Think about the following questions based on your results.

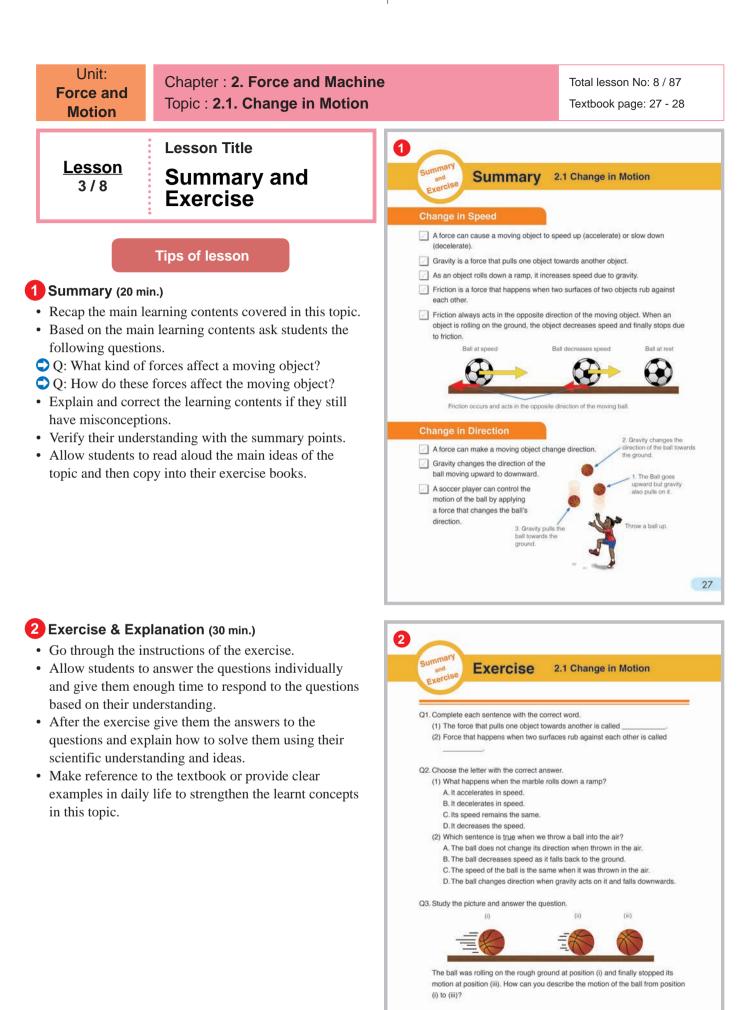
- 1. What type of force was exerted on the ball after throwing it?

and we just spin it in a circle, the direction of the yoyo changes.

26

• Facilitate active students' discussions.

- Confirm the results with the students.
- **Based on their results,** ask these questions as discussion points:
- Q:What type of force is exerted on the ball after throwing it? (The force of gravity.)
- Q:How does the direction of the ball change when force is applied to it?
 - (The ball changes direction from upwards to downwards when the force of gravity pulls the ball downwards after it is being thrown into the air.)
- Q:Can you give any examples that a force changes the direction of a moving object around us? (It depends on students' answers.)
- Conclude the discussions.


Summary (10 min.) 5

- Ask the students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: What type of force changes the direction of a moving ball in the air?
- Q: How does gravity change the direction of an object from upward to downward direction?
- Ask students to copy the notes on the blackboard into their exercise books ..

Sample Blackboard Plan

A spinning yoyo tied to

<u>Title:</u>			Discussion	Summary
Change	in Direction	<u>1</u>	Q:What type of force is exerted on the ball	A force can change the direction of the
Key guestion			after throwing it? The force of gravity.	moving object.
How does a f	force change the	e direction of a	Q:How does the direction of the ball change	• <u>Gravity</u> is the force that changes the
moving obje	moving object?		when force is applied to it?	directions of the moving object.
Activity: Thro	Activity: Throwing a ball up straight up		The ball changes direction from upwards to	
	How does it change		downwards when the force of gravity pulls	
	Your	Your	the ball downwards after it is being thrown into the air.	
	prediction	observation		
Speed	(write student	refer to	Q:Can you give any examples that a force	
speed	idea)	textbook	changes the direction of a moving object	
Direction	(write	refer to	around us? (It depends on students'	
Direction	student idea)	textbook	answers.)	

 Q4. Mero measured the speed of a moving car every 5 seconds. Look at his record shown in the table on the right. Identify whether the car accelerated or decelerated and explain the reason of you answer.
 Time (sec.) Speed (m/s) 5 10

Exercise answers

Q1.

(1) gravity

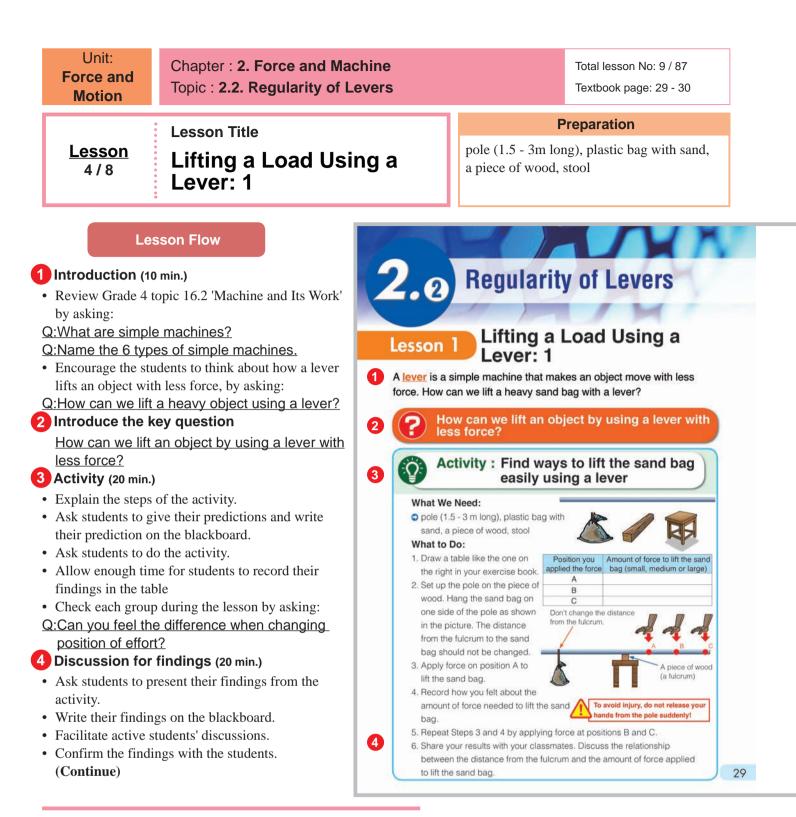
(2) **friction**

Q2.

(1) A

Explain: The marble increases its speed or accelerates as it rolls down the ramp. The force of gravity also pulls the marble down the ramp. As it travels the distance it increases more in speed. Finally the marble comes to slows down or decelerates and comes to a stop.

(2) **D**


Explain: When the ball is thrown (upward) into the air gravity still acts (pull) on it and slows down (decelerate) its speed as it goes up, eventually stopping the ball in mid-air. This changes the direction of the ball to fall back to the ground. The ball continues to fall and accelerates until it hits the ground and finally coming to a stop.

Q3. Expected answer

The ball decelerates or decreases the speed due to friction between surface of the ground and the ball.

Q4. Expected answer

The car accelerated because the speed of the car increased as the time went by on his record.

Teacher's Notes

In Grade 4, Chapter 16 'Force and Motion', they learnt about levers as a simple machine. Review the lesson in advance. This lesson is the first part of the next lesson which is 'Lifting a load using a Lever: 2'. Students discover the easier way to lift a load. In the activity, a heavier load and a longer pole is better to us, so that the students can distinguish the feeling of large, medium or small force when applied to a given position on the lever. Check the next lesson prior to this lesson.

Tips of the Activity

- First, find the centre of the pole. Mark it with a tape then place the pole on the fulcrum as shown in the textbook.
- The recommended weight of the load should be about 10kg. A pole of 3 meters which is strong enough to hold the weight of the load should be prepared to avoid an accident. The height of the fulcrum must be placed at 50 cm high.

SAFETY

Advice students not to let go the pole suddenly as it may injure your friends.

Pay close attention to the pole in case it breaks. Have student stand at a safe distance.

Students will be able to:

Result

not change.

Summary

A lever can make our work

force applied to a machine

to do work A load is the

force applied on the lever

by the object to be lifted.

Amount of force as an

effort required to lift an

distance from the fulcrum.

object depends on its

If effort is applied at a

longer distance from the

fulcrum, the object is able

to be lifted with less effort.

easier. An effort is the

- Identify the way to lift a fixed sandbag on a pole easily by controlling the conditions.
- Distinguish the relationship between the amount of force required to lift an object and the distance from the fulcrum to the effort.

We found out that a larger force was needed to lift the sand bag at position

A but less force was applied to lift the sand bag at position C when the

distance from the fulcrum to the sand bag did

Assessment

Students are able to:

nount of force to

Mediun

e sand bag Large

lift

ofal

Larger force is

object.

Smaller force is required to lift the object.

equired to lift the

Position you

What do you understand

about the characteristics of

a lever from these results?

Relationship between distance

of applied force and load

Shorter distance from the fulcrum to effort point

Longer distance from the fulcrum to effort point

- Illustrate the easiest way to lift a fixed sandbag by changing the points to apply force to a pole.
- Explain that the further an effort is applied away from the fulcrum, the less effort is needed to lift a load.
 - Based on their findings, ask these questions as discussion points.
 - Q:What condition did you change to find the way to lift a sandbag easily? (By changing the distance from a fulcrum.)
 - Q:How does an amount of force change at different positions: A, B and C? (The further you move away from the fulcrum the less force is needed.)
 - Q:What relationship did you find between the amount of force required to lift a sandbag and the distance from the fulcrum to the force you applied? (If we apply a force at the longer distance from the fulcrum, we need a less force to lift the sandbag.)
 - Conclude the discussions.

Summary (10 min.) 5

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q:How do you make it easier to lift an object on a lever?
 - Q:At which distance of the lever is difficult to lift an object?
- Ask students to copy the notes on the blackboard into their exercise books.

30

А

В

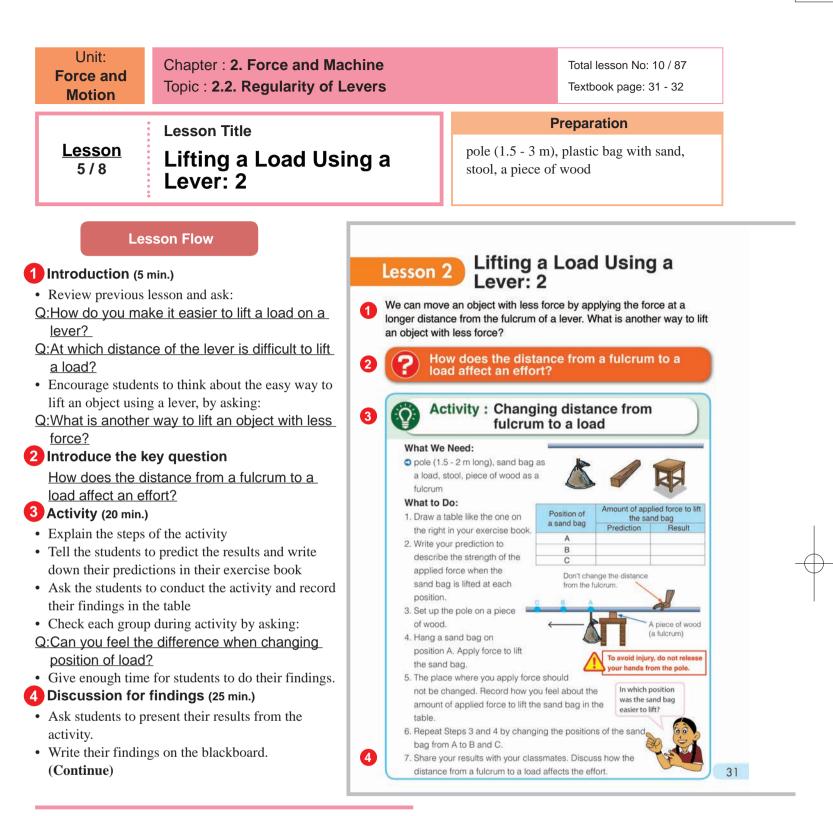
/ledium

Sample Blackboard Plan

arge

Medium

<u>Title:</u>			Discussion		
<u>Liftir</u>	ng a Load Using a l	<u>_ever: 1</u>	Q: What condition did you change to find the way to lift a sandbag easily? By		
using a Activity	stion_How can we lift an lever with less force? sys to lift the sand bag ea		changing the distance from a fulcrum. Q: How does an amount of force change at different positions: A, B and C? The further you move away from the fulcrum the less force is needed.		
Effort Small medium large Results		Results	Q: What relationship did you find between		


the amount of force required to lift a sandbag and the distance from the fulcrum to the force you applied?

If we apply a force at the longer distance.

from the fulcrum, we need a less force to lift the sandbag.

Summary

- · Using a lever makes a heavy object lift easier.
- An effort is the force applied to a machine to do work.
- A load is the force applied on the lever by the object to be lifted.
- When effort is applied further away from the fulcrum, the less effort is needed to lift the load.

This lesson is the second part of the previous lesson. This focuses on the distance of the load from the fulcrum by changing the distance of the load on the lever, whilst maintaining the position of the fulcrum and effort (force applied by hand) to lift the load. However, in the first lesson the focus was on the distance of the effort from the fulcrum that is closer or further away.

Load - bag of sand, soil or gravel

Fulcrum - fulcrum is where the centre of the pole rests to form a lever

Effort – effort is the force applied (by hand) to lift the load. By applying force by the hand at difference position on the lever the variation in strength can be felt.

SAFETY

- Keep students at a safer distance when gathering around the setup.
- Remember not to let go of the pole suddenly as it can hurt you and your friends.

- Students will be able to:
- Identify the relationship between the amount of force required to lift an object and the distance of the load from a fulcrum by controlling a condition.
- Demonstrate eagerness for investigation.

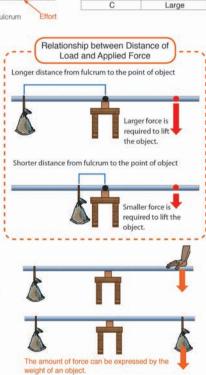
Assessment

Students are able to:

6

- Explain how the distance of a sandbag from a fulcrum affect the force required to lift by changing the positions of the sandbag from a fulcrum.
- Investigate to find out the regularity of a lever actively.

Result


We found out that in position A, a smaller force was needed to lift the sand bag when the distance from the fulcrum to the effort did not change. But at position C, a larger force was applied to lift the sand bag when the distance from the fulcrum to the effort did not change.

Summary

The amount of force required to lift an object depends on the distance from the fulcrum to the position of the object. If the object is placed at a shorter distance from the fulcrum, the object would be able to be lifted with less effort.

As shown in the picture on the right, we can balance the lever by hanging another sand bag instead of the force applied by your hand. The amount of force can be also expressed by the weight of an object.

32

Title:

a load

Load at

different

locations

A

В

C

Key question

load affect an effort?

Sample Blackboard Plan

Results

Small

Large

Lifting a Load Using a Lever: 2

How does the distance from a fulcrum to a

Activity: Changing distance from fulcrum to

Small, medium,

Prediction

large

arge

Middle

Discussion

fulcrum.

Q:What condition did you change to find

changing the distance from the fulcrum.

is needed as the sandbag is moved further

away from the fulcrum. Less force is needed

Q:How does your effort change as you

as the sandbag is moved closer to the

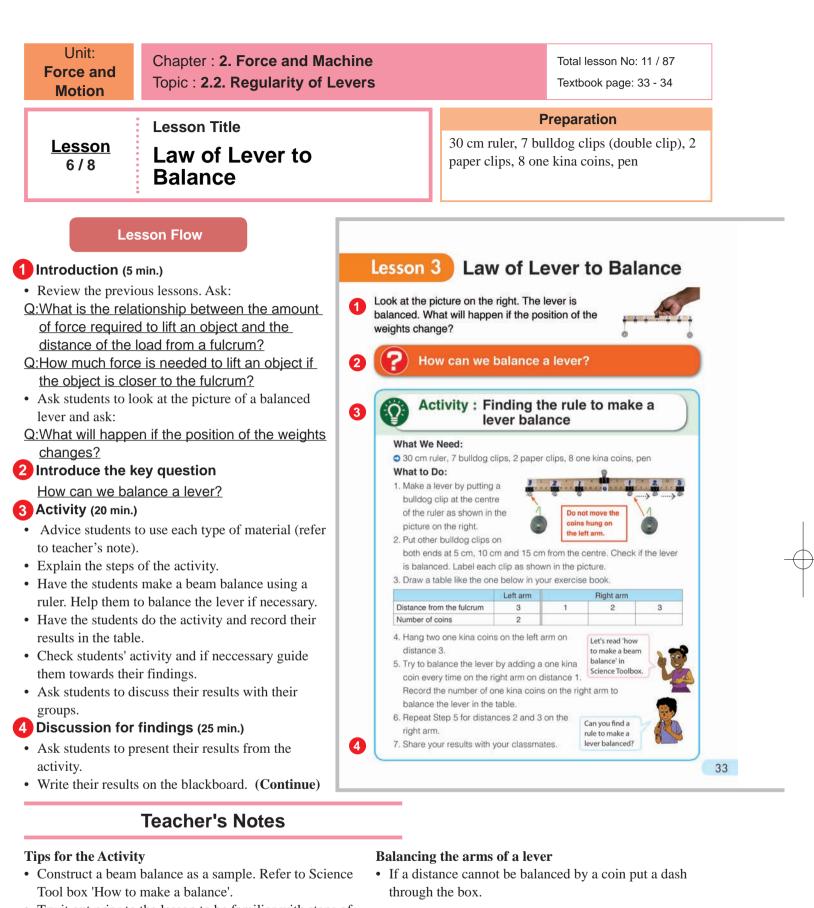
the amount of force required to lift a

sandbag and the distance of

Q:What relationship do you find between

the way to lift a sandbag easily? By

- Facilitate active students' discussions.
- Confirm the results with the students.
- **Based on their results**, ask these questions as discussion points.
- Q:What condition did you change to find the way to lift a sandbag easily? (By changing the distance from the fulcrum.)
- Q:How does your effort change as you change the position of the load? (More force is needed as the sandbag is moved further away from the fulcrum. Less force is needed as the sandbag is moved closer to the fulcrum.)
- Q:What relationship do you find between the amount of force required to lift a sandbag and the distance of the sandbag from a fulcrum? (If the sandbag is placed at a shorter distance from the fulcrum, we need less force to lift. If the sandbag is placed at a longer distance from the fulcrum, we need more force to lift.)
- Conclude the discussions.


Summary (10 min.) 5

- · Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
- Q:How do you make it easier to lift an object on a lever?
- Q:At which distance of the lever is difficult to lift an object?
- Ask students to copy the notes on the blackboard into their exercise books.

the sandbag from a fulcrum? If the sandbag is placed at a shorter distance from the fulcrum, we need less force to lift. If the sandbag is placed at a longer distance from the fulcrum, we need more force to lift. change the position of the load? More force

Summary

- The amount of force required to lift an object depends on the distance from the fulcrum to the position of the object.
- If the object is placed at a shorter distance from the fulcrum, the less effort is needed to lift it.

- Try it out prior to the lesson to be familiar with steps of construction and how to balance the lever.
- If there are not enough rulers, use a straight strip of wood required for each group.
- Follow the steps to find the centre of the wood or ruler first. Then check if it is balanced.
- Paper clips can be used as hooks. Secure the paper clips to stop it from sliding off the ruler.
- In place of one kina coins, use same size bolt washer or bolt nuts.

SAFETY

- Do not put or hold paper clips or other small objects in the mouth when making the balance.
- Be careful when using tools to cut. Example scissors. Do not pull tools from others. Wait till others are finished.

24

- Students will be able to:
- Identify the law of a lever to balance through the activity.
- Investigate the law of a lever with interest.

Assessment

- Students are able to:
- Explain how to balance a lever by relating to the numbers of weights and the distance from the fulcrum on both arms of a lever.
- Show eagerness to find out the law of a lever to balance.

Result Left arr ight ar Distance from We found out that when we 3 2 the fulcrum hung 6 coins at distance 1, 3 2 2 as weight 3 coins at distance 2 and 2 coins at distance 3 on the right arm, the lever was balanced, when we hung 2 coins at distance 3 on the left arm. Discussion Based on your results, think about the following question. 1. What relationship can you find between the distance from the fulcrum and the numbers of coins on the left and the right arm to make the lever balanced? The sum of the numbers of coins and the distance on left arm (2+3=5) and the right arm (1+6=7) are not How about multiplying the numbers of coins by the distance from the fulcrum of the lever like.. Left arm: $3 \times 2 = 6$ Right arm: ???? Summary 6 A lever is balanced when the product of weights and distance from the fulcrum on the left is equal to the product of weights and distance from the fulcrum on the right arm. Dista Left arm **Right arm** Distance x Weight Distance x Weight $2 \times 1 = 2$ $1 \times 2 = 2$ Left arm **Right arm Distance x Weigh Distance x Weight**

34

Title:

Activity:

<u>Results</u>

coins

Sample Blackboard Plan

A lever is bala

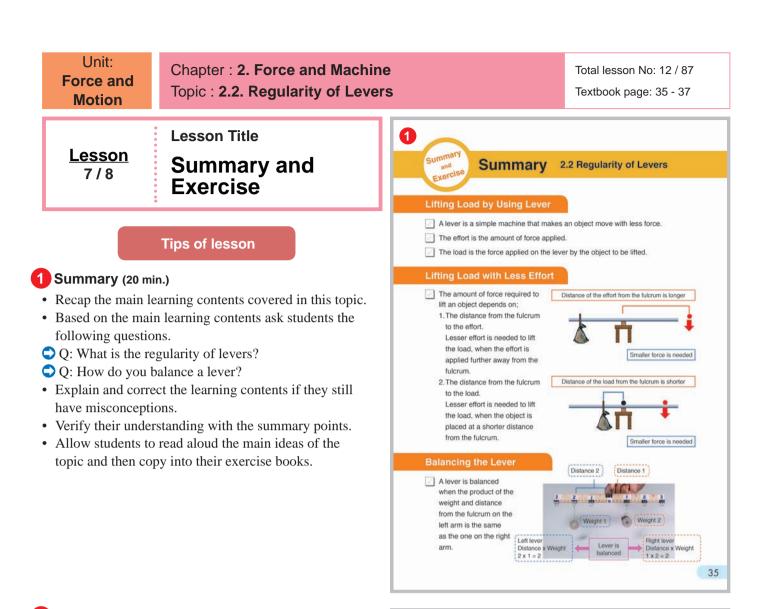
- Facilitate active students' discussions.
- Confirm the results with the students.
- **Based on their results,** ask these questions as discussion points.
- Q:What relationship can you find from the results? Let students state opinions freely.
- Ask students to calculate the sum of the numbers of coins and the distance on both left and right arms in the table.

Q:What is the sum on the left arm? (3+2=5)

- Q:What are the sums on the right arm? (1+6=7, 2+3=5, and 3+2=5)
- Q:Can you find the relationship between the sum on the left and the right arms? (No.)
- Ask students to calculate the product of the numbers of coins and the distance on both left and right arms in the table.

Q:What is the product on the left arm? (3×2=6)

- Q:What are the products on the right arm? (1×6=6, 2×3=6, and 3×2=6)
- Q:Can you find the relationship between the product on the left and on the right arms? (Yes. The product of distance and the number of coins on both arms are the same.)
- Conclude the discussions.


5 Summary (10 min.)

- Ask students to open the textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these question as assessment: Q:What is the law of a lever to balance?
- Ask students to copy the notes on the blackboard into their exercise books.

Discussion Summary Q: What relationship can you find from the Law of Lever to Balance results? (Write freely students' ideas) Key question Q: What is the sum on the left arm? 3+2=5How can we balance a lever? O: What are the sums on the right arm? the right arm. +6=7, 2+3=5, and 3+2=5 Law of a Lever to balance Finding the rule to make a lever balance Q: Can you find the relationship between Left arm the sums on the left and right arms? No Left arm **Right** arm Q: What is the product on the left arm? Distance from 3×2=6 2 3 1 3 the fulcrum Q: What are the products on the right arm? Number of 1×6=6, 2×3=6, and 3×2=6 2 6 3 2

• A lever is balanced when the product of weights and the distance from the fulcrum on the left arm is equal to that of

Right arm Weight x distance = Weight x distance

2 Exercise & Explanation (30 min.)

- Go through the instructions of the exercise.
- Allow students to answer the questions individually and give them enough time to respond to the questions based on their understanding.
- After the exercise give them the answers to the questions and explain how to solve them using their scientific understanding and ideas.
- Make reference to the textbook or provide clear examples in daily life to strengthen the learnt concepts in this topic.

Summary and Exercise Exercise	se 2	2.2 Re	gulari	ty of	Levers	ŝ.
Q1. Complete each sentence wi	th the correct	ct word.	}			
(1) A simple machine consist	sting of an a	rm with	a fulcrun	n is call	ed a	
(2) The force applied to a m	ophino to du	s unorde la	o allad a			
(2) The force applied to a m(3) The force applied on the				1923	· .	
(b) The lorde applied of the	level by the	5 ODJECT	to be int	eu is ca	licu a	
Q2. Choose the letter with the co	orrect answe	er.				
(1) Which position of the loa	d on					
the lever would require le	ess C	в	٨		17	
					and a	
force to lift the object ?	-	-	-	-	000	_
force to lift the object ? (2) Which position of the loa	-	~				-
	id on	~	k		Fulcrum	
(2) Which position of the loa	id on	~			Fulcrum	_
(2) Which position of the loa the lever would require n	id on	~	6		Fulcrum	_
(2) Which position of the loa the lever would require n	id on nore	~	Å		Fulcrum	_
 (2) Which position of the load the lever would require in force to lift the object? Q3. Answer the following question 	ad on nore ons. Left arm	<	Right		Fulcrum	_
 (2) Which position of the load the lever would require a force to lift the object? Q3. Answer the following question Distance from the centre 	ad on nore ons.	1	Right 2	t arm	Fulcrum	
 (2) Which position of the load the lever would require in force to lift the object? Q3. Answer the following question 	ad on nore ons. Left arm	<				
 (2) Which position of the loa the lever would require m force to lift the object? Q3. Answer the following question Distance from the centre Number of coins 	d on nore ons. Left arm 4 2	1	2	3	4	m to
 (2) Which position of the load the lever would require a force to lift the object? Q3. Answer the following question of coins (K1.00 coin) 	d on nore ons. Left arm 4 2	1	2	3	4	m to
 (2) Which position of the load the lever would require in force to lift the object? Q3. Answer the following questies Distance from the centre Number of coins (K1.00 coin) (1) How many one kina coin 	nd on nore ons. Left arm 4 2 s would be	< 1 hung on	2 distanc	3 e 1 of th	4 ne right ar	
 (2) Which position of the load the lever would require a force to lift the object? Q3. Answer the following question Distance from the centre Number of coins (K1.00 coin) (1) How many one kina coin balance the lever? 	nd on nore ons. Left arm 4 2 swould be e hung on th	1 hung on	2 distanc	3 e 1 of th	4 ne right ar	
 (2) Which position of the load the lever would require a force to lift the object? Q3. Answer the following question Distance from the centre Number of coins (K1.00 coin) (1) How many one kina coin balance the lever? (2) Four one kina coins were 	nd on nore ons. Left arm 4 2 swould be e hung on th	1 hung on	2 distanc	3 e 1 of th	4 ne right ar	
 (2) Which position of the load the lever would require a force to lift the object? Q3. Answer the following question Distance from the centre Number of coins (K1.00 coin) (1) How many one kina coin balance the lever? (2) Four one kina coins were 	id on more ons. Left arm 4 2 is would be e hung on th oins hung to	1 hung on	2 distanc	3 e 1 of th	4 ne right ar	
 (2) Which position of the load the lever would require in force to lift the object? Q3. Answer the following question of the centre Number of coins (K1.00 coin) (1) How many one kina coin balance the lever? (2) Four one kina coins were were the four one kina coins 	d on nore ons. Left arm 4 2 as would be a hung on th coins hung to th. A girl	1 hung on	2 distanc	3 e 1 of th	4 ne right ar	
 (2) Which position of the load the lever would require in force to lift the object? Q3. Answer the following question Distance from the centre Number of coins (K1.00 coin) (1) How many one kina coin balance the lever? (2) Four one kina coins were were the four one kina coins were were the four one kina coins were were the four one kina coins were were the four one kina coins were the	d on nore	1 hung on	2 distanc	3 e 1 of th	4 ne right ar	
 (2) Which position of the load the lever would require in force to lift the object? Q3. Answer the following question Distance from the centre Number of coins (K1.00 coin) (1) How many one kina coins balance the lever? (2) Four one kina coins were were the four one kina coins were the four one kina coins and younger boy are playing 	d on nore	1 hung on	2 distanc	3 e 1 of th	4 ne right ar	
 (2) Which position of the load the lever would require in force to lift the object? Q3. Answer the following question Distance from the centre Number of coins (K1.00 coin) (1) How many one kina coin balance the lever? (2) Four one kina coins were were the four one kina coins were were the four one kina coins were were the four one kina coins were were the four one kina coins were the	d on nore	1 hung on	2 distanc	3 e 1 of th	4 ne right ar	

Exercise answers

Q1.	Q4. Expected Answer
(1) lever	By the girl moving to sit closer to the fulcrum
(2) effort	and the boy sits at the far end of the see-saw.
(3) load	
Q2.	

Q3.

(1) **A** (2) **C**

(1) 8 one kina coins

(2) **Distance 2.**

Explanation of Science Extras

3 Science Extras (10 min.)

- Give opportunities to students to closely observe the nature and its phenomena in the world.
- Allow students to ask questions that demonstrate curiosity about the content in the science extra.

3

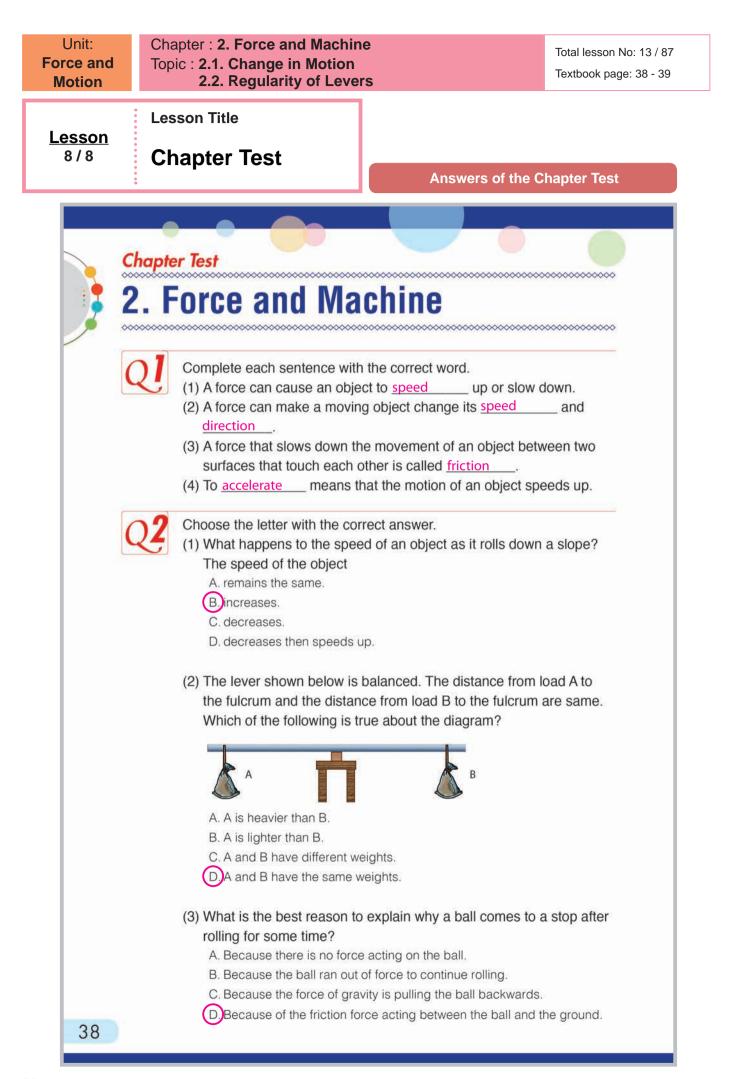
Chapter 2 cience Extras

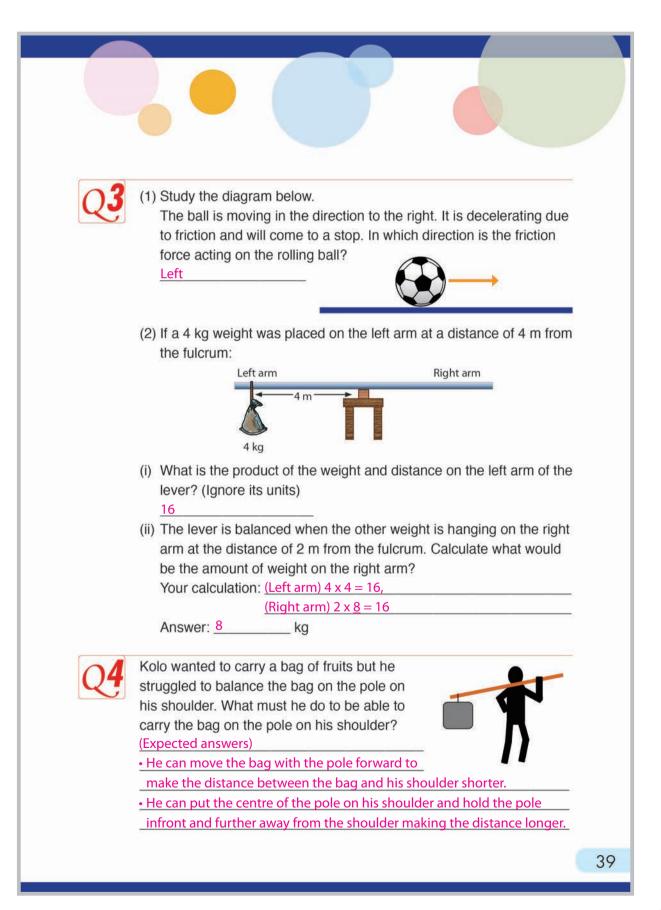
LEVERS IN OUR BODY

Levers can be identified by the way the joint and muscles attached to the bone are arranged.

Skull and neck - Nodding your head

The place where your skull meets the top of your spine is fulcrum. Your skull is the lever arm and the neck muscles at the back of the skull provide the force (effort) to lift your head up against the weight of the head (load). When the neck muscles relax, your head nods forward.


Tip toes - Standing on tip toes


The fulcrum is at your toe joints and your foot acts as a lever arm. Your calf muscles and achilles tendon provide the effort when the calf muscle contracts. The load is your body weight and is lifted by the effort (muscle contraction).

Bent arm – Bending your arm

The fulcrum is at the elbow and the forearm acts as the lever arm. The biceps muscle provides the effort (force) and bends the forearm against the weight of the forearm and any weight that the hand might be holding.

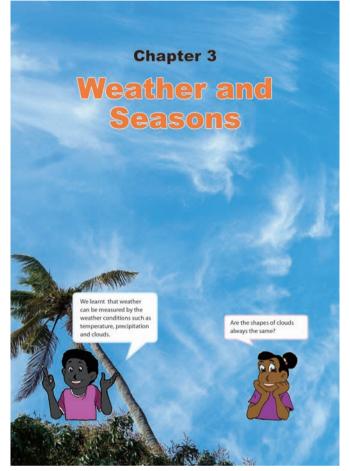
Strand : EARTH AND SPACE Unit : WEATHER AND CLIMATE Chapter 3. Weather and Seasons

Chapter Objectives

Students will be able to identify different types of clouds, how weather is forecasted and how seasonal changes affect plants and animals.

Topic Objectives

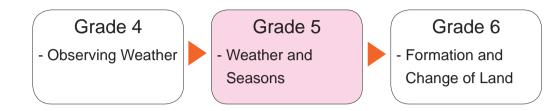
3.1 Observing Clouds


Students will be able to;

- Identify the different types of clouds and their characteristics.
- Identify the relationship between types of clouds and weather.

3.2 Seasons

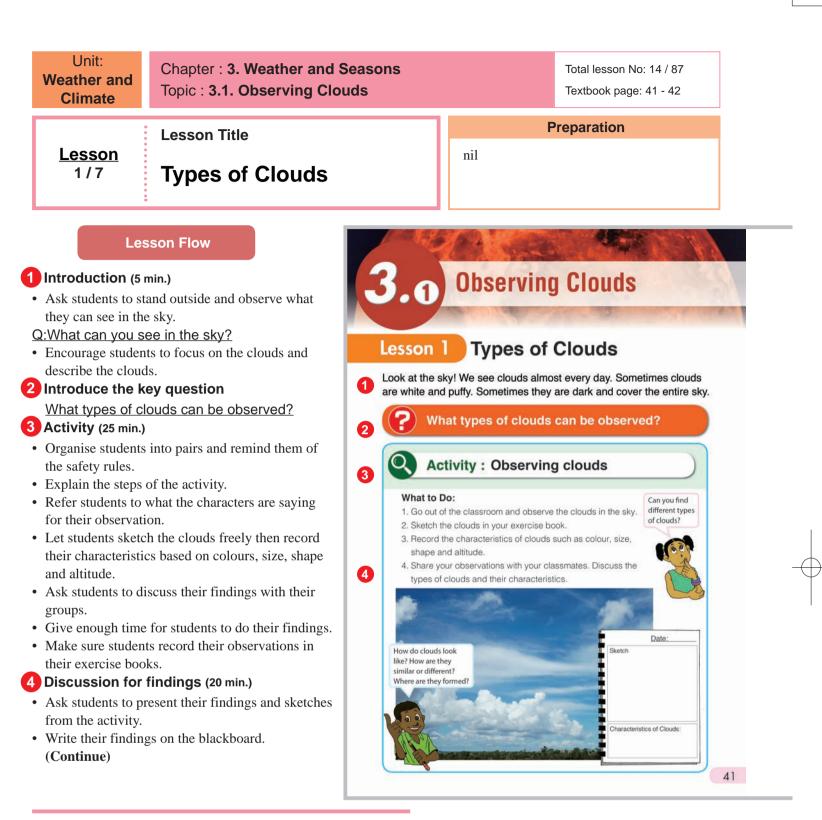
Students will be able to;


- Identify seasons experienced in Papua New Guinea and in other parts of the world.
- Explain how plants and animals change with the seasons.

This picture is from the chapter heading of the textbook showing cirrus clouds in the sky. Clouds are classified according to their characteristics.

Related Learning Contents

The learning contents in this chapter connect to the following chapters.


Prior knowledge for learning this chapter;

- Weather changes from day to day.
- Clouds, temperature, precipitation and wind are used to measure weather.

Teaching Overview

This chapter consists of 7 lessons, each lesson is a double period.

Торіс	Lesson No.	Lesson Title and Key Question	Content standard in syllabus	Textbook page number
	1	Types of Clouds What types of clouds can be observed?		41 - 42
3.1 Observing Clouds	2	Weather Forecast How can we forecast weather?		43 - 44
	3	Summary and Exercise		45 - 46
	4	Seasons What is a season?	5.3.2	47 - 48
3.2 Seasons	5	Seasonal Changes and Living Things How do living things change with seasons?		49 - 50
	6	Summary and Exercise, Science Extra		51 - 53
Chapter Test	7	Chapter Test		54 - 55

SAFETY: Remind the students not to look at the sun directly.

- Altitude is the height or point above sea level or ground level.
- Clouds are given different names based on their shape and their height in the sky. Some clouds are near the ground. Others are almost as high as jet planes fly. Some are puffy like cotton. Others are grey and uniform.
- Cumulonimbus cloud is also known as The King of Clouds. It exists through the entire height of the troposphere, usually characterised by its icy, anvil-shaped top. More commonly known as thunderclouds, cumulonimbus is the only cloud type that can produce hail, thunder and lighting. The base of the cloud is often flat, with a very dark wall-like feature hanging underneath, and may only lie a 200 to 4000 m above the Earth's surface.
- World Meteorological Organisation (WMO) currently recognises ten cloud genera (basic classifications), which describe where in the sky they form and their approximate appearance:
 - High clouds (CH): Cirrus, Cirrocumulus, Cirrostratus;
 - Middle clouds (CM): Altocumulus, Altostratus, Nimbostratus
 - Low clouds (CL): Stratocumulus, Stratus, Cumulus,
 - Cumulonimbus

- Students will be able to:
- Observe the different types of clouds.Identify the different types of clouds and
- their characteristics.
- Communicate their findings with others.

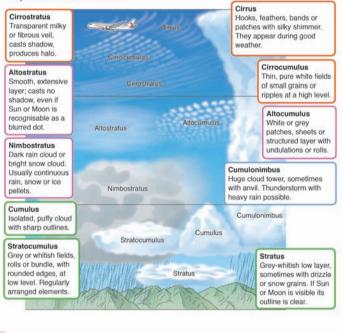
Assessment

Students are able to:

6

- Sketch the different types of clouds based on theirs colours, size, shape and altitude.
- Distinguish the types of cloud in a diagram based on their characteristics.
- Express their ideas actively.
 - Facilitate active students' discussions.
 - Confirm the findings and sketches with the students.
 - **Based on their findings,** ask these questions as discussion points.
 - Q:What characteristics are similar and different in the clouds you have sketched? Similarity-Some clouds are big and white. Differences- Some clouds cover the entire sky and some don't.
 - Explain that there are different types of clouds seen every day or throughout the day.
 - Q:Which clouds do you think are very high in the sky at mid-level and the lowest level? (It depends on students' answers. For example, clouds look like feathers and patches appear in high level, clouds look like grey rolls or bundle appear in low level. Refer to textbook.)
 - <u>Q:How many types of clouds can you find?</u> (It depends on students)
 - Conclude the discussions.

Summary (10 min.)


- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:Q: How can clouds be classified?Q: How many types of clouds are there?
- Ask students to copy the notes on the blackboard into their exercise books.

Summary

A <u>cloud</u> is made of water droplets or ice crystals floating in the sky. Clouds are classified by where they are formed in the sky. There are ten different types of clouds.

Where clouds are formed in the sky.	Types of Clouds	
High Level	Cirrus, Cirrocumulus, Cirrostratus	
Middle Level	Altocumulus, Altostratus, Nimbostratus	
Low Level	Stratocumulus, Stratus, Cumulus	
Range from Low to High Level	Cumulonimbus	

The diagram below shows where different types of clouds are formed in the sky and their characteristics.

42

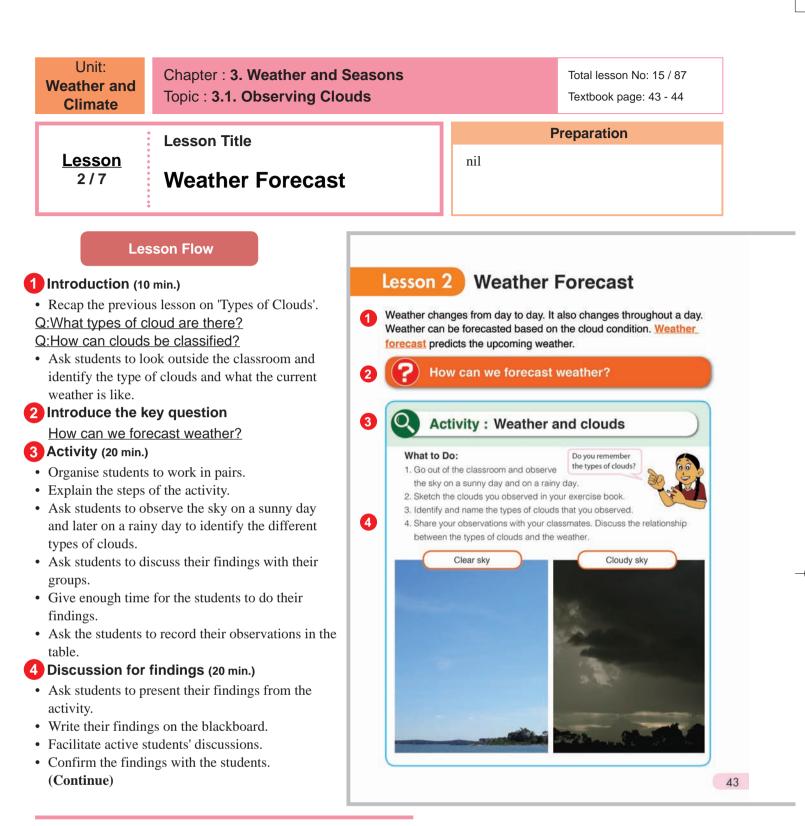
Sample Blackboard Plan

Title: Types of Clouds

Key guestion

What types of clouds can be observed? Activity:Observing Clouds

Discussion
Q: What characteristics are similar and
different in the clouds you have sketched?


Similarity	Difference
- White and big - Clouds are in layers - Clouds move	 Some clouds are grey Different shapes and sizes Clouds have different height

Which clouds do you think are very high in the sky at mid- level and the lowest level? Highest clouds: Cirrus, cirrocumulus Mid- level: Altocumulus, altostratus

Lowest clouds: Stratus, cumulus,

Q: How many types of clouds can you find? (It depends on students and sky conditions) Summary

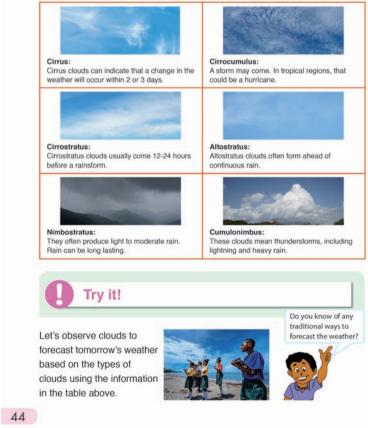
- A <u>cloud</u> is made of water drops or ice crystals floating in the sky.
- Clouds can be classified by <u>where they are</u> formed in the sky.
- There are ten (10) types of clouds.
- Clouds can be described by their shape, size, colour and altitude.

Tips for the Activity

- This activity can be done two times, on a sunny day and on a rainy day, before the discussion. The weather condition varies and the result shown in the blackboard plan is just an example. Thus, the lesson need to be facilitated based on the condition in your place when it is conducted. Refer to the previous lesson to identify the clouds in your sky.
- The appearance of a cloud is best described in terms of the height, shape, structure, texture, luminance and colour of the cloud. These factors will be considered for each of the characteristic cloud forms. Thus, teachers need to encourage students to pay attention on these factors. Putting some descriptions on the sketch such as 'hairy shape' and 'puffy' 'shape' is very nice idea, as students cannot draw everything in this limited time.
- Differences in luminance exist between clouds composed of water droplets and ice crystals. Ice crystal clouds appear in higher altitude because the higher sky is very cold. They are usually more hairy, transparent and shiny than water droplet clouds owing to their thinness and to the sparseness of the ice particles. On the contrary, water droplet clouds tend to be produced in lower attitude and whity. Dark clouds usually water droplet clouds are originally white, but such cloud block off the sunlight because of its thickness, it looks dark as the result.

- Students will be able to:
- Identify the relationship between types of clouds and weather.
- Infer weather based on the types of clouds.
- Participate in activity with interest.

Assessment


Students are able to:

6

- Distinguish the types of clouds that may cause bad weather.
- Forecast tomorrow's weather by observing the types of clouds.
- · Appreciate that clouds help to predict weather.

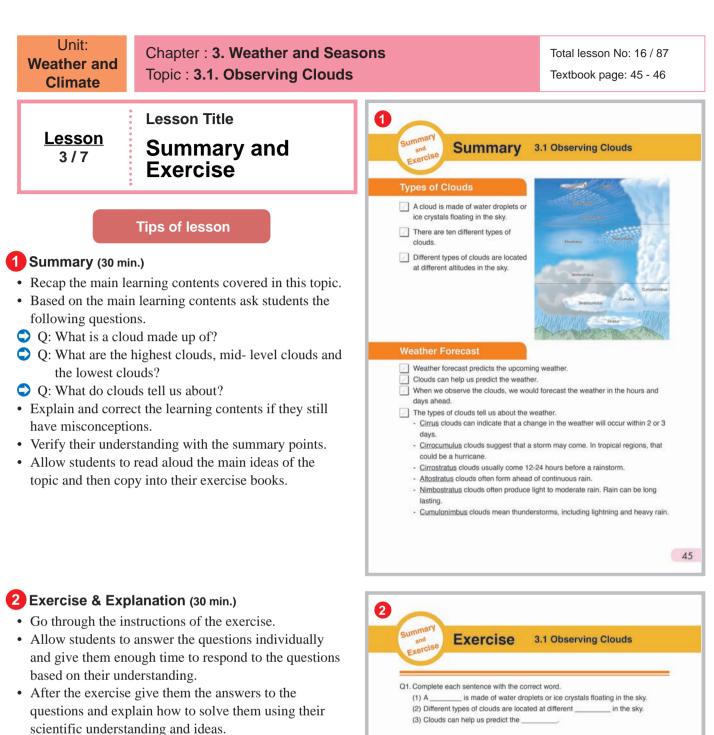
Summary

Clouds can help us to predict the weather. When we observe clouds, we can forecast the weather in the hours and days ahead. The types of clouds tell us about the weather. The table below describes the types of clouds that may cause bad weather such as rain, strong wind and lightning.

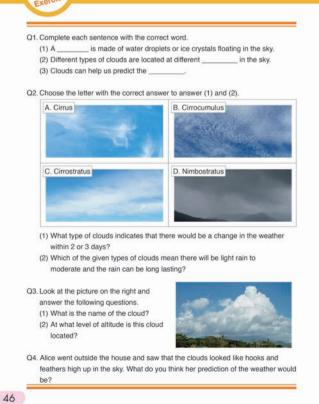
- **Based on their findings,** ask these questions as discussion points.
- <u>Q:What kinds of clouds do you observe on a</u> <u>sunny day?</u> (Cirrus, Cirrocumulus, etc)
- <u>Q:What types of clouds do you observe on a</u> <u>cloudy or rainy day?</u> (Nimbostratus, cumulonimbus, etc)
- Q:What relationships are there between the types of clouds and weather? (The types of clouds tell us about the weather.)
- <u>Q:How can people predict weather?</u> (By observing the types of clouds.)
- Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment: Q: What do clouds tell us about?
- Ask students to copy the notes on the blackboard into their exercise books.


6 Try it!

6


- Let students discuss the traditional weather forecasts.
- Go out of classroom with the students.
- Ask them to forecast tomorrow's weather based on the type of clouds and the traditional ways.

Sample Blackboard Plan

Title: Weather Forecast Key question How can we forecast weather? Activity: Weather and Clouds Sketch the clouds and identify the type of cloud.Example:		Discussion Q: What kinds of clouds do you observe on a sunny day? Cirrus, Cirrocumulus, etc Q: What types of clouds do you observe on a cloudy or rainy day? Nimbostratus, cumulonimbus, etc Q: What relationships are there between the	 Summary Clouds can help us to predict weather. The types of clouds tell us about the weather. Some types of clouds may cause bad weather such as rain, strong wind and lightning. Try it!
Sunny day Rainy day		types of clouds and weather? The types of clouds tell us about the weather.	Q: What are the traditional ways for weather forecast? It depends on the location.
Cirrus- hairy	Cumulonimbus- puffy.	Q: How can people predict weather? By observing the types of clouds.	Your tomorrow's weather forecast: Sunny day:20°C, Cloudy: 10°C, Rainy:7°C

• Make reference to the textbook or provide clear examples in daily life to strengthen the learnt concepts in this topic.

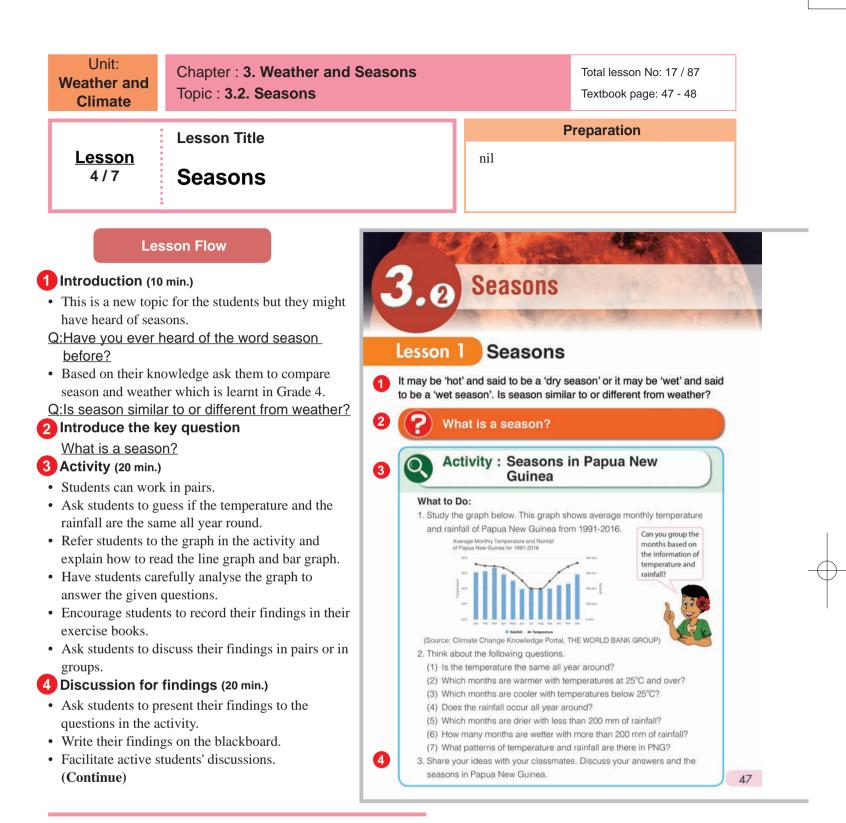
Exercise answers

Q1.

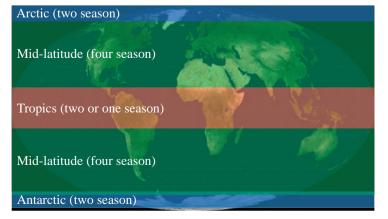
- (1) **cloud**
- (2) altitude
- (3) weather
- (1) A cloud is made of water drops or ice crystals in the sky.
- (2) Different types of clouds are located at different altitude in the sky.
- (3) We can predict the types of weather by looking at the clouds.

Q2.

- (1) A
- (2) **D**
- (1) Cirrus clouds can indicate that a change in the weather will occur within 2 0r 3 days.
- (2) Nimbostratus often produces light rain to moderate. Rain can be long lasting.


Q3.

- (1) Cumulonimbus
- (2) It ranges from low level to high level altitude.


Q4. Expected answer

Her prediction would be bad weather with precipitation or rain.

This type of cloud is called cumulonimbus; it can develop thunderstorms including lightning, hail, heavy rain and even tornadoes.

This map shows the seasons experienced in different parts of the world

Papua New Guinea is in the Tropics where we experience two seasons which are wet and dry seasons.

Note: Explain that the graph used in the activity is made up of two graphs put together as one. There's the line graph that shows the temperature (which the temperature is read from the dots on the line) and bar graph that shows the amount of rainfall (the amount of rainfall is read from where the bar stops at the top).

Students will be able to:

- Define the word season.
- Identify seasons experienced in Papua New Guinea and in other parts of the world.
- Interpret the graph on how the seasons in Papua New Guinea change every year.

Assessment

Students are able to:

- Explain the definition of season compared with weather.
- State the types of seasons in Papua New Guinea and those in other parts of the world.
- Identify the pattern of seasons in Papua New Guinea by focusing on rainfall and temperature from the graph.

discussion points.

• Appreciate that seasons are not the same all throughout the year.

• Confirm the findings with the students.

less rain and more rainfalls?

• Based on their findings, ask these questions as

Q:In which part of the year do we experience

Less rainfall- in the middle of the year

Summary

Weather changes from day to day. When weather remains the same for a long period, we call it **season**. Season is a period of the year that is divided by typical weather conditions. Each season has its own weather pattern. There are some months that are very hot or cold. It rains heavily during some months. The seasons change in the same order every year. In many places of the world, there are four seasons; spring, summer, autumn (fall) and winter. **Spring** is the season that follows winter. The weather begins to get warmer. It often rains in spring, too. **Summer** is the season that follows spring.

Summer is the warmest season of the year with long hours of sunlight. Autumn (Fall) is the season that follows summer. The weather slowly gets colder. Winter is the season that follows fall. Winter is the coldest season of the year with fewer hours of sunlight. In some places, the coldest weather causes snow, hail and sleet. Some places near the Equator have one hot season all year around or only two seasons; dry season and wet season. The seasons of Papua New Guinea are guite diverse from place to place, but in general Papua New Guinea has dry season and wet season.

The dry season is a time of year when little rain falls. The dry season in PNG is generally from May to October. The wet season is the time of year when most of the rain falls. The wet season in PNG is generally from November to April.

Do you know the seasons shown in these

- More rainfall- At the beginning and towards the end of the year Q:What about the temperature? Warmer at the beginning and towards the end of the year
 - but cooler in the middle of the year
 Explain that when weather remains the same for a long period this is call a season. A season is a period of the year that is divided by typical weather conditions.
 - Q:What seasons does Papua New Guinea have? Dry and wet season
 - Q:What about in other places of the world?

• Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
- Q: What is a season?
- Q: How many seasons are there in other parts of the world? (Name them)
- Q: How many seasons do we have in PNG? What are they?
- Ask students to copy the notes on the blackboard into their exercise books.

Sample Blackboard Plan

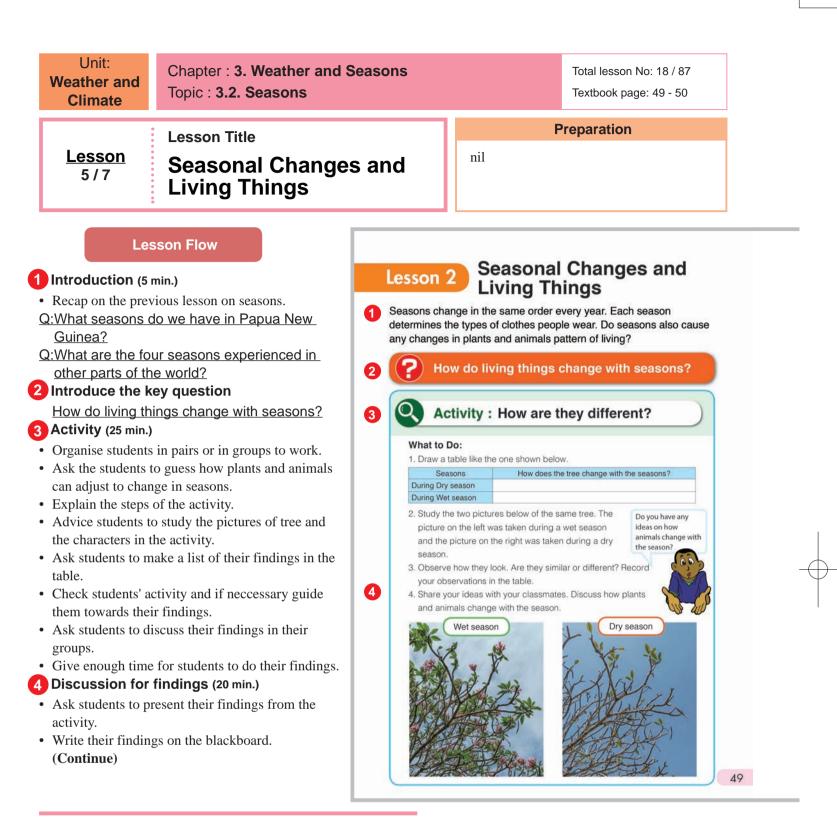
48

Title: Seasons

Key question: What is a season? Activity: Seasons in Papua New Guinea

- 1. Is the temperature the same all year round? No
- 2. Which months are warmer with temperatures at 25°C and over? Jan to May and from Oct to Dec
- 3. Which months are cooler with temperatures below 25°C? Jun to Sep

4. Does the rainfall occur all year round? No Drier months are from June to September, the other months are wetter.


- 5. Which months are drier with less than 200 mm of rainfall? Jun to Sep
- 6. How many months are wetter with more than 200 mm of rainfall?
- <u>Discussion</u>
- Q: In which part of the year do we experience less rain and more rainfalls? Less
- rainfall- in the middle of the year More rainfall- At the beginning and towards
- the end of the year

Q: What about the temperature? Warmer at the beginning and towards the end of the year but cooler in the middle of the year. Q: What patterns of rainfalls and temperature are there in PNG? In the middle of the year: Less rainfall and cooler. At the beginning and the end of the year: More rainfalls and warmer. Q: What seasons does PNG have? Dry and wet season

Summary

- A <u>season</u> is a period of the year that is divided by typical weather conditions.
- In other places of the world there are four
- seasons: spring, summer, autumn and winter. • In PNG there are two seasons: dry and wet
- season.

Wet season in Papua Ne

How do seasonal changes affect plants and animals?

- Animals and plants change throughout the seasons of spring, summer, autumn (fall), and winter.
- Animal adaptations are triggered by weather and seasonal changes. During the spring, the warm weather and abundant food supplies encourage the growth of both plants and animals. This growth continues throughout the summer. During autumn (fall), the weather cools, the amount of sunlight decreases, and food becomes scarce (not plenty). Some plants become dormant and some animals undergo changes to prepare for the winter. Some animals collect food to store during the winter months and others hibernate (go into a long sleep), migrate, or grow thicker fur.
- Plants can sense changes in the seasons. Leaves change colour and drop each autumn in some climates. Leaves changing colour is a response to the shortened length of the day in autumn. In the spring, the winter buds on the trees break open, and the leaves start to grow.

Note: This can be discussed with the students based on the second question in the discussion.

- Students will be able to:
- Observe how the tree changes with the season.
- Identify how living things change with the seasons.

Assessment

Students are able to:

5

- Record how a tree changes with wet and dry season in a table.
- Explain how living things change with seasons.
- Appreciate that plants and animals are able to change with seasons.

Summary

Changes in seasons cause living things to change. Living things need to adjust with seasonal changes.

Spring

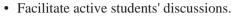
Plant seeds begin to sprout. Buds on trees and shrubs grow. Leaves grow and flowers bloom. Many animals have young in spring. Summer

In summer, many plants grow flowers. Fruits grow from the flowers. Young animals grow and become

stronger.

Autumn (Fall)

Some trees drop their fruits. The leaves of trees change colour and fall to the ground. Some animals move to warm places and others gather and store food. Winter

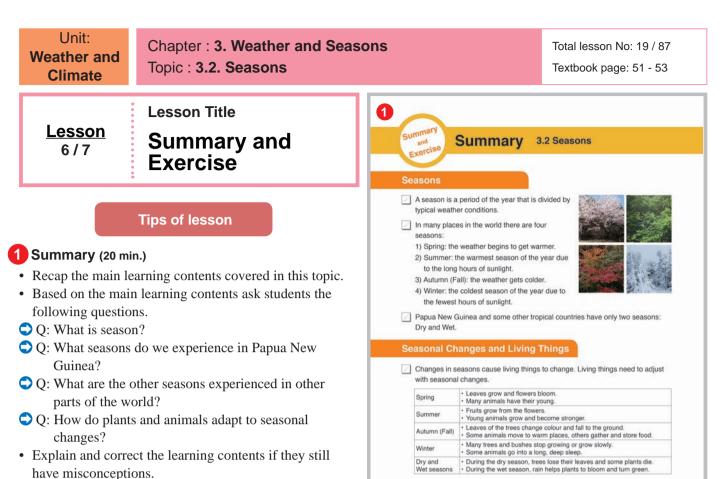

Many trees and bushes stop growing or grow slowly. Some animals go into a long, deep sleep. The fur on some animals may get thicker and change colour

Dry and Wet Season

During dry season, trees lose their leaves and some plants die. Some amphibians and insects will burrow deep into the soil and go into a long sleep until the rains return. As the wet season begins, rain helps plants to bloom and turn green. Animals thrive and have their young.

50

- Confirm the findings with the students.
- **Based on their findings**, ask these questions as discussion points.
- Q:How do plants change during dry and wet season? During dry season:
- Some plants change the colour of leaves, leaves drop, etc. During wet season:
- Leaves start to grow, some make flowers, etc.
- Q:How do animals change during dry and wet season?

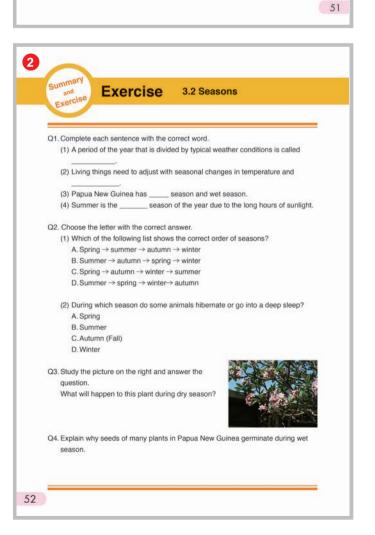

During dry season:

- Some animals go into a long sleep, other migrate to places where there is food During wet season:
- They thrive and have their young
- Conclude the discussions.

5 Summary (10 min.)

- Ask the students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment: Q: What happens when seasons change? Q: How do plants and animals change with the
 - seasonal changes?
- Ask students to copy the notes on the blackboard into their exercise books.

Sample Blackboard Plan



- Verify their understanding with the summary points.
- Allow students to read aloud the main ideas of the

topic and then copy into their exercise books.

2 Exercise & Explanation (30 min.)

- Go through the instructions of the exercise.
- Allow students to answer the questions individually and give them enough time to respond to the questions based on their understanding.
- After the exercise give them the answers to the questions and explain how to solve them using their scientific understanding and ideas.
- Make reference to the textbook or provide clear examples in daily life to strengthen the learnt concepts in this topic.

Exercise answers

Q1.

- (1) season
- (2) rainfall
- (3) **dry**
- (4) warmest
- (2) Changes in seasons cause living things to change. Living things need to adjust with seasonal changes in temperature and rainfall.
- (3) Papua New Guinea has dry season and wet seasons. The dry season is a time of year when little rain falls.

Q2.

- (1) **A**
- (2) **D**
- (1) The correct order of the 4 seasons experienced in other parts of the world is spring, summer, autumn, winter.
- (2) Some animals go into a deep sleep during winter, this is called hibernation.

- Q3. The leaves turn brown and drop to the ground.
- Q4. Expected answer
 - The seeds get enough water. to germinate and grow well in the wet season.

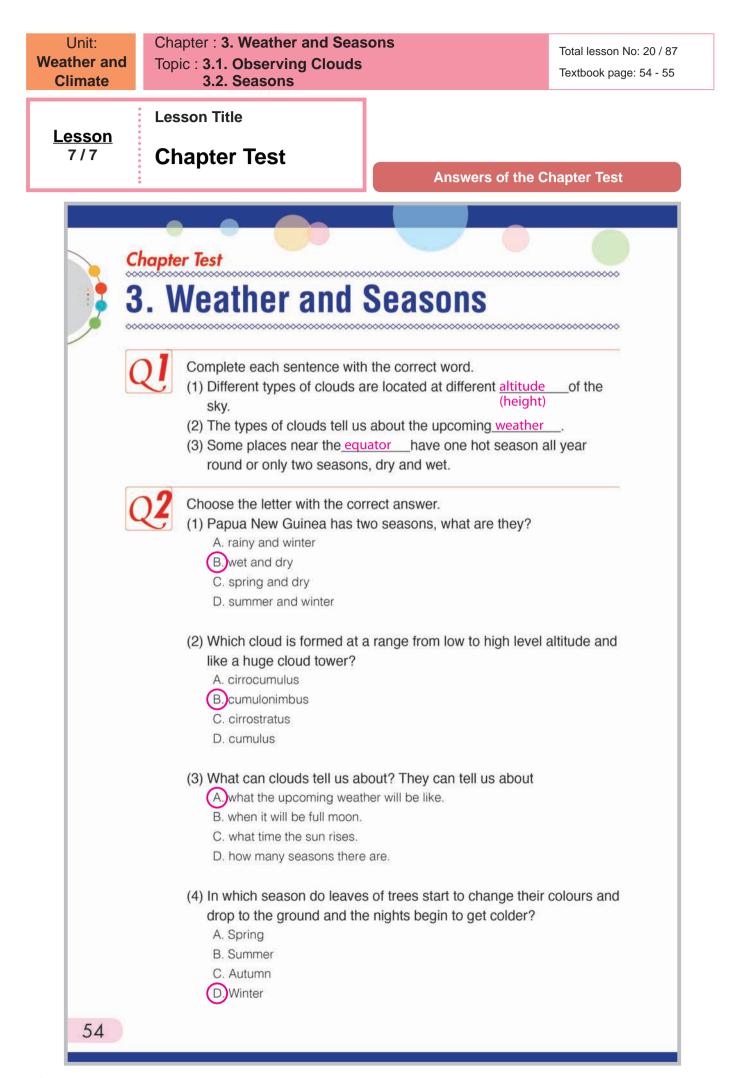
Explanation of Science Extras

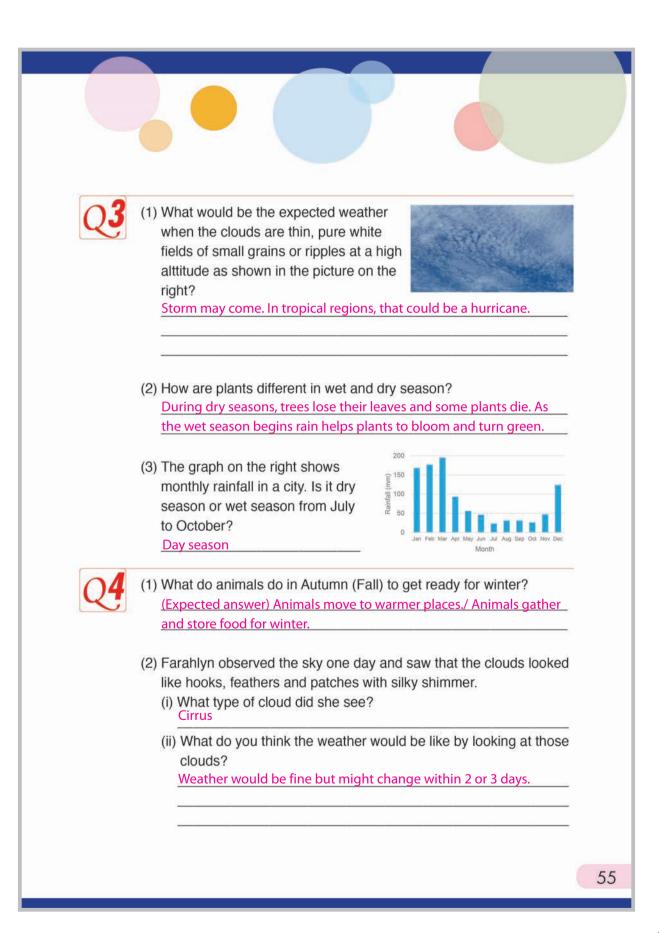
3 Science Extras (10 min.)

- Give opportunities to students to closely observe the nature and its phenomena in the world.
- Allow students to ask questions that demonstrate curiosity about the content in the science extra.

3

Chapter 3 Science Extra


Why do animals go into a very long sleep during winter?

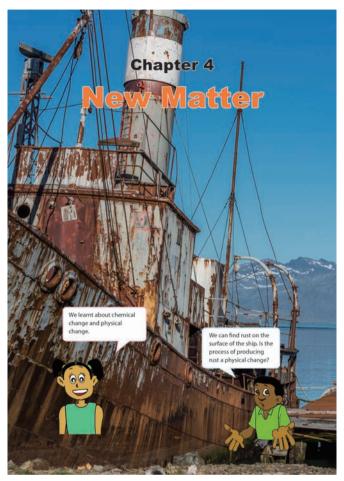

You are probably aware that some animals fall into a very long sleep during winter, this is called Hibernation. Hibernation is an adaptation that helps many animals conserve energy by remaining inactive and reducing their body temperature for days, weeks or even months at a time. Typically, animals hibernate in order to survive long periods when food is scarce. Hibernating animals will generally eat a lot of food before hibernation and then survive off the energy stored in their fat.

Hibernating animals can sense seasonal changes. The moment they sense autumn (fall) approaching, they get busy preparing by eating more than usual, the animal builds up extra layers of fat. During hibernation, the animal's body will feed on this fat to keep itself alive. Extra fat also helps the animal to stay warm when they are asleep. They then find a shelter where they will be safe while they are asleep. They then find a shelter where they will be safe while they are asleep if they want to survive. Only warm-blooded animals can truly hibernate because cold-blooded animals cannot regulate their own body temperatures. Bears, ground squirrels. woodchucks and groundhogs all hibernate during winter.

53

Strand : PHYSICAL SCIENCE Unit : MATTER Chapter 4. New Matter

Chapter Objectives


Students will be able to understand and explain the process of a chemical change and identify the types of common chemical changes that occur in daily life.

Topic Objectives

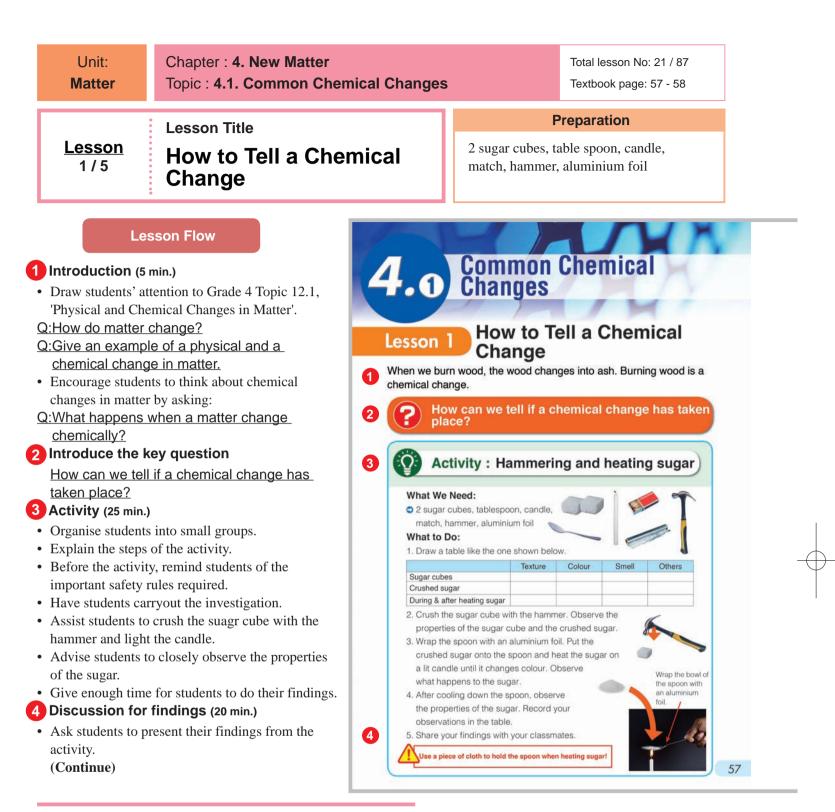
4.1 Common Chemical Changes

Students will be able to;

- Recognise and explain a chemical change has taken place in matter.
- Explain that a chemical change occurs in matter when it produces a new matter with new properties.
- State that rusting is a kind of chemical change that occurs on the surface of iron or steel.
- Explain that rusting occurs when iron or steel comes in contact with water and oxygen in the air.
- Recognise that iron and rust are different kinds of matter.
- Identify common chemical changes in daily life.

This picture is from the chapter heading of the textbook showing a ship which the surface is covered by dark brown rust over some years.

Related Learning Contents


The learning contents in this chapter connect to the following chapters.

Teaching Overview

This chapter consists of 5 lessons, each lesson is a double period.

Торіс	Lesson No.	Lesson Title and Key Question	Content standard in syllabus	Textbook page number
	1	How to tell a Chemical Change How can we tell if a chemical change has taken place?		57 - 58
4.1 Common Chemical	2	Rusting Is rusting a chemical change?	nemical change?	
Changes	3	Chemical Changes in Daily Life How does a chemical change take place in daily life?	5.2.4	61 - 62
	4	Summary and Exercise, Science Extra		63 - 65
Chapter Test	5	Chapter Test		66 - 67

• In Grade 4 Chapter 12 'Matter Change', students learnt about Physical and Chemical changes in Matter. They learnt that matter can change in different ways that is physically and chemically. For this lesson students will identify ways of how to tell if a chemical change has taken place through the activity.

Tips of the Activity

- Note: In the case, that there is no sugar, you can improvise by following the tips below.
- 1. Pour 2 cups of sugar into a bowl.
- 2. Add 2 teaspoons of water and stir with a fork until well blended.
- 3. Press sugar firmly into moulds to smooth away loose sugar.
- 4. Pour sugar into a flat surfaced square and press down firmly to make it intact.
- 5. Use a small fine blade / knife and cut into cubes.
- 6. Leave it to stay for an hour or overnight and then gently remove the cubes.
- 7. Place them on a dry surface and leave to dry completely. Once it is hard to handle, it is ready to use.
- Ingredients: bowl, cup, 250g sugar, water

Students will be able to:

Discussion

or different properties?

Why do you think so?

A <u>chemical change</u> produces new kinds of matter. A physical change does

not produce new matter. New matter has

different properties. For example, burning

is a chemical change. After burning wood,

and ash have different properties. Burning wood produces new kind of matter such

the wood changes into ash. The wood

as ash. Ash is no longer wood.

odour, heat, light, and changes

when sugar is heated, odour is produced, its colour and state

is a chemical change.

Title:

Sugar Cube

sugar

and after

During

heating

heating

Crushed

in colour and state. For example,

changes. Therefore, heating sugar

A chemical change produces gas,

sugar cube?

Summary

- Recognise how to distinguish a chemical change from a physical change.
- Distinguish a chemical change from a physical change through the activity.
- Carry out the experiment correctly and carefully.

How do we tell a physical change from a chemical change?

(3) Does the sugar after heating have the same properties as the

(4) Is the heated sugar a physical change or a chemical change?

2. Talk about how we can tell if a chemical change has taken place.

(1) Do the sugar cube and the crushed sugar have the same

(2) Is the crushed sugar a physical or a chemical change?

1. Think about the following questions based on your results

Assessment

- Students are able to:
- Explain that a chemical change is different from a physical change as it produces a new matter.
- Describe sugar as a chemical change based on its properties.
- Follow instructions to carry out the experiment correctly.
 - Write their findings on the blackboard.Facilitate active student's discussions.
 - Confirm the findings with the students.
 - **Based on their findings**, ask these questions as discussion points.
 - Q:Do the sugar cube and the crushed sugar have the same or different properties? (Both have the same properties.)
 - <u>Q:Is the crushed sugar a physical or a</u> <u>chemical change?</u> (A physical change)
 - <u>Q:Does the sugar after heating have same</u> properties as the sugar cube? (No, their properties are different.)
 - <u>Q:Is the heated sugar a physical change or a</u> <u>chemical change?</u> (A chemical change)
 - <u>Q:Why do you think so?</u> (Because its properties had changed when heated.)

Conclude the discussions. Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: How can we tell a chemical change apart from a physical change?
 - Q: What are some examples of chemical properties of matter?
- Ask students to copy the notes on the blackboard into their exercise books.

58

Sample Blackboard Plan

Colour Smell Others

cent

How to Tell a Chemical Change

Key question : How can we tell if a chemical

Activity: Hammering and heating sugar

change has taken place?

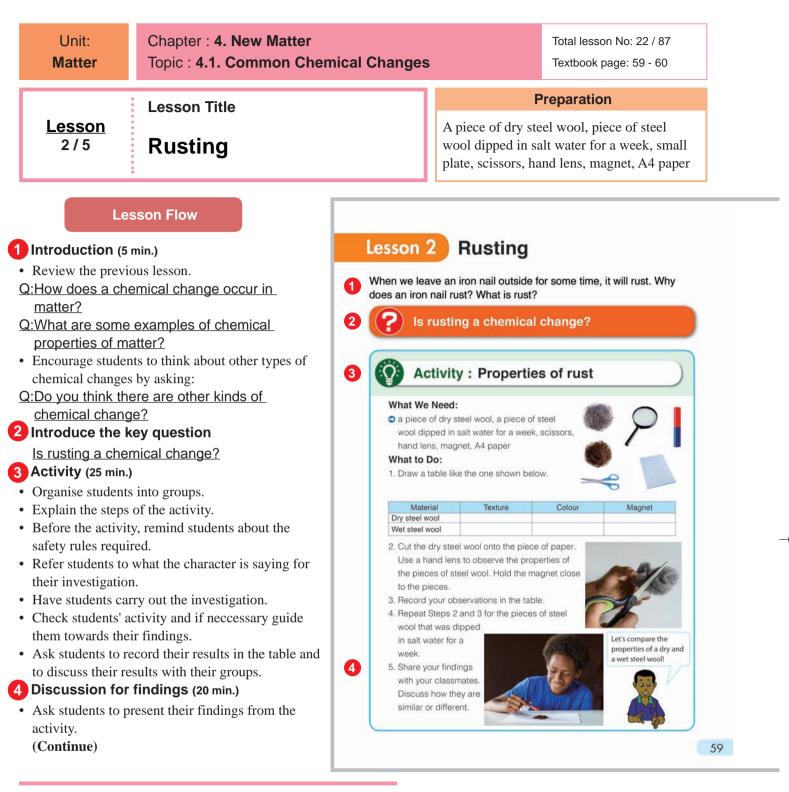
Texture

Discussion

A physical change

is a change in the physical properties

5


ofmatter

Q: Do the sugar cube and the crushed sugar have the same or different properties? Both have the same properties. Q: Is the crushed sugar a physical or a chemical change? A physical change Q: Does the sugar after heating have same properties as the sugar cube? No, their properties are different. Q: Is heating sugar a physical change or a chemical change? A chemical change Q: Why do you think so? Because its properties had changed when heated.

<u>Summary</u>

- <u>Chemical change</u> produces a new matter
 The new matter produced has different
- properties.
- A chemical change includes production of gas, odour, heat or light and changes in colour and state.
- Examples of chemical change are; burning a wood or paper and heating sugar etc.

49

• In Grade 4 chapter 12 'Matter Change', students learnt that burning wood, cooking food, ripening fruits and rusting are some examples of chemical change in matter. In this lesson, students will further learn about what causes rusting to be a chemical change.

Tips for the Lesson

- Prior to the lesson, add a few pinch of salt into a jar and soak the steel wool for a week. The salt acts as an agent in making the steel wool to change or rust faster.
- Theoretically, it is true that magnetism and electric conductivity will be lost because of rust. However it does not happen in reality because full chemical change does not occur in real situation.
- Remove the steel wool from the salt water and let it to be exposed to the air to allow rust to occur immediately.

SAFETY

• Remember not to drop the magnet or place it closer to mobile phones or computers.

Additional Information on Rust

- One of the properties of rust is it becomes an insulator that it cannot conduct electricity just as not been attracted to a magnet.
- Not all metals rust. For example, aluminium doesn't rust because it has a protective layer of aluminium oxide on its surface. This stops the metal coming into direct contact with water (or moisture in the air) and oxygen. On the other hand, iron rusts because it has no protective layer on its surface when it comes into contact with water (or moisture in the air) and oxygen.

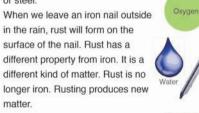
- Students will be able to:
- Explain what rusting is.
- Recognise that iron and rust are different kinds of matter.
- · Show curiosity towards observing properties of iron and rust.

Assessment

- Students are able to:
- State that rusting is a kind of chemical change.
- Explain how iron and rust are different kinds of matter based on their properties.
- Examine the properties of iron and rust with curiosity.

Result

Is dry steel wool same or different from wet steel wool?


We found out that properties of a dry steel wool were glossy, glory and silver in colour while the properties of a rusted steel wool were rough, dull and reddish brown in colour. The pieces of dry steel wool were attracted by the magnet. Some pieces of wet steel wool were not attracted by the magnet. These results show that a dry steel wool and a wet steel wool have different properties.

	Texture	Colour	Magnet
Dry steel wool	glossy, glory	silver	attracted
Wet steel wool	rough, dull	reddish brown	some attracted but some are not

Summary

Rusting is a type of chemical change. It usually happens slowly. When iron or steel comes into contact with water and oxygen in the air, rusting happens. We may find brownish patches on the metal parts of cars or ships. Rust is a coating that forms on the surface of iron or steel.

in the rain, rust will form on the surface of the nail. Rust has a different property from iron. It is a different kind of matter. Rust is no longer iron. Rusting produces new matter

60

Sample Blackboard Plan

Title: Rusting

Key question :

Is rusting a chemical change? Activity : Properties of rust Recult

	Texture	Colour	magnet
Dry s/ wool	Glossy	Silver	Attracted
Wet s/ wool	Rough and dull	Reddish brown	Not attracted

Discussion

Q: Are the dry steel wool and the wet steel same or different matter? They are different matter

Q: Why do you think so? Because their properties are different. Q: Which type of steel wool showed a clear

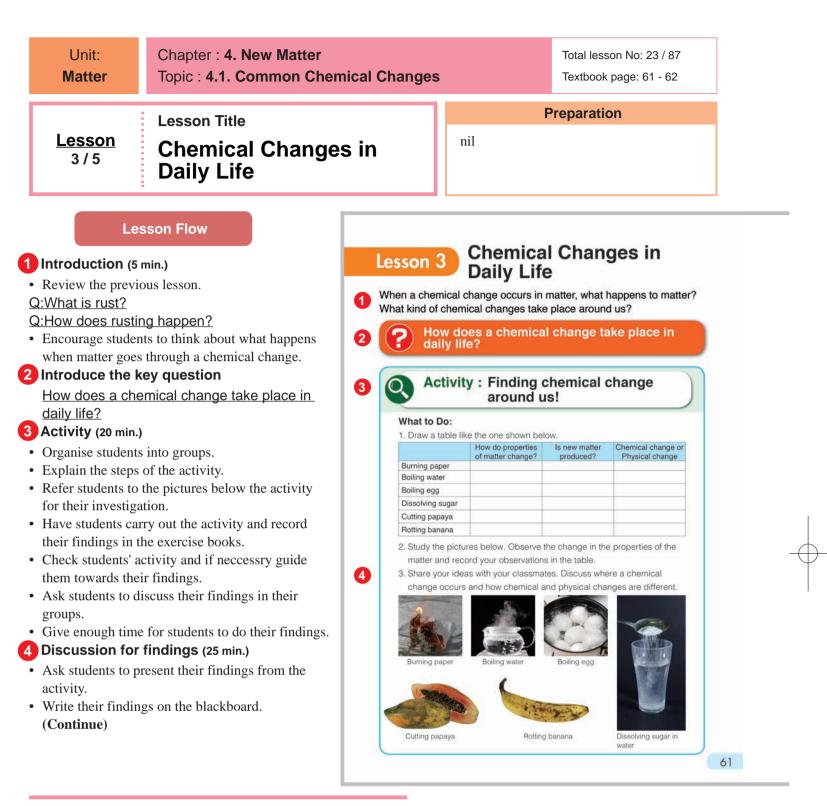
sign of rusting? The wet steel wool. Q: Which property shows that rusting is chemical change? Colour changes from silver to reddish brown, and a magnet can attract dry steel wool, but it cannot attract some rust, etc.

Summary

- <u>Rusting</u> is a type of chemical change that usually forms on the surface of iron or steel.
- Rusting occurs when iron or steel comes into contact with water and oxygen in the air.
- Rust and iron are different kinds of matter because they have different properties.

- Write their findings on the blackboard.
- Facilitate active students' discussions.
- Confirm the results with the students.
- Based on their results, ask these questions as discussion points.
- Q:Are the dry steel wool and the wet steel wool same or different matter? (They are different matter.)
- Q:Why do you think so? (Because their properties are different.)
- Q:Which type of steel wool showed a clear sign of rusting? (The wet steel wool.)

Q:Which property shows that rusting is a chemical change? (Colour changes from silver to reddish brown, and a magnet can attract dry steel wool, but it cannot attract some rust, etc...)


Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: What is rusting?
- Q: How does rusting happen?
- Q: What properties are difference between the wet steel wool and a dry steel wool?
- Ask students to copy the notes on the blackboard into their exercise books.

5

What is a Chemical Change?

- A chemical change takes place when one or more substances react to form a new substance, or a substance breaks down to form one or more substances. A chemical change is also called a chemical reaction.
- It is sometimes accompanied by the emission (give off) or absorption (take in) of energy. The ones that are accompanied by the emission of heat are known as exothermic reactions; while the ones in which heat is absorbed, are known as endothermic reactions.

Other Examples of Chemical Changes in Daily Life

- 1. Digestion of Food
- 2. Washing detergents used in washing dirt from clothes, dishes and our bodies etc.
- 3. Effect of Medicine in our body taken when ill with different kinds of sickness and diseases.
- 4. Changing of colour of falling leaves. For instance, leaf of an almond tree (talis or okari tree).

Students will be able to:

- Recognise that chemical changes take place all around us.
- Identify forms of energy involved in a chemical change.

Assessment

Students are able to:

5

- List examples of chemical changes that occur in daily life.
- State the forms of energy that are involved in a chemical change that occur in daily life.
- Show eagerness in discovering how chemical changes occur in daily life.

Summary

Chemical changes take place all around us. Burning wood, rusting iron nails, cooking food and ripening and rotting fruits are chemical changes. Chemical change also happens in our body. Our body changes food chemically into new matter that it can use as energy.

Hotting and cooking are chemical changes.

Energy is always involved in a chemical change. Chemical changes take in or give off energy in the form of heat, light, electricity, sound or motion.

For example, heat energy can be added when we light a fire or cook food to produce a new kind of matter. Energy is often released when a chemical change takes place. Burning paper gives off energy in the form of heat and light. An explosion of fireworks is a chemical change. When fireworks explode, they produce many loud sounds and lights.

Discussion

62

Title:

take place in daily life?

Burning paper

Boiling water

Boiling egg

Sample Blackboard Plan

Chemical Changes in Daily Life

Key question : How does a chemical change

Activity: Finding chemical change around us.

How..

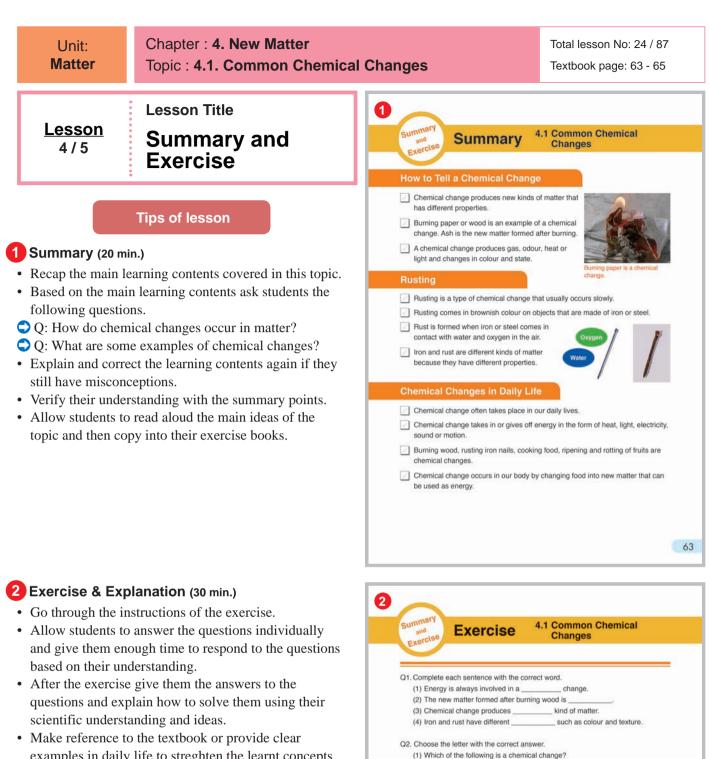
New

matter.

Chem

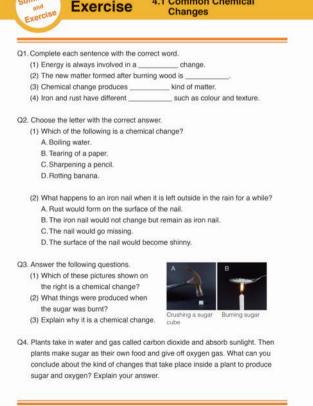
ical...

Q: What are some types of chemical changes that happened around us? Burning paper, rotting banana and a boiling egg, etc. Q: How is the burning paper different from a mango being cut?When paper is burning, a new kind of matter called the ash is created whereas in the mango being cut, the physical properties of the mango such as the size, shape change but mango still remain as it is. Q: What energy is necessary to burn paper and cook food? Heat energy Q: What energy is given off when paper is burning? Heat energy, light energy. Q: What is involved in chemical change? (Energy) Summary


- Chemical changes take place all around us.
- Burning wood, rusting iron nails, cooking
- food and ripening and rotting fruits are chemical changes.
- Chemical change also happens in our body.
- Energy is always involved in a chemical change.

• Facilitate active students' discussions.

- Confirm the findings with the students.
- **Based on their findings,** ask these questions as discussion points.
- Q:What are some types of chemical changes that happened around us? (Burning paper, rotting banana and a boiling egg.)
- Q:How is the burning paper different from a mango being cut? (When paper is burning, a new kind of matter called the ash is created whereas in the mango being cut, the physical properties of the mango such as the size, shape change but mango still remain as it is.)
- <u>Q:What energy is necessary to burn paper and</u> <u>cook food? (Heat energy)</u>
- <u>Q:What energy is given off when paper is</u> <u>burning?</u> (Heat energy, light energy)
- <u>Q:What is involved in chemical change?</u> (Energy)
- Conclude the discussions.


5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: List examples of chemical changes that occur in daily life.
 - Q: What forms of energy are involved in a chemical change?
- Ask students to copy the notes on the blackboard into their exercise books.

64

• Make reference to the textbook or provide clear examples in daily life to streighten the learnt concepts in this topic.

Exercise answers

Q1.

- (1) chemical
- (2) **ash**
- (3) different
- (4) properties

Q2.

- (1) **D**
- (2) A

(2) Explain:

An iron nail is made of iron. When it is left outside in the rain, iron comes in contact with water and oxygen and as result rust occurs on the surface of the nail.

Q3.

- (1) The burning sugar
- (2) When sugar is burnt, odour (sweet smell) is produced, colour changes as well as the state changes from solid to liquid. (Caramel)
- (3) Heating sugar produces a caramel that has different colour as a new kind of matter.

Q4. Expected answer

The chemical change takes place inside the plants because new matter is produced.

Explanation of Science Extras

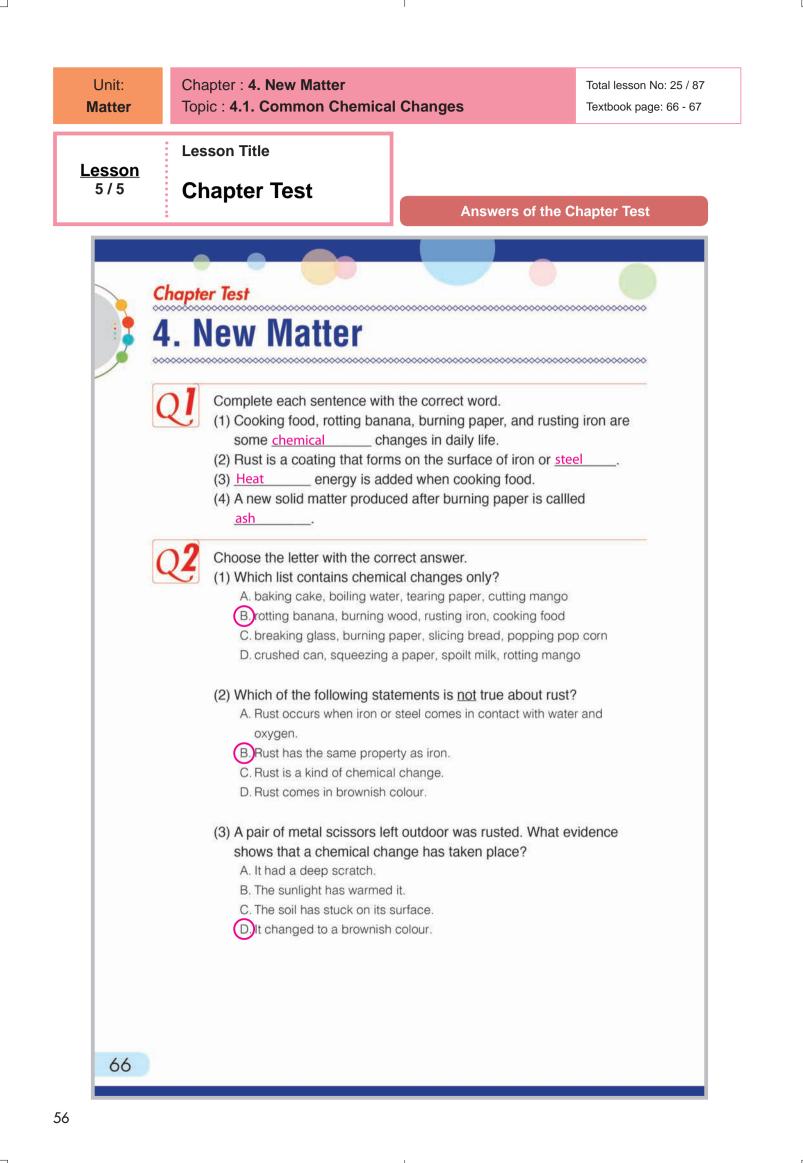
3 Science Extras (10 min.)

- Give opportunities to students to closely observe the nature and its phenomena in the world.
- Allow students to ask questions that demonstrate curiosity about the content in the science extra.

3

Chapter 4 Science Extras

Change of leaf colours during autumn


In many places of the world there are four seasons; spring, summer, autumn (fall) and winter. During autumn, falling temperatures prompts trees to prepare for winter. In these preparations, some kinds of trees change colour of their leaves dramatically.

Most leaves of trees look green because of the pigment they contain which is the <u>chlorophyll</u>. Chlorophyll absorbs sunlight and the light energy is converted to chemical energy through the process of photosynthesis. In addition to the chlorophyll, there are other pigments

present in the leaves, which are <u>carotene</u> and <u>anthocyanin</u>. While carotene is yellow, anthocyanin is red. The change in temperature during autumn(fall) causes the trees to cut off supply of water to the leaves. In the absence of water, photosynthesis stops, and the chlorophyll breaks down through chemical change. Therefore, the leaves take the colour of the other pigments, and we can see a change in colour from green to red and yellow.

(1) Sandy wants to experiment with some sugar cubes. What should she do to change the sugar cube chemically? <u>She should burn the sugar</u>.

(2) An explosion of fireworks is a chemical change. What three forms of energy does it produce when it explodes?
 (i) heat (ii) light (iii) sound

(3) Think about how an egg changes when it is cooked. Is this a physical change or a chemical change? Explain your answer. (Expected answer) Cooking an egg is a chemical change because the egg completely changes into a new substance with new properties being formed after being cooked.

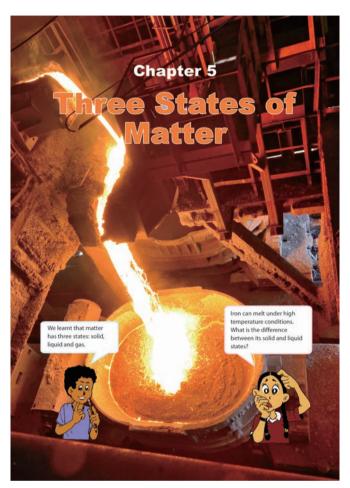
(1) A silver spoon that has turned black can be made shiny again by rubbing off the black tarnish with silver polish. Is polishing a physical change or a chemical change? Explain your answer. It is physical change. (Expected answer) The black tarnish is removed from the surface of silver spoon by polishing. In the process, there is no new substance produced.

(2) Explain why the melting ice is not a chemical change. (Expected answer) The only thing that changes is the physical state of water from ice to water. The water still remains as water and new substance does not produce.

67

Strand : PHYSICAL SCIENCE Unit : MATTER Chapter 5. Three States of Matter

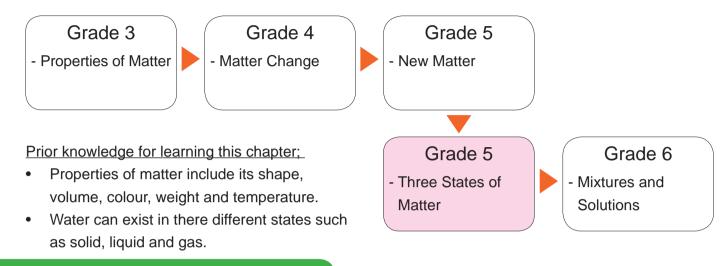
Chapter Objectives


Students will be able to understand the differences between the properties of the three states of matter in terms of shape, volume and temperature.

Topic Objectives

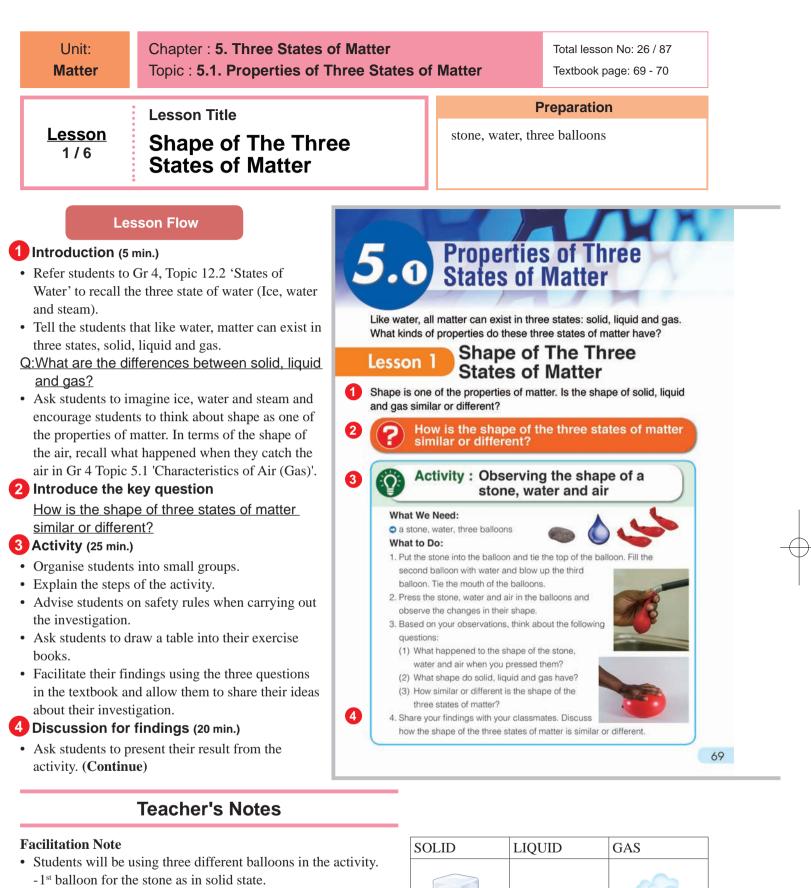
5.1 Properties of Three States of Matter

Students will be able to;


- Describe the shape of the three states of matter.
- Explain that solid, liquid and gas expand when heated and contract when cooled.
- Explain the terms of melting and freezing point in relation to change in state of matter.
- Explain the terms of boiling point in relation to change in state of matter.
- Describe that matter can change from one state to another by heating and cooling.

This picture is from the chapter heading of the textbook showing melting iron at a factory. The temperature of the liquid iron is over 1 500°C that is melting point of iron.

Related Learning Contents


The learning contents in this chapter connect to the following chapters.

Teaching Overview

This chapter consists of 6 lessons, each lesson is a double period.

Торіс	Lesson No.	Lesson Title and Key Question	Content standard in syllabus	Textbook page number
5.1 Properties of Three States of Matter	1	Shape of The Three States of Matter How is the shape of the three states of matter similar or different?	5.2.4	69 - 70
	2	Volume of Three States of Matter What characteristics of volume do the three states of matter have?		71 - 72
	3	Change in State of Matter 1: Solid and Liquid How does matter change its state from a solid to a liquid?		73 - 74
	4	Change in State of Matter 2: Liquid and Gas How does a matter change its state from a liquid to a gas?		75 - 76
	5	Summary and Exercise, Science Extra		77 - 79
Chapter Test	6	Chapter Test		80 - 81

- -2^{nd} balloon for the water as in liquid state.
- -3rd balloon for blown air as in gas state.
- The three balloons have to be pressed separately in order to observe change in their shapes.
- Check to make sure the 2nd and 3rd balloons do not have any pricked holes prior to the activity.
- Image: DeliverImage: Deliver<tr

Students will be able to:

- Describe the characteristics of the three states of matter in terms of shape.
- Show interest in observing the shape of the three states of matter.

Assessment

Students are able to:

5

- State how the shape of solid, liquid and gas are similar or different.
- Participate in the activity with interest.

Summary

Solid, liquid and gas have specific characteristics in terms of their shape.
1. Solid

A solid has a definite shape. The shape of solid remains the same whether it is pressed or placed into different containers. For example, a stone will keep its shape wherever we press it or put it on a desk, in a glass or in a box. This means that the shape of a solid does not change. A solid has a definite shape.

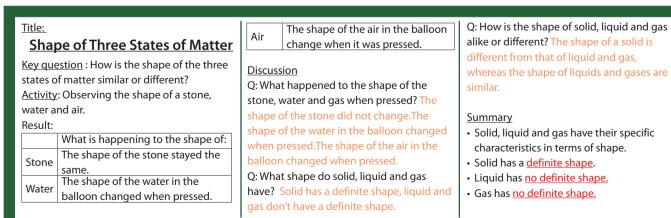
2. Liquid

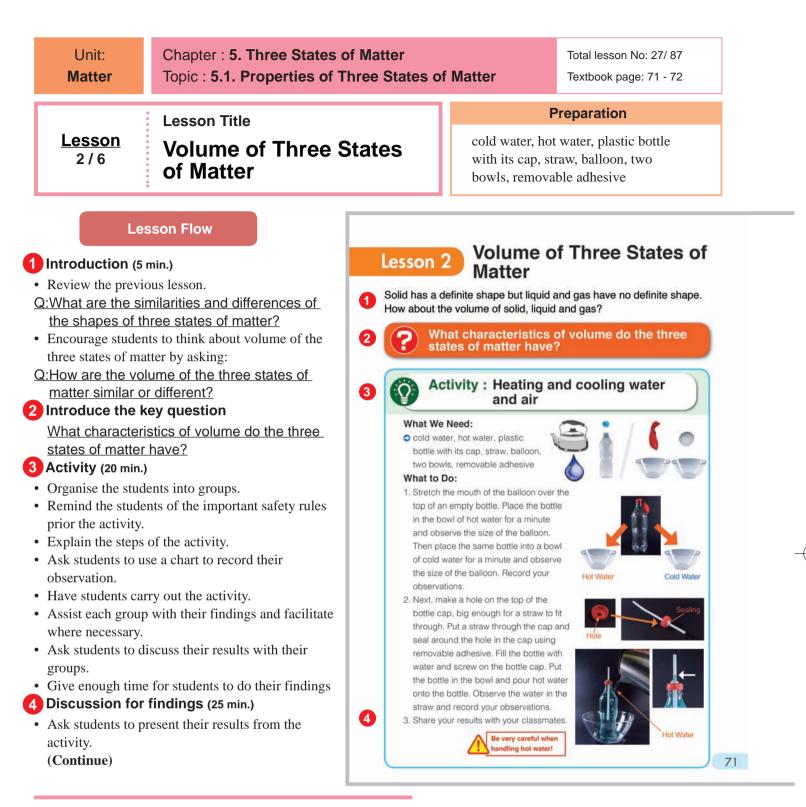
Liquid has **no definite shape**. Liquid changes its shape when it is pressed. Liquid also changes its shape to match the shape of the containers. For example, liquid takes the shape of the glass when it is poured into a glass. Liquid also changes its shape when it is spilled on a table. A liquid has no definite shape.

3. Gas

Gas has **no definite shape**. Gas changes its shape as it takes the shape of the container. If we fill the different shaped balloons with air, the air expands to fill the balloons and takes on different shapes. If the balloons burst, air will escape and spread out.

70




- Write their results on the blackboard.
- Facilitate active students' discussions.
- Confirm the results with students.
- **Based on their results**, ask these questions as discussion points.
- Q:What happened to the shape of the stone, the water and the gas when pressed? (The shape of the stone did not change. The shape of the water in the balloon changed when pressed. The shape of the air in the balloon changed when pressed.)
- Q:What shape do solid, liquid and gas have? (Solid has a definite shape, liquid and gas don't have a definite shape.)
- Q:How is the shape of solid, liquid and gas alike or different? (The shape of a solid is different from that of liquid and gas, whereas the shape of liquids and gases are similar.)
- Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: What shape do solids, liquids and gases have?Q: What are the similarities and differences between the shapes of the three states of
- matter?Ask students to copy the notes on the blackboard into their exercise books.

Sample Blackboard Plan

Additional Notes 'Expansion and Contraction'

- When we heat any substance, the particles get more energy and begin to move faster.
- This movement causes the particles to move further apart so that the substance expands.
- If we cool a hot substance we take energy away from the particles. They start to move more slowly and get closer together so the substance contracts.
- All states of matter expand when heated and contract when cooled.
- Gases expand most when heated and solids the least because gas particles are already far apart and are much freer to move.

Expansion and Contraction in Everyday Life

- Gaps are left between sections of railway line to allow expansion in hot day.
- Telephone wires are deliberately left loose to allow for contraction in winter.
- Central heating systems have an expansion pipe to allow the heated water to expand without bursting out the system.
- Soft drinks like Coca cola need to allow space when filling up their bottles or cans. No allowance will cause the bottles or cans to burst.

Students will be able to:

- Describe how the volume of solid, liquid and gas change.
- Observe the changes in volume of liquid and gas.
- Cooperate with others.

2 Discussion

Based on your results, think about the following questions.

- What happened to the size of the balloon when the empty bottle was heated and cooled? Explain why.
- What happened to the water in the straw when hot water was poured on the bottle? Explain why.

Summary

6

Solid, liquid and gas expand when heated. They contract when cooled. The increase in volume of matter due to an increase in temperature is called <u>thermal expansion</u>.

1. Solid

bridge to change length

Solid expands very little when heated. Most large bridges include metal parts which look like two metal combs. There are spaces between these metal parts that allow the bridge to change length without breaking. If the bridge material expands and the bridge gets longer, the parts move closer together.

If it contracts, they move further apart. 2. Liquid Liquid expands a little more than solid.

When hot water is poured on the bottle filled with water, the water inside the bottle becomes warmer and expands.

As a result of this the water level in the straw rises The volume of water increases.

3. Gas

Key question

Situation

water.

states of matter have?

Empty bottle with

Empty bottle with

balloon in hot water

balloon in cold water

Pouring hot water on

the bottle filled with

Gas expands a lot more when heated. As the air inside the bottle heats, the balloon begins to expand. This is because the air inside the bottle expands and it spreads out into the balloon.

Title: Volume of Three States of Matter

What characteristics of volume do the three

Activity: Heating and cooling water and air.

Assessment

Students are able to:

- State the change in the volume of three states of matter by relating to the change in their temperature.
- Identify the characteristics of the change in the volume of liquid and gas based on the results of observation.
- Take part in the investigation in a cooperative manner.
 - Write their results on the blackboard.
 - Facilitate active students' discussions.
 - Confirm the results with the students.
 - **Based on their results,** ask these questions as discussion points.
 - Q:What happened to the size of the balloon when the empty bottle was heated and cooled? (When heated, the size of the balloon expanded. When cooled, the size of the balloon contracted or shrank.)
 - <u>Q:Why?</u> (This is because the air inside the balloon expanded when heated and shrank or contracted when cooled.)
 - Q:What happened to the water in the straw when hot water was poured on the bottle? (The level of water rose when heated.)
 - <u>Q:Why?</u> (Because the water in the bottle expanded when heated.)
 - Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask the questions as assessment:
 - Q: What happens to the volume of solid, liquid and gas when heated?
 - Q: What happens to the volume of solid, liquid and gas when cooled?
- Ask students to copy the notes on the blackboard into their exercise books.

72

Sample Blackboard Plan

Your observation

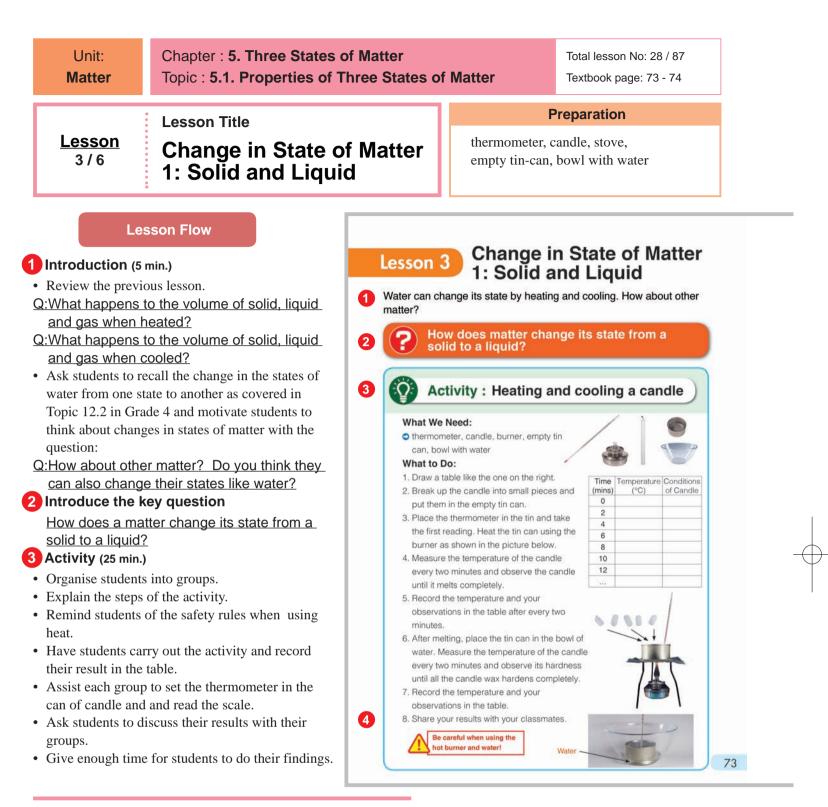
Balloon contracts

Water level in the

straw rise.

Balloon expands in

<u>Discussion</u>


Q: What happened to the size of the balloon when the empty bottle was heated and cooled? When heated, the size of the balloon expanded.

When cooled, the size of the balloon shrank. Q: Why? This is because the air inside the balloon expanded when heated and shrunk when cooled.

Q: What happened to the water in the straw when hot water was poured on the bottle? The level of the water rose when heated.

Q: Why? Because the water in the bottle expanded when heated. Summary

- Solid, liquid and gas expand when heated and contract when cooled. The increase in volume of matter due to an increase in temperature is called <u>thermal expansion</u>.
- The volume of solid change very little when heated and cooled.
- Liquid expands or contracts a little more than solid when heated or cooled.
- Gas expands and contracts a great deal when heated or cooled.

In Grade 4 Chapter 12 'Matter Change', students learnt about how ice changes its form when it melts. When ice is heated, it starts to melt and becomes water. This process of solid changing into liquid is called melting. For this lesson, the activity will be focused on other matters such as a candle.

SAFETY

- Be very careful when using a match to light the stove.
- Teacher should pay closer attention to students when lighting their stoves.
- Always use a piece of cloth or tong to hold the heated tinned can.

Tips for the Activity

- Set up the source of heat (stove, fire etc.) in an open space where students can freely observe.
- For Steps 3-5, refer to Grade 4 Chapter 12 Topic 12.2, lesson 4, for similar process used in the activity.
- Energy is involved in a change of state. To change from one state to another, energy must be added or taken away. When you heat a solid, heat is added to it. We say that the solid is gaining heat energy. When you cool a liquid, heat energy is taken away. If you cool a liquid enough, it will freeze into a solid. We say that heat energy is lost from the liquid.
- Materials have different melting and freezing points. In other words, the difference characterises materials.
- Other substances including metals which are solid at room temperature have very high melting points.

Students will be able to:

- Describe how matter changes from solid to liquid and from liquid to solid.
- Recognise that solid and liquid change their state when their temperature reaches a certain point.
- Use a thermometer properly.

Assessment

Students are able to:

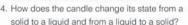
- Explain that matter can change its state from a solid to a liquid and from a liquid to a solid by heating and cooling.
- Explain the terms of melting and freezing point in relation to change in state of matter.
- Measure the temperature of matter using a thermometer.

4 Discussion for findings (20 min.)

- Ask students to present the results from their activity.
- Write students' results on the blackboard.
- Facilitate students' active discussions.
- Confirm their results with students.
- **Based on their results**, ask these questions as discussion points.
- Q:What was the state of the candle before and after heating? (Before heating, the candle was in a solid state. After heating, the candle was in a liquid state.)
- Q:After placing the can in the bowl of water, how did the state of the candle change? (The candle changed from liquid to solid state.)
- Q:What temperature did the candle completely melted and hardened? (Around 50~60oC.)
- Q:How does a candle change its state from a solid to a liquid and from a liquid to a solid? (It changed its state by heating and cooling.) Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: How does matter change its state from solid to liquid and from liquid to solid?
 - Q: What is melting point?
 - Q: What is freezing point?
- Ask students to copy the notes on the blackboard into their exercise books.


Think about the following questions based on your results.

1. What was the state of the candle before and after heating?

- 2. How did the state of the candle change after
- placing it in the bowl? 3. What was the temperature of the candle when it

Discussion

completely melted and hardened?

Summary

Matter can change its state from a solid to a liquid and from a liquid to a solid when it is heated or cooled. For example, a candle is a solid because it has a definite shape. When a candle is heated, it starts to melt

A candle changes its state from a solid to a liquid by heating. When the melted candle is cooled, it state from a liquid to a solid when

Do you remember

what caused the change in the state

of water, from ice

to water and fro

water to ice?

temperature will rise to a certain point where the solid starts to melt. This point is called the melting point. When heat is removed from the liquid, its temperature drops to a melting and freezing point of water is 0°C.

74

Sample Blackboard Plan

Title:

Change in State of Matter 1: Solid and Liquid

Key question : How does matter change its state from a solid to a liquid? Activity · Heating and cooling a candle

<u>Methody</u> . Including and cooling a canale				
Time	Temperature	Conditions of		
(mins)	(°C)	candle		
0				
2	Write the results	presented by		
4	students.			

Discussion

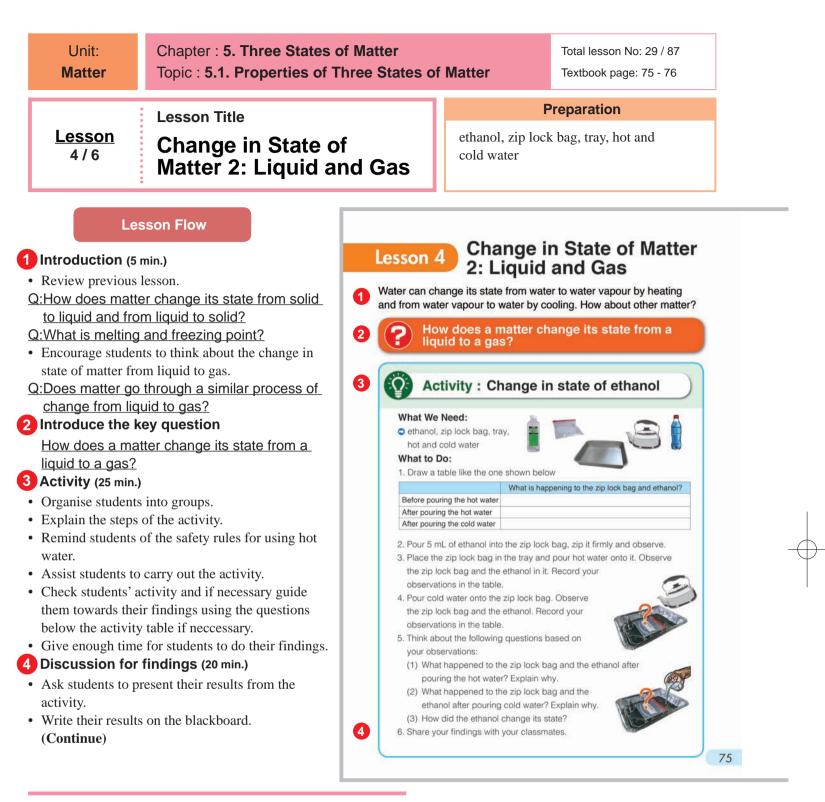
Iting at about 1 500

Q: What was the state of the candle before and after heating? Before heating, the candle was solid state. After heating the candle was in a liquid state. Q: After placing the can in the bowl of water, how did the state of the candle change? The candle changed from liquid to solid state. Q: What was the temperature that the

candle completely melted and hardened? Write the answers from the students (Around 50~60°C)

Q: How does a candle change its state from a solid to a liquid and from a liquid to a solid? It changed its state by heating and

Summary


- Matter can change from solid to liquid and liquid to solid by heating and cooling.
- The temperature of a solid rises to a certain point when heat is added .This is called the melting point.
- The temperature of a liquid drops to a certain point when heat is removed. This is called the freezing point.

5

hardens. A candle changes its it is cooled

When heat is added to a solid, its

certain point where the liquid starts to freeze. This point is called the freezing point. The

In Grade 4 Chapter 12 'Matter Change', students learnt about how water changes its form when heated. When water is heated, its temperature increases and the steam rises from the surface causing the water to boil and eventually evaporate. This process of liquid changing into gas is called evaporation.

SAFETY

- Use a piece of cloth to handle the teapot or tray to avoid being burned.
- Pay closer attention to students while pouring the ethanol or methylated spirit into the zip lock as it is a dangerous substance. Likewise, for the hot water as children might burn themselves.
- The methanol is harmful substances therefore do not try to drink.

Tips of the Lesson

- A methylated spirit can substitute the ethanol if unavailable. BUT, be very careful as it is poisonous which can lead to serious health problems or even death when they drink. Keep out of reach after the lesson.
- A deeper and wider tray or dish is good to use as it can accommodate a lot of water when poured inside.
- The hot water has to be poured around the zip lock in order to clearly observe how the zip lock will expand.
- Try as much as possible to allow all the air in the zip lock out before tying with a rope or rubber band.
- Make sure to use the same tray or dish to pour the water at room temperature to observe the next change.

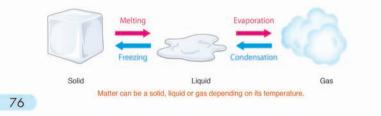
Students will be able to:

- Explain how matter can change its state from liquid to gas and from gas to liquid.
- Identify the processes of the change in the three states of matter.

Assessment

Students are able to:

- State the change in states of matter from liquid to gas and from gas to liquid by heating and cooling.
- Explain melting, freezing, evaporation and condensation as the process of the change in three states of matter.
- Actively participate in observing the changes in states of matter from liquid to gas and from gas to liquid.


Summary

Matter can change its state from a liquid to a gas and from a gas to a liquid when it is heated or cooled. For example, ethanol is a liquid. When ethanol in a zip lock bag is heated, the zip lock bag expands and the amount of liquid ethanol decreases. This means that the ethanol changes its state from a liquid to a gas. The temperature at which a liquid changes into a gas is called the **bolling point**. When a gas state of ethanol in the zip lock bag is cooled, the zip lock bag shrinks and the amount of liquid ethanol increases. This means that the gas state of ethanol increases. This

Ethanol changes its states by heating and cooling.

All matter can be solid, liquid or gas depending on their temperature. Matter changes its state by heating or cooling. When heat is added to matter, it changes its state from a solid to a liquid or from a liquid to a gas. The process that causes a matter to change from a solid to a liquid is called **melting**. The change of state from a liquid to a solid is called **freezing**. When heat is removed from matter, it changes its state from a gas to a liquid or from a liquid to a solid. The change of state from a gas to a liquid or from a liquid to a solid. The change of state from a gas to a liquid is called **evaporation**. The change of state from a gas to a liquid is called **condensation**.

Sample Blackboard Plan

Title: Change in State of Matter 2:

Key question : How does matter change its

lock and ethanol

Zip lock expands. The

What is happening to the zip

Ethanol was in its liquid state

amount of ethanol decreases

Zip lock shrink in size and the

amount of ethanol increased

State change: Gas to Liquid

State change: Liquid to Gas

Activity: Change in state of ethanol

Liquid and Gas

state from a liquid to a gas?

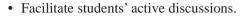
Before

pouring

pouring

cold water

hot water

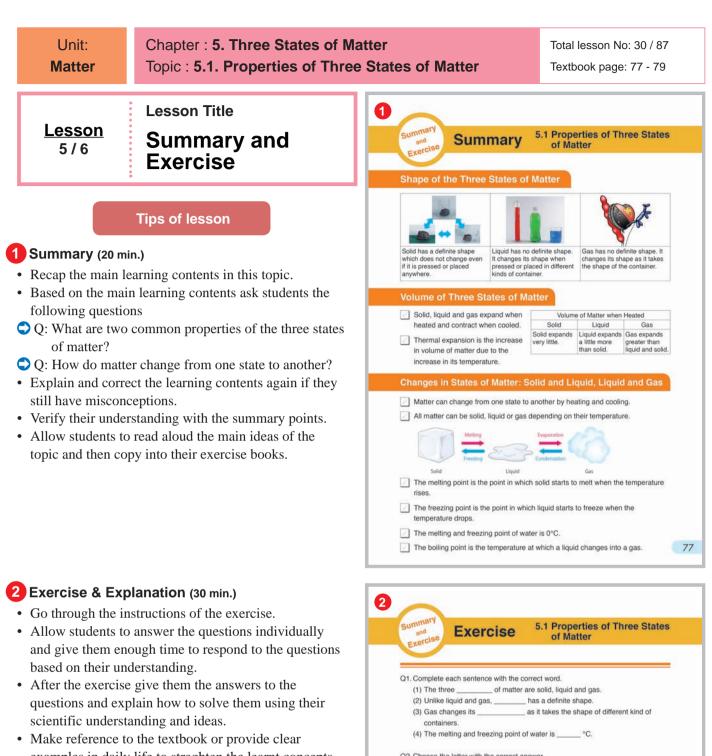

After

After

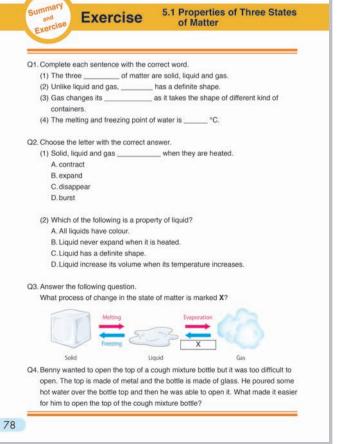
Discussion

Q: What happened to the zip lock and ethanol after pouring hot water? It expands in size. The amount of ethanol decreased.
Q: Why? The ethanol changed from liquid to gas when heated. The amount of gas in zip lock increased and it expanded.
Q: What happened to the zip lock and ethanol after pouring cold water?
It shrank in size. The amount of ethanol increased

Q: Why? The ethanol changed from gas to liquid when cooled. The amount of gas in zip lock decreased and it shrunk.



- Confirm their results with students.
- **Based on their results**, ask these questions as discussion points.
- <u>Q:What happened to the zip lock and ethanol</u> <u>after pouring the hot water?</u> (It expanded in size. The amount of ethanol decreased.)
- <u>Q:Why?</u> (The ethanol changed from liquid to gas when heated. The amount of gas in zip lock increased and it expanded.)
- <u>Q:What happened to the zip lock and ethanol</u> <u>after pouring cold water?</u> (It shrank in size. The amount of ethanol increased.)
- <u>Q:Why?</u> (The ethanol changed from gas to liquid when cooled. The amount of gas in zip lock decreased and it shrunk.)
- <u>Q:How did the ethanol change its state?</u> (It change from liquid to gas when heated, It change from gas to liquid when cooled.)
- Conclude the discussions.
- 5 Summary (10 min.)
 - Ask students to open their textbooks to the summary page and explain.
 - Summarise today's lesson on the blackboard.
- Ask the questions as assessment:
 - Q: How does matter change its state from liquid to gas and from gas to liquid?
 - Q: What kinds of processes are involved in the changes in states of matter?
- Ask students to copy the notes on the blackboard into their exercise books.


Q: How did the ethanol change its state? It changes from liquid to gas when heated, It changes from gas to liquid when cooled. <u>Summary</u>

- Matter can be solid, liquid or gas depending on its temperature.
- The process of a change of state includes: Melting, freezing, evaporation and condensation.

examples in daily life to streighten the learnt concepts in this topic.

Exercise answers

Q1.	Q3.
(1) states	X: Condensation
(2) solid	
(3) shape	Q4. Expected Answer
(4) 0	The hot water that was poured over the top of
	the bottle made the bottle expand and he was
Q2.	able to expand the bottle.
(1) B	
(2) D	

Explanation of Science Extras

3 Science Extras (10 min.)

- Give opportunities to students to closely observe the nature and its phenomena in the world.
- Allow students to ask questions that demonstrate curiosity about the content in the science extra.

3

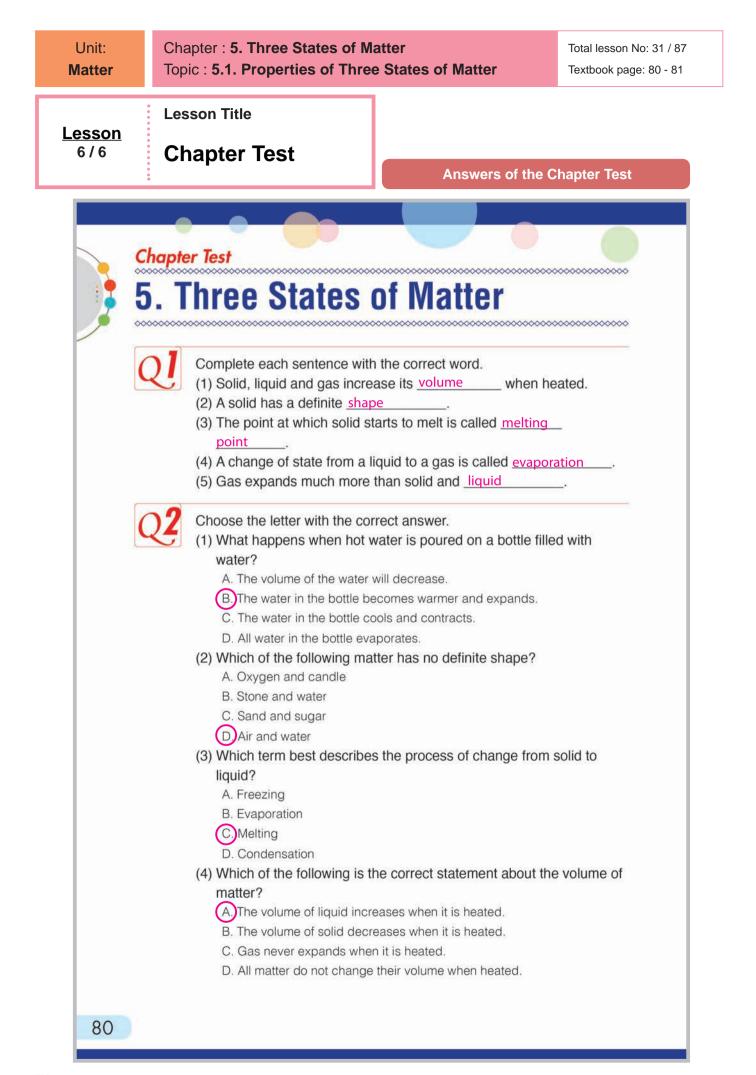
Science Extras

Do all substances change their state from solid to liquid and liquid to gas?

All substances mainly have three different states at various temperatures. The change from solid state to gas state requires the change of solid state to liquid state and liquid state to gas state.

If solids have enough vapour pressure at a particular temperature then they can change directly into air. The direct change of state from solid to gas is called **sublimation**.

Examples of Sublimation

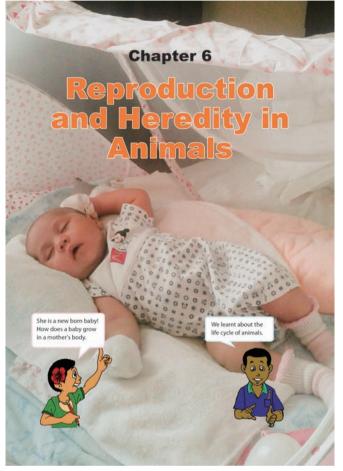

One of the example of sublimation is dry ice. It is a solid form of carbon dioxide. Its temperature is less than -78°C. When dry ice gets exposed to air, it directly changes its state from solid to gas. When dry ice is placed in water, sublimation is accelerated and smoke like fog is created. The most common use of dry ice is to preserve food to keep it cool. This is because the temperature of dry ice is lower than ice and it does not make the food wet due to its sublimation process.

Another Weinking wannie wannie of southination is a substance known as naphthalene. Naphthalene is usually found in pesticides such as mothball. When mothballs sublime, they give off a pleasant fragrance which is also irritating to pests like cockroaches. For this reason they are used in drawers, shelves, wardrobes and suitcases in homes.

79

Strand : LIFE Unit : ANIMALS Chapter 6. Reproduction and Heredity in Animals

Chapter Objectives


Students will be able to understand the reproduction of animals by comparing the reproductive process as in fish and human. Students will also able be to understand traits from parents to their children by heredity.

Topic Objectives

6.1 Reproduction and Heredity

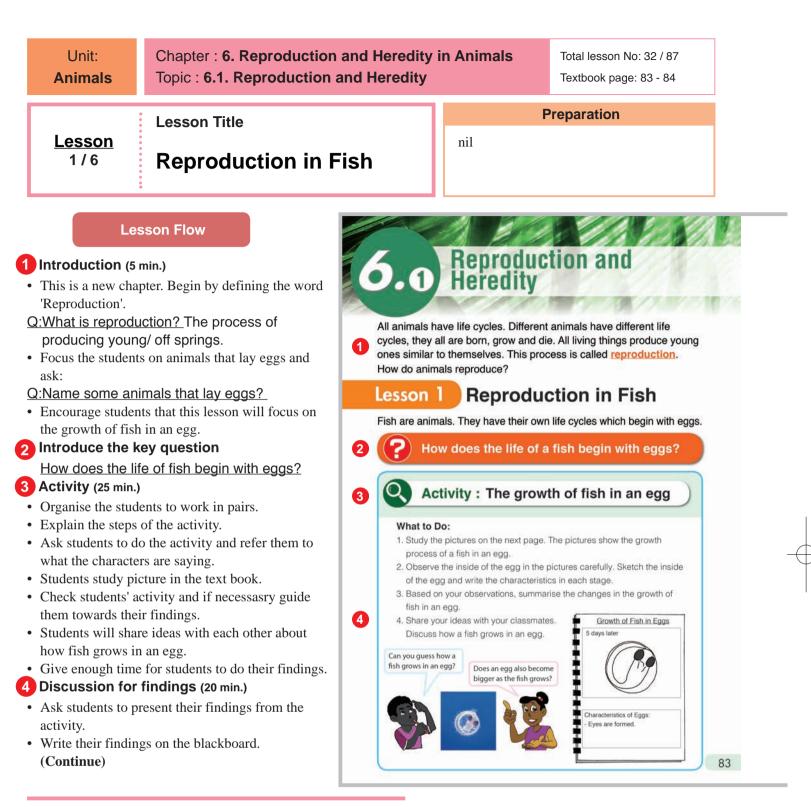
Students will be able to;

- Describe the process of development in each stage in the fish egg.
- Explain the male and female reproductive system.
- Identify the different processes involved in the reproduction of humans.
- Describe similarities and differences by traits from parents.

This picture is from the chapter heading of the textbook showing traits from a parent to child.

Related Learning Contents

The learning contents in this chapter connect to the following chapters.


Prior knowledge for learning this chapter;

- Characteristics of animals
- Life cycle of insects, fish, amphibians, reptiles, birds and mammals.

Teaching Overview

This chapter consists of 6 lessons, each lesson is a double period.

Торіс	Lesson No.	Lesson Title and Key Question	Content standard in syllabus	Textbook page number
6.1 Reproduction and Heredity	1	Reproduction in Fish How does the life of fish begin with eggs?	5.1.2	83 - 84
	2	Human Reproductive System Which body parts are used for human reproduction?		85 - 86
	3	Reproduction in Human How does human life begin?		87 - 88
	4	From Parents to young Why do young animals look like their parents?	0.1.2	89 - 90
	5	Summary and Exercise, Science Extra		91 - 93
Chapter Test	6	Chapter Test		94 - 95

- 'Life cycle of fish' is taught in Grade 4, Chapter 10 'Life cycle of fish and Amphibians'. Teachers are requested to refer it prior to this lesson. This lesson focuses on 'life cycle inside an egg'. Teachers need to help students to change their views from macro to micro level. It develops scientific skills to observe the world which cannot be seen by naked eyes.
- In the activity students are to sketch from the first stage to the last stage of development when the young fish hatches.

How fertilisation takes place in fish

- Egg lying is one way that fish use for reproduction and it involves the eggs growing until they hatch into fry after seven to ten days. Different fish use different methods when it comes to fertilising the eggs. There are many methods and these are some;
- 1. Scattering method- the female fish scatter its eggs in different areas, and the male follows behind it to fertilise them.
- 2. Substrate spawners reproduce by using saliva as 'glue' to attach their eggs to various surfaces like rocks, aquarium glass, plants, or wood. The females leave the eggs there, and the male come to fertilise them. Catfish mostly favors this method of reproduction
- 3. Bubble nest- the male fish blows bubbles for the female to lay its eggs next to the surface of the water where there is a source of food and maximum oxygen.
- 4. Mouthbrooders- the eggs are laid by the females and fertilised by the males. During the incubation period, either of the parents will take the eggs and keep them in their mouth until they hatch.

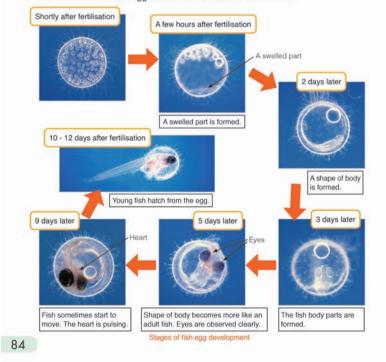
Students will be able to:

- Define what fertilisation is.
- Explain how in fish reproduce.
- Observe the growth of fish in an egg.
- Participate in discussion actively.

Assessment

Students are able to:

6


- State the definition of fertilisation.
- Describe the process of development in each stage in the egg.
- Sketch the growth of fish in an egg from the picture.
- Express their opinions during discussion.

Summary

The life of a fish starts when a sperm meets with an egg and joins with it. This process is called fertilisation. The egg is made inside a female's body and the sperm is made inside a male's body.

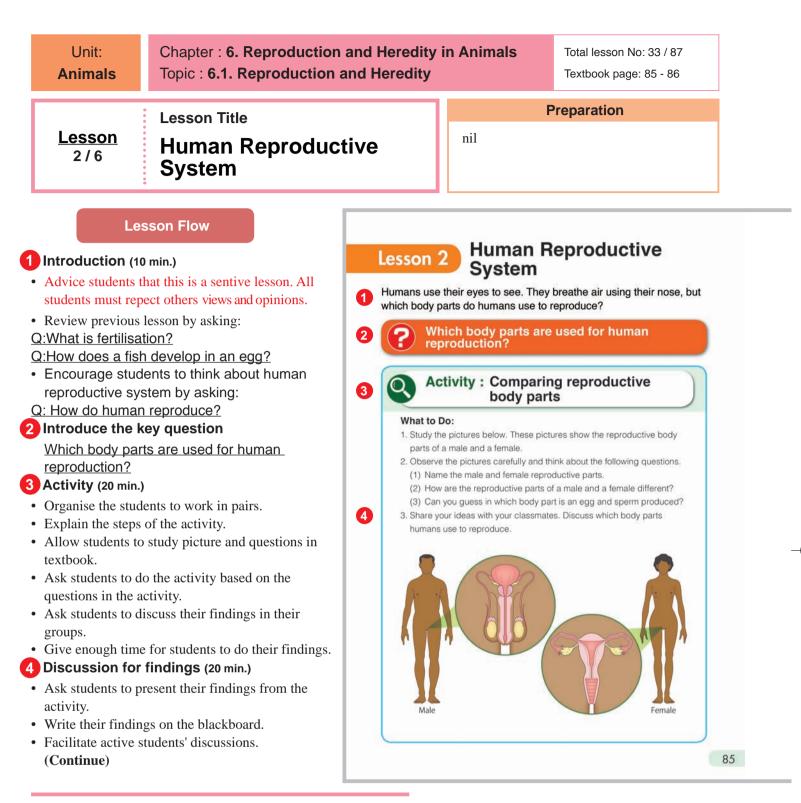
After fertilisation, a fish grows in a fertilised egg. The inside of the egg

changes its appearance day by day and becomes more like a fish. Young fish hatches from the egg about two weeks after fertilisation.

Sample Blackboard Plan

• Facilitate active students' discussions.

- Confirm the findings with the students.
- **Based on their findings,** ask these questions as discussion points.
- Q:What body part of fish can you see clearly in the beginning? (backbone, shape of fish)
- Q:After that, what body part of fish can you see? (Eyes and hearts.)
- Q:How does the size of an egg change as fish in the egg grows? (The size of egg doesn't change, same size, etc...)
- Q:How does the fish look like after hatching from the egg? (It is similar to adult fish.)


Q:How does a fish grow and develop in an egg? (Explain the growth and development of the fish in an egg by referring to textbook.)

Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment: Q:What is fertilisation? Q:In which body are egg and sperm made, female or male?
- Ask students to copy the notes on the blackboard into their exercise books.

<u>Title:</u>			Discussion	Summary
Reproduction in Fish		h	Q: What body part of fish can you find at the	 <u>Reproduction</u> is a process were living
Key question: How does the life of fish begin with eggs? Activity The growth of fish in an egg		n with eggs?	beginning? Backbone, shape of fish Q: After that, what body part of fish can you find? Eyes and hearts	 things produce young ones similar to themselves. <u>Fertilisation</u> is the process when the
Stage After fertilisation	Diagram	Description (eye,tail, colour, size)	Q: How does the size of an egg change as fish in the egg grows? The size of egg doesn't change, same size, etc	 sperm joins with an egg. The inside of the egg changes its appearance day by day and becomes
Few hours	Students' dra	wing	Q: How does the fish look like after hatching from the egg? It is similar to adult fish. Q: How does a fish grow and develop in an	similar to a fish.
2 days			egg? Explain the growth and development of the fish in an egg by referring to textbook	

- This lesson is a very sensitive lesson and would cause embarrassment to either boys or girls so before teaching these lesson encourage students to respect each other's views and opinions.
 - Suggested options to teach this lesson

(1) This lesson can be taught by teaching separately the boys from the girls.

(2) Arrange and prepare a teacher of the same gender to teach this lesson if it is against your traditional customs.

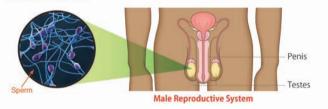
- Encourage students to identify reproductive parts from what they know and not reading content on the summary page.
- Let students know that there are other reproductive organs that will be looked at in higher grades.

Male	Female
1. The reproductive system of the male is located outside the	1. The female reproductive system is located entirely inside the body,
body and around the pelvis region, to maintain the	with entry and exit points at the vulva, and separate openings for
temperature required by the sperm to stay healthy.	urination and menstruation. Produce ovum.
2. Produce sperm.	2. Receive and fertilise the male sperm.
3. To provide sperm to the ovum for fertilisation.	3. Support the development of the growing embryo.
	4.To provide nourishment to the infants (newborn) by secreting milk in
7/	the mammary glands (breast).

- Students will be able to:
- Identify which body parts are used for human reproduction.
- Explain the function of male and female reproductive organs.
- Recognise the importance of life.

Summary

The **reproductive system** is the group of the body parts that work together for the purpose of reproduction. Males and females have different reproductive systems.


1. Female Reproductive System

The female reproductive system is made up of the ovaries, womb and vagina. The **ovary** is a body part that contains thousands of eggs. Two ovaries are located inside the female body. The **womb** is the place where a baby grows until its birth. The **vagina** is a muscular tube that connects the womb to the outside of the body. It is the opening at the end of the path that the baby takes to leave a female body during birth.

2. Male Reproductive System

The male reproductive system includes the testes and penis. The testes and penis are located outside of the body. The <u>testes</u> produce millions of sperms. There are two testes that are contained in a bag of skin. The <u>penis</u> is a body part that passes semen out of the man's body. <u>Semen</u> is a mixture of sperm and fluids.

86

Sample Blackboard Plan

Reproduction system in Human

Key question : Which body parts are used

Activity: Comparing human reproductive

1. Name the male and female reproductive

3.Can you guess which body parts are the

2. How are the male and female

eggs and sperm produced?

reproductive parts different?

for human reproduction?

Title:

parts

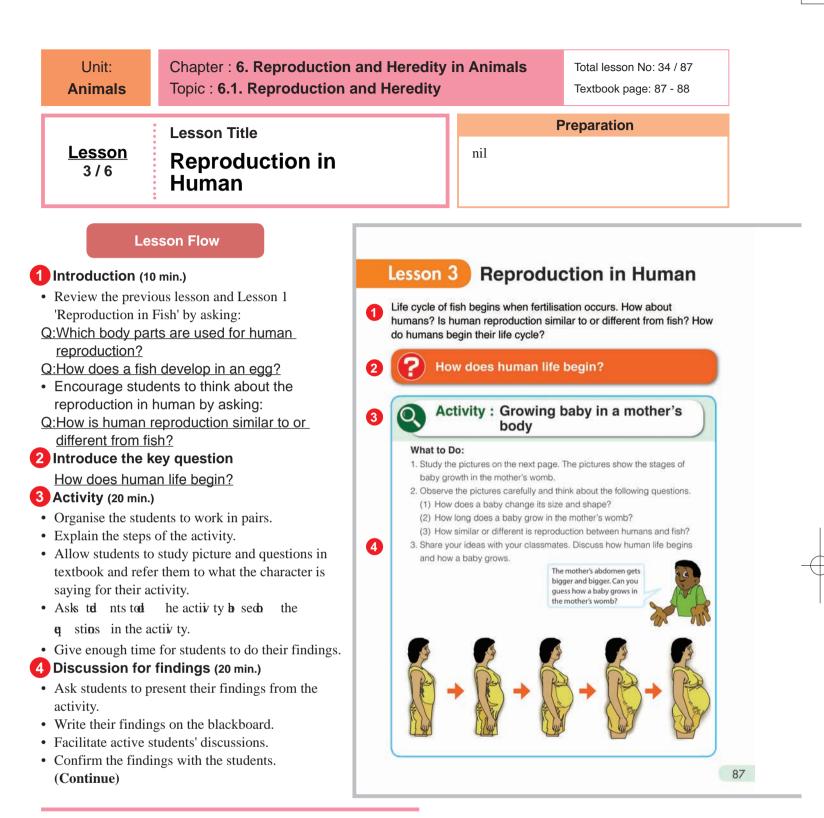
Ouestions:

parts.

Discussion

Q:Which body parts of the male and the female reproductive system do you know? It depends on students' knowledge. Q:How are the reproductive parts of a male and a female different? The male reproductive parts are located outside body, the female reproductive parts are located inside body, the shapes of the body parts are different, etc... Q:Can you guess which reproductive body parts produces eggs and sperms? The eggs are produced in ovaries, and the sperm is produced in the testes.

Assessment


- Students are able to:
- List male reproductive parts as penis and testes and female reproductive parts as ovaries, womb and vagina.
- State how testes, penis, ovary, womb and vagina work in the reproductive system.
- Value the importance of the reproductive organs.
 - Confirm the findings with the students.
 - **Based on their findings,** ask these questions as discussion points.
 - Q:Which body parts of the male and the female reproductive system do you know? (It depends on students' knowledge.)
 - Explain the male and female reproductive organs.
 - Q:How are the reproductive parts of a male and a female different? (The male reproductive parts are located outside the body, the female reproductive parts are located inside the body, the shapes of the body parts are different, etc.)
 - <u>Q:Can you guess which productive body parts</u> <u>produces eggs and sperms?</u> (The eggs are produced in ovaries, and the sperms is produced in the testes.)
 - Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: Which body parts are used for human reproduction?
 - Q: What is the difference between a male and female reproductive system?
 - Q: Where are eggs made?
 - Q: Where are sperms made?
- Ask students to copy the notes on the blackboard into their exercise books.

<u>Summary</u>

- The <u>reproductive system</u> is the group of the body parts that work together for the purpose of reproduction.
- <u>Female reproductive system</u> includes ovaries, womb and vagina.
- The ovary contains thousands of eggs. There are two ovaries.
- The womb is the place where a baby grows until its birth.
- <u>Male reproductive system</u> includes penis and testes.
- The testes produce millions of sperm.

- 'Life cycle of mammals' is taught in Grade 4, Chapter 10. That lesson describes life after birth whereas this lesson focuses on the life before birth. Refer to the lesson in Grade 4 prior to this lesson so you can effectively link these two topics to explain whole life cycle of humans.
- Human Reproduction is a process where a male sperm and a female egg provide the information (chromosomes) required to produce another human being. Conception occurs when the sperm meeets the egg and fertilises it. Pregnancy begins once the fertilised egg is implanted in the uterus.

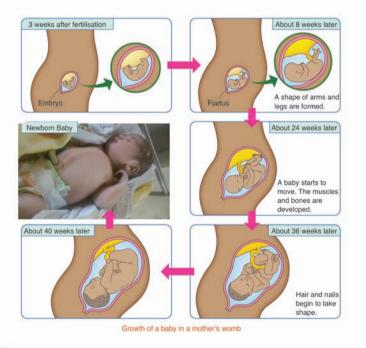
Additional Information - Terms used in the process of birth of a baby

- 1. Zygote is a fertilised egg. This occurs when an egg joins with a sperm in a female body (this stage is
- not in the textbook above, but it is similar the fertilisation of fish which is the first lesson of this topic). 2. Embryo is an early stage of development of an organism that develops from a zygote (fertilised egg).
- Energy is an early stage of development of an organism that develops from a zygote (returnsed egg).
 Foetus is an unborn offspring of a mammal at the later stages of its development, especially a human from eight weeks after fertilisation to its birth. In a foetus, all major body organs are present.
- 4. Baby is a general word used to describe a human from birth until about age 1 or 2 years old. From birth until to 3 months of age, a baby can be called a new born.

Reminder:

Advice students to respect themselves and all other students. Arrange other teachers to teach the lesson if against your customs.

- Students will be able to:
- Explain the processes of reproduction in humans.
- Compare the similarities and differences between human and fish.
- Recognize the importance of the life.


Assessment

Students are able to:

- State the steps of how a baby grows in a body of mother.
- List the differences and similarities in the reproduction
- processes in human and fish. • Value the importance of the human life.

Summary

When a sperm meets with an egg, the egg becomes a fertilised egg. Human life begins with a fertilised egg. In humans, fertilisation takes place inside the body of the female, unlike fish. The fertilised egg develops and grows in the mother's womb (uterus) and becomes an embryo. The embryo gradually turns into the shape of a human being eight weeks after fertilisation. This is called the foetus. As the foetus grows into a baby, organs such as the spine and heart, hair and nails begin to take shape. After about thirty-seven to forty weeks in the mother's womb, the baby is born.

88

Sample Blackboard Plan

- **Based on their findings,** ask these questions as discussion points.
- Q:How does the baby change its size and shape? (The fertilised egg develops and grows bigger in the mother's womb. It changes its shape by forming the different parts of the body such as the arms and legs. The muscles and the bones also develop including the hair and the nails.)
- Q:How long does a baby grow in the body of the mother? (For about thirty-seven to forty weeks.)
- Q:How is reproduction in fish and humans similar or different?

Similarities: Female produces eggs, Fertilisation takes place and life begins with fertilised egg.

Differences: Fertilisation takes place inside the body of a woman; fertilisation takes place outside the body of a female fish, it takes 40 weeks to develop fully for human and it takes 2 weeks for fish to develop before it is hatched.

• Conclude the discussions.

5 Summary (10 min.)

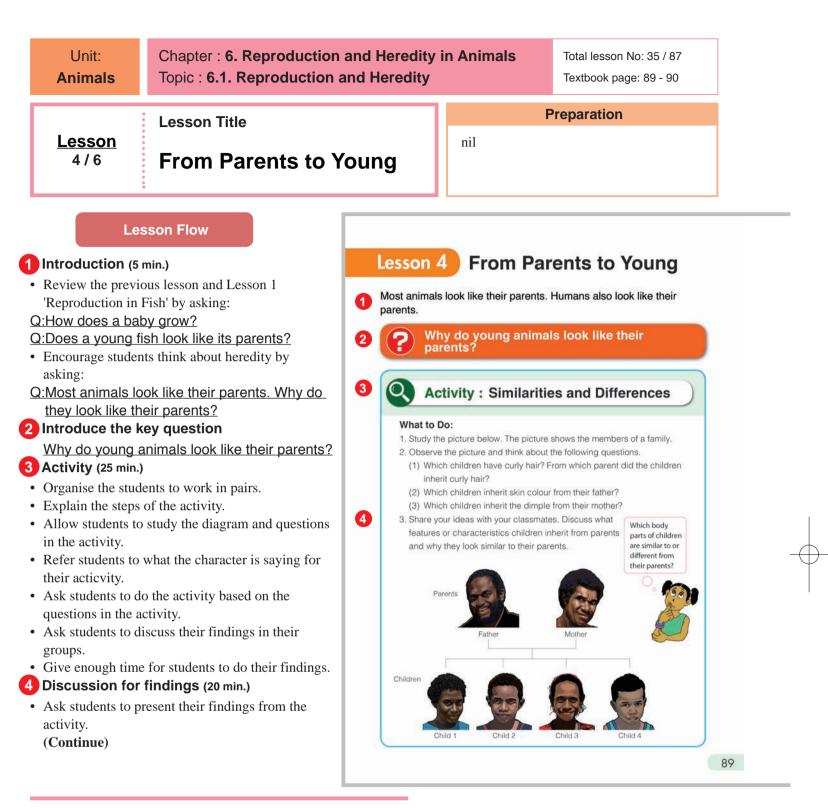
- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment: Q: What does a human life begin from?
 - Q: How does a baby grow?
 - Q: What is the difference between the
 - reproduction process of a fish and human being?
- Ask students to copy the notes on the blackboard into their exercise books.

ody of a woman; fertilisation takes plac outside the body of a female fish, it takes 40 weeks to develop fully for human and it takes 2 weeks for fish to develop before it is hatched.

Summarv

- The fertilized egg that develops and grows in the mother's womb is called an embryo.
- When the embryo turns into a shape of the human body eight weeks after fertilization is called a foetus.
- The foetus grows into a baby and is ready to be born after about nine months.

Title: Reproduction in Human Key question: How does human life begin? Activity: Process of the birth of a baby.


1. How does a baby change its size and shape?

Questions:

- 2. How long does a baby grow in the body of a mother?
- 3. How is the reproduction similar or different between humans and fish? Discussion
- 1. How does the baby change its size and shape?

The fertilised egg develops and grows in the mother's womb. It changes it shape by forming the different parts of the body such as the arms and legs. The muscles and the bones also develop including the hair and the nails

Q: How long does a baby grow in the body of the mother? For thirty-seven to forty weeks Q: How is reproduction in fish and humans similar or different ? Similarities: Female produces eggs, Fertilisation takes place and life begins with fertilised egg. Differences: Fertilisation takes place inside the

• 'Hereditity in Plants' is taught in Grade 6, Chapter 5, lesson 4. The teacher's note explains the famous rule of heredity called Mendelian inheritance. Referring to the note in advance to this lesson may help your effective facilitation of this lesson.

Additional Information about Heredity and Traits

- What is heredity? The passing of traits from parents to children either through asexual or sexual reproduction, the offspring cells or organisms acquire the genetic information of their parents. 'Inheritance' is the same concept but used in more scientific context.
- What is Trait? A Trait is a noticeable feature or quality in a person. Each of us has different combination of traits that make us unique. Traits are passed from generation to generation. We inherit traits from our parents and pass them to our children.
- What is genetic? It is the scientific study of heredity.
- Not all young animals look like their parents. A baby ladybird and a tadpole are some examples of animals which do not look like their parents.

- Students will be able to:
- Understand what heredity is.
- Describe what traits animals inherit.
- Value others' effort and opinions.

Summary

Young animals look like their parents because parents pass traits to their children when they reproduce. This process is called **heredity**. A **trait** is a feature or characteristic of a living thing. The eye colour, hair colour, blood type and the shape of the nose and ears are examples of the traits of humans that are inherited by the children from their parents. Traits of animals include the colour of fur and the shape of their ears or beaks.

Young animals inherit many traits from both parents. For example, a child with curly hair has a parent or parents with curly hair. A child may have long nose if their father or mother has long nose. A kitten with striped pattern of

fur usually has a parent with striped fur. If puppies have floppy ears, their parents may also have floppy ears.

Discussion

from their parents?

hair type, etc.

your parents?

Q:What characteristics do children inherit

The shape of ear and nose, colour of hair,

Because children inherit some

Q:Why do they look similar to their parents?

characteristes of their parents' body parts.

(Write down the ideas from students.)

Q: What characteristics do you inherit from

90

Sample Blackboard Plan

<u>Title:</u>

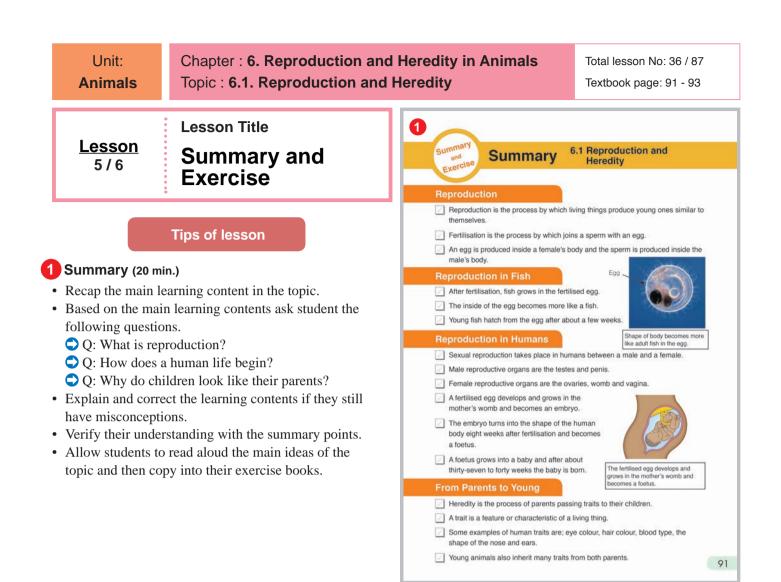
Key question : Why do young animals look like their parents.

From Parents to young

- Activity: Similarities and differences. 1. Which children have curly hair? From which parents did the children inherit? From father: Chilld 1 and 3
- 2. Which children inherit skin colour from their father? Child 1 and 4
- 3. Which children inherit the dimple from their mother? Child 2

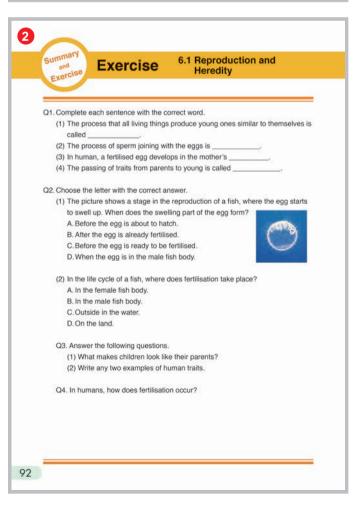
Assessment

Students are able to:


- Explain the reason why the youngs looks like their adults.
- State the different types of the traits of animals.
- Listen to other's opinions carefully.
 - Write their findings on the blackboard.
 - Facilitate active students' discussions.
 - Confirm the findings with the students.
 - **Based on their findings,** ask these questions as discussion points.
 - <u>Q:What characteristics do children inherit from</u> <u>their parents?</u> (The shape of ear and nose, colour of hair, hair type etc...)
 - Q:Why do they look similar to their parents? (They inherited their traits from their parents.)
 - Elaborate more by explaining to students that they also have some features that makes them to look similar to their parents and pose a question .
 - Q:What characteristics do you inherit from your parents? (Let students to state their opinions freely.)
 - Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: Why do children look like their parents? Q: What are traits?
 - Q: What traits do the youngs inherit from their parents?
- Ask students to copy the notes on the blackboard into their exercise books.


Summary

- Young animals look like their parents because parents pass traits to their children when they reproduce.
- <u>Heredity</u> is passing of traits from parents
- to children during reproduction. • <u>Trait</u> is a feature or characteristic of a living
- thing.
- Examples of Traits: Eye colour, hair/fur colour, blood type, the shape of the nose and ears, hair type, etc...

2 Exercise & Explanation (30 min.)

- Go through the instructions of the exercise.
- Allow students to answer questions individually and give them enough time to respond to the questions based on their understanding.
- After the exercise give them the answers to the questions and explain how to solve them using their scientific understanding and ideas.
- Make reference to the textbook or provide clear examples in daily life to strengthen the learnt concepts in this topic.

Exercise answers

Q1.

- (1) reproduction
- (2) fertilisation
- (3) **womb**
- (4) heredity

Q2.

- Q2. (1) **B**
- (2) C

Q3.

- (1) Heredity
- (2) Eye colour, hair colour, blood type, shape of nose, types of hair (curly or straight), etc.

Q4. Expected Answer

When an egg meets with a sperm, the egg becomes a fertilised egg. Human life begins with a fertilised egg. In human, fertilisation takes place inside the body of the female.

Explanation of Science Extras

3 Science Extras (10 min.)

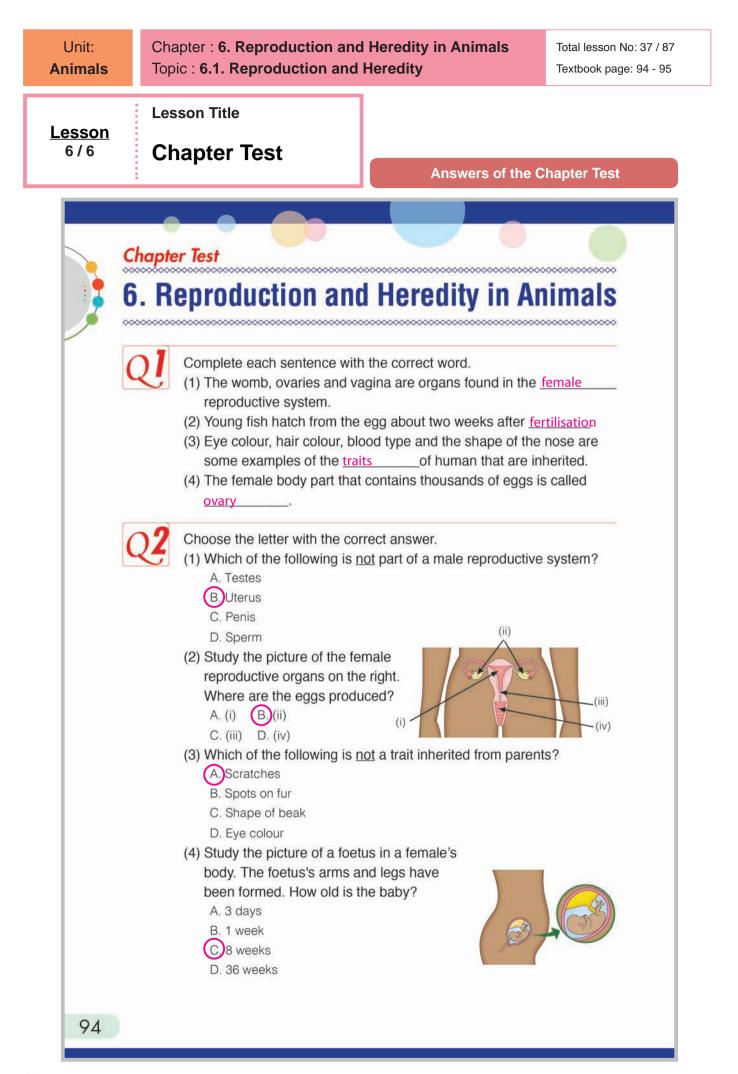
- Give opportunities to students to closely observe the nature and its phenomena in the world.
- Allow students to ask questions that demonstrate curiosity about the content in the science extra.

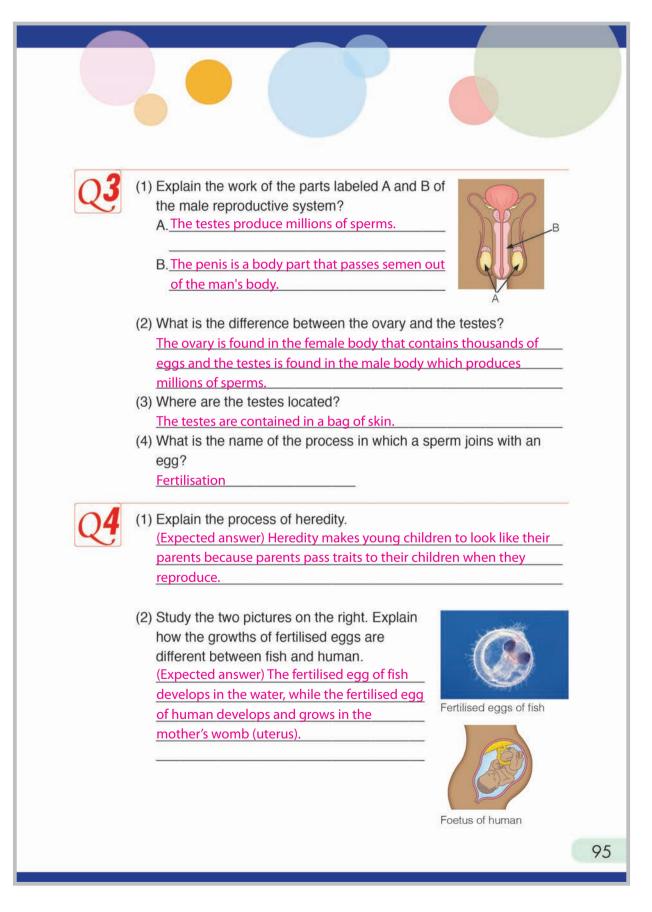
3

Chapter 6 Science Extras

How do Birds of Paradise reproduce

It is believed that Birds of Paradise are independent birds and some species defend territories. Female birds of paradise reach sexual maturity at around one year old and males at around two to three years old. Females enter the males' territories when they are interested to breed and choose the most suitable mate. After the female chooses her mate, she will lay between one depending on the species she admires.


Males build large, elaborate displays for females, perform acrobatic dances or sing long and complicated songs. The males take part in various dance rituals where they will display their additional coloured feathers. They may do this type of dance for many hours before they give up if a female isn't responsive to them. If a female does respond they will mate and then the male quickly runs off. He will try to find several other females he can mate with before the season ends.

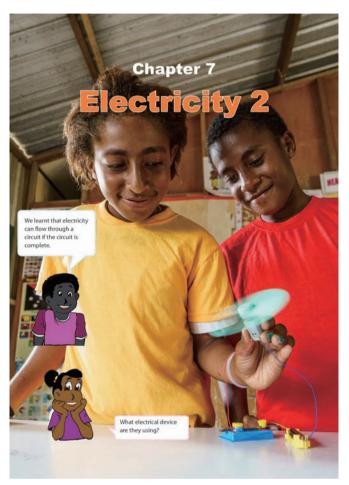

Once mating has occurred the female will lay 2-3 eggs. They are small and brownish orange in colour. She will do her best to hide them from predators. She will only fly away from them when she has to get food. They will hatch after about 20 days of development.

Most eggs will hatch within two to four weeks. The newly hatched chicks develop quickly and will begin to learn to fly at around one month old.

93

Strand : PHYSICAL SCIENCE Unit : ENERGY Chapter 7. Electricity 2

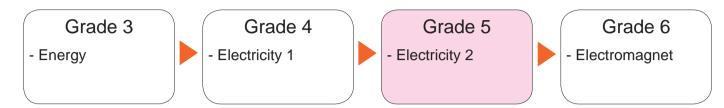
Chapter Objectives


Students will be able to understand how electric current flows in a circuit and the properties of series and parallel circuits through experiments using batteries, motor, propeller, switch and wires.

Topic Objectives

7.1 Electrical Circuit

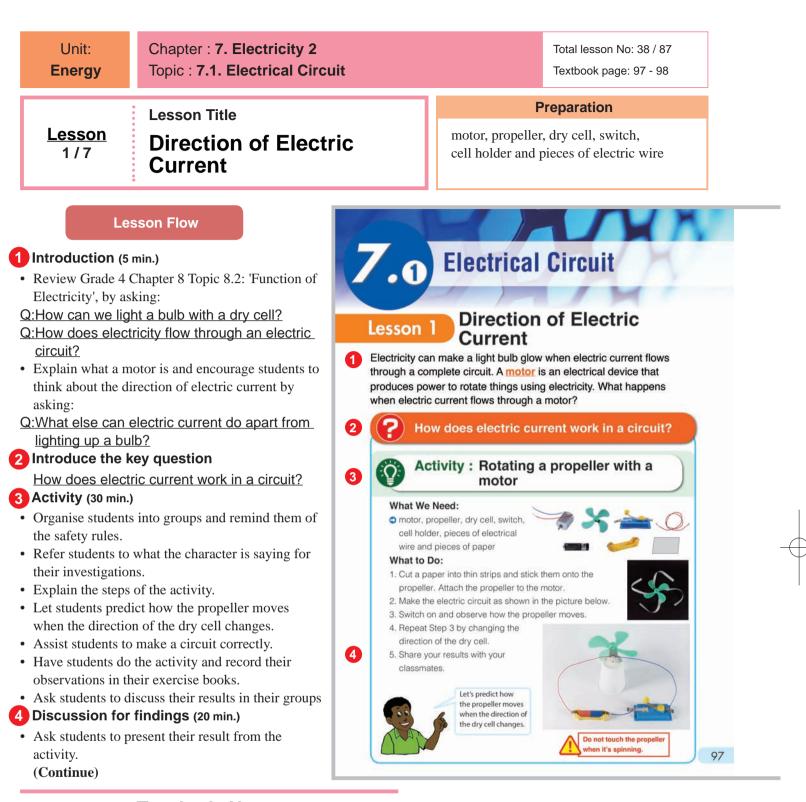
Students will be able to;


- Describe how the electric current flows in the circuit.
- Identify the two ways of connection where the electric current flows in the circuit.
- Describe the flow of electric current in a series and parallel circuit.
- Describe a circuit diagram from actual circuits.
- State the connections of electric circuits in appliances used in daily life.

This picture is from the chapter heading of the textbook showing two Grade 5 students turning a propeller using electric components that are connected in a circuit.

Related Learning Contents

The learning contents in this chapter connect to the following chapters.


Prior knowledge for learning this chapter;

- Electric current flows through the closed circuit.
- Characteristics of conductors and insulators.

Teaching Overview

This chapter consists of 7 lessons, each lesson is a double period.

Торіс	Lesson No.	Lesson Title and Key Question	Content standard in syllabus	Textbook page number
7.1 Electric Circuit	1	Direction of Electric Current How does electric current work in a circuit?	5.2.2	97 - 98
	2	Series and Parallel Circuit How can we connect two dry cells to rmake a motor rotate?		99 - 100
	3	Comparing Series and Parallel Circuits How is the amount of electric current different between series and parallel connection of two dry cells?		101 - 102
	4	Circuit Components and their Symbols How can an electric circuit be represented?		103 - 104
	5	Daily Use of Electric Circuit Where are electric circuits used in our daily lives?		105 - 106
	6	Summary and Exercise, Science Extra		107 - 109
Chapter Test	7	Chapter Test		110 - 111

In Grade 4, Chapter 8 'Electricity 1' students have already learnt about how to make a simple circuit. Give opportunity for students to recall how to make a simple circuit using the given materials in the activity.

Tips of 'How to set up'

- 1. Place the dry cell in the cell holder.
- 2. Since the motor has two wires attached to it, connect one of the wires to the cell holder and the other to the switch.
- 3. Connect an extra wire at least 15cm long to the switch and the cell holder.
- 4. Attach the propeller to the motor.
- 5. Place the motor on a container or cup that is low enough to rest on.

Background information

How does electric current flow in a circuit? The direction of an electric current is by law the direction in which a positive charge would move. Thus, the current in the external circuit is directed away from the positive terminal and towards the negative terminal of the battery. Electrons would actually move through the wires in the opposite direction.

Students will be able to:

Result

- Recognize that electric current has a definite direction through an experiment.
- Explain how electric current flows through a circuit from a dry cell.

We found out that when we reversed the direction of the dry cell, the

s of dry cell change

on of the rotation of the

• Show curiosity in investigation.

propeller rotated in the opposite direction.

Assessment

Students are able to:

- Identify the direction of electric current in a circuit by relating to the change in the direction of a propeller rotation.
- State that electric current flows from the positive terminal to the negative terminal in a circuit.
- Participate in the activity with curiosity.
 - Write their results on the blackboard.Faciliate active students' discussions.
 - Facilitate active students discussions.
 - Confirm the results with the students.
 - **Based on their results**, ask these questions as discussion points.
 - Q:Why did the propeller rotate in the opposite direction when the direction of the dry cell was reversed? (Because the direction of electric current also changed.)
 - Q:What did you find about the characteristics of electric current? (The electric current has a definite direction, the electric current flows from one terminal to another of a dry cell, the electric current change the direction of a propeller rotation when the direction of a dry cell changes, etc.)
 - Demonstrate again to clarify that changing positive and negative terminals of dry cell changes the direction of rotation of the propeller.
 - Conclude the discussions.

5 Summary (5 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: From which terminal of the dry cell does the electric current flows through a circuit?
 - Q: What would happen to the electric current when we change the direction of the dry cell?
- Ask students to copy the notes on the blackboard into their exercise books.

6 Discussion Based on your results, think about the following questions. 1. Why did the propeller rotate in the opposite direction when the direction of the dry cell was reversed? Electric current is the flow 2. What did you find out about the of electricity in a circuit. characteristics of electric current? What would happen to the current when we char the direction of a dry cell? Summary The flow of electricity is called electric current. Electric current has a definite direction. In the circuit with the dry cell, the electric current flows from the positive terminal to the negative terminal. When positive and negative terminals of the dry cell are reversed in the circuit, the electric current flows in the opposite direction.

Sample Blackboard Plan

ric current flows from the positive to the negative te

<u>Title:</u>

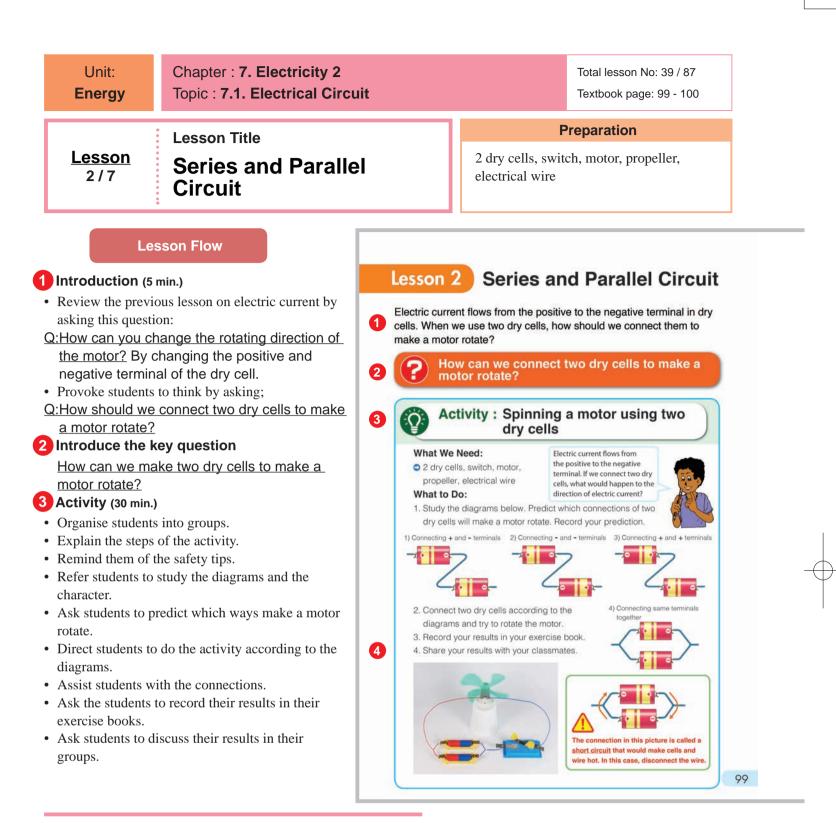
Direction of Electric Current

Key question: How does elec

How does electric current work in a circuit? <u>Activity</u>: Rotating a propeller with a motor Prediction:

How will the propeller move when the direction of the dry cell changes?

Write down the predictions for the students. Result:


When you reversed the direction of the dry cell, the propeller rotated in the opposite direction.

terminal of the dry cell changes the direction of the rotation of the propeller <u>Discussion</u>

Q: Why did the propeller rotate in the opposite direction when the direction of the dry cell was reversed? Because the direction of electric current aslo changed. Q:What did you find about the characteristics of electric current? The electric current has a definite direction, the electric current flows from one terminal to another of a dry cell, the electric current change the direction of a propeller rotation when the direction of a dry cell changes. <u>Summary</u>

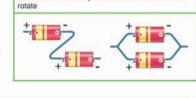
- The electric current has a <u>definite direction</u>. It flows from positive terminal of the dry cell to the negative terminal in the circuit.
- When positive and negative terminals of the dry cell are reversed in the circuit, the electric current flows in the opposite direction.

Tips for the Activity

- 1. Follow the same connections as in the previous lesson.
- Connect two dry cells with extra wires to make the circuits (series and parallel circuits).
- 3. If the motor doesn't rotate then check the connections again especially the wires.
- 4. If the wires are coated, make sure to remove the coating before connecting.
- 5. For parallel circuit make sure the wires are properly connected.

Background_information

- A series circuit is one with all the loads in a row. There is only ONE path for the electricity to flow. If this circuit was a string of light bulbs, and one blew out, the remaining bulbs would turn off.
- A parallel circuit is one that has two or more paths for the electricity to flow; the loads are parallel to each other. If the loads in this circuit were light bulbs and one blew out, there is still current flowing to the others because they are still in a direct path from the negative to positive terminals of the battery.


SAFETY

- 1. Do not touch the propeller when it's spinning.
- 2. Do not put the dry cell in your mouth.
- 3. Try not to make a short circuit because the wire might get hot.

- Students will be able to:
- Realise the two ways of connection where electric current flows in the circuit.
- Experiment the ways to connect two dry cells that makes a motor rotate.
- Develop curiosity of investigation.

Result

We found out that the correct ways of connecting two dry cells to make the motor rotate are shown in the diagrams on the right.

Connection of two dry cells which can make motor

Based on your results think about the following question.

1. How does the electric current flow in a circuit?

Discussion

Summary

The ways to connect two dry cells where electric current flows in a circuit are classified as series circuit and parallel circuit. Electric current always flows from positive to the negative terminal in both the series and parallel circuit. Series circuit

A series circuit is a circuit in which the electric current flows in one path. When we connect two dry cells in series, the positive terminal on one dry cell is connected to the negative terminal on the other dry cell.

Parallel circuit

A parallel circuit is a circuit in which the electric current flows in two or more paths. The current can split into several paths at the junction and then join again together at the other junction. When we connect two dry cells in parallel, positive terminals of both dry cells connect together as well as the negative terminals.

100

Sample Blackboard Plan

Title:

Diagram 2: No

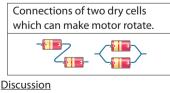

Diagram 3: No

Diagram 4: Yes

Series and Parallel Circuit

Key question : How can we connect two dry cells to make a motor rotate? <u>Activity</u>: Spinning a motor using two dry cells Predictions: (Place a tick) Which connections can make the motor rotate? Diagram 1: Yes

Result:

Q: How do we connect two dry cells in series to make a motor rotate? We connect positive to negative or negative to positive terminal. Q: In which direction does electric current flow in a circuit? From positive to negative terminal of a dry cell, etc...

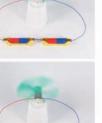
Assessment

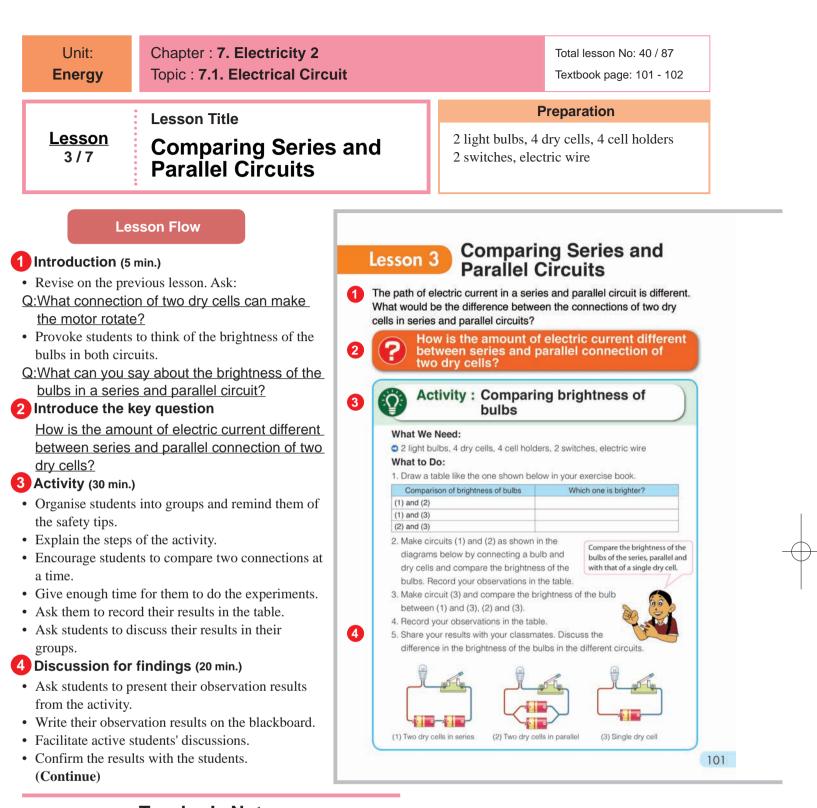
Students are able to:

6

- Identify a series and parallel circuit as the ways where electric current flows in the circuit.
- Explain the direction of two dry cells in a circuit to make a motor rotate.
- Investigate the ways to connect two dry cells actively.

4 Discussion for findings (20 min.)


- Ask students to present their results from the activity.
- Write their findings on the blackboard.
- Facilitate active students' discussions.
- Confirm their predictions against the results.
- **Based on their results,** ask these questions as discussion points.
- Q:How do we connect two dry cells in series to make a motor rotate? (We connect positive to negative or negative to positive terminal, etc.)
- <u>Q:In which direction does electric current flow</u> <u>in a circuit?</u> (From positive to negative terminal of a dry cell, etc.)
- Q:How does the electric current flow in a circuit when two dry cells are connected as shown in the diagram in the 'Result'? In the circuit on the left, the electric current flows one pathway. In the circuit on the right, the electric current flows two pathways.
- Conclude the discussions.


5 Summary (5 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: What are the two types of connection? Q: How does electric current flow in a series and
- a parallel circuit? Ask students to copy the notes on the blackboard into their exercise books.

How does the electric current flow in a circuit when two dry cells are connected as shown on the diagram in the 'Result'? In the circuit on the left, the electric current flows in one pathway. In the circuit on the right, the electric current flows in two pathways Summary

- The ways of connection where the electric current flow in the circuit are classified in two types.
- Series circuit- electric current flows in one path.
 Parallel circuit- electric current flows in two or more paths.

SAFETY: The safety tips for the previous lessons apply in this lesson as well.

Tips for the Activity

- 1. The same connection for experiments in the previous lessons is used but for this lesson bulb is connected and also use new dry cells.
- 2. There will be three connections, a single dry cell circuit, a series circuit and a parallel circuit.
- 3. If there are limited materials, the materials can be improvised such as a switch or cell box/ holder (Refer to Grade 4 Electricity 1) or a connection can be done one at a time.
- 4. If the experiment doesn't work, always make sure to check the connections properly.

Background information

• Which circuit lasts longer series or parallel? When batteries are hooked up in series, the voltage is increased. For example, two - 6 Volt batteries connected in series produce 12 Volts. When batteries are hooked up in parallel, the voltage remains the same (6 volt), but the power (or available current) is increased. This means that the batteries would last longer.

Students will be able to:

- Discover the ways to connect two dry cells that make a bulb brighter through activity.
- Relate the connection of two dry cells to the brightness of a bulb and the strength of electric current in a circuit.
- Show curiosity of how the results vary.

Result

	Which one is brighter?
(1) and (2)	(1) is brighter
(1) and (3)	(1) is brighter
(2) and (3)	The brightness is same

When you connect dry cells

in parallel, it lasts longer thar those connected in series.

is brighter than that in parallel or in the connection using a single dry cell. The brightness of the bulb in the circuit using two dry cells in parallel and the one connected with a single dry cell is the same.

Summary

Series Connection

Compared to a single dry cell, a series connection of two dry cells increases the electric current in the circuit. Therefore the bulb glows brighter. Parallel Connection

We found out that the bulb in the circuit

using two dry cells connected in series

Compared to a single dry cell, a parallel connection of two dry cells does not change the amount of electric current in the circuit. Therefore the brightness of the bulb does not change.

Think about the following question.

How would the motor rotation be different when two dry cells are connected in series and parallel?

102

Sample Blackboard Plan

Title: Comparing Series and Parallel Circuits

Key question

How is the amount of electric current different between series and parallel connection of two dry cells? <u>Activity</u>: Comparing brightness of bulbs

Comparison of brightness of bulbs	Which one is brighter?
(1)and (2)	(1) is brighter
(1)and (3)	(1) is brighter
(2)and (3)	Same brightness

<u>Discussion</u>

Q:What is the difference between the circuits of (1) and (2)? (Refer to lesson flow.) Q:How should we connect two dry cells to make a bulb brighter? (Refer to lesson flow.) Q:What is the difference between the circuits of (1) and (3)? (Refer to lesson flow.) Q:What relationship is there between the number of cells and the brightness of a bulb when two cells are connected in series? (Refer to lesson flow.) Q:What is the difference between the circuits of (2) and (3)? (Refer to lesson flow.)

Assessment

Students are able to:

5

- Explain that a series connection of two dry cells makes a bulb brighter based on the result of the activity.
- Explain the relationship between a series connection and a parallel connection of two dry cells with the strength of electric current by comparing the brightness of bulbs.
- Participate in the investigation with interest.
 - **Based on their findings,** ask these questions as discussion points.
 - Q:What is the difference between the circuits of (1) and (2)? (Connection of cells is different.)
 - <u>Q:How should we connect two dry cells to make</u> <u>a bulb brighter?</u> (Two dry cells should be connected in series, etc.)
 - Q:What is the difference between the circuits of (1) and (3)? (The number of cells is different.)
 - Q:What relationship is there between the number of cells and the brightness of a bulb when two cells are connected in series? (If the number of dry cells increases, the bulb becomes brighter.)
 - <u>Q:What is the difference between the circuits of</u> (2) and (3)? (The number of cells is different.)
 - Q:What relationship is there between the number of cells and the brightness of a bulb when two cells are connected in parallel? (Even if the number of dry cells increases, the brightness doesn't change.)
 - Conclude the discussions.

5 Summary (5 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment: Q:How can we make a bulb brighter? Q:How does the strength of electric current change when two dry cells are connected in series and parallel?
- Ask students to copy the notes on the blackboard into their exercise books.
- Facilitate 'Try it!'

Q: What relationship is there between the number of cells and the brightness of a bulb when two cells are connected in parallel? (Refer to lesson flow.)

<u>Summary</u> Comparing with a single dry cell: 1. Series connection:

- Electric current increases as the number of the dry cells increase.
- Bulb light up brighter.
- 2. Parallel connection
- Electric current doesn't change even if more dry cells are added.
- Brightness of bulb does not change.

Why do we use symbols to draw circuit diagrams?

• The idea of a circuit diagram is to use circuit symbols instead of drawing each component in the circuit. Always try to make the wires straight lines, and don't be tempted to make them wiggly. If you have to draw wires to join circuit symbols that are already shown, use a ruler and don't let the wires cross each other.

Why do we use circuit diagrams?

• Circuit diagrams are a pictorial way of showing circuits. Electricians and engineers draw circuit diagrams to help them design the actual circuits.

Note:

- This is a special lesson where the layout is a bit different and in this lesson new knowledge is learnt before the activity. The flow of the lesson starts with a discussion and then students do the activity. The learning contents should be put up on the blackboard. Try not to refer students to the textbook until towards the end of the summary.
- There are two learning contents in this lesson. Go through each content thoroughly to ensure that students understand and grasp the idea before doing the activity.

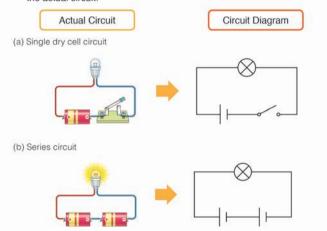
Students will be able to:

- Describe a circuit diagram from the actual circuits.
- Explain how to draw a circuit diagram.

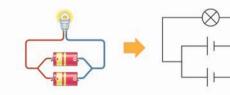
Assessment

Students are able to:

4

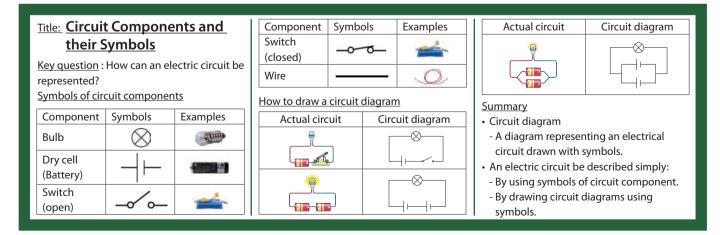

- Draw a simple, series and parallel circuit using the symbols of circuit components.
- State the rules and the process for drawing a circuit diagram.

4 Discussion (20 min.)


2. How to draw a circuit diagram

A diagram representing an electrical circuit drawn with symbols is called a

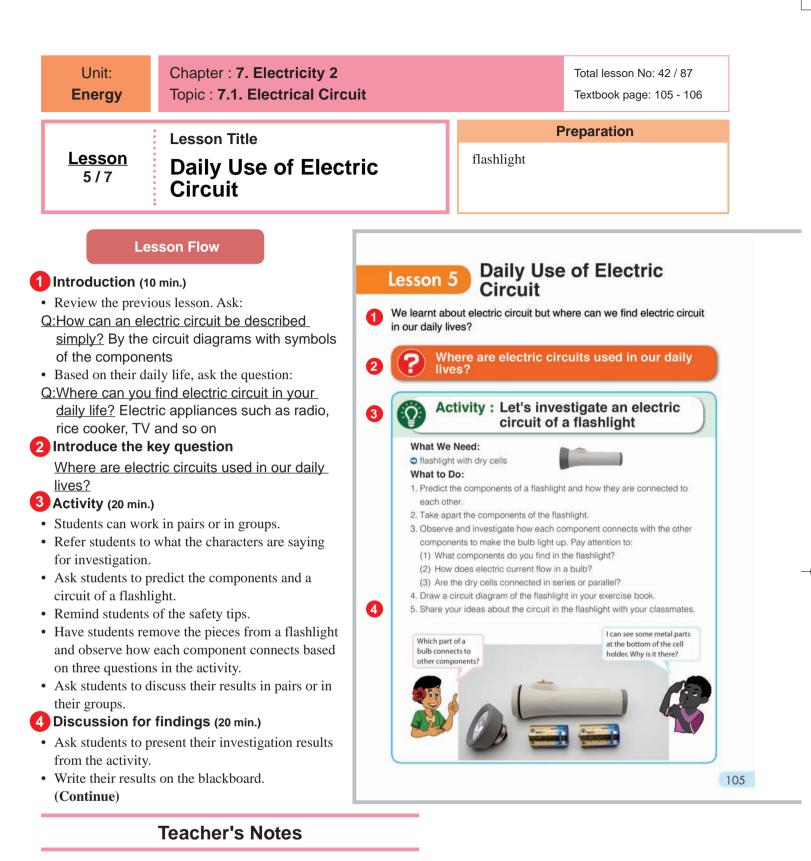
- circuit diagram. The following are some tips to draw a circuit diagram.
 (1) All components in an actual circuit such as a dry cell, a switch and a light bulb are shown in a circuit diagram.
- (2) Check the direction of the dry cells. It should be the same as the actual circuit.
- (3) Corners in a circuit diagram are drawn as right angles.
- (4) Number of junctions in a circuit diagram should be the same as the one in the actual circuit.



(c) Parallel circuit

104

Sample Blackboard Plan



• Discuss 2. How to draw a circuit diagram with students.

- Explain a circuit diagram and the four points to consider when a circuit diagram is drawn.
- Ask students to study the diagrams of 'Actual circuit' and 'Circuit diagram'.
- Draw the first actual circuit on the blackboard. Then, demonstrate how to draw a circuit diagram on the blackboard while explaining.
- Draw the next two actual circuits on the blackboard and ask the students to draw the circuit diagram in their exercise books.
- Allow enough time for them to complete their diagram.
- Ask the students to present their diagrams and teacher make corrections where necessary.

5 Summary (10 min.)

- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: How can an electric circuit be described simply?
 - Q: What is a circuit diagram?
- Ask students to copy the notes on the blackboard into their exercise books.

SAFETY

- 1. Gently remove the pieces from the flashlight.
- 2. Try not to put the dry cell in your mouth.
- 3. Do not take apart pieces of a flashlight in which a rechargeable battery is used.

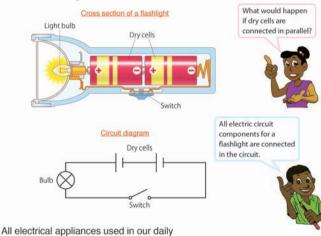
What type of circuit is used in a home?

- There are two types of circuits used for wiring up houses and electrical appliances. Series circuits have all the components in a line, with current flowing through all the appliances one after the other. In parallel circuits, the current splits up and flows through separate paths through each component.
- What are the uses of electric circuit in daily life?
- An electric circuit can be used to transport electrical power to provide electric lighting, to run electric motors, to recharge storage batteries, to provide heat for heating, for cooking, for melting metals, to monitor conditions such as in alarm systems, to store data to run diagnostic medical equipment and so on.

Students will be able to:

- State the uses of electric circuits in daily life.
- Observe the components of a flashlight.
- Predict an electric circuit of a flashlight.

Assessment


Students are able to:

5

- State how electric circuits are used for electric appliances in daily life.
- Explain that a flashlight consists of a light bulb, switch and dry cells.
- Design a circuit diagram of a flashlight based on observation.

Summary

A flashlight has a simple electric circuit connecting the main components such as light bulb, switch and dry cells. We can turn the light on and off by using a switch to control the flow of electric current in the circuit. Connecting several dry cells in series can provide brighter light because more electric current flow through the bulb.

lives such as a flashlight, radio, cell phone, television, computer and refrigerator contain electric circuits. Room lights on the ceiling in a house are also parts of a large electric circuit. All components are connected in series or parallel in the circuit according to their own purpose.

106

Sample Blackboard Plan

<u>Title:</u>

Daily Use of Electric Circuit

<u>Key question</u>

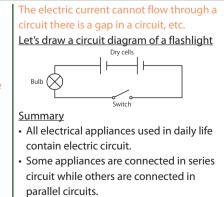
Where are electric circuits used in our

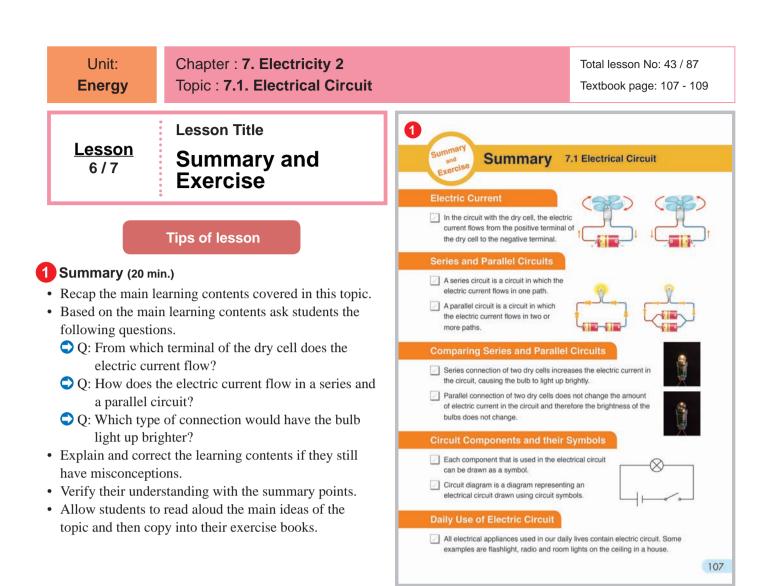
daily lives? <u>Activity</u>: Let's investigate an electric circuit

of a flashlight

- Predictions:
- 1. What are the components of a light torch?
- 2. How do the components connect to each other?

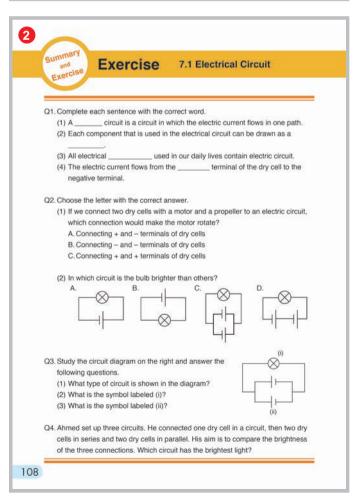
• Facilitate active students' discussions.


- Confirm the results with the students.
- **Based on their findings,** ask these questions as discussion points.
- <u>Q:What will happen to the flashlight if one</u> <u>component is removed?</u> (The bulb would not light.)
- <u>Q:Why do you think so?</u> (The electric current cannot flow through a circuit if there is a gap in a circuit, etc.)
- Put the picture card of the cross section of a flashlight on the blackboard and explain the structure and components of the flashlight.
- Ask the question:
- Q:How does electric current flow through a flashlight? (From two dry cells in series to bulb, to switch, to the dry cells.)
- Let students draw a circuit diagram of a flashlight based on the picture card of cross section of a flashlight.
- Ask students to present their circuit diagrams and confirm them with students.
- Conclude the discussions.


5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: What do all electric appliances contain in order for them to work?
 - Q: What circuit are the appliances connected in?
- Ask students to copy the notes on the blackboard into their exercise books.
- Results: 1. What components can you find in the torch that will make the bulb light? Bulbs, dry cells, wires, switch.
- 2. How does electric current flow in a bulb? Electric current flows from the dry cells to the bulb when the switch is on.
- 3. Do the dry cells connect in series or parallel? In series

Discussion


Q: What will happen to the flashlight if one component is removed? (Refer to lesson flow.) Q: Why do you think so? (Refer to lesson flow.)

2 Exercise & Explanation (30 min.)

- Go through the instructions of the exercise.
- Allow students to answer the questions individually and give them enough time to respond to the questions based on their understanding.
- After the exercise give them the answers to the questions and explain how to solve them using their scientific understanding and ideas.
- Make reference to the textbook or provide clear examples in daily life to strengthen the learnt concepts in this topic.

Exercise answers

Q1.

- (1) series
- (2) symbol
- (3) appliances
- (4) **positive**

Q2.

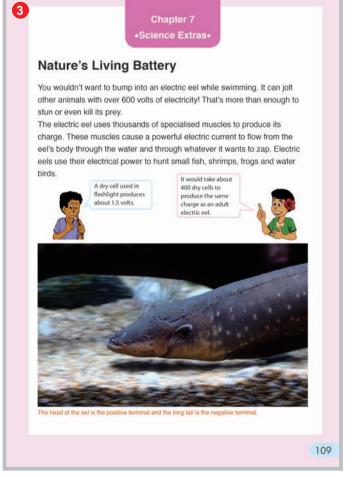
- (1) A
- (2) **D**
- The correct way to make the motor rotate and for the electric current to flow is when positive terminal on one dry cell is connected to negative terminal on another dry cell.
- (2) Electrical cord is not an electric appliance that contains a circuit, it only contains one of the electric components which is the wire.

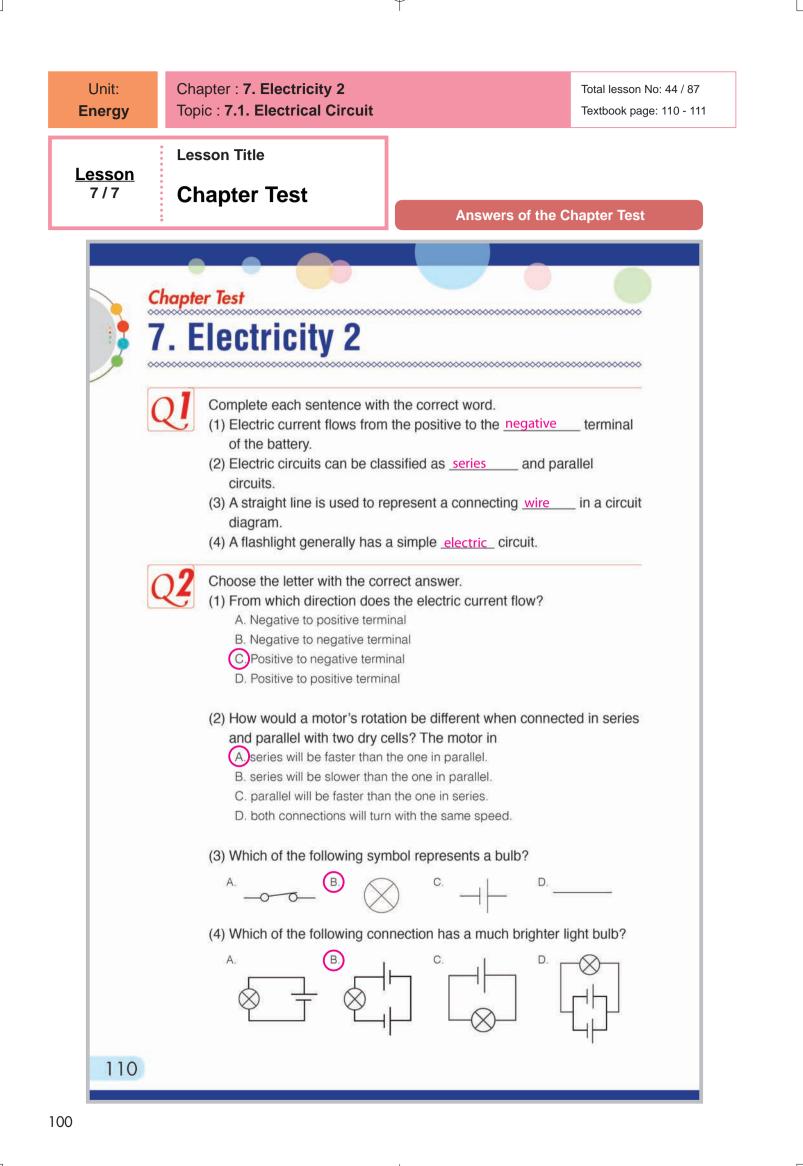
Q3.

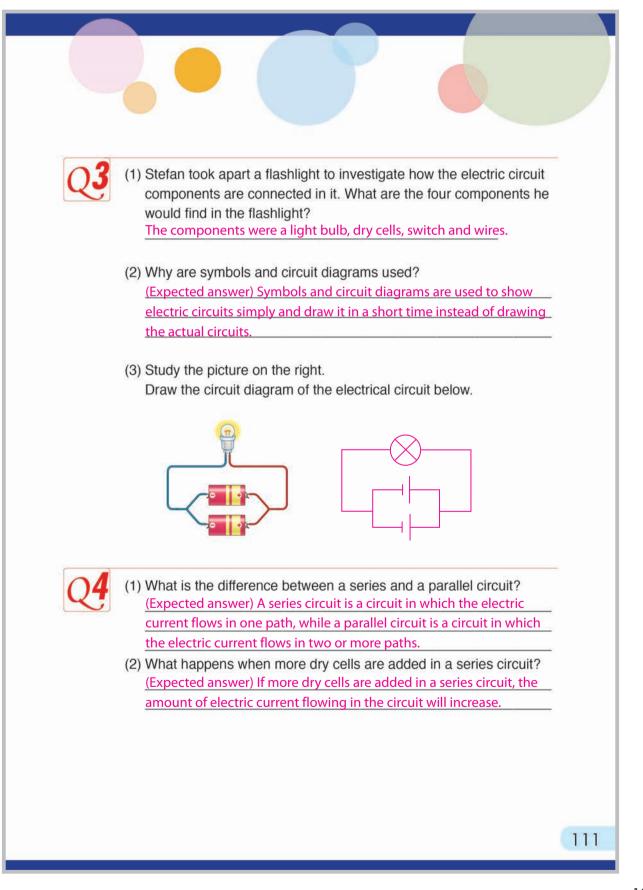
- (1) parallel circuit
- (2) **bulb**
- (3) dry cell/ battery

Q4.Expected answer.

Series connection has the brightest light while with the parallel and the single dry cell the brightness of the bulbs were the same.


Comparing the 3 connections:


- Series connection of two dry cells increases an electric current in the circuit so the bulb lights up brighter.
- Parallel connection of two dry cells doesn't change an amount of electric current in a circuit so the brightness of the bulb does not change, it is the same with a single dry cell.


Explanation of Science Extras

3 Science Extras (10 min.)

- Give opportunities to students to closely observe the nature and its phenomena in the world.
- Allow students to ask questions that demonstrate curiosity about the content in the science extra.

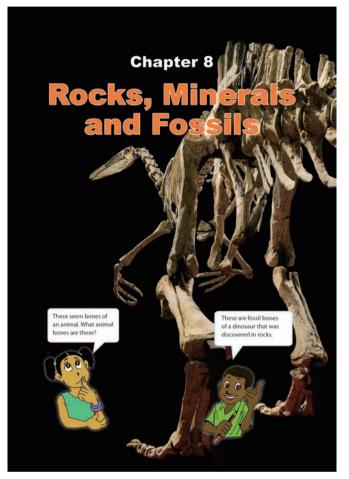
Strand : EARTH AND SPACE Unit : OUR EARTH Chapter 8. Rocks, Minerals and Fossils

Chapter Objectives

Students will be able to understand the composition of rocks and minerals with their uses and identify rocks as sedimentary, metamorphic and igneous. Students will be able to understand the basic process of fossil formation and the importance of studying fossils.

Topic Objectives

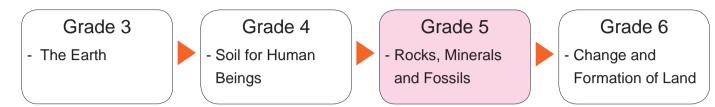
8.1 Rocks and Minerals


Students will be able to;

- Define rocks.
- Identify different types of minerals in rocks.
- Define sedimentary, metamorphic and igneous rocks.
- Explain the uses of rocks and minerals.

8.2 Fossils

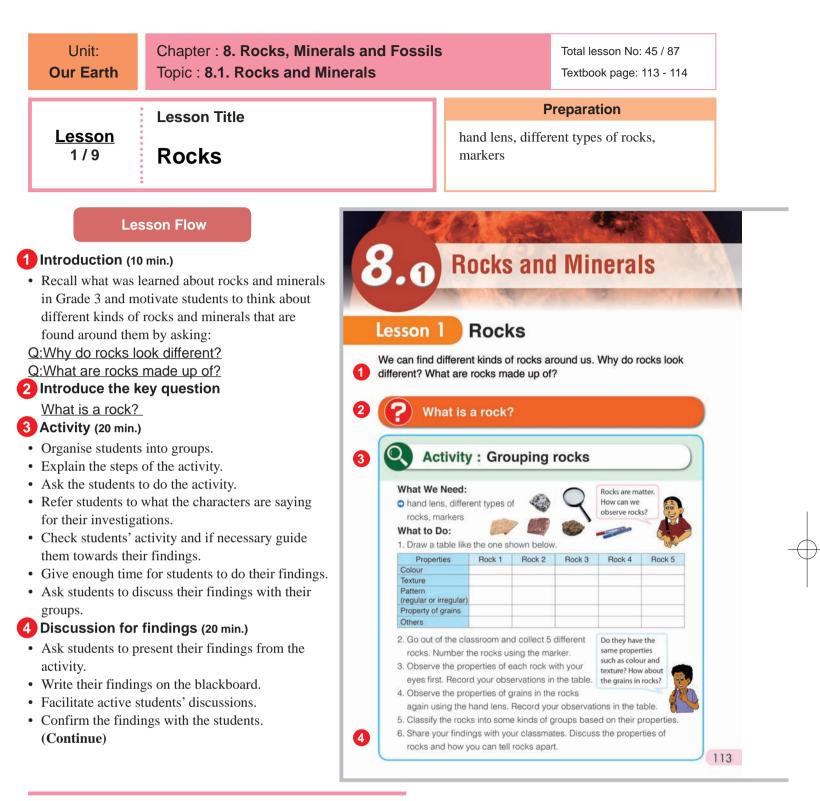
Students will be able to;


- Explain that fossils are the remains of once a living thing.
- Describe how fossils can help people learn about living things.

This picture is from the chapter heading of the textbook showing fossil bones of a dinosaur that lived hundred million years ago.

Related Learning Contents

The learning contents in this chapter connect to the following chapters.


Prior knowledge for learning this chapter;

- The Earth's surface is covered by water and land.
- Properties of soil such as colour, particle size and texture.
- Causes and effects of soil pollution and ways to prevent soil pollution.

Teaching Overview

This chapter consists of 9 lessons, each lesson is a double period.

Торіс	Lesson No.	Lesson Title and Key Question	Content standard in syllabus	Textbook page number
	1	Rocks What is a rock?		113- 114
	2	Minerals How can we classify minerals?		115 - 116
8.1 Rocks and Minerals	3	Types of Rock What types of rocks are there?		117 - 118
	4	Uses of Rocks and Minerals How do we use rocks and minerals in daily life?		119 - 120
	5	Summary and Exercise	5.3.1	121 - 122
	6	A Fossil What is a fossil?		123 - 124
8.2 Fossils	7	Learning from Fossils What do fossils tell us?		125 - 126
	8	Summary and Exercise, Science Extra		127 - 129
Chapter Test	9	Chapter Test		130 - 131

- 'Rocks' is taught Grade 3 Chapter 10. In that lesson, students are asked to describe the characteristics of rocks. In this lesson, students explain the characteristics in more scientific manner. Refer to the prior lesson to encourage students to talk scientifically.
- A rock is a naturally occurring solid mass made of one or more minerals that we find in nature. For example;
- 1. Limestone is composed of only one mineral Calcite
- 2. Basalt is commonly composed of three minerals feldspar, pyroxene and olivine
- 3. Granite is composed of five minerals two kinds of feldspar, mica, amphibole and quartz.
- Geologists group rocks into three categories based on how they were formed; Igneous, Sedimentary and Metamorphic. They will be taught in lesson 3 in this chapter. (Sedimentary rock is again taught in 'Formation of Sedimentary Rocks' in Grade 6 Chapter 2, lesson 8.)
- Minerals are solid substances that are present in nature and can be made of one or more elements combined together (chemical compounds). Gold, silver and carbon are elements that form minerals on their own.

Students will be able to:

Summary

- Define the words rock and mineral.
- Observe the different types of rocks.
- Identify the three layers of the Earth.
- Communicate their findings with others.

Assessment

Students are able to:

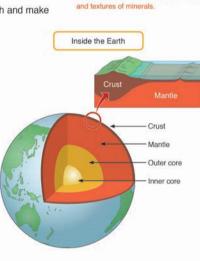
- State the definition of rock and mineral.
- Classify rocks according to their colour, texture, pattern and the properties of grain.
- Name three layers of the Earth as crust, mantle and core.
- Express their findings actively.
 - **Based on their findings**, ask these questions as discussion points.
 - Q:What kinds of properties do rocks have? (Because they were made of different components.)
 - <u>Q:How can we classify rocks?</u> (They can be classified by their properties such as colours, texture, etc.)
 - <u>Q:Why do rocks look different?</u> (Because they have different properties, etc.)
 - <u>Q:Can you guess how the Earth is structured?</u> (It depends on students' ideas.)
 - <u>Q:Can you guess in which part of the Earth</u> <u>rocks can be found?</u> (It depends on students' ideas.)
 - Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: What is a rock?
 - Q: What makes up a rock?
 - Q: What is a mineral?
 - Q: How can we classify rocks?
 - Q: What are the three layers of the earth?
 - Q: Which layer of the Earth is made of rocks?
- Ask students to copy the notes on the blackboard into their exercise books.

of one or more minerals. A **mineral** is a material that is found in nature such as gold and copper. Some rocks may be made of one mineral type. Other rocks may be made of a mixture of different mineral types. There are many kinds of rocks. Limestone and sandstone are examples of rocks. Rocks can be identified by the types, size

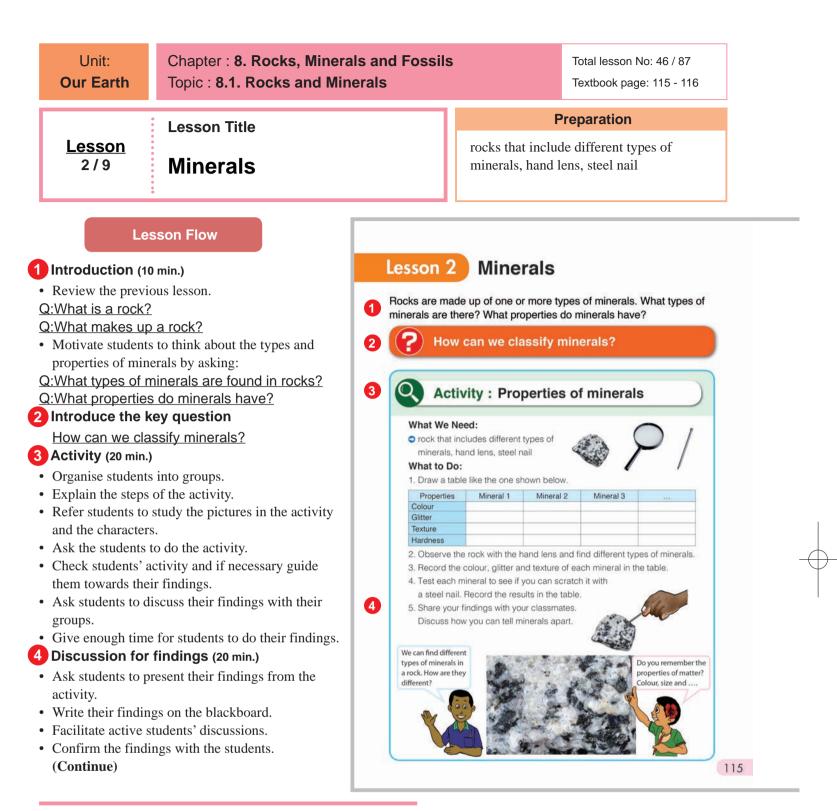
and colour of mineral grains they contain. The mineral grains in a rock may be white and tiny or they may be red and as big as your fingernail.


A rock is a naturally formed, non-living

material of the Earth. A rock is made up

Rocks form within the Earth and make

up a large part of our Earth. Earth is made of three layers; crust, mantle and core. The **crust** is the thinnest outer layer of the Earth. The **mantle** is the thick, hot layer of the Earth. The **core** is the hottest, innermost layer of the Earth. The crust is made of rocks.



114

Sample Blackboard Plan

<u>Title:</u>					Discussion	Summary
Rocks					Q: What kinds of properties do rocks have?	• A <u>rock</u> is a naturally formed, non-living
Key questio	n · What	is a rocl	2		Because they were made of different	material.
<u>Ney question</u>	<u></u> what	15 0 1001	χ.		components.	 A rock is made up of one or minerals.
Activity: Gro	uning r	ocks			Q: How can we classify rocks? They can be	 A <u>mineral</u> is a material that is found in
<u>Activity</u> . die	uping n	OCK5			classified by their properties such as	nature such as gold and cooper.
Properties	Rock	Rock	Rock		colours, texture, etc.	 The three layers of the Earth are, <u>crust</u>,
	1	2	3		Q: Why do rocks look different? Because	mantle and core.
Colour					they have different properties, etc.	- Crust: The thinnest outer layer
Texture					Q: Can you guess how the Earth is	- Mantle: The thick, hot layer
Pattern	Write	studen	ts' findin	gs	structured? (It depends on students)	- Core: The hottest, innermost layer
Grains					Q: Can you guess which part of the Earth	Crust is made of rocks.
Others					rocks can be found?(Depends on students)	

- To meet the definition of 'mineral' used by most geologists, a substance must meet five requirements: Naturally occurring, inorganic, solid, definite chemical composition and ordered internal structure.
 - 1. 'Naturally occurring' means that people did not make it. Steel is not a mineral because it is an alloy produced by people.
 - 'Inorganic' means that the substance is not made by an organism. Wood and pearls are made by organisms and thus are not minerals.
 - 3. 'Solid' means that it is not a liquid or a gas at standard temperature and pressure.
 - 4. 'Definite chemical composition' means that all occurrences of that mineral have a chemical composition that varies within a specific limited range. For example: the mineral halite (known as 'rock salt' when it is mined) has a chemical composition of NaCl. It is made up of an equal number of atoms of sodium and chlorine.

5. 'Ordered internal structure' means that the atoms in a mineral are arranged in a systematic and repeating pattern.

- So minerals are solid substances that are present in nature and are made of one or more elements combined together. For example, salt is an example of a mineral and is a combination of element Sodium and Chlorine.
- These are all properties of a mineral- Its crystal shape, hardness, colour and lustre all depend on which chemical elements it is made of and how the atoms of these elements are arranged inside it.

- Students will be able to:
- Define the word mineral.
- Identify the properties of minerals in rocks.
- Participate in the investigation with interest.

Assessment

Students are able to:

5

Rock salt

Graphite

- State the definition of mineral.
- Record the properties of different minerals in the table based on colour, glitter, texture and hardness.
- Test some minerals to confirm their properties.
- Enjoy exploring minerals.
 - **Based on their findings,** ask these questions as discussion points.
 - <u>Q:What properties do minerals have?</u> (Colour, glitter, texture, hardness, etc)
 - <u>Q:What colours of minerals did you find?</u> (Black, white, etc.)
 - <u>Q:How is the glitter of minerals different?</u> (Some shiny, some dull, etc)
 - <u>Q:How is the hardness different?</u> (Some hard, some soft)
 - <u>Q:How can we identify minerals?</u> (By comparing the properties.)
 - <u>Q:What are some examples of minerals that</u> <u>you know of?</u> (Gold, cooper, diamond and nickel etc.)
 - Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 Q: What kind of properties do minerals have?
 Q: How can we identify minerals?
 Q: What is a mineral, an element and a substance?
- Ask students to copy the notes on the blackboard into their exercise books.

Summary

A mineral is a solid non-living material that is found in nature. Minerals make up rocks.

Gold

Coppe

Sample Blackboard Plan

There are many kinds of m

Different colours of quartz

There are many kinds of minerals on the Earth. Salt that we put on food is a mineral. Metals such as gold and copper are also minerals. The graphite in our pencil is a mineral too. Each mineral has its own properties such as colour, lustre and hardness. We can use the properties to identify minerals. Colour - Minerals come in

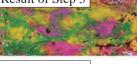
many colours. Most minerals come in just one colour. Some minerals such as quartz come in many colours.

Lustre - Lustre describes how light reflects off the surface of a mineral. Some minerals are shiny like silver. Some are dull. Hardness - The hardness of a mineral describes how easy it is to scratch the surface of a mineral. Some minerals are soft and others are much harder. Diamond is the hardest mineral on the Earth.

116

<u>Title:</u>				Discussion	<u>Summary</u>
Mineral	s			Q. What properties do minerals have?	 A mineral is a solid, non-living material
Key question How can we <u>Activity</u> Properties of	classify mi	nerals?		Colour, glitter, texture, hardness, etc Q: What colours of minerals did you find? Black, white, etc. Q: How is the glitter of minerals different?	 that is found in nature. Minerals are made up of different kinds of <u>elements.</u> An <u>element</u> is a <u>substance</u> that cannot be
· · ·	1			Some shiny, some dull, etc	broken down into other substance.
Properties	Mineral	Mineral	Mineral	O: How is the hardness different? Some	• A mineral had its own properties such as,
	1	2	3	hard, some soft.	colour, texture, glitter and hardness.
Colour				Q: How can we identify minerals? By	 Some examples of minerals are gold,
Glitter	Write stu	dents' find	ings	comparing the properties.	cooper, salt and graphite from pencils.
Texture				Q. What are some examples of minerals	cooper, sait and graphite from pericits.
Hardness				that you know of? Gold, cooper, etc.	
				that you know of: Gold, cooper, etc.	




Results from the Activity

- Step 2: The crayons got squeezed together by pressure and got cemented. Not much change was done to the crayons. This represents how **sedimentary rocks** are formed in nature.
- Step 3: The crayons that got cemented were put into hot water for few seconds and were changed by heat and pressure. This represents the formation of **metamorphic rock**.
- Step 4: The crayons that symbolise metamorphic rock changed and gave a different appearance when extreme heat was applied, allowing the crayons to completely melt. And left to be cooled off and became hard. This represents how **igneous rocks** are formed in nature.

Tips for the Activity

- For step 4 in the activity, <u>1 minute</u> should be given to allow the crayons to melt completely in hot water.
- Safety for this lesson is important. Students should be reminded to use the cutter carefully and avoid spilling hot water.

Students will be able to:

- Explain how the formation of igneous, sedimentary and metamorphic rocks are different.
- Infer how rocks are formed through the activity.
- Communicate their ideas with others.

Summary

A rock can be grouped according to how it is formed. There are three kinds of rocks on the Earth; Sedimentary, Metamorphic and Igneous rocks. Sedimentary Rock

Seumentary HUCK

A <u>Sedimentary rock</u> is formed when sediments are glued together and become hard. <u>Sediment</u> is sand particles of rock and small bits of soil. It is piled up over time, usually as layers at the bottom of lakes and oceans. Sandstone, limestone and conglomerate are examples of sedimentary rocks. <u>Metamorphic Rock</u>

A <u>Metamorphic rock</u> is formed when a rock inside the Earth has been changed by heat and pressure. Metamorphic rocks are often made from other types of rocks. For example, limestone can be changed into marble. Slate and soapstone are examples of metamorphic rocks.

Igneous Rock

An **Igneous rock** is formed when melted rock from inside the Earth cools and hardens. Melted rock is called **magma**. This can happen in many different places on the Earth but one of the most common places is at a volcano. Granite and basalt are examples of igneous rocks.

118

Sediment piled up as layers.

Assessment

Students are able to:

- State the meaning of sedimentary, metamorphic and igneous rocks.
- Form igneous, sedimentary and metamorphic rocks using crayons.
- Differentiate the types of rocks formed.
- Listen for and remember the names of newly introduced rocks.
 - Facilitate active students' discussions.
 - Confirm the findings with the students.
 - **Based on their findings,** ask these questions as discussion points.
 - Q:The crayon in Step 2, 3 and 4 is modelled into a rock. What was done in each step to form a rock? Step 2 - Pressure was applied to and it became hard.

Step 3 - Heat and pressure were applied to Step 2 that caused the crayon to melt and become hard again.

Step 4 - Strong heat was applied to Step 3 that caused the crayon to melt completely, cooled and then became hard.)

- <u>Q:What affects the formation of rocks?</u> (Pressure and heat)
- <u>Q:How many types of rocks are there?</u> (Three types of rocks)
- Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbook to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: How are sedimentary, metamorphic and igneous rocks formed?
 - Q: What are some examples of sedimentary, metamorphic and igneous rocks?
- Ask students to copy the notes on the blackboard into their exercise books.

Sample Blackboard Plan

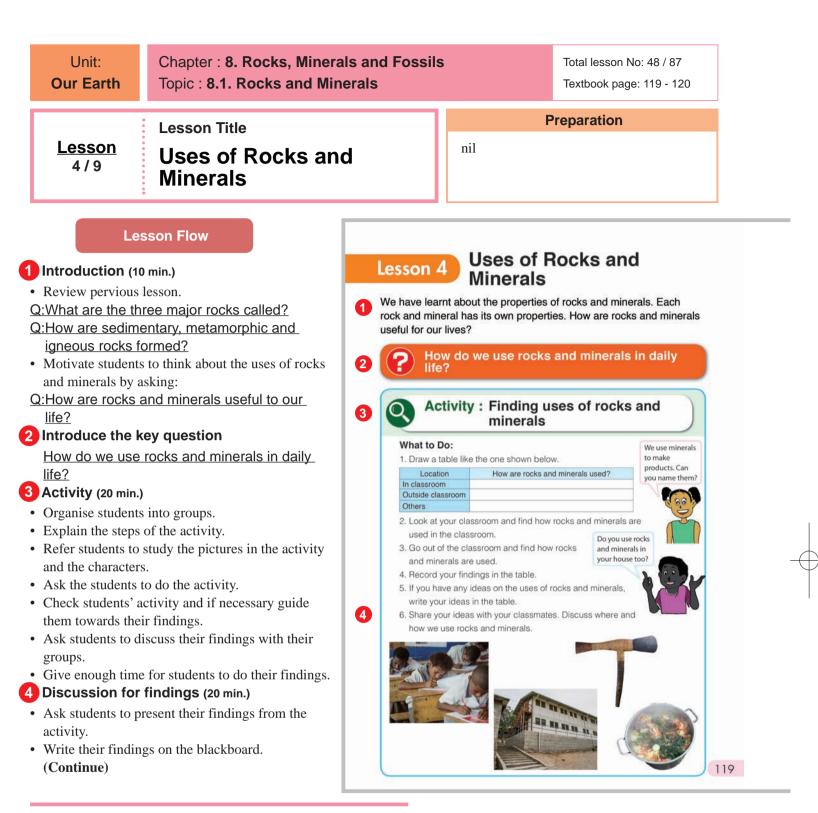
Title:

Types of Rocks

Key question What types of rocks are there? Activity: How are rocks formed Results: Step 2: The size of crayon doesn't change. They got hard. Step 3: The hard crayons melt. The crayon grain disappears. Striped colour. Step 4: All crayon grains mixed. It is monotone colours.

<u>Discussion</u>

Q: The crayon in Step 2, 3 and 4 is modelled into a rock. What was done in each step to form a rock? Step 2 - Pressure was applied to and it became hard. Step 3 - Heat and pressure were applied to Step 2 that caused the crayon to melt and become hard again. Step 4 - Strong heat was applied to Step3 that caused the crayon to melt completely,


cooled and then became hard. O: What affects the formation of rocks?

Q. what anects the formation of rocks? Pressure and heat. Q: How many types of rocks are there? <u>Three types of rocks.</u>

<u>Summary</u>

- A rock is grouped according to how it is formed.
- The three kinds of rocks are <u>Sedimentary</u>, <u>Metamorphic and Igneous rocks</u>.
- <u>Sedimentary rock</u> is formed when pieces of rocks glued together due to pressure.
- <u>Metamorphic rock</u> is formed when heat and pressure is applied.
- <u>Igneous</u> rock is formed when melted rock (magma) cools and hardens.

5

- 1. **Minerals** are valued for everything because of their beauty, rarity and hardness as precious gemstones to their useful practicality in the pharmaceutical, manufacturing, construction, petroleum and high-tech industries.
- 2. **Rocks** house these minerals and also provide for many uses: as the foundation from which soil is produced; as the foundations of naturally occurring mountains; as building blocks for most of the great monuments of human history; and as the decorative stones of current architecture and design.

Name	Type of rock / Mineral	Use
Basalt	Igneous	in road building
Calcite	Mineral	in cement and mortars and production of lime
Granite	Igneous	for buildings, monuments and tombstones
Marble	Metamorphic	in building floor, tile in bathrooms
Obsidian	Igneous	in making arrow heads and knife
Quartz	Mineral	in making glass and optical lenses
Sandstone	Sedimentary	in building materials
Chalk	Sedimentary	in writing

Students will be able to:

- Explain how rocks and minerals are used in daily life.
- Investigate the uses of rocks and minerals with interest.

Assessment

Students are able to:

5

- Give examples of the uses of common rocks and minerals in daily life.
- List the uses of rocks and minerals in a table.
- Value the use of rocks and minerals in their daily lives.

Summary

Rocks and minerals are used to make products in many ways. The properties of rocks and minerals help us decide how they can be used to make products.

Uses of Rocks

We use rocks in many ways. Rocks are used for building roads, houses and statues. Rocks are also used for cooking. Limestone is used to make cement. Coal is burnt for heat. We use marble for building, sculpture and manufacture.

<u>Discussion</u>

radios and glass.

Q: How are rocks useful? Rocks are used for

building roads, houses, statues, cooking

Q: How are minerals useful? Minerals are

used for jewellery, in electric cables and

Q: Why gold and silver are often used for

jewellery? Because their colour looks

beautiful, they are shining, etc.

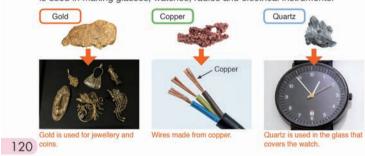
wires, used to make stainless steel, watches,

food and to make cement.

Limestone is used for making cement.

Uses of Minerals

Title:


Places

In classroom

Outside classroom

minerals in daily life?

Minerals are also useful for us. Papua New Guinea is rich in gold, silver, copper and nickel. We use gold and silver for jewellery and coins. Copper is used in electric cables and wires. Nickel is mainly used in making alloys such as stainless steel. An **alloy** is a mixture of two or more metals. Quartz is used in making glasses, watches, radios and electrical instruments.

Sample Blackboard Plan

How are rocks and

road, house, mumu

minerals used?

floor, chalk etc.

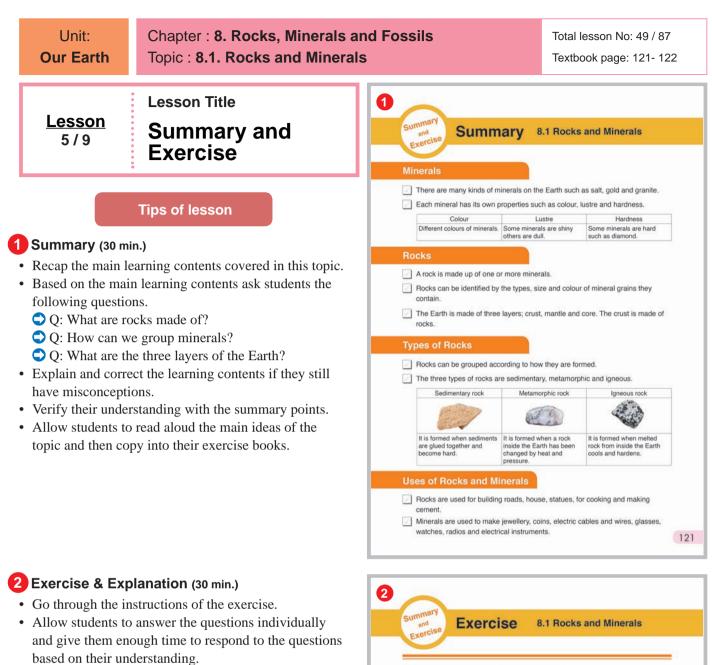
stone etc.

Uses of Rocks and Minerals

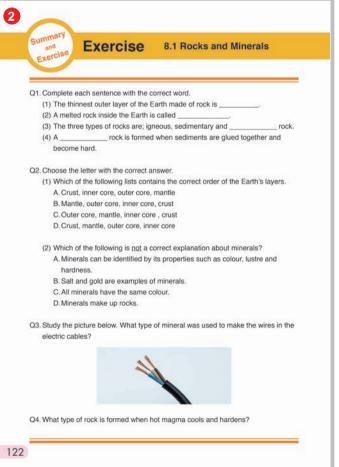
Key question : How do we use rocks and

Activity: Finding uses of rocks and minerals.

• Facilitate active students' discussions.


- Confirm the findings with the students.
- **Based on their findings,** ask these questions as discussion points.
- <u>Q:How are rocks useful?</u> (Rocks are used for building roads, houses, statues, cooking food and making cement. etc.)
- <u>Q:How are minerals useful?</u> (Minerals are used for jewellery, in electric cables and wires, used to make stainless steel, watches, radios and glass etc.)
- <u>Q:Can you guess why gold and silver are often</u> <u>used for jewellery?</u> (Because their colour looks beautiful, they are shining, etc)
- Explain that the properties of rocks and minerals help us decide how they can be used.
- Conclude the discussions.

5 Summary (10 min.)


- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
- Q: What type of rock is used for making cement?Q: What type of rock is used for building and sculpture?
- Q: What is Gold used for?
- Q: What is Copper used for?
- Ask students to copy the notes on the blackboard into their exercise books.

Summary

- Rocks and minerals are used to make products in many ways.
- The properties of rocks and minerals help us decide how they can be used.
- Rocks are useful in building roads, buildings, statues and for cooking.
- Minerals such as,
- 1. Gold is used to make jewellery
- 2. Copper is used for electric cables
- 3. Nickel is used to make stainless steel.

- After the exercise give them the answers to the questions and explain how to solve them using their scientific understanding and ideas.
- Make reference to the textbook or provide clear examples in daily life to strengthen the learnt concepts in this topic.

Exercise answers

Q1.

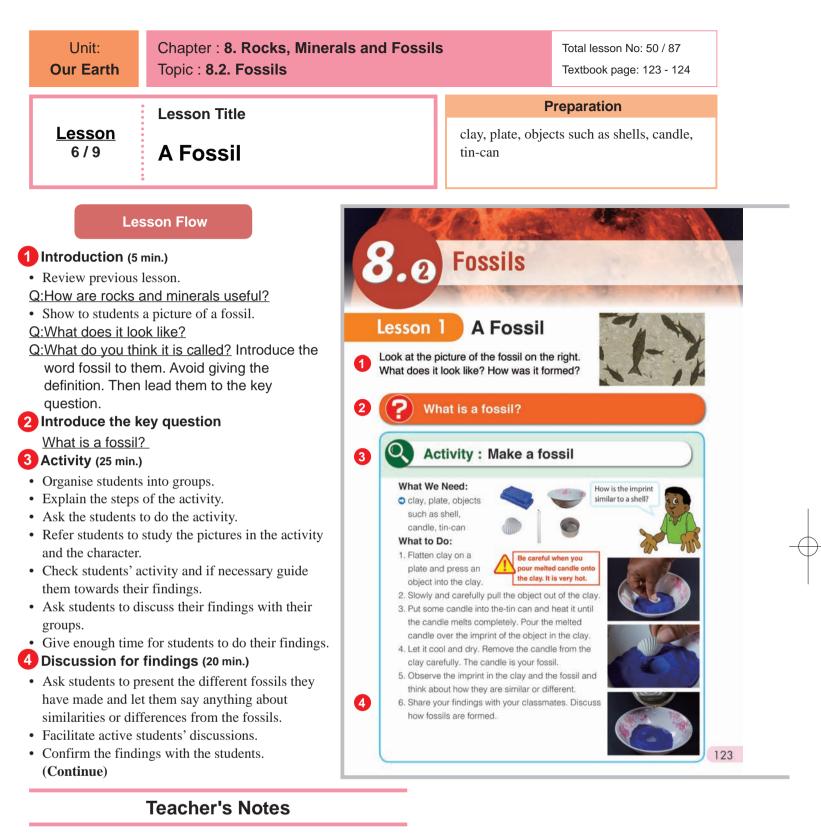
- (1) crust
- (2) magma
- (3) metamorphic
- (4) sedimentary

Q2.

(1) **D**

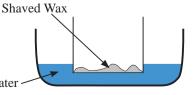
The Earth is made up of three layers; the crust, mantle and core. The core consists of the outer and the inner core. The crust is the thinnest outer layer of the Earth. The mantle is the thin, hot layer of the Earth. The core is the hottest, innermost layer of the Earth. The crust is made of rocks.

(2) **C**


Minerals come in many colours. Most minerals come in just one colour. Some minerals such as quartz come in many colours.

Q3. Expected Answer

The mineral that was used to make electrical cables and wires was copper.


Q4. Expected Answer

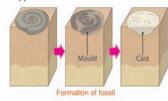
Igneous rock is formed when melted rock in the earth cools and hardens. Examples of Igneous rocks formed are basalt and granite.

- A fossil is any preserved remains, impression, or trace of any once-living thing from a past geological age. Examples include bones, shells, exoskeletons, stone imprints of animals or microbes, objects preserved in amber, hair, petrified wood, oil, coal, and DNA remnants.
- The two fossils formed during the activity are:
 1. Mould fossils Is the empty shape of a living thing found in a rock.
 2. Casts fossils Are formed when sediments fill the empty space (mould).
 (A cast made in this experiment is shown in the picture on the right)
 How to melt candle wax using a double boiler?
- Direct heating for candle wax is not so safe. Indirectly heating using 'Double boiler' is a better method to melt candle wax.
- Prepare two pans, one should be enough small enough to be put in another pan as shown in the figure on the right.
- Put shaved candle wax in the smaller pan and pour boiled water into the bigger pan so that the wax slowly melts.
 Boiled water

- Students will be able to:
- Define the term fossil.
- Demonstrate on how fossils are made.
- Show curiosity in exploring the formation of fossils.

Assessment

Students are able to:


- State the definition of fossil.
- Explain how fossils are formed by observing a model of fossil.
- Make a model of a fossil with interest.

Summary

A **fossil** is the remains of a once living thing. Studying fossils helps scientists learn about the past history of life on Earth. Most fossils are found in sedimentary rocks such as shale, limestone and

Fossils form in different ways. When a living thing dies, it is buried in sediments such as sand and soil. The living thing presses down in sediment and it leaves a shape in the sediment. The sediment turns into a rock. The hard parts of the living thing dissolves completely and the shape is left in the rock. The shape of a living thing found in a rock is called a **mould**. If sediments or minerals fill the mould's empty space, a cast forms. A **cast** is the opposite of its mould.

Some fossils are hard parts of living things such as bones, teeth, shells and leaves. After living things die, sediments cover them. The soft parts rot away and the hard parts turn into rocks.

124

Based on their findings, ask these questions as discussion points. Q:What was formed in steps 1 and 2? (An

- empty shape (imprint) of an object was formed.)
- Explain that the empty shape of a living thing found in rocks is called a <u>mould</u>
- <u>Q:What was formed in steps 3 and 4?</u> (Candle wax filled the empty shape (mould) and created an image.)
- Explain that this image is called a <u>cast</u>.
- <u>Q:Can you guess what filled the mould in</u> <u>nature?</u> (soil, sediments, etc)
- <u>Q:Can you guess how a fossil is formed?</u> (Refer to 'Summary' in textbook.)
- Conclude the discussions.

5 Summary (10 min.)

- Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment:
 - Q: What is a fossil?
 - Q: What is a mould and a cast?
 - Q: Why is it important to study fossils?
 - Q: Which body parts become a fossil easily?
 - Q: How are fossils formed?
- Ask students to copy the notes on the blackboard into their exercise books.

Sample Blackboard Plan

<u>Title:</u>

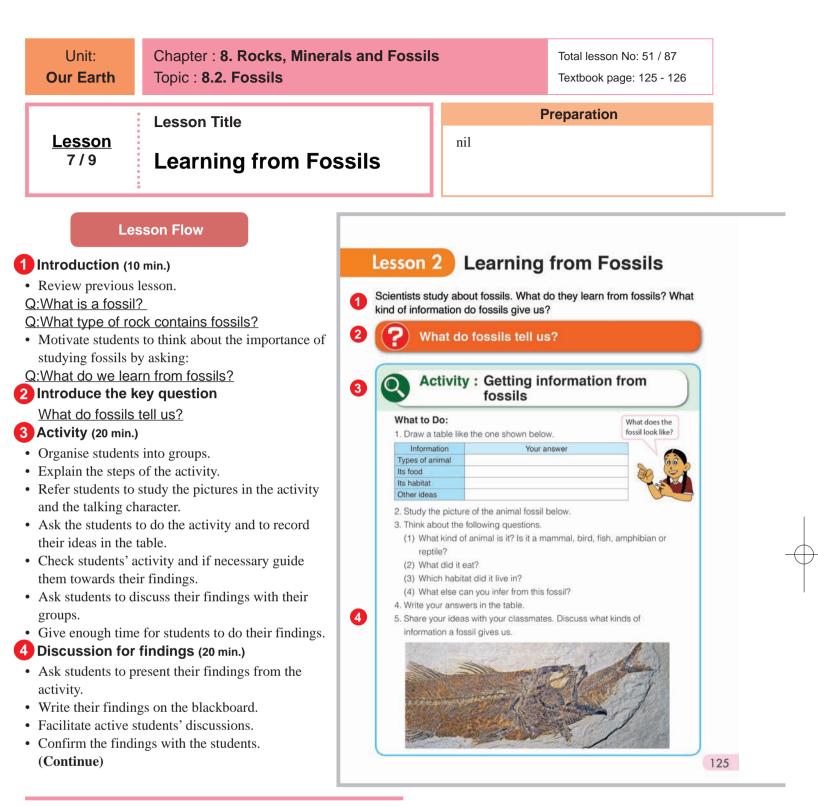
<u>A Fossil</u>

Key question What is a Fossil? Activity: Make a fossil How are the imprint in the clay and the fossil similar or different? Similarity: Write students' findings

<u>Differences:</u> Write students' findings

<u>Discussion</u>

ild and cast of a


Q: What was formed in steps 1 and 2? An empty shape of an object was formed. Q: What was formed in steps 3 and 4? Candle wax filled the empty shape (mould)) and created an image.

Q: Can you guess what filled the mould in nature? soil, sediments, etc.

Q: Can you guess how a fossil is formed? Write students' ideas here.

Summary

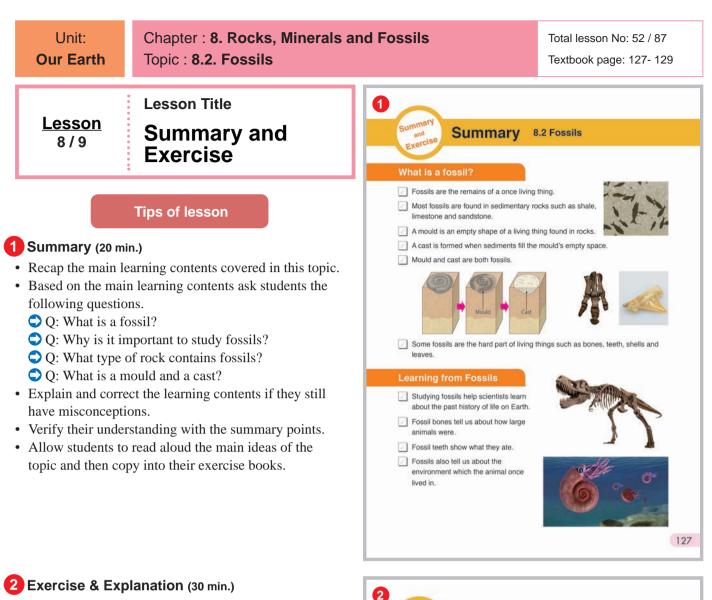
- A <u>fossil</u> is the remains of a once-living thing.
- Fossils are formed when living things die and are buried in soil. The hard part of the living thing leaves an empty shape (mould) in the rock. Sediments feel the empty space forming a cast.
- Mould and cast are fossils.
- Some fossils are hard parts of living things such as bones, teeth, shells and leaves.

- By studying the fossil record we can tell <u>how long life has existed on Earth</u> and <u>how different plants and animals are</u> <u>relate to each other</u>. Often we can work out how and where they lived and use that information to find out about ancient environments.
- <u>Climate</u> is one of the factors that determine where different species of plants and animals **can** live, so paleontologists look for clues to a location's ancient climate in the types of **fossil** plants and animals they find there.
- Fossils of human remains and of plants and animals provide insight into <u>how people of the past lived</u>. Plant and animal fossils from near the remains of old human settlements show what people ate, their tools they used and their culture. **Tips for the Lesson**
- Teacher can also provide other pictures of fossils with guided questions so students can also compare other fossil's habitats and type of food eaten.

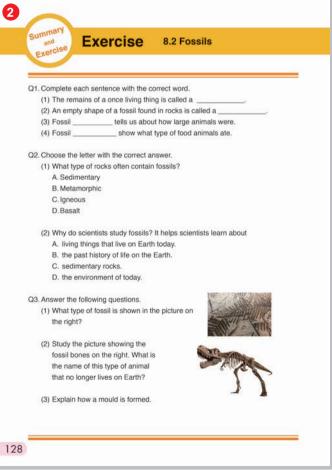
- Students will be able to:
- Identify what fossils tell us.
- Infer the past history of life and environment on the Earth from fossils.
- Show curiosity in exploring the fossils.

Assessment

- Students are able to:
- Explain what kinds of information fossils give us.
- Describe the type, habitat, food and size of ancient
- organisms by observing a fossil.
- Express their ideas actively.
- Summary Fossils give us so many clues. Studying fossils helps us to learn about the past history of life and environments on Earth. Fossils give us information about organisms that lived long ago. Moulds and casts show what kinds of plants and animals might have lived and how they looked. Some fossils look like animals and plants that are living today. Most of them such as dinosaurs no longer live on the Earth. Fossil bones tell us about how large animals were. Fossil teeth show what they ate The body size of tyrannosaurus was bigger than humans. Look at the shape of its teeth. Can you guess what food it ate Fossils also tell us about the environments in which they lived. For example, an ammonite lived in the sea. When a fossil of an ammonite is found in the mountains, we can infer that the mountains were once covered by the sea. Long Ago Now is found in the Hima 126


Sample Blackboard Plan

- **Based on their findings,** ask these questions as discussion points.
- Q:What kind of information does a fossil give us? (It gives us the information about the kinds of living things that lived long ago, what they ate, where they lived, their sizes, etc.)
- Q:How can you tell that this animal fossil is a fish? (It looks like the present fish.)
- Q:How can you tell that the habitat of this ancient fish was water? (Present fish lives in water, oceans, rivers, etc.)
- Q:How can you tell the size of this ancient fish? (From the size of the fossil)
- Q:The animal fossil is found in a mountain. How has the environment where the ancient fish lived changed from past to present? (The environment was once under sea, river or lake. Now it becomes a mountain.)
- Conclude the discussions.


5 Summary (10 min.)

- · Ask students to open their textbooks to the summary page and explain.
- Summarise today's lesson on the blackboard.
- Ask these questions as assessment: Q: What kinds of information do fossils give us? Q: Which part of the fossil tells us about the size of an animal?
- Ask students to copy the notes on the blackboard into their exercise books.

Discussion The environment was once sea, river or lake. Title: Learning from Fossils Q: What kind of information does a fossil gives Now it becomes a mountain. Key question: What do fossils tell us? us? Kinds of living things that lived long ago, Summary Activity: Getting information from fossils what they ate, where they lived, their size, etc. · Fossils give us information about living Answer Q: How can you tell that this animal fossil is a things that lived long ago. Type of animal fish? It looks like the present fish. Moulds and casts show what kind of Its food Small fish Q: How can you tell that the habitat of this plants and animals might have lived and Its habitat Water, Ocean, river, ancient fish was water? Present fish lives in how they looked. lake, etc • Fossil bones tell us about how large or water, oceans, river, etc. Other ideas Q: How can you tell the size of this ancient fish? small animals are. -Large, Big, etc. Size From the size of the fossil Fossil teeth show what they eat. Colour - Brown, no ideas, Q: How has the environment where the ancient Fossils also tell us about the environment fish lived changed from past to present? which the animal once lived in.

- Go through the instructions of the exercise.
- Allow students to answer the questions individually and give them enough time to respond to the questions based on their understanding.
- After the exercise give them the answers to the questions and explain how to solve them using their scientific understanding and ideas.
- Make reference to the textbook or provide clear examples in daily life to strengthen the learnt concepts in this topic.

Exercise answers

Q1.

- (1) **fossil**
- (2) mould
- (3) **bones**
- (4) teeth

Q2.

(1) A

Most fossils are found in sedimentary rocks such as shale, limestone and sandstone. When a living thing dies, it is buried in layers of sediments such as sand and soil.

(2) **B**

Fossils give us so many clues. Studying fossils helps us learn about the past history of life and environments on the Earth.

Q3. Expected answer

(1) Plant fossil

Some fossils are hard parts of living things such as bones, teeth, shells and leaves. After living things die, sediments covered them. The soft parts rot away and the hard parts turned to rock.

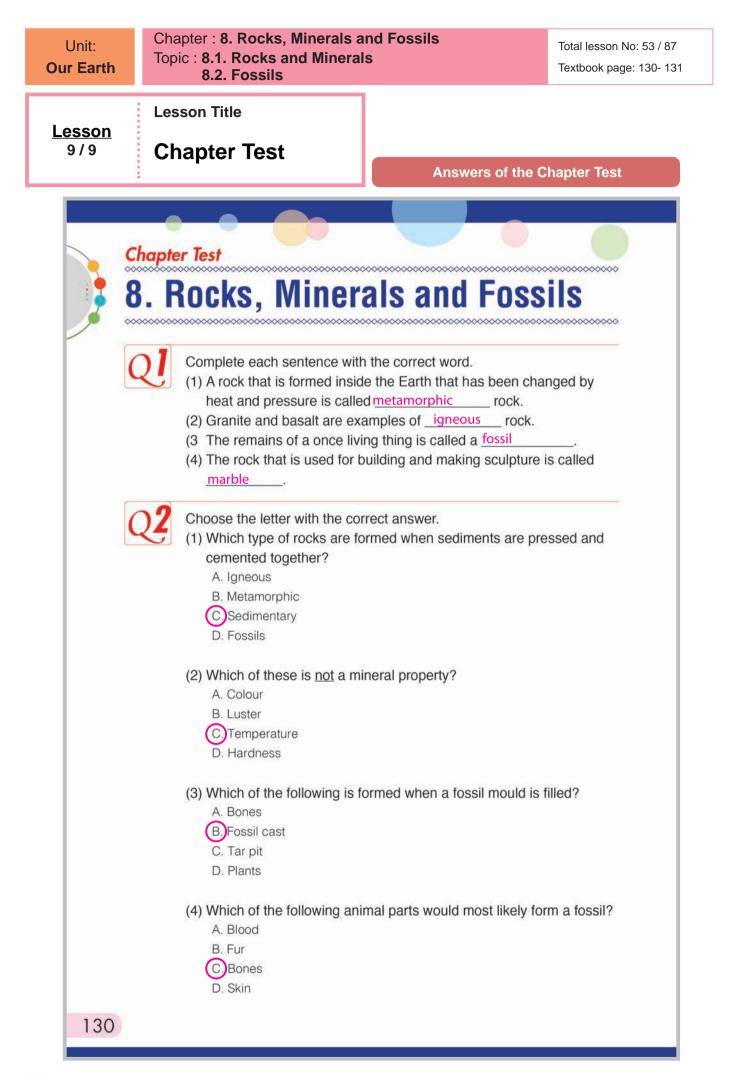
(2) Dinosaur (Tyrannosaurus)

(3) When a living thing dies, it is buried in sediments. The sediments turn into a rock. The hard parts of the living thing dissolve completely and the shape is left in the rock. The shape of a living thing found in a rock is called a mould.

Explanation of Science Extras

3 Science Extras (10 min.)

- Give opportunities to students to closely observe the nature and its phenomena in the world.
- Allow students to ask questions that demonstrate curiosity about the content in the science extra.


3

not float on water. They sink into water. But there is a special type of igneous rock that floats on water. This rock is called Pumice. It is typically light coloured rock that is formed during volcanic eruptions when lava and water mix, which causes a rapid change in the material's pressure. As it hardens, gases dissolve into the lava and leave behind small air pockets (holes) in the pumice structure. This caused the rock to have a low density due to the air bubbles inside of it. The less dense air offsets the more dense rock, causing it to float. This makes pumice very light. It usually floats for a while but when water gets into it, it starts to sink.

Chapter 8

It is ground up and is used today in soaps, polishes, pencil erasers and abrasive cleaners.

	correct layer	am on the right. er A, B, C or D t of the Earth in t			A B C D
	space provide Mantle	ea. B	Ser.		
	Inner core	D		2 3 10	
	Crust Outer core	A			
(2)	Which part of	f the Earth laye	rs is made of r	ocks?	
	Crust				
(1)	the land. What	und fossils of sh at can we infer s long ago in the	about the plac	e?	
	the land. What The place was water).	at can we infer s long ago in the	about the plac e sea (under the	e? 	Shellfish
	the land. What The place was water).	at can we infer s long ago in the udents oberved	about the plac e sea (under the five rocks sar	e? <u>e</u> mples wi	ith magnifying
	the land. What The place was water).	at can we infer s long ago in the	about the plac e sea (under the five rocks sar	e? <u>e</u> mples wi	ith magnifying
	the land. What The place was water). A group of stu hand lens. Stu questions.	at can we infer s long ago in the udents oberved tudy the table b	about the plac e sea (under the five rocks sar	e? <u>e</u> mples wi	ith magnifying ollowing
	the land. What The place was water). A group of stu hand lens. Stu questions.	at can we infer s long ago in the udents oberved tudy the table b stre Hardness	about the plac sea (under the five rocks sar elow and ansy	e? e nples wi ver the f	ith magnifying
	the land. What The place was water). A group of stu hand lens. St questions. Sample Lus	at can we infer s long ago in the udents oberved tudy the table b stre Hardness iny Hard	about the place e sea (under the five rocks sar elow and answ Colour	e? nples wi ver the f	ith magnifying ollowing Grain
	the land. What The place was water). A group of student hand lens. Student questions. Sample Lus 1 Shi	at can we infer s long ago in the udents oberved tudy the table b stre Hardness iny Hard iny Hard	about the place e sea (under the five rocks sar elow and answ Colour White Gold Several	e? nples wi ver the f	ith magnifying ollowing Grain Cannot be seen Cannot be seen Can be seen with
	the land. What The place was water).	at can we infer s long ago in the udents oberved tudy the table b stre Hardness iny Hard iny Hard II Hard	about the place e sea (under the five rocks sar elow and answ Colour White Gold	e? ples wi ver the f State Solid Soild	ith magnifying ollowing Grain Cannot be seen